251
|
Tang HKC, Rao A, Peters C, Ambulkar T, Ho MFX, Wang B, Patel P. 'Immunotherapeutic Strategies for Intra-cranial Metastatic Melanoma - a Meta-analysis and Systematic Review'. J Cancer 2024; 15:3495-3509. [PMID: 38817862 PMCID: PMC11134445 DOI: 10.7150/jca.93306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/27/2024] [Indexed: 06/01/2024] Open
Abstract
Immune-activating anti-CTLA4 and anti-PD1 monoclonal antibodies (alone or in combination) are being used to treat advanced melanoma patients and can lead to durable remissions, and long-term overall survival may be achieved in between 50-60% of patients. Although intracranial metastases are very common in melanoma (about 50-75% of all patients with advanced disease), most of the pivotal prospective clinical trials exclude patients with intra-cranial metastases, certainly if their lesions are symptomatic and steroid-requiring and the degree of sensitivity of intra-cranial melanoma to immunotherapy remains uncertain, and requires further investigation especially in view of the demonstrable activity of RAF-MEK inhibitors in this clinical setting and the emergence of stereotactic radiotherapy. Our study aimed to evaluate the efficacy and toxicity of immunotherapy against advanced melanoma patients with brain metastases. In terms of comparative studies, only retrospective analyses could be identified. Based on 3 retrospective studies, treatment of patients with melanoma brain metastases with immunotherapeutic approaches improves overall survival substantially compared with supportive measures alone (no active anticancer treatment). The efficacy of targeted therapy appeared to be comparable to that of immune therapy in terms of overall survival, based on a small number of patients. The combination of concurrent radiation therapy to the brain and systemic immunotherapy led to improved overall survival compared to radiotherapy alone, suggesting potential synergism between the approaches, and combination treatment could be delivered safely. Our review supports the use of immunotherapeutic strategies for these patients although treatment efficacy appears to be lower for symptomatic lesions. In view of the extremely high efficacy of stereotactic radiotherapy approaches in the brain, understanding the interaction between radiotherapy and immunotherapy is vital and should be an area of active investigation.
Collapse
Affiliation(s)
- Hiu Kwan Carolyn Tang
- Department of Oncology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, United Kingdom
| | - Ankit Rao
- Department of Oncology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, United Kingdom
| | - Christina Peters
- Department of Oncology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, United Kingdom
| | - Tanvi Ambulkar
- Department of Oncology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, United Kingdom
| | - Michael FX Ho
- Department of Oncology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, United Kingdom
| | - Bo Wang
- Trinity Hall, University of Cambridge, Cambridge, CB2 1TJ, United Kingdom
| | - Poulam Patel
- Department of Oncology, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, United Kingdom
| |
Collapse
|
252
|
Zhao P, Zhao T, Yu L, Ma W, Liu W, Zhang C. The risk of endocrine immune-related adverse events induced by PD-1 inhibitors in cancer patients: a systematic review and meta-analysis. Front Oncol 2024; 14:1381250. [PMID: 38756658 PMCID: PMC11096456 DOI: 10.3389/fonc.2024.1381250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Objective Endocrinopathies are the most common immune-related adverse events (irAEs) observed during therapy with PD-1 inhibitors. In this study, we conducted a comprehensive systematic review and meta-analysis to evaluate the risk of immune-related endocrinopathies in patients treated with PD-1 inhibitors. Methods We performed a systematic search in the PubMed, Embase, and Cochrane Library databases to retrieve all randomized controlled trials (RCTs) involving PD-1 inhibitors, spanning from their inception to November 24, 2023. The comparative analysis encompassed patients undergoing chemotherapy, targeted therapy, or receiving placebo as control treatments. This study protocol has been registered with PROSPERO (CRD42023488303). Results A total of 48 clinical trials comprising 24,514 patients were included. Compared with control groups, patients treated with PD-1 inhibitors showed an increased risk of immune-related adverse events, including hypothyroidism, hyperthyroidism, hypophysitis, thyroiditis, diabetes mellitus, and adrenal insufficiency. Pembrolizumab was associated with an increased risk of all aforementioned endocrinopathies (hypothyroidism: RR=4.76, 95%CI: 3.55-6.39; hyperthyroidism: RR=9.69, 95%CI: 6.95-13.52; hypophysitis: RR=5.47, 95%CI: 2.73-10.97; thyroiditis: RR=5.95, 95%CI: 3.02-11.72; diabetes mellitus: RR=3.60, 95%CI: 1.65-7.88; adrenal insufficiency: RR=4.80, 95%CI: 2.60-8.88). Nivolumab was associated with an increased risk of hypothyroidism (RR=7.67, 95%CI: 5.00-11.75) and hyperthyroidism (RR=9.22, 95%CI: 4.71-18.04). Tislelizumab and sintilimab were associated with an increased risk of hypothyroidism (RR=19.07, 95%CI: 5.46-66.69 for tislelizumab and RR=18.36, 95%CI: 3.58-94.21 for sintilimab). For different tumor types, both hypothyroidism and hyperthyroidism were at high risks. Besides, patients with non-small cell lung cancer were at a higher risk of thyroiditis and adrenal insufficiency. Patients with melanoma were at a higher risk of hypophysitis and diabetes mellitus. Both low- and high-dose group increased risks of hypothyroidism and hyperthyroidism. Conclusion Risk of endocrine irAEs may vary in different PD-1 inhibitors and different tumor types. Increased awareness and understanding of the risk features of endocrine irAEs associated with PD-1 inhibitors is critical for clinicians. Systematic review registration crd.york.ac.uk/prospero, identifier PROSPERO (CRD42023488303).
Collapse
Affiliation(s)
- Pengfei Zhao
- Department of Clinical Pharmacy, Weifang People's Hospital, Weifang, China
| | - Ting Zhao
- Department of Clinical Pharmacy, Weifang People's Hospital, Weifang, China
| | - Lihong Yu
- Department of Clinical Pharmacy, Weifang People's Hospital, Weifang, China
| | - Wenming Ma
- Department of Clinical Pharmacy, Weifang People's Hospital, Weifang, China
| | - Wenyu Liu
- Department of Pharmacy, Weifang People's Hospital, Weifang, China
| | - Chenning Zhang
- Department of Rehabilitation Medicine & Department of Pharmacy, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
253
|
Tangudu NK, Buj R, Wang H, Wang J, Cole AR, Uboveja A, Fang R, Amalric A, Yang B, Chatoff A, Crispim CV, Sajjakulnukit P, Lyons MA, Cooper K, Hempel N, Lyssiotis CA, Chandran UR, Snyder NW, Aird KM. De Novo Purine Metabolism is a Metabolic Vulnerability of Cancers with Low p16 Expression. CANCER RESEARCH COMMUNICATIONS 2024; 4:1174-1188. [PMID: 38626341 PMCID: PMC11064835 DOI: 10.1158/2767-9764.crc-23-0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/04/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in approximately 50% of all human cancers. In its canonical role, p16 inhibits the G1-S-phase cell cycle progression through suppression of cyclin-dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. However, the broader impact of p16/CDKN2A loss on other nucleotide metabolic pathways and potential therapeutic targets remains unexplored. Using CRISPR knockout libraries in isogenic human and mouse melanoma cell lines, we determined several nucleotide metabolism genes essential for the survival of cells with loss of p16/CDKN2A. Consistently, many of these genes are upregulated in melanoma cells with p16 knockdown or endogenously low CDKN2A expression. We determined that cells with low p16/CDKN2A expression are sensitive to multiple inhibitors of de novo purine synthesis, including antifolates. Finally, tumors with p16 knockdown were more sensitive to the antifolate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2Alow tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents. SIGNIFICANCE Antimetabolites were the first chemotherapies, yet many have failed in the clinic due to toxicity and poor patient selection. Our data suggest that p16 loss provides a therapeutic window to kill cancer cells with widely-used antifolates with relatively little toxicity.
Collapse
Affiliation(s)
- Naveen Kumar Tangudu
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Raquel Buj
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hui Wang
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jiefei Wang
- Department of Biomedical Informatics and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Aidan R. Cole
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Apoorva Uboveja
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Richard Fang
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amandine Amalric
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Baixue Yang
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Tsinghua University School of Medicine, Beijing, P.R. China
| | - Adam Chatoff
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Claudia V. Crispim
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Maureen A. Lyons
- Genomics Facility, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kristine Cooper
- Biostatistics Facility, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nadine Hempel
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Uma R. Chandran
- Department of Biomedical Informatics and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nathaniel W. Snyder
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Katherine M. Aird
- Department of Pharmacology and Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
254
|
Ruf T, Kramer R, Forschner A, Leiter U, Meier F, Reinhardt L, Dücker P, Ertl C, Tomsitz D, Tietze JK, Gutzmer R, Dabrowski E, Zimmer L, Gesierich A, Zierold S, French LE, Eigentler T, Amaral T, Heinzerling L. Second-line therapies for steroid-refractory immune-related adverse events in patients treated with immune checkpoint inhibitors. Eur J Cancer 2024; 203:114028. [PMID: 38652976 DOI: 10.1016/j.ejca.2024.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) induce adverse events (irAEs) that do not respond to steroids, i.e. steroid-refractory (sr) irAEs, and irAEs in which steroids cannot be tapered, i.e. steroid-dependent (sd) irAEs, in about 10% of cases. An evidence-based analysis of the effectiveness of second-line immunosuppressive agents with regard to irAE and tumor control is lacking. METHODS The international web-based Side Effect Registry Immuno-Oncology (SERIO; http://serio-registry.org) is a collaborative initiative with the Paul-Ehrlich-Institute to document rare, severe, complex or therapy-refractory immunotherapy-induced side effects. The registry was queried on August 1, 2023 for cases of irAEs which were treated with second-line therapies. RESULTS From a total of 1330 cases, 217 patients (16.3%) received 249 second-line therapies. A total of 19 different second-line therapies were employed, including TNF-alpha antagonists (46.5%), intravenous immunoglobulins (IVIG; 19.1%), mycophenolate mofetil (15.9%), and methotrexate (3.6%). Therapy choices were determined by the type of irAE. The time to onset of sr-/sd-irAEs after ICI initiation did not consistently differ from steroid-responsive irAEs. While 74.3% of sr-/sd-irAEs resolved and 13.1% had improved, 4.3% persisted, 3.9% resulted in permanent sequelae, and 4.3% in death with ongoing symptoms. Infliximab exhibited potential for earlier symptom improvement compared to mycophenolate mofetil or IVIG. Tumor response in patients with second-line treated sd-/sr-irAE was similar to patients with irAEs treated with steroids only. CONCLUSION Several second-line therapies are effective against sr-/sd-irAEs, the second-line therapies show no clear negative impact on tumor response, and infliximab shows potential for faster improvement of symptoms. However, prospective comparative data are needed.
Collapse
Affiliation(s)
- Theresa Ruf
- Department of Dermatology and Allergology, University Hospital, LMU Munich, Munich, Germany; SERIO registry
| | - Rafaela Kramer
- Department of Dermatology, University Clinic Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; SERIO registry
| | - Andrea Forschner
- Department of Dermatology, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Ulrike Leiter
- Department of Dermatology, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Friedegund Meier
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lydia Reinhardt
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Pia Dücker
- Department of Dermatology, Hospital Dortmund, Dortmund, Germany
| | - Carolin Ertl
- Department of Dermatology and Allergology, University Hospital, LMU Munich, Munich, Germany; SERIO registry
| | - Dirk Tomsitz
- Department of Dermatology and Allergology, University Hospital, LMU Munich, Munich, Germany
| | - Julia K Tietze
- Clinic for Dermatology and Venerology, University Medical Center Rostock, Rostock, Germany
| | - Ralf Gutzmer
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr-University Bochum, Minden, Germany
| | | | - Lisa Zimmer
- Department of Dermatology, Essen University Hospital, West German Cancer Center, University of Duisburg-Essen and the German Cancer Consortium (DKTK), Partner site Essen/Düsseldorf, Germany
| | - Anja Gesierich
- Department of Dermatology, University Hospital Würzburg, Germany
| | - Sarah Zierold
- Department of Dermatology and Allergology, University Hospital, LMU Munich, Munich, Germany; SERIO registry
| | - Lars E French
- Department of Dermatology and Allergology, University Hospital, LMU Munich, Munich, Germany; Dr. Philip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Thomas Eigentler
- Department of Dermatology, Charité University Medicine Berlin, Berlin, Germany
| | - Teresa Amaral
- Department of Dermatology, Eberhard-Karls-University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180), Tübingen, Germany
| | - Lucie Heinzerling
- Department of Dermatology and Allergology, University Hospital, LMU Munich, Munich, Germany; Department of Dermatology, University Clinic Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; SERIO registry.
| |
Collapse
|
255
|
Choi SY, Kim Y, Lim B, Wee CB, Chang IH, Kim CS. Prostate cancer therapy using immune checkpoint molecules to target recombinant dendritic cells. Investig Clin Urol 2024; 65:300-310. [PMID: 38714521 PMCID: PMC11076804 DOI: 10.4111/icu.20230348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/18/2024] [Accepted: 02/11/2024] [Indexed: 05/10/2024] Open
Abstract
PURPOSE We developed immune checkpoint molecules to target recombinant dendritic cells (DCs) and verified their anti-tumor efficacy and immune response against prostate cancer. MATERIALS AND METHODS DCs were generated from mononuclear cells in the tibia and femur bone marrow of mice. We knocked down the programmed death ligand 1 (PD-L1) on monocyte-derived DCs through siRNA PD-L1. Cell surface antigens were immune fluorescently stained through flow cytometry to analyze cultured cell phenotypes. Furthermore, we evaluated the efficacy of monocyte-derived DCs and recombinant DCs in a prostate cancer mouse model with subcutaneous TRAMP-C1 cells. Lastly, DC-induced mixed lymphocyte and lymphocyte-only proliferations were compared to determine cultured DCs' function. RESULTS Compared to the control group, siRNA PD-L1 therapeutic DC-treated mice exhibited significantly inhibited tumor volume and increased tumor cell apoptosis. Remarkably, this treatment substantially augmented interferon-gamma and interleukin-2 production by stimulating T-cells in an allogeneic mixed lymphocyte reaction. Moreover, we demonstrated that PD-L1 gene silencing improved cell proliferation and cytokine production. CONCLUSIONS We developed monocyte-derived DCs transfected with PD-L1 siRNA from mouse bone marrow. Our study highlights that PD-L1 inhibition in DCs increases antigen-specific immune responses, corroborating previous immunotherapy methodology findings regarding castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Se Young Choi
- Department of Urology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yunlim Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bumjin Lim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chung Beum Wee
- Department of Urology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - In Ho Chang
- Department of Urology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Choung-Soo Kim
- Department of Urology, Ewha Womans University Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Korea.
| |
Collapse
|
256
|
Blake SJ, Wolf Y, Boursi B, Lynn DJ. Role of the microbiota in response to and recovery from cancer therapy. Nat Rev Immunol 2024; 24:308-325. [PMID: 37932511 DOI: 10.1038/s41577-023-00951-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 11/08/2023]
Abstract
Our understanding of how the microbiota affects the balance between response to and failure of cancer treatment by modulating the tumour microenvironment and systemic immune system has advanced rapidly in recent years. Microbiota-targeting interventions in patients with cancer are an area of intensive investigation. Promisingly, phase I-II clinical trials have shown that interventions such as faecal microbiota transplantation can overcome resistance to immune checkpoint blockade in patients with melanoma, improve therapeutic outcomes in treatment-naive patients and reduce therapy-induced immunotoxicities. Here, we synthesize the evidence showing that the microbiota is an important determinant of both cancer treatment efficacy and treatment-induced acute and long-term toxicity, and we discuss the complex and inter-related mechanisms involved. We also assess the potential of microbiota-targeting interventions, including bacterial engineering and phage therapy, to optimize the response to and recovery from cancer therapy.
Collapse
Affiliation(s)
- Stephen J Blake
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Yochai Wolf
- Ella Lemelbaum Institute for Immuno-oncology and Skin Cancer, Sheba Medical Center, Tel Hashomer, Israel
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ben Boursi
- School of Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Oncology, Sheba Medical Center, Tel Hashomer, Israel
- Center of Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Lynn
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
257
|
Zakharevich NV, Morozov MD, Kanaeva VA, Filippov MS, Zyubko TI, Ivanov AB, Ulyantsev VI, Klimina KM, Olekhnovich EI. Systemic metabolic depletion of gut microbiome undermines responsiveness to melanoma immunotherapy. Life Sci Alliance 2024; 7:e202302480. [PMID: 38448159 PMCID: PMC10917649 DOI: 10.26508/lsa.202302480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Immunotherapy has proven to be a boon for patients battling metastatic melanoma, significantly improving their clinical condition and overall quality of life. A compelling link between the composition of the gut microbiome and the efficacy of immunotherapy has been established in both animal models and human patients. However, the precise biological mechanisms by which gut microbes influence treatment outcomes remain poorly understood. Using a robust dataset of 680 fecal metagenomes from melanoma patients, a detailed catalog of metagenome-assembled genomes (MAGs) was constructed to explore the compositional and functional properties of the gut microbiome. Our study uncovered significant findings that deepen the understanding of the intricate relationship between gut microbes and the efficacy of melanoma immunotherapy. In particular, we discovered the specific metagenomic profile of patients with favorable treatment outcomes, characterized by a prevalence of MAGs with increased overall metabolic potential and proficiency in polysaccharide utilization, along with those responsible for cobalamin and amino acid production. Furthermore, our investigation of the biosynthetic pathways of short-chain fatty acids, known for their immunomodulatory role, revealed a differential abundance of these pathways among the specific MAGs. Among others, the cobalamin-dependent Wood-Ljungdahl pathway of acetate synthesis was directly associated with responsiveness to melanoma immunotherapy.
Collapse
Affiliation(s)
- Natalia V Zakharevich
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
| | - Maxim D Morozov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
| | - Vera A Kanaeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
- Moscow Institute of Physics and Technology, Moscow, Russian
| | | | | | - Artem B Ivanov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
- ITMO University, Saint Petersburg, Russian
| | | | - Ksenia M Klimina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
| | - Evgenii I Olekhnovich
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
| |
Collapse
|
258
|
Kennedy OJ, Ali N, Lee R, Monaghan P, Adam S, Cooksley T, Lorigan P. Thyroid dysfunction after immune checkpoint inhibitors in a single-centre UK pan-cancer cohort: A retrospective study. Eur J Cancer 2024; 202:113949. [PMID: 38432099 DOI: 10.1016/j.ejca.2024.113949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
PURPOSE This study investigated thyroid dysfunction with immune checkpoint inhibitors (ICIs) in terms of proportions affected, risk factors, thyroid sequelae, and overall survival (OS). METHODS Among patients with normal baseline free T4 (fT4) and thyroid stimulating hormone (TSH) receiving ICIs at a large cancer centre, proportions of hyperthyroidism/hypothyroidism were determined (any, subclinical [normal fT4, abnormal TSH], overt [abnormal fT4, abnormal TSH], isolated hyperthyroxinaemia/hypothyroxinaemia and secondary) with onset times and subsequent thyroid statuses. Associations of overt dysfunction with OS were estimated using Cox regression and methods robust to immortal time bias (time-dependent Cox regression and 3- and 6-month landmark analyses). Associations of baseline variables with overt hyperthyroidism and hypothyroidism were estimated using Fine and Gray regression. RESULTS Of 1349 patients, 34.2% developed hyperthyroidism (10.3% overt), including 54.9% receiving combination ICIs, while 28.2% developed hypothyroidism (overt 9.3%, secondary 0.5%). A third of overt hypothyroidism cases occurred without preceding hyperthyroidism. Subclinical thyroid dysfunction returned directly to normal in up to half. Overt hyperthyroidism progressed to overt hypothyroidism in 55.4% (median 1.6 months). Melanoma treatment in the adjuvant vs. advanced setting caused more overt hyperthyroidism (12.1% vs. 7.5%) and overt hypothyroidism (14.5% vs. 9.7%). Baseline eGFR < 60 mL/min/1.73 m2 (HR=1.68, 1.07-2.63) was associated with overt hyperthyroidism and sex (HR=0.60, 0.42-0.87) and TSH (4th vs. 1st quartile HR=1.87, 1.10-3.19) with overt hypothyroidism. Overt dysfunction was associated with OS in the Cox analysis (HR=0.65, 0.50-0.85, median follow-up 22.2 months) but not in the time-dependent Cox (HR=0.79, 0.60-1.03) or landmark analyses (3-month HR=0.74, 0.51-1.07; 6-month HR=0.91, 0.66-1.24). CONCLUSION Thyroid dysfunction affects up to half of patients receiving ICIs. The association with OS is unclear after considering immortal time bias. The clinical courses include recovery, thyrotoxicosis and de novo overt hypothyroidism. Adjuvant treatment for melanoma, where longer-term harms are of concern, causes more frequent/aggressive dysfunction.
Collapse
Affiliation(s)
- Oliver John Kennedy
- The Christie NHS Foundation Trust, Manchester, M20 4BX, UK; Division of Cancer Sciences, The University of Manchester, Manchester, M13 9PL, UK.
| | - Nadia Ali
- The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Rebecca Lee
- The Christie NHS Foundation Trust, Manchester, M20 4BX, UK; Division of Cancer Sciences, The University of Manchester, Manchester, M13 9PL, UK
| | - Phillip Monaghan
- Division of Cancer Sciences, The University of Manchester, Manchester, M13 9PL, UK; The Christie Pathology Partnership, Manchester, M20 4BX, UK
| | - Safwaan Adam
- The Christie NHS Foundation Trust, Manchester, M20 4BX, UK; Division of Cancer Sciences, The University of Manchester, Manchester, M13 9PL, UK
| | - Tim Cooksley
- The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Paul Lorigan
- The Christie NHS Foundation Trust, Manchester, M20 4BX, UK; Division of Cancer Sciences, The University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
259
|
Thomas MF, Slowikowski K, Manakongtreecheep K, Sen P, Samanta N, Tantivit J, Nasrallah M, Zubiri L, Smith NP, Tirard A, Ramesh S, Arnold BY, Nieman LT, Chen JH, Eisenhaure T, Pelka K, Song Y, Xu KH, Jorgji V, Pinto CJ, Sharova T, Glasser R, Chan P, Sullivan RJ, Khalili H, Juric D, Boland GM, Dougan M, Hacohen N, Li B, Reynolds KL, Villani AC. Single-cell transcriptomic analyses reveal distinct immune cell contributions to epithelial barrier dysfunction in checkpoint inhibitor colitis. Nat Med 2024; 30:1349-1362. [PMID: 38724705 PMCID: PMC11673812 DOI: 10.1038/s41591-024-02895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/01/2024] [Indexed: 05/23/2024]
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized oncology, but treatments are limited by immune-related adverse events, including checkpoint inhibitor colitis (irColitis). Little is understood about the pathogenic mechanisms driving irColitis, which does not readily occur in model organisms, such as mice. To define molecular drivers of irColitis, we used single-cell multi-omics to profile approximately 300,000 cells from the colon mucosa and blood of 13 patients with cancer who developed irColitis (nine on anti-PD-1 or anti-CTLA-4 monotherapy and four on dual ICI therapy; most patients had skin or lung cancer), eight controls on ICI therapy and eight healthy controls. Patients with irColitis showed expanded mucosal Tregs, ITGAEHi CD8 tissue-resident memory T cells expressing CXCL13 and Th17 gene programs and recirculating ITGB2Hi CD8 T cells. Cytotoxic GNLYHi CD4 T cells, recirculating ITGB2Hi CD8 T cells and endothelial cells expressing hypoxia gene programs were further expanded in colitis associated with anti-PD-1/CTLA-4 therapy compared to anti-PD-1 therapy. Luminal epithelial cells in patients with irColitis expressed PCSK9, PD-L1 and interferon-induced signatures associated with apoptosis, increased cell turnover and malabsorption. Together, these data suggest roles for circulating T cells and epithelial-immune crosstalk critical to PD-1/CTLA-4-dependent tolerance and barrier function and identify potential therapeutic targets for irColitis.
Collapse
Affiliation(s)
- Molly Fisher Thomas
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Division of Gastroenterology, Department of Medicine, Oregon Health and Sciences University, Portland, OR, USA.
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Sciences University, Portland, OR, USA.
| | - Kamil Slowikowski
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Kasidet Manakongtreecheep
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Pritha Sen
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Transplant, Oncology, and Immunocompromised Host Group, Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nandini Samanta
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jessica Tantivit
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Mazen Nasrallah
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Department of Medicine, North Shore Physicians Group, Mass General Brigham Healthcare Center, Lynn, MA, USA
| | - Leyre Zubiri
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Neal P Smith
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Alice Tirard
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Swetha Ramesh
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Benjamin Y Arnold
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Linda T Nieman
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jonathan H Chen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas Eisenhaure
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Karin Pelka
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Yuhui Song
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Katherine H Xu
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Vjola Jorgji
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Tatyana Sharova
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Rachel Glasser
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - PuiYee Chan
- Harvard Medical School, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Ryan J Sullivan
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hamed Khalili
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Dejan Juric
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve M Boland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Dougan
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nir Hacohen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bo Li
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Kerry L Reynolds
- Harvard Medical School, Boston, MA, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
260
|
Lu HR, Zhu PF, Deng YY, Chen ZL, Yang L. Predictive value of NLR and PLR for immune-related adverse events: a systematic review and meta-analysis. Clin Transl Oncol 2024; 26:1106-1116. [PMID: 37682501 DOI: 10.1007/s12094-023-03313-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Currently, there is a lack of affordable and accessible indicators that can accurately predict immune-related adverse events (irAEs) resulting from the use of immune checkpoint inhibitors (ICIs). In order to address this knowledge gap, our study explore the potential predictive value of two ratios, namely the neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR), for irAEs in cancer patients. METHODS A systematic search was performed in PubMed, Embase, and the Cochrane library. Studies involving NLR or PLR with irAEs were included. Quality and risk of bias of the selected studies were assessed. Forest plots were created based on Cox model analysis. Random effects meta-analyses were conducted to estimate odds ratio (OR) and its 95% confidence interval (CI). RESULTS After screening 594 studies, a total of 7 eligible studies with 1068 cancer patients were included. Analysis based on Cox regression showed that low neutrophil-lymphocyte ratio (L-NLR) (OR = 3.02, 95% CI 1.51 to 6.05, P = 0.002) and low platelet-lymphocyte ratio (L-PLR) (OR = 1.83, 95% CI 1.21 to 2.76, P = 0.004) were associated with irAEs. In the subgroup analysis of cut-off value, when the NLR cut-off value was 3, irAEs was significantly correlated with NLR (OR = 2.63, 95% CI 1.63 to 4.26, P < 0.001). CONCLUSIONS Both L-NLR and L-PLR have been found to be significantly associated with irAEs. Consequently, patients identified as being at a higher risk for irAEs should be subjected to more diligent monitoring and close observation.
Collapse
Affiliation(s)
- Hong-Rui Lu
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, Anhui Province, China
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Peng-Fei Zhu
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, Anhui Province, China
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Ya-Ya Deng
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
- Graduate Department, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Zhe-Ling Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.
| | - Liu Yang
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, Anhui Province, China.
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.
- Graduate Department, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China.
| |
Collapse
|
261
|
Qin Y, Rouatbi N, Wang JTW, Baker R, Spicer J, Walters AA, Al-Jamal KT. Plasmid DNA ionisable lipid nanoparticles as non-inert carriers and potent immune activators for cancer immunotherapy. J Control Release 2024; 369:251-265. [PMID: 38493950 PMCID: PMC11464404 DOI: 10.1016/j.jconrel.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Immunotherapy is currently a standard of care in the treatment of many malignancies. However, predictable side effects caused by systemic administration of highly immunostimulatory molecules have been a serious concern within this field. Intratumoural expression or silencing of immunogenic and immunoinhibitory molecules using nucleic acid-based approaches such as plasmid DNA (pDNA) and small interfering RNA (siRNA), respectively, could represent a next generation of cancer immunotherapy. Here, we employed lipid nanoparticles (LNPs) to deliver either non-specific pDNA and siRNA, or constructs targeting two prominent immunotherapeutic targets OX40L and indoleamine 2,3-dioxygenase-1 (IDO), to tumours in vivo. In the B16F10 mouse model, intratumoural delivery of LNP-formulated non-specific pDNA and siRNA led to strong local immune activation and tumour growth inhibition even at low doses due to the pDNA immunogenic nature. Replacement of these non-specific constructs by pOX40L and siIDO resulted in more prominent immune activation as evidenced by increased immune cell infiltration in tumours and tumour-draining lymph nodes. Consistently, pOX40L alone or in combination with siIDO could prolong overall survival, resulting in complete tumour regression and the formation of immunological memory in tumour rechallenge models. Our results suggest that intratumoural administration of LNP-formulated pDNA and siRNA offers a promising approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Yue Qin
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Nadia Rouatbi
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Rafal Baker
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - James Spicer
- Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust (GSTT), London SE1 9RT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
| | - Adam A Walters
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
262
|
Wang Z, Zhang Q, Xue A, Whitmore J. Sample size calculation for mixture model based on geometric average hazard ratio and its applications to nonproportional hazard. Pharm Stat 2024; 23:325-338. [PMID: 38152873 DOI: 10.1002/pst.2353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 10/06/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
With the advent of cancer immunotherapy, some special features including delayed treatment effect, cure rate, diminishing treatment effect and crossing survival are often observed in survival analysis. They violate the proportional hazard model assumption and pose a unique challenge for the conventional trial design and analysis strategies. Many methods like cure rate model have been developed based on mixture model to incorporate some of these features. In this work, we extend the mixture model to deal with multiple non-proportional patterns and develop its geometric average hazard ratio (gAHR) to quantify the treatment effect. We further derive a sample size and power formula based on the non-centrality parameter of the log-rank test and conduct a thorough analysis of the impact of each parameter on performance. Simulation studies showed a clear advantage of our new method over the proportional hazard based calculation across different non-proportional hazard scenarios. Moreover, the mixture modeling of two real trials demonstrates how to use the prior information on the survival distribution among patients with different biomarker and early efficacy results in practice. By comparison with a simulation-based design, the new method provided a more efficient way to compute the power and sample size with high accuracy of estimation. Overall, both theoretical derivation and empirical studies demonstrate the promise of the proposed method in powering future innovative trial designs.
Collapse
Affiliation(s)
- Zixing Wang
- Kite, a Gilead company, Santa Monica, California, USA
| | | | - Allen Xue
- Kite, a Gilead company, Santa Monica, California, USA
| | | |
Collapse
|
263
|
Haugh A, Daud AI. Therapeutic Strategies in BRAF V600 Wild-Type Cutaneous Melanoma. Am J Clin Dermatol 2024; 25:407-419. [PMID: 38329690 DOI: 10.1007/s40257-023-00841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/09/2024]
Abstract
There have been many recent advances in melanoma therapy. While 50% of melanomas have a BRAF mutation and are a target for BRAF inhibitors, the remaining 50% are BRAF wild-type. Immune checkpoint inhibitors targeting PD-1, cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and lymphocyte activated gene-3 (Lag-3) are all approved for the treatment of patients with advanced BRAF wild-type melanoma; however, treatment of this patient population following initial immune checkpoint blockade is a current therapeutic challenge given the lack of other efficacious options. Here, we briefly review available US FDA-approved therapies for BRAF wild-type melanoma and focus on developing treatment avenues for this heterogeneous group of patients. We review the basics of genomic features of both BRAF mutant and BRAF wild-type melanoma as well as efforts underway to develop new targeted therapies involving the mitogen-activated protein kinase (MAPK) pathway for patients with BRAF wild-type tumors. We then focus on novel immunotherapies, including developing checkpoint inhibitors and agonists, cytokine therapies, oncolytic viruses and tumor-infiltrating lymphocytes, all of which represent potential therapeutic avenues for patients with BRAF wild-type melanoma who progress on currently approved immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Alexandra Haugh
- Department of Medicine, University of California San Francisco, 550 16th Street, 6809, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Adil I Daud
- Department of Medicine, University of California San Francisco, 550 16th Street, 6809, San Francisco, CA, 94158, USA.
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
264
|
Cui S, Sun X, Gao J. Efficacy and safety of nivolumab plus ipilimumab versus nivolumab alone in patients with advanced melanoma: a systematic review and meta-analysis. Expert Rev Anticancer Ther 2024; 24:283-291. [PMID: 38532600 DOI: 10.1080/14737140.2024.2336106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Annual melanoma incidence in the US is escalating. OBJECTIVE Comprehensive evaluation of nivolumab alone or with ipilimumab for advanced melanoma treatment. RESEARCH DESIGN AND METHODS A systematic search was conducted across PubMed, Embase, Web of Science, and Cochrane databases, extending until August 2023. A range of outcomes were evaluated, encompassing overall survival (OS), recurrence-free survival (RFS), progression-free survival (PFS), disease-free survival (DFS), adverse events (both any and serious), complete response rate, mortality rate, and recurrence rate in patients with advanced melanoma. RESULTS This analysis was conducted on seven relevant studies, involving 2,885 patients. The baseline characteristics of both groups were found to be comparable across all outcomes, with the exception of tumor size. The pooled analysis did not reveal any significant disparities, except for PFS, where the nivolumab-ipilimumab treatment group demonstrated a significantly longer PFS compared to the nivolumab group. However, there was a notable discrepancy in any adverse events (Odds Ratio (OR): 2.69; 95% Confidence Interval (CI): 1.96, 3.69; p < 0.00001) and serious adverse events (OR: 3.59; 95% CI: 2.88, 4.49, p < 0.00001) between the two groups, suggesting that the safety profile of nivolumab combined with ipilimumab was inferior. CONCLUSIONS Given diversity and potential biases, oncologists should base immunotherapy decisions on professional expertise and patient characteristics. REGISTRATION PROSPERO registration number: CRD42023453484.
Collapse
Affiliation(s)
| | | | - Junxi Gao
- Department of Abdominal Ultrasound Diagnosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
265
|
Versluis JM, Blankenstein SA, Dimitriadis P, Wilmott JS, Elens R, Blokx WAM, van Houdt W, Menzies AM, Schrage YM, Wouters MWJM, Sanders J, Broeks A, Scolyer RA, Suijkerbuijk KPM, Long GV, Akkooi ACJV, Blank CU. Interferon-gamma signature as prognostic and predictive marker in macroscopic stage III melanoma. J Immunother Cancer 2024; 12:e008125. [PMID: 38677880 PMCID: PMC11057279 DOI: 10.1136/jitc-2023-008125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND A substantial proportion of patients with macroscopic stage III melanoma do not benefit sufficiently from adjuvant anti-PD-1 therapy, as they either recur despite therapy or would never have recurred. To better inform adjuvant treatment selection, we have performed translational analyses to identify prognostic and predictive biomarkers. PATIENTS AND METHODS Two cohorts of patients with macroscopic stage III melanoma from an ongoing biobank study were included. Clinical data were compared between an observation cohort (cohort 1) and an adjuvant intention cohort (cohort 2). RNA sequencing for translational analyses was performed and treatment subgroups (cohort 1A and cohort 2A) were compared for possible biomarkers, using a cut-off based on the treatment-naïve patients. In addition, two validation cohorts (Melanoma Institute Australia (MIA) and University Medical Centre Utrecht (UMCU)) were obtained. RESULTS After a median follow-up of 26 months of the 98 patients in our discovery set, median recurrence-free survival (RFS) was significantly longer for the adjuvant intention cohort (cohort 2, n=49) versus the observation cohort (cohort 1, n=49). Median overall survival was not reached for either cohort, nor significantly different. In observation cohort 1A (n=24), RFS was significantly longer for patients with high interferon-gamma (IFNγ) score (p=0.002); for adjuvant patients of cohort 2A (n=24), a similar trend was observed (p=0.086). Patients with high B cell score had a longer RFS in cohort 1A, but no difference was seen in cohort 2A. The B cell score based on RNA correlated with CD20+ cells in tumor area but was not independent from the IFNγ score. In the MIA validation cohort (n=44), longer RFS was observed for patients with high IFNγ score compared with low IFNγ score (p=0.046), no difference in RFS was observed according to the B cell score. In both the observation (n=11) and the adjuvant (n=11) UMCU validation cohorts, no difference in RFS was seen for IFNγ and B cell. CONCLUSIONS IFNγ has shown to be a prognostic marker in both patients who were and were not treated with adjuvant therapy. B cell score was prognostic but did not improve accuracy over IFNγ. Our study confirmed RFS benefit of adjuvant anti-PD-1 for patients with macroscopic stage III melanoma.
Collapse
Affiliation(s)
- Judith M Versluis
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Petros Dimitriadis
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - James S Wilmott
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Robert Elens
- Core Facility Molecular Pathology and Biobanking, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Winan van Houdt
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alexander Maxwell Menzies
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Yvonne M Schrage
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michel W J M Wouters
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Biomedical Data Science, Leiden University Medical Center, Leiden, The Netherlands
| | - Joyce Sanders
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Annegien Broeks
- Core Facility Molecular Pathology and Biobanking, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Richard A Scolyer
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | | | - Georgina V Long
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Alexander C J van Akkooi
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Christian U Blank
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
266
|
Saowapa S, Polpichai N, Siladech P, Wannaphut C, Tanariyakul M, Wattanachayakul P, Bernal DO, Garcia Pleitez H, Tijani L. Immunotherapy-induced colitis in metastatic colorectal cancer: a systematic review and meta-analysis. Proc AMIA Symp 2024; 37:613-622. [PMID: 38910824 PMCID: PMC11188800 DOI: 10.1080/08998280.2024.2342723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/28/2024] [Indexed: 06/25/2024] Open
Abstract
Colorectal cancer (CRC) presents significant mortality risks, underscoring the urgency of timely diagnosis and intervention. Advanced stages of CRC are managed through chemotherapy, targeted therapy, immunotherapy, radiotherapy, and surgery. Immunotherapy, while effective in bolstering the immune system against cancer cells, often carries toxic side effects, including colitis. This study aimed to evaluate the incidence of colitis in patients with metastatic CRC (mCRC) undergoing various immunotherapy treatments. Through a systematic search of Google Scholar and PubMed databases from inception until November 2023, nine relevant studies were identified. Subgroup analyses revealed a higher incidence of colitis, particularly in patients treated with anti-cytotoxic T-lymphocyte-associated molecule-4 (anti-CTLA-4) and combination therapies compared to monotherapy with programmed cell death receptor-1 (PD-1) or programmed cell death ligand receptor-1 (PDL-1) inhibitors. Notably, naive-treated metastatic CRC patients exhibited elevated colitis incidences compared to those previously treated. In conclusion, anti-CTLA-4 and combination therapies, such as nivolumab plus ipilimumab, were associated with increased colitis occurrences in metastatic CRC patients, highlighting the need for vigilant monitoring and management strategies, especially in immunotherapy-naive individuals.
Collapse
Affiliation(s)
- Sakditad Saowapa
- Department of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Natchaya Polpichai
- Department of Internal Medicine, Weiss Memorial Hospital, Chicago, Illinois, USA
| | - Pharit Siladech
- Department of Internal Medicine, Mahidol University, Bangkok, Thailand
| | - Chalothorn Wannaphut
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Manasawee Tanariyakul
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | | | - Diego Olavarria Bernal
- Department of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Hector Garcia Pleitez
- Department of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Lukman Tijani
- Hematology and Oncology Department, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
267
|
Senent Y, Remírez A, Tavira B, Ajona D. A mouse model to assess immunotherapy-related colitis. Methods Cell Biol 2024; 192:33-38. [PMID: 39863392 DOI: 10.1016/bs.mcb.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Combined blockade of the immune checkpoints PD-1 and CTLA-4 has shown remarkable efficacy in patients with melanoma, renal cell carcinoma, non-small-cell lung cancer and mesothelioma, among other tumor types. However, a proportion of patients suffer from serious immune-related adverse events (irAEs). In severe cases, a reduction of the doses or the complete cessation of the treatment is required, limiting the antitumor efficacy of these treatments. Colitis is among the most frequent and problematic irAE associated with immune checkpoint blockade. In this context, animal models that recapitulate the pathophysiological features of immunotherapy-related colitis are needed. In this manuscript, we describe our experience with a mouse model in which the combined CTLA-4 and PD-1 blockade exacerbates the deleterious effects of dextran sulfate sodium (DSS)-induced colitis. This model may constitute a valuable tool for the study of immunotherapy-related colitis.
Collapse
Affiliation(s)
- Yaiza Senent
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Ana Remírez
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Beatriz Tavira
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Daniel Ajona
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
268
|
Björnsson ES. The Epidemiology of Newly Recognized Causes of Drug-Induced Liver Injury: An Update. Pharmaceuticals (Basel) 2024; 17:520. [PMID: 38675480 PMCID: PMC11053599 DOI: 10.3390/ph17040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The incidence and prevalence of drug-induced liver injury appear to be increasing globally, for example, with the introduction of checkpoint inhibitors. Several reviews have been published in the last decade on the epidemiology of DILI, both among hospitalized patients and in the general population, as well as from retrospective and prospective studies on DILI. Most of these reviews have not focused on newly recognized agents that have recently changed the landscape of DILI. Apart from liver injury associated with antibiotics, oncological agents, particularly checkpoint inhibitors, are increasingly being recognized as causing liver injury. The type of liver injury associated with these agents is not idiosyncratic but rather an indirect type of injury. Furthermore, recently, COVID-19 vaccines and green tea extract have been found to lead to liver injury. Checkpoint inhibitors have revolutionized the treatment of many malignancies, such as malignant melanoma, lung cancer, and renal cancer. Via the activation of T cells, they can increase immune activity against malignant cells, but at the same time, they can decrease immune tolerance and therefore lead to immune-related adverse effects in many organs. The most common adverse effect in clinical practice is liver injury. A recent prospective study demonstrated an 8% frequency of DILI due to the use of checkpoint inhibitors among patients with malignant melanoma and renal cancer. This rate is much higher than observed with drugs, leading to idiosyncratic liver injury. Shortly after the implementation of the worldwide vaccination program against COVID-19, several case reports were published on suspected vaccination-induced autoimmune-like hepatitis occurring shortly after the vaccination. At first, these reports were met with skepticism, but currently, around 100 reports have been published, and cases of positive recurrence have been reported. The clinical, biochemical, immunological, and histological features are indistinguishable from classic autoimmune hepatitis (AIH). These reactions are very similar to drug-induced autoimmune-like hepatitis (DI-ALH) due to drugs such as nitrofurantoin, minocycline, and infliximab, which do not relapse after a short course of corticosteroids, which is the general rule in classic autoimmune hepatitis (AIH). Green tea extract has been found to be a well-documented cause of acute hepatocellular liver injury with jaundice. A strong HLA association has been reported, showing a high prevalence of HLA-B*35:01 among patients suffering from green tea-induced liver injury. Overall, 3% of patients recruited in the DILIN study were supplemented with green tea extract as one of the ingredients. In a prospective population-based study from Iceland, green tea was implicated in approximately 8% of patients with DILI.
Collapse
Affiliation(s)
- Einar Stefan Björnsson
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The National University Hospital of Iceland, Faculty of Medicine, University of Iceland, Hringbraut, 101 Reykjavik, Iceland
| |
Collapse
|
269
|
Liu X, Li S, Ke L, Cui H. Immune checkpoint inhibitors in Cancer patients with rheumatologic preexisting autoimmune diseases: a systematic review and meta-analysis. BMC Cancer 2024; 24:490. [PMID: 38632528 PMCID: PMC11025164 DOI: 10.1186/s12885-024-12256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/12/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Patients with rheumatologic preexisting autoimmune disease (PAD) have not been enrolled in clinical trials of immune checkpoint inhibitors (ICIs). Therefore, the risks and benefits of ICI therapy in such patients are unclear. Herein, we investigated the safety and efficacy of ICIs in rheumatologic PAD patients through a meta-analysis. METHODS The PubMed, Cochrane Library, Embase and Web of Science databases were searched for additional studies. We analyzed the following data through Stata software: incidence of total irAEs (TirAEs), rate of flares, incidence of new on-set irAEs, rate of discontinuation, objective response rate (ORR) and disease control rate (DCR). RESULTS We identified 23 articles including 643 patients with rheumatologic PAD. The pooled incidences of TirAEs, flares and new-onset irAEs were 64% (95% CI 55%-72%), 41% (95% CI 31%-50%), and 33% (95% CI 28%-38%), respectively. In terms of severity, the incidences were 7% (95% CI 2%-14%) for Grade 3-4 flares and 12% (95% CI 9%-15%) for Grade 3-4 new-onset irAEs. Patients with RA had a greater risk of flares than patients with other rheumatologic PADs did (RR = 1.35, 95% CI 1.03-1.77). The ORR and DCR were 30% and 44%, respectively. Baseline anti-rheumatic treatment was not significantly associated with the frequency of flares (RR = 1.05, 95% CI 0.63-1.77) or the ORR (RR = 0.45, 95% CI 0.12-1.69). CONCLUSIONS Patients with rheumatologic PAD, particularly those with RA, are susceptible to relapse of their rheumatologic disease following ICI therapy. ICIs are also effective for treating rheumatologic PAD patients. PROSPECTIVE REGISTER OF SYSTEMATIC REVIEWS (PROSPERO): number CRD 42,023,439,702.
Collapse
Affiliation(s)
- Xin Liu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Su Li
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Liyuan Ke
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Hongxia Cui
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.
| |
Collapse
|
270
|
Cheng L, Chen L, Shi Y, Gu W, Ding W, Zheng X, Liu Y, Jiang J, Zheng Z. Efficacy and safety of bispecific antibodies vs. immune checkpoint blockade combination therapy in cancer: a real-world comparison. Mol Cancer 2024; 23:77. [PMID: 38627681 PMCID: PMC11020943 DOI: 10.1186/s12943-024-01956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/07/2024] [Indexed: 04/19/2024] Open
Abstract
Emerging tumor immunotherapy methods encompass bispecific antibodies (BSABs), immune checkpoint inhibitors (ICIs), and adoptive cell immunotherapy. BSABs belong to the antibody family that can specifically recognize two different antigens or epitopes on the same antigen. These antibodies demonstrate superior clinical efficacy than monoclonal antibodies, indicating their role as a promising tumor immunotherapy option. Immune checkpoints are also important in tumor immunotherapy. Programmed cell death protein-1 (PD-1) is a widely acknowledged immune checkpoint target with effective anti-tumor activity. PD-1 inhibitors have demonstrated notable therapeutic efficacy in treating hematological and solid tumors; however, more than 50% of patients undergoing this treatment exhibit a poor response. However, ICI-based combination therapies (ICI combination therapies) have been demonstrated to synergistically increase anti-tumor effects and immune response rates. In this review, we compare the clinical efficacy and side effects of BSABs and ICI combination therapies in real-world tumor immunotherapy, aiming to provide evidence-based approaches for clinical research and personalized tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Linyan Cheng
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute for Cell Therapy of Soochow University, Changzhou, China
| | - Yuan Shi
- Laboratory of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Weiying Gu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Weidong Ding
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China.
- Institute for Cell Therapy of Soochow University, Changzhou, China.
| | - Yan Liu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China.
- Institute for Cell Therapy of Soochow University, Changzhou, China.
| | - Zhuojun Zheng
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
271
|
Parra ER, Zhang J, Duose DY, Gonzalez-Kozlova E, Redman MW, Chen H, Manyam GC, Kumar G, Zhang J, Song X, Lazcano R, Marques-Piubelli ML, Laberiano-Fernandez C, Rojas F, Zhang B, Taing L, Jhaveri A, Geisberg J, Altreuter J, Michor F, Provencher J, Yu J, Cerami E, Moravec R, Kannan K, Luthra R, Alatrash G, Huang HH, Xie H, Patel M, Nie K, Harris J, Argueta K, Lindsay J, Biswas R, Van Nostrand S, Kim-Schulze S, Gray JE, Herbst RS, Wistuba II, Gettinger S, Kelly K, Bazhenova L, Gnjatic S, Lee JJ, Zhang J, Haymaker C. Multi-omics Analysis Reveals Immune Features Associated with Immunotherapy Benefit in Patients with Squamous Cell Lung Cancer from Phase III Lung-MAP S1400I Trial. Clin Cancer Res 2024; 30:1655-1668. [PMID: 38277235 PMCID: PMC11016892 DOI: 10.1158/1078-0432.ccr-23-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/06/2023] [Accepted: 01/24/2024] [Indexed: 01/28/2024]
Abstract
PURPOSE Identifying molecular and immune features to guide immune checkpoint inhibitor (ICI)-based regimens remains an unmet clinical need. EXPERIMENTAL DESIGN Tissue and longitudinal blood specimens from phase III trial S1400I in patients with metastatic squamous non-small cell carcinoma (SqNSCLC) treated with nivolumab monotherapy (nivo) or nivolumab plus ipilimumab (nivo+ipi) were subjected to multi-omics analyses including multiplex immunofluorescence (mIF), nCounter PanCancer Immune Profiling Panel, whole-exome sequencing, and Olink. RESULTS Higher immune scores from immune gene expression profiling or immune cell infiltration by mIF were associated with response to ICIs and improved survival, except regulatory T cells, which were associated with worse overall survival (OS) for patients receiving nivo+ipi. Immune cell density and closer proximity of CD8+GZB+ T cells to malignant cells were associated with superior progression-free survival and OS. The cold immune landscape of NSCLC was associated with a higher level of chromosomal copy-number variation (CNV) burden. Patients with LRP1B-mutant tumors had a shorter survival than patients with LRP1B-wild-type tumors. Olink assays revealed soluble proteins such as LAMP3 increased in responders while IL6 and CXCL13 increased in nonresponders. Upregulation of serum CXCL13, MMP12, CSF-1, and IL8 were associated with worse survival before radiologic progression. CONCLUSIONS The frequency, distribution, and clustering of immune cells relative to malignant ones can impact ICI efficacy in patients with SqNSCLC. High CNV burden may contribute to the cold immune microenvironment. Soluble inflammation/immune-related proteins in the blood have the potential to monitor therapeutic benefit from ICI treatment in patients with SqNSCLC.
Collapse
Affiliation(s)
- Edwin Roger Parra
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiexin Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dzifa Yawa Duose
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edgar Gonzalez-Kozlova
- Department of Oncological Sciences, Mount Sinai, New York, New York
- Tisch Cancer Institute, Mount Sinai, New York, New York
- Precision Immunology Institute, Mount Sinai, New York, New York
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mary W. Redman
- SWOG Statistical Center, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Hong Chen
- Department of Thoracic-Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ganiraju C. Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gayatri Kumar
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rossana Lazcano
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mario L. Marques-Piubelli
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Caddie Laberiano-Fernandez
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frank Rojas
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Baili Zhang
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Len Taing
- CIMAC-CIDC Network, Pipeline Development and Portal Integration, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Aashna Jhaveri
- CIMAC-CIDC Network, Pipeline Development and Portal Integration, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jacob Geisberg
- CIMAC-CIDC Network, Pipeline Development and Portal Integration, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jennifer Altreuter
- CIMAC-CIDC Network, Pipeline Development and Portal Integration, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Franziska Michor
- CIMAC-CIDC Network, Pipeline Development and Portal Integration, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - James Provencher
- CIMAC-CIDC Network, Pipeline Development and Portal Integration, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joyce Yu
- CIMAC-CIDC Network, Pipeline Development and Portal Integration, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ethan Cerami
- CIMAC-CIDC Network, Pipeline Development and Portal Integration, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Radim Moravec
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Kasthuri Kannan
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajyalakshmi Luthra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gheath Alatrash
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Hsin-Hui Huang
- Precision Immunology Institute, Mount Sinai, New York, New York
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hui Xie
- Precision Immunology Institute, Mount Sinai, New York, New York
| | | | - Kai Nie
- Precision Immunology Institute, Mount Sinai, New York, New York
| | - Jocelyn Harris
- Precision Immunology Institute, Mount Sinai, New York, New York
| | | | - James Lindsay
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Roshni Biswas
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Stephen Van Nostrand
- CIMAC-CIDC Network, Pipeline Development and Portal Integration, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Seunghee Kim-Schulze
- Department of Oncological Sciences, Mount Sinai, New York, New York
- Tisch Cancer Institute, Mount Sinai, New York, New York
- Precision Immunology Institute, Mount Sinai, New York, New York
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Roy S. Herbst
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Ignacio I. Wistuba
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Karen Kelly
- International Association for the Study of Lung Cancer, Denver, Colorado
| | - Lyudmila Bazhenova
- University of California San Diego Moores Cancer Center, La Jolla, California
| | - Sacha Gnjatic
- Department of Oncological Sciences, Mount Sinai, New York, New York
- Tisch Cancer Institute, Mount Sinai, New York, New York
- Precision Immunology Institute, Mount Sinai, New York, New York
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - J. Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianjun Zhang
- Department of Thoracic-Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cara Haymaker
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
272
|
Lin J, Lin ZQ, Zheng SC, Chen Y. Immune checkpoint inhibitor-associated gastritis: Patterns and management. World J Gastroenterol 2024; 30:1941-1948. [PMID: 38681126 PMCID: PMC11045486 DOI: 10.3748/wjg.v30.i14.1941] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are widely used due to their effectiveness in treating various tumors. Immune-related adverse events (irAEs) are defined as adverse effects resulting from ICI treatment. Gastrointestinal irAEs are a common type of irAEs characterized by intestinal side effects, such as diarrhea and colitis, which may lead to the cessation of ICIs. Although irAE gastritis is rarely reported, it may lead to serious complications such as gastrorrhagia. Furthermore, irAE gastritis is often difficult to identify early due to its diverse symptoms. Although steroid hormones and immunosuppressants are commonly used to reverse irAEs, the best regimen and dosage for irAE gastritis remains uncertain. In addition, the risk of recurrence of irAE gastritis after the reuse of ICIs should be considered. In this editorial, strategies such as early identification, pathological diagnosis, management interventions, and immunotherapy rechallenge are discussed to enable clinicians to better manage irAE gastritis and improve the prognosis of these patients.
Collapse
Affiliation(s)
- Jing Lin
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, Fujian Province, China
| | - Zhong-Qiao Lin
- Phase I Clinical Trial Ward, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, Fujian Province, China
| | - Shi-Cheng Zheng
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350000, Fujian Province, China
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, Fujian Province, China
| |
Collapse
|
273
|
Croce G, Bobisse S, Moreno DL, Schmidt J, Guillame P, Harari A, Gfeller D. Deep learning predictions of TCR-epitope interactions reveal epitope-specific chains in dual alpha T cells. Nat Commun 2024; 15:3211. [PMID: 38615042 PMCID: PMC11016097 DOI: 10.1038/s41467-024-47461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/03/2024] [Indexed: 04/15/2024] Open
Abstract
T cells have the ability to eliminate infected and cancer cells and play an essential role in cancer immunotherapy. T cell activation is elicited by the binding of the T cell receptor (TCR) to epitopes displayed on MHC molecules, and the TCR specificity is determined by the sequence of its α and β chains. Here, we collect and curate a dataset of 17,715 αβTCRs interacting with dozens of class I and class II epitopes. We use this curated data to develop MixTCRpred, an epitope-specific TCR-epitope interaction predictor. MixTCRpred accurately predicts TCRs recognizing several viral and cancer epitopes. MixTCRpred further provides a useful quality control tool for multiplexed single-cell TCR sequencing assays of epitope-specific T cells and pinpoints a substantial fraction of putative contaminants in public databases. Analysis of epitope-specific dual α T cells demonstrates that MixTCRpred can identify α chains mediating epitope recognition. Applying MixTCRpred to TCR repertoires from COVID-19 patients reveals enrichment of clonotypes predicted to bind an immunodominant SARS-CoV-2 epitope. Overall, MixTCRpred provides a robust tool to predict TCRs interacting with specific epitopes and interpret TCR-sequencing data from both bulk and epitope-specific T cells.
Collapse
Affiliation(s)
- Giancarlo Croce
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Sara Bobisse
- Agora Cancer Research Centre, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Dana Léa Moreno
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Julien Schmidt
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Philippe Guillame
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - David Gfeller
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
- Agora Cancer Research Centre, Lausanne, Switzerland.
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
274
|
Lee WWL, Lim JQ, Tang TPL, Tan D, Koh SM, Puan KJ, Wang LW, Lim J, Tan KP, Chng WJ, Lim ST, Ong CK, Rotzschke O. Counterproductive effects of anti-CD38 and checkpoint inhibitor for the treatment of NK/T cell lymphoma. Front Immunol 2024; 15:1346178. [PMID: 38680487 PMCID: PMC11045949 DOI: 10.3389/fimmu.2024.1346178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Natural killer/T cell lymphoma (NKTL) is an aggressive malignancy associated with poor prognosis. This is largely due to limited treatment options, especially for relapsed patients. Immunotherapies like immune checkpoint inhibitors (ICI) and anti-CD38 therapies have shown promising but variable clinical efficacies. Combining these therapies has been suggested to enhance efficacy. Methods We conducted a case study on a relapsed NKTL patient treated sequentially with anti-CD38 followed by ICI (anti-PD1) using cytometry analyses. Results and Discussion Our analysis showed an expected depletion of peripheral CD38+ B cells following anti-CD38 treatment. Further analysis indicated that circulating anti-CD38 retained their function for up to 13 weeks post-administration. Anti-PD1 treatment triggered re-activation and upregulation of CD38 on the T cells. Consequently, these anti-PD1-activated T cells were depleted by residual circulating anti-CD38, rendering the ICI treatment ineffective. Finally, a meta-analysis confirmed this counterproductive effect, showing a reduced efficacy in patients undergoing combination therapy. In conclusion, our findings demonstrate that sequential anti-CD38 followed by anti-PD1 therapy leads to a counterproductive outcome in NKTL patients. This suggests that the treatment sequence is antithetic and warrants re-evaluation for optimizing cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Wendy W. L. Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jing Quan Lim
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Oncology-Academic Clinical Programme (ONCO-ACP), Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Tiffany P. L. Tang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Daryl Tan
- Clinic for Lymphoma, Myeloma and Blood Disorders, Mount Elizabeth Hospital Novena Specialist Centre, Singapore, Singapore
| | - Ser Mei Koh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Kia Joo Puan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Liang Wei Wang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jackwee Lim
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Kim Peng Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore, Singapore
| | - Soon Thye Lim
- Director’s Office, National Cancer Centre Singapore, Singapore, Singapore
- Office of Education, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Choon Kiat Ong
- Lymphoma Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
275
|
Yang L, Murthy S, Cortellini A, Lim EA, Gonzalez M, Pinato DJ, Abdel-Malek M, Mahmoud S, Martin NM. Effects of immune checkpoint inhibitor associated endocrinopathies on cancer survival. Front Endocrinol (Lausanne) 2024; 15:1369268. [PMID: 38681767 PMCID: PMC11045886 DOI: 10.3389/fendo.2024.1369268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024] Open
Abstract
Objectives Immune checkpoint inhibitors (ICIs) are associated with immune-related adverse events (irAEs), of which endocrinopathies are common. We characterized endocrine and non-endocrine irAEs in cancer patients receiving ICIs, identified risk factors for their development and established whether endocrine and non-endocrine irAEs were differentially associated with improved cancer prognosis. Design and methods Single-center, retrospective cohort study of patients with advanced or metastatic solid tumors receiving at least one ICI treatment cycle (242 men, 151 women, median age 65 years). Main outcome measures were incidence of any irAE during the study period, overall survival and time to treatment failure. Results Non-endocrine irAEs occurred in 32% and endocrine irAEs in 12% of patients. Primary thyroid dysfunction was the most common endocrine irAE (9.5%) and the majority of endocrinopathies required permanent hormone replacement. Women had an increased risk of developing endocrine irAEs (p = 0.017). The biggest survival advantage occurred in patients who developed both endocrine and non-endocrine irAEs (overall survival: HR 0.16, CI 0.09-0.28). Time to treatment failure was also significantly improved in patients who developed endocrine irAEs (HR 0.49, CI 0.34 - 0.71) or both (HR 0.41, CI 0.25 - 0.64) but not in those who only developed non-endocrine irAEs. Conclusions Women may have increased risk of endocrine irAEs secondary to ICI treatment. This is the first study to compare the effects of endocrine irAEs with non-endocrine irAEs on survival. Development of endocrine irAEs may confer survival benefit in ICI treatment and future, prospective studies are needed to elucidate this.
Collapse
Affiliation(s)
- Lisa Yang
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Sruthi Murthy
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Alessio Cortellini
- Department of Surgery & Cancer, Imperial College London, London, London, United Kingdom
- Operative Research Unit of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Emma A. Lim
- Department of Imaging, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Michael Gonzalez
- Department of Medical Oncology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - David J. Pinato
- Department of Surgery & Cancer, Imperial College London, London, London, United Kingdom
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Mariana Abdel-Malek
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Sarah Mahmoud
- Department of Pharmacy, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Niamh M. Martin
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
276
|
Phoon YP, Lopes JE, Pfannenstiel LW, Marcela Diaz-Montero C, Tian YF, Ernstoff MS, Funchain P, Ko JS, Winquist R, Losey HC, Melenhorst JJ, Gastman BR. Autologous human preclinical modeling of melanoma interpatient clinical responses to immunotherapeutics. J Immunother Cancer 2024; 12:e008066. [PMID: 38604813 PMCID: PMC11015209 DOI: 10.1136/jitc-2023-008066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Despite recent advances in immunotherapy, a substantial population of late-stage melanoma patients still fail to achieve sustained clinical benefit. Lack of translational preclinical models continues to be a major challenge in the field of immunotherapy; thus, more optimized translational models could strongly influence clinical trial development. To address this unmet need, we designed a preclinical model reflecting the heterogeneity in melanoma patients' clinical responses that can be used to evaluate novel immunotherapies and synergistic combinatorial treatment strategies. Using our all-autologous humanized melanoma mouse model, we examined the efficacy of a novel engineered interleukin 2 (IL-2)-based cytokine variant immunotherapy. METHODS To study immune responses and antitumor efficacy for human melanoma tumors, we developed an all-autologous humanized melanoma mouse model using clinically annotated, matched patient tumor cells and peripheral blood mononuclear cells (PBMCs). After inoculating immunodeficient NSG mice with patient tumors and an adoptive cell transfer of autologous PBMCs, mice were treated with anti-PD-1, a novel investigational engineered IL-2-based cytokine (nemvaleukin), or recombinant human IL-2 (rhIL-2). The pharmacodynamic effects and antitumor efficacy of these treatments were then evaluated. We used tumor cells and autologous PBMCs from patients with varying immunotherapy responses to both model the diversity of immunotherapy efficacy observed in the clinical setting and to recapitulate the heterogeneous nature of melanoma. RESULTS Our model exhibited long-term survival of engrafted human PBMCs without developing graft-versus-host disease. Administration of an anti-PD-1 or nemvaleukin elicited antitumor responses in our model that were patient-specific and were found to parallel clinical responsiveness to checkpoint inhibitors. An evaluation of nemvaleukin-treated mice demonstrated increased tumor-infiltrating CD4+ and CD8+ T cells, preferential expansion of non-regulatory T cell subsets in the spleen, and significant delays in tumor growth compared with vehicle-treated controls or mice treated with rhIL-2. CONCLUSIONS Our model reproduces differential effects of immunotherapy in melanoma patients, capturing the inherent heterogeneity in clinical responses. Taken together, these data demonstrate our model's translatability for novel immunotherapies in melanoma patients. The data are also supportive for the continued clinical investigation of nemvaleukin as a novel immunotherapeutic for the treatment of melanoma.
Collapse
Affiliation(s)
- Yee Peng Phoon
- Center for Immunotherapy and Precision Immuno-Oncology (CITI), Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Claudia Marcela Diaz-Montero
- Center for Immunotherapy and Precision Immuno-Oncology (CITI), Cleveland Clinic, Cleveland, Ohio, USA
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ye F Tian
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Pauline Funchain
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | - Jan Joseph Melenhorst
- Center for Immunotherapy and Precision Immuno-Oncology (CITI), Cleveland Clinic, Cleveland, Ohio, USA
| | - Brian R Gastman
- Center for Immunotherapy and Precision Immuno-Oncology (CITI), Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
277
|
Tian J, Quek C. Understanding the Tumor Microenvironment in Melanoma Patients with In-Transit Metastases and Its Impacts on Immune Checkpoint Immunotherapy Responses. Int J Mol Sci 2024; 25:4243. [PMID: 38673829 PMCID: PMC11050678 DOI: 10.3390/ijms25084243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma is the leading cause of global skin cancer-related death and currently ranks as the third most commonly diagnosed cancer in Australia. Melanoma patients with in-transit metastases (ITM), a type of locoregional metastasis located close to the primary tumor site, exhibit a high likelihood of further disease progression and poor survival outcomes. Immunotherapies, particularly immune checkpoint inhibitors (ICI), have demonstrated remarkable efficacy in ITM patients with reduced occurrence of further metastases and prolonged survival. The major challenge of immunotherapeutic efficacy lies in the limited understanding of melanoma and ITM biology, hindering our ability to identify patients who likely respond to ICIs effectively. In this review, we provided an overview of melanoma and ITM disease. We outlined the key ICI therapies and the critical immune features associated with therapy response or resistance. Lastly, we dissected the underlying biological components, including the cellular compositions and their communication networks within the tumor compartment, to enhance our understanding of the interactions between immunotherapy and melanoma, providing insights for future investigation and the development of drug targets and predictive biomarkers.
Collapse
Affiliation(s)
| | - Camelia Quek
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| |
Collapse
|
278
|
Bai X, Attrill GH, Gide TN, Ferguson PM, Nahar KJ, Shang P, Vergara IA, Palendira U, da Silva IP, Carlino MS, Menzies AM, Long GV, Scolyer RA, Wilmott JS, Quek C. Stroma-infiltrating T cell spatiotypes define immunotherapy outcomes in adolescent and young adult patients with melanoma. Nat Commun 2024; 15:3014. [PMID: 38589406 PMCID: PMC11002019 DOI: 10.1038/s41467-024-47301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
The biological underpinnings of therapeutic resistance to immune checkpoint inhibitors (ICI) in adolescent and young adult (AYA) melanoma patients are incompletely understood. Here, we characterize the immunogenomic profile and spatial architecture of the tumor microenvironment (TME) in AYA (aged ≤ 30 years) and older adult (aged 31-84 years) patients with melanoma, to determine the AYA-specific features associated with ICI treatment outcomes. We identify two ICI-resistant spatiotypes in AYA patients with melanoma showing stroma-infiltrating lymphocytes (SILs) that are distinct from the adult TME. The SILhigh subtype was enriched in regulatory T cells in the peritumoral space and showed upregulated expression of immune checkpoint molecules, while the SILlow subtype showed a lack of immune activation. We establish a young immunosuppressive melanoma score that can predict ICI responsiveness in AYA patients and propose personalized therapeutic strategies for the ICI-resistant subgroups. These findings highlight the distinct immunogenomic profile of AYA patients, and individualized TME features in ICI-resistant AYA melanoma that require patient-specific treatment strategies.
Collapse
Affiliation(s)
- Xinyu Bai
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Grace H Attrill
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Tuba N Gide
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
- NSW Health Pathology, Sydney, NSW, Australia
| | - Kazi J Nahar
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Ping Shang
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Ismael A Vergara
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Umaimainthan Palendira
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Ines Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Westmead and Blacktown Hospitals, Sydney, NSW, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Westmead and Blacktown Hospitals, Sydney, NSW, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Royal North Shore Hospital, Sydney, NSW, Australia
- Mater Hospital, North Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Royal North Shore Hospital, Sydney, NSW, Australia
- Mater Hospital, North Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
- NSW Health Pathology, Sydney, NSW, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Camelia Quek
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
279
|
Casagrande S, Sopetto GB, Bertalot G, Bortolotti R, Racanelli V, Caffo O, Giometto B, Berti A, Veccia A. Immune-Related Adverse Events Due to Cancer Immunotherapy: Immune Mechanisms and Clinical Manifestations. Cancers (Basel) 2024; 16:1440. [PMID: 38611115 PMCID: PMC11011060 DOI: 10.3390/cancers16071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The landscape of cancer treatment has undergone a significant transformation with the introduction of Immune Checkpoint Inhibitors (ICIs). Patients undergoing these treatments often report prolonged clinical and radiological responses, albeit with a potential risk of developing immune-related adverse events (irAEs). Here, we reviewed and discussed the mechanisms of action of ICIs and their pivotal role in regulating the immune system to enhance the anti-tumor immune response. We scrutinized the intricate pathogenic mechanisms responsible for irAEs, arising from the evasion of self-tolerance checkpoints due to drug-induced immune modulation. We also summarized the main clinical manifestations due to irAEs categorized by organ types, detailing their incidence and associated risk factors. The occurrence of irAEs is more frequent when ICIs are combined; with neurological, cardiovascular, hematological, and rheumatic irAEs more commonly linked to PD1/PD-L1 inhibitors and cutaneous and gastrointestinal irAEs more prevalent with CTLA4 inhibitors. Due to the often-nonspecific signs and symptoms, the diagnosis of irAEs (especially for those rare ones) can be challenging. The differential with primary autoimmune disorders becomes sometimes intricate, given the clinical and pathophysiological similarities. In conclusion, considering the escalating use of ICIs, this area of research necessitates additional clinical studies and practical insights, especially the development of biomarkers for predicting immune toxicities. In addition, there is a need for heightened education for both clinicians and patients to enhance understanding and awareness.
Collapse
Affiliation(s)
- Silvia Casagrande
- Unit of Neurology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari-APSS, 38122 Trento, Italy; (S.C.); (B.G.)
| | - Giulia Boscato Sopetto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy; (G.B.S.); (G.B.); (V.R.)
| | - Giovanni Bertalot
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy; (G.B.S.); (G.B.); (V.R.)
- Center for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
- Multizonal Unit of Pathology, APSS, 38122 Trento, Italy
| | - Roberto Bortolotti
- Unit of Rheumatology, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy;
| | - Vito Racanelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy; (G.B.S.); (G.B.); (V.R.)
- Center for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
- Unit of Internal Medicine, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy
| | - Orazio Caffo
- Unit of Oncology, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy; (O.C.); (A.V.)
| | - Bruno Giometto
- Unit of Neurology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari-APSS, 38122 Trento, Italy; (S.C.); (B.G.)
- Center for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
- Department of Psychology and Cognitive Sciences (DIPSCO), University of Trento, 38122 Trento, Italy
| | - Alvise Berti
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy; (G.B.S.); (G.B.); (V.R.)
- Center for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
- Unit of Rheumatology, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy;
| | - Antonello Veccia
- Unit of Oncology, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy; (O.C.); (A.V.)
| |
Collapse
|
280
|
Wickenberg M, Mercier R, Yap M, Walker J, Baker K, LaPointe P. Hsp90 inhibition leads to an increase in surface expression of multiple immunological receptors in cancer cells. Front Mol Biosci 2024; 11:1334876. [PMID: 38645275 PMCID: PMC11027010 DOI: 10.3389/fmolb.2024.1334876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone important for maintaining protein homeostasis (proteostasis) in the cell. Hsp90 inhibitors are being explored as cancer therapeutics because of their ability to disrupt proteostasis. Inhibiting Hsp90 increases surface density of the immunological receptor Major Histocompatibility Complex 1 (MHC1). Here we show that this increase occurs across multiple cancer cell lines and with both cytosol-specific and pan-Hsp90 inhibitors. We demonstrate that Hsp90 inhibition also alters surface expression of both IFNGR and PD-L1, two additional immunological receptors that play a significant role in anti-tumour or anti-immune activity in the tumour microenvironment. Hsp90 also negatively regulates IFN-γ activity in cancer cells, suggesting it has a unique role in mediating the immune system's response to cancer. Our data suggests a strong link between Hsp90 activity and the pathways that govern anti-tumour immunity. This highlights the potential for the use of an Hsp90 inhibitor in combination with another currently available cancer treatment, immune checkpoint blockade therapy, which works to prevent immune evasion of cancer cells. Combination checkpoint inhibitor therapy and the use of an Hsp90 inhibitor may potentiate the therapeutic benefits of both treatments and improve prognosis for cancer patients.
Collapse
Affiliation(s)
- Madison Wickenberg
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Megan Yap
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - John Walker
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Kristi Baker
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
281
|
Kahn AM, Perry CJ, Etts K, Kluger H, Sznol M. Clinical Predictors of Survival in Patients With BRAFV600-Mutated Metastatic Melanoma Treated With Combined BRAF and MEK Inhibitors After Immune Checkpoint Inhibitors. Oncologist 2024; 29:e507-e513. [PMID: 37971411 PMCID: PMC10994263 DOI: 10.1093/oncolo/oyad300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
Prospective and between trial comparisons indicate that first-line treatment with immune checkpoint inhibitors improves survival outcomes compared to first-line therapy with combined BRAF and MEK inhibitors in metastatic melanoma containing BRAFV600E/K mutations. Long-term outcomes for BRAF/MEK inhibition after progression on immunotherapy have not been reported. Moreover, clinical variables associated with outcome from treatment with combined BRAF/MEK inhibition were previously identified in the first-line setting but have not been investigated when targeted therapies are administered after progression on immune therapy. We performed a retrospective single institution analysis of 40 metastatic melanoma patients receiving combined BRAF/MEK inhibitors after progression on an anti-PD-1 or ipilimumab plus nivolumab to assess response rate by RECIST 1.1, progression-free and overall survival (PFS and OS). Pretreatment clinical variables were analyzed for association with OS. Ipilimumab/nivolumab was the first-line immunotherapy regimen in 39 patients (97.5%), and BRAFV600E/K mutations were present in 33 (83%) and 7 (17%) patients, respectively. The median OS from start of BRAF/MEK inhibitors was 20.3 months (1.73-106.4+, 95% CI of median 13.3-30.7). Clinical characteristics associated with worse survival prior to starting BRAF/MEK inhibitors included age > 60 years (median OS 14 vs. 28 months; HR 2.5; 95% CI 0.91-6.87, P = .023), ECOG-PS > 2 (median OS 7 vs. 33 months; HR 2.89; 95% CI 0.78-10.76, P = .018), and presence of bone metastases (median OS 9 vs. 52 months; HR 3.17; 95% CI 1.33-7.54, P = .002). These associations with shorter survival maintained their significance on multivariate analysis. If confirmed in larger cohorts, the identified prognostic variables can be used for stratification of patients in future randomized trials.
Collapse
Affiliation(s)
- Adriana M Kahn
- Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Curtis J Perry
- Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Katrina Etts
- Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Harriet Kluger
- Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Mario Sznol
- Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
282
|
Gudd CLC, Mitchell E, Atkinson SR, Mawhin MA, Turajlic S, Larkin J, Thursz MR, Goldin RD, Powell N, Antoniades CG, Woollard KJ, Possamai LA, Triantafyllou E. Therapeutic inhibition of monocyte recruitment prevents checkpoint inhibitor-induced hepatitis. J Immunother Cancer 2024; 12:e008078. [PMID: 38580334 PMCID: PMC11002390 DOI: 10.1136/jitc-2023-008078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Checkpoint inhibitor-induced hepatitis (CPI-hepatitis) is an emerging problem with the widening use of CPIs in cancer immunotherapy. Here, we developed a mouse model to characterize the mechanism of CPI-hepatitis and to therapeutically target key pathways driving this pathology. METHODS C57BL/6 wild-type (WT) mice were dosed with toll-like receptor (TLR)9 agonist (TLR9-L) for hepatic priming combined with anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) plus anti-programmed cell death 1 (PD-1) ("CPI") or phosphate buffered saline (PBS) control for up to 7 days. Flow cytometry, histology/immunofluorescence and messenger RNA sequencing were used to characterize liver myeloid/lymphoid subsets and inflammation. Hepatocyte damage was assessed by plasma alanine transaminase (ALT) and cytokeratin-18 (CK-18) measurements. In vivo investigations of CPI-hepatitis were carried out in Rag2-/- and Ccr2rfp/rfp transgenic mice, as well as following anti-CD4, anti-CD8 or cenicriviroc (CVC; CCR2/CCR5 antagonist) treatment. RESULTS Co-administration of combination CPIs with TLR9-L induced liver pathology closely resembling human disease, with increased infiltration and clustering of granzyme B+perforin+CD8+ T cells and CCR2+ monocytes, 7 days post treatment. This was accompanied by apoptotic hepatocytes surrounding these clusters and elevated ALT and CK-18 plasma levels. Liver RNA sequencing identified key signaling pathways (JAK-STAT, NF-ΚB) and cytokine/chemokine networks (Ifnγ, Cxcl9, Ccl2/Ccr2) as drivers of CPI-hepatitis. Using this model, we show that CD8+ T cells mediate hepatocyte damage in experimental CPI-hepatitis. However, their liver recruitment, clustering, and cytotoxic activity is dependent on the presence of CCR2+ monocytes. The absence of hepatic monocyte recruitment in Ccr2rfp/rfp mice and CCR2 inhibition by CVC treatment in WT mice was able to prevent the development and reverse established experimental CPI-hepatitis. CONCLUSION This newly established mouse model provides a platform for in vivo mechanistic studies of CPI-hepatitis. Using this model, we demonstrate the central role of liver infiltrating CCR2+ monocyte interaction with tissue-destructive CD8+ T cells in the pathogenesis of CPI-hepatitis and highlight CCR2 inhibition as a novel therapeutic target.
Collapse
Affiliation(s)
- Cathrin L C Gudd
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Eoin Mitchell
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Stephen R Atkinson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Marie-Anne Mawhin
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Samra Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| | - James Larkin
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, UK
- Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, UK
| | - Mark R Thursz
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Robert D Goldin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Nick Powell
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Kevin J Woollard
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Lucia A Possamai
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | |
Collapse
|
283
|
Gabriel EM, Necela B, Bahr D, Vivekanandhan S, Shreeder B, Bagaria S, Knutson KL. Expression of c-erb-B2 oncoprotein as a neoantigen strategy to repurpose anti-neu antibody therapy in a model of melanoma. RESEARCH SQUARE 2024:rs.3.rs-4004491. [PMID: 38645250 PMCID: PMC11030526 DOI: 10.21203/rs.3.rs-4004491/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
In this study, we tested a novel approach of "repurposing" a biomarker typically associated with breast cancer for use in melanoma. HER2/neu is a well characterized biomarker in breast cancer for which effective anti-HER2/neu therapies are readily available. We constructed a lentivirus encoding c-erb-B2 (the animal homolog to HER2/neu). This was used to transfect B16 melanoma in vitro for use in an orthotopic preclinical mouse model, which resulted in expression of c-erb-B2 as a neoantigen target for anti-c-erb-B2 monoclonal antibody (7.16.4). The c-erb-B2-expressing melanoma was designated B16/neu. 7.16.4 produced statistically significant in vivo anti-tumor responses against B16/neu. This effect was mediated by NK-cell antibody-dependent cell-mediated cytotoxicity. To further model human melanoma (which expresses <5% HER2/neu), our c-erb-B2 encoding lentivirus was used to inoculate naïve (wild-type) B16 tumors in vivo, resulting in successful c-erb-B2 expression. When combined with 7.16.4, anti-tumor responses were again demonstrated where approximately 40% of mice treated with c-erb-B2 lentivirus and 7.16.4 achieved complete clinical response and long-term survival. For the first time, we demonstrated a novel strategy to repurpose c-erb-B2 as a neoantigen target for melanoma. Our findings are particularly significant in the contemporary setting where newer anti-HER2/neu antibody-drug candidates have shown increased efficacy.
Collapse
|
284
|
Mao YT, Wang Y, Chen XX, Liu CJ, Bao Q. Comparative severe dermatologic toxicities of immune checkpoint inhibitors in malignant melanoma: A systematic review and network meta-analysis. J Cosmet Dermatol 2024; 23:1165-1177. [PMID: 38013634 DOI: 10.1111/jocd.16105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/22/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have advanced the therapeutic landscape for malignant melanoma patients. However, they can cause permanent and irreversible dermatologic immune-related adverse events (irAEs) that may lead to interruption of ICI treatment or become life-threatening. To assess the risk of severe dermatologic irAEs (grade 3 or higher) among ICIs for advanced melanoma, we conducted a network meta-analysis (NMA). METHODS Phase II/III randomized controlled clinical trials (RCTs) involving ICIs were retrieved from various databases, including PubMed, Embase, Cochrane Library, and Web of Science. These trials were published from the inception of databases to October 15, 2022. In addition, the risk of severe dermatologic irAEs associated with ICI types and doses was evaluated and compared by NMA. RESULTS This study included 20 Phase II/III RCTs with a total of 10 575 patients. The results indicated that ICIs carry a higher risk of severe dermatologic irAEs compared to chemotherapy. Additionally, the combinational therapy of Nivolumab + Ipilimumab was associated with a higher risk than ICI monotherapy. Comparatively, the latest treatment option involving dual ICI therapy with Relatlimab + Nivolumab showed a lower toxicity risk, but higher than Ipilimumab alone. Lastly, Nivolumab, at a dose of 3 mg/kg every 2 weeks, was observed as the lowest-risk dosing regimen for severe dermatologic irAEs in patients with advanced melanoma. CONCLUSION The findings suggest that Nivolumab (1 mg/kg) + Ipilimumab (3 mg/kg) administered every 3 weeks should be used cautiously in patients with advanced melanoma at high risk for dermatologic irAEs. While we recommend the preferred regimen of Nivolumab (dose = 3 mg/kg, every 2 weeks).
Collapse
Affiliation(s)
- Yun-Tao Mao
- Department of Nursing, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Wang
- Department of Nursing, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Xiao Chen
- Department of Nursing, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng-Jiang Liu
- Department of General Medicine, Affiliated Anqing First People's Hospital of Anhui Medical University, Anqing, China
| | - Qi Bao
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
285
|
Vargas GM, Shafique N, Xu X, Karakousis G. Tumor-infiltrating lymphocytes as a prognostic and predictive factor for Melanoma. Expert Rev Mol Diagn 2024; 24:299-310. [PMID: 38314660 PMCID: PMC11134288 DOI: 10.1080/14737159.2024.2312102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024]
Abstract
INTRODUCTION Tumor-infiltrating lymphocytes (TILs) have been investigated as prognostic factors in melanoma. Recent advancements in assessing the tumor microenvironment in the setting of more widespread use of immune checkpoint blockade have reignited interest in identifying predictive biomarkers. This review examines the function and significance of TILs in cutaneous melanoma, evaluating their potential as prognostic and predictive markers. AREAS COVERED A literature search was conducted on papers covering tumor infiltrating lymphocytes in cutaneous melanoma available online in PubMed and Web of Science from inception to 1 December 2023, supplemented by citation searching. This article encompasses the assessment of TILs, the role of TILs in the immune microenvironment, TILs as a prognostic factor, TILs as a predictive factor for immunotherapy response, and clinical applications of TILs in the treatment of cutaneous melanoma. EXPERT OPINION Tumor-infiltrating lymphocytes play a heterogeneous role in cutaneous melanoma. While they have historically been associated with improved survival, their status as independent prognostic or predictive factors remains uncertain. Novel methods of TIL assessment, such as determination of TIL subtypes and molecular signaling, demonstrate potential for predicting therapeutic response. Further, while their clinical utility in risk-stratification in melanoma treatment shows promise, a lack of consensus data hinders standardized application.
Collapse
Affiliation(s)
| | - Neha Shafique
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giorgos Karakousis
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
286
|
Boutros A, Croce E, Ferrari M, Gili R, Massaro G, Marconcini R, Arecco L, Tanda ET, Spagnolo F. The treatment of advanced melanoma: Current approaches and new challenges. Crit Rev Oncol Hematol 2024; 196:104276. [PMID: 38295889 DOI: 10.1016/j.critrevonc.2024.104276] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
In recent years, advances in melanoma treatment have renewed patient hope. This comprehensive review emphasizes the evolving treatment landscape, particularly highlighting first-line strategies and the interplay between immune-checkpoint inhibitors (ICIs) and targeted therapies. Ipilimumab plus nivolumab has achieved the best median overall survival, exceeding 70 months. However, the introduction of new ICIs, like relatlimab, has added complexity to first-line therapy decisions. Our aim is to guide clinicians in making personalized treatment decisions. Various features, including brain metastases, PD-L1 expression, BRAF mutation, performance status, and prior adjuvant therapy, significantly impact the direction of advanced melanoma treatment. We also provide the latest insights into the treatment of rare melanoma subtypes, such as uveal melanoma, where tebentafusp has shown promising improvements in overall survival for metastatic uveal melanoma patients. This review provides invaluable insights for clinicians, enabling informed treatment choices and deepening our understanding of the multifaceted challenges associated with advanced melanoma management.
Collapse
Affiliation(s)
- Andrea Boutros
- Skin Cancer Unit, U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Internal Medicine and Medical Sciences (DiMI), School of Medicine, University of Genova, Genova, Italy.
| | - Elena Croce
- Skin Cancer Unit, U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Marco Ferrari
- Azienda Ospedaliero Universitaria Pisana, Medical Oncology Unit, Pisa, Italy
| | - Riccardo Gili
- Skin Cancer Unit, U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Internal Medicine and Medical Sciences (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Giulia Massaro
- Unit of Medical Oncology, Careggi University-Hospital, 50134 Florence, Italy
| | - Riccardo Marconcini
- Azienda Ospedaliero Universitaria Pisana, Medical Oncology Unit, Pisa, Italy
| | - Luca Arecco
- Department of Internal Medicine and Medical Sciences (DiMI), School of Medicine, University of Genova, Genova, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Enrica Teresa Tanda
- Skin Cancer Unit, U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Spagnolo
- Skin Cancer Unit, U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Surgical Sciences and Integrated Diagnostics (DISC), Plastic Surgery Division, University of Genova, Genova, Italy
| |
Collapse
|
287
|
Levi S, Bank H, Mullinax J, Boland G. Precision Oncology in Melanoma and Skin Cancer Surgery. Surg Oncol Clin N Am 2024; 33:369-385. [PMID: 38401915 DOI: 10.1016/j.soc.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
There has been perhaps no greater advance in the prognosis of solid tumors in the last decade than for patients with metastatic melanoma. This is due to significant improvements in treatment based on two key components of melanoma tumor biology (1) the identification of driver mutations with therapeutic potential and (2) the mechanistic understanding of a tumor-specific immune response. With breakthrough findings in such a relatively short period of time, the treatment of patients with metastatic melanoma has become intensely personalized.
Collapse
Affiliation(s)
| | | | - John Mullinax
- Sarcoma Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Genevieve Boland
- Department of Surgery, MGH, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School (HMS), Boston, MA, USA.
| |
Collapse
|
288
|
Sanchez‐Pupo RE, Finch GA, Johnston DE, Craig H, Abdo R, Barr K, Kerfoot S, Dagnino L, Penuela S. Global pannexin 1 deletion increases tumor-infiltrating lymphocytes in the BRAF/Pten mouse melanoma model. Mol Oncol 2024; 18:969-987. [PMID: 38327091 PMCID: PMC10994229 DOI: 10.1002/1878-0261.13596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Immunotherapies for malignant melanoma seek to boost the anti-tumoral response of CD8+ T cells, but have a limited patient response rate, in part due to limited tumoral immune cell infiltration. Genetic or pharmacological inhibition of the pannexin 1 (PANX1) channel-forming protein is known to decrease melanoma cell tumorigenic properties in vitro and ex vivo. Here, we crossed Panx1 knockout (Panx1-/-) mice with the inducible melanoma model BrafCA, PtenloxP, Tyr::CreERT2 (BPC). We found that deleting the Panx1 gene in mice does not reduce BRAF(V600E)/Pten-driven primary tumor formation or improve survival. However, tumors in BPC-Panx1-/- mice exhibited a significant increase in the infiltration of CD8+ T lymphocytes, with no changes in the expression of early T-cell activation marker CD69, lymphocyte activation gene 3 protein (LAG-3) checkpoint receptor, or programmed cell death ligand-1 (PD-L1) in tumors when compared to the BPC-Panx1+/+ genotype. Our results suggest that, although Panx1 deletion does not overturn the aggressive BRAF/Pten-driven melanoma progression in vivo, it does increase the infiltration of effector immune T-cell populations in the tumor microenvironment. We propose that PANX1-targeted therapy could be explored as a strategy to increase tumor-infiltrating lymphocytes to boost anti-tumor immunity.
Collapse
Affiliation(s)
| | - Garth A. Finch
- Department of Anatomy and Cell BiologyWestern UniversityLondonCanada
| | | | - Heather Craig
- Department of Microbiology and ImmunologyWestern UniversityLondonCanada
| | - Rober Abdo
- Department of Anatomy and Cell BiologyWestern UniversityLondonCanada
| | - Kevin Barr
- Department of Anatomy and Cell BiologyWestern UniversityLondonCanada
| | - Steven Kerfoot
- Department of Microbiology and ImmunologyWestern UniversityLondonCanada
| | - Lina Dagnino
- Department of Physiology and PharmacologyWestern UniversityLondonCanada
- Division of Experimental Oncology, Department of Oncology, Schulich School of Medicine and DentistryWestern UniversityLondonCanada
| | - Silvia Penuela
- Department of Anatomy and Cell BiologyWestern UniversityLondonCanada
- Division of Experimental Oncology, Department of Oncology, Schulich School of Medicine and DentistryWestern UniversityLondonCanada
| |
Collapse
|
289
|
Huang R, Han B, Zhang Y, Yang J, Wang K, Liu X, Wang Z. Pathway-based stratification of gliomas uncovers four subtypes with different TME characteristics and prognosis. J Cell Mol Med 2024; 28:e18208. [PMID: 38613347 PMCID: PMC11015396 DOI: 10.1111/jcmm.18208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 04/14/2024] Open
Abstract
Increasing evidences have found that the interactions between hypoxia, immune response and metabolism status in tumour microenvironment (TME) have clinical importance of predicting clinical outcomes and therapeutic efficacy. This study aimed to develop a reliable molecular stratification based on these key components of TME. The TCGA data set (training cohort) and two independent cohorts from CGGA database (validation cohort) were enrolled in this study. First, the enrichment score of 277 TME-related signalling pathways was calculated by gene set variation analysis (GSVA). Then, consensus clustering identified four stable and reproducible subtypes (AFM, CSS, HIS and GLU) based on TME-related signalling pathways, which were characterized by differences in hypoxia and immune responses, metabolism status, somatic alterations and clinical outcomes. Among the four subtypes, HIS subtype had features of immunosuppression, oxygen deprivation and active energy metabolism, resulting in a worst prognosis. Thus, for better clinical application of this acquired stratification, we constructed a risk signature by using the LASSO regression model to identify patients in HIS subtype accurately. We found that the risk signature could accurately screen out the patients in HIS subtype and had important reference value for individualized treatment of glioma patients. In brief, the definition of the TME-related subtypes was a valuable tool for risk stratification in gliomas. It might serve as a reliable prognostic classifier and provide rational design of individualized treatment, and follow-up scheduling for patients with gliomas.
Collapse
Affiliation(s)
- Ruoyu Huang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Bo Han
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Ying Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Jingchen Yang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Kuanyu Wang
- Department of Gamma Knife CenterBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Xing Liu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Zhiliang Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| |
Collapse
|
290
|
Lee ST, Kovaleva N, Senko C, Kee D, Scott AM. Positron Emission Tomography/Computed Tomography Transformation of Oncology: Melanoma and Skin Malignancies. PET Clin 2024; 19:231-248. [PMID: 38233284 DOI: 10.1016/j.cpet.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Skin cancers are the most common cancers, with melanoma resulting in the highest cause of death in this category. Accurate clinical, histologic, and imaging staging with fludeoxyglucose positron emission tomography (FDG PET) is most important to guide patient management. Whilst surgical excision with clear margins is the gold-standard treatment for primary cutaneous melanoma, targeted therapies have generated remarkable and rapid clinical responses in melanoma, for which FDG PET also plays an important role in assessment of treatment response and post-therapy surveillance. Non-FDG PET tracers, advanced PET technology, and PET radiomics may potentially change the landscape of the utilization of PET in the imaging of patients with cutaneous malignancies.
Collapse
Affiliation(s)
- Sze-Ting Lee
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia; Olivia Newton-John Cancer Research Institute, and La Trobe University, Heidelberg, Australia; Department of Surgery, University of Melbourne, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Natalia Kovaleva
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Australia
| | - Clare Senko
- Olivia Newton-John Cancer Research Institute, and La Trobe University, Heidelberg, Australia; Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Heidelberg, Australia
| | - Damien Kee
- Olivia Newton-John Cancer Research Institute, and La Trobe University, Heidelberg, Australia; Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Heidelberg, Australia; Department of Medical Oncology, Peter MacCallum Cancer Center, Melbourne, Australia
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia; Olivia Newton-John Cancer Research Institute, and La Trobe University, Heidelberg, Australia.
| |
Collapse
|
291
|
Kao CH, Lin H, Liu CT, Ou YC, Fu HC, Wu CC, Wu CH. Real-world efficacy and safety of low-dose pembrolizumab in patients with advanced and refractory gynecologic cancers. J Formos Med Assoc 2024; 123:487-495. [PMID: 37852875 DOI: 10.1016/j.jfma.2023.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
OBJECTIVE The approved standard dose of pembrolizumab (200 mg administrated every 3 weeks) for cancer treatment imposes a significant financial burden on patients. However, no study has analyzed the clinical outcomes of low-dose pembrolizumab among individuals diagnosed with gynecologic cancer. The primary objective of this study was to assess the effectiveness and safety of a low-dose pembrolizumab regimen in real-world clinical practice. METHODS We retrospectively assessed the efficacy and safety data of patients with gynecologic malignancies who received pembrolizumab between 2017 and 2022 at Kaohsiung Chang Gung Memorial Hospital. Furthermore, we conducted a comparative analysis of the objective response rate (ORR) and progression-free survival (PFS) between patients with deficient mismatch repair (dMMR) and proficient MMR (pMMR). RESULTS A total of thirty-nine patients were included and received pembrolizumab at fixed dosages of 50 mg (5.1%), 100 mg (84.6%) and 200 mg (10.3%) per cycle. Compared to the pMMR group, the dMMR group exhibited a tendency toward improved ORR (45.5% vs. 13.0%, p = 0.074), and notably, the median duration of response remained unreached. There was no significant difference in PFS between the dMMR and pMMR groups; however, the patients with dMMR in tumor tissue had a trend of better survival (p = 0.079). Incidence of immune-related adverse events (irAEs) of any grade was observed in 13 patients (33.3%), with 3 individuals (7.7%) experiencing grade 3 or 4 events. CONCLUSION Low-dose pembrolizumab may be a cost-effective and safe treatment option without compromising clinical outcomes in patients with refractory gynecologic cancers.
Collapse
Affiliation(s)
- Chien-Hsiang Kao
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hao Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Ting Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Yu-Che Ou
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hung-Chun Fu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Che Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Chen-Hsuan Wu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
292
|
Bafaloukos D, Kouzis P, Gouveris P, Boukovinas I, Kalbakis K, Baka S, Kyriakakis G, Moschou D, Molfeta A, Demiri S, Mavroudis D, Spanoudi F, Dimitriadis I, Gogas H. Real-world management practices and characteristics of patients with advanced melanoma initiated on immuno-oncology or targeted therapy in the first-line setting during the period 2015-2018 in Greece. The 'SUMMER' study: a retrospective multicenter chart review project. Melanoma Res 2024; 34:152-165. [PMID: 38092014 PMCID: PMC10906211 DOI: 10.1097/cmr.0000000000000949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/03/2023] [Indexed: 02/02/2024]
Abstract
This study primarily aimed to generate real-world evidence (RWE) on the profile and first-line treatment (1LT) patterns of patients with advanced (unresectable Stage III/metastatic) cutaneous melanoma initiated on immuno-oncology (IO)- or targeted therapy (TT)-based 1LT between 1 January 2015 and 1 January 2018 (index period), in routine settings of Greece. This was a multicenter, retrospective chart review study. Eligible consented (unless deceased, for whom consent was waived by the hospital) patients were consecutively included by six oncology clinics. The look-back period extended from informed consent or death to initial melanoma diagnosis. Between 9 Junuary 2021 and 9 February 2022, 225 eligible patients (all Caucasians; 60.4% male; 35.6% diagnosed with de novo advanced melanoma) were included. At 1LT initiation, median age was 62.6 years; 2.7/6.7/90.7% of the patients had Stage IIIB/IIIC/IV disease and 9.3% were unresected. Most frequent metastatic sites were the lung (46.7%), non-regional nodes (33.8%), and liver (20.9%). Among patients, 98.2% had single primary melanoma, 45.6% had disease localized on the trunk, and 63.6% were BRAF-mutant. Of the patients, 45.3% initiated 1LT with an IO-based, 53.3% with a TT-based regimen, and three patients (1.3%) received TT-based followed by IO-based or vice versa. Most common 1LT patterns (frequency ≥10%) were BRAFi/MEKi combination (31.6%), anti-PD-1 monotherapy (25.3%), BRAFi monotherapy (21.8%), and anti-CTLA-4 monotherapy (17.8%). Most frequent regimens were Dabrafenib+Trametinib in 25.3%, and monotherapies with Pembrolizumab/Ipilimumab/Vemurafenib/Dabrafenib in 23.6/17.8/11.1/10.7% of patients, respectively. SUMMER provides RWE on 1LT strategies and profile of patients initiated 1L IO- or TT-based therapy in Greece during the 3-year index period.
Collapse
Affiliation(s)
| | - Panagiotis Kouzis
- First Department of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine
| | | | | | | | - Sofia Baka
- Oncology Department, Interbalkan European Medical Center, Thessaloniki
| | - Georgios Kyriakakis
- First Department of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine
| | - Despoina Moschou
- First Department of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine
| | | | - Stamatia Demiri
- Second Department of Medical Oncology, Agios Savvas Hospital, Athens
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University General Hospital of Heraklion, Heraklion
| | - Filio Spanoudi
- MSD Pharmaceutical, Industrial and Commercial S.A., Medical Affairs, Athens, Greece
| | - Ioannis Dimitriadis
- MSD Pharmaceutical, Industrial and Commercial S.A., Medical Affairs, Athens, Greece
| | - Helen Gogas
- First Department of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine
| |
Collapse
|
293
|
Liu M, Hu S, Yan N, Popowski KD, Cheng K. Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. NATURE NANOTECHNOLOGY 2024; 19:565-575. [PMID: 38212521 DOI: 10.1038/s41565-023-01580-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
Lung carcinoma is one of the most common cancers and has one of the lowest survival rates in the world. Cytokines such as interleukin-12 (IL-12) have demonstrated considerable potential as robust tumour suppressors. However, their applications are limited due to off-target toxicity. Here we report on a strategy involving the inhalation of IL-12 messenger RNA, encapsulated within extracellular vesicles. Inhalation and preferential uptake by cancer cells results in targeted delivery and fewer systemic side effects. The IL-12 messenger RNA generates interferon-γ production in both innate and adaptive immune-cell populations. This activation consequently incites an intense activation state in the tumour microenvironment and augments its immunogenicity. The increased immune response results in the expansion of tumour cytotoxic immune effector cells, the formation of immune memory, improved antigen presentation and tumour-specific T cell priming. The strategy is demonstrated against primary neoplastic lesions and provides profound protection against subsequent tumour rechallenge. This shows the potential for locally delivered cytokine-based immunotherapies to address orthotopic and metastatic lung tumours.
Collapse
Affiliation(s)
- Mengrui Liu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Shiqi Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Na Yan
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Kristen D Popowski
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill/Raleigh, NC, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill/Raleigh, NC, USA.
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
294
|
Ikeda G, Miyakoshi J, Yamamoto S, Kato K. Nivolumab in unresectable advanced, recurrent or metastatic esophageal squamous cell carcinoma. Future Oncol 2024; 20:665-677. [PMID: 38126175 DOI: 10.2217/fon-2022-1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Esophageal cancer (EC) is the eighth most common cancer worldwide. In view of biology and anatomical restrictions, multimodality treatment strategies have been developed for EC. However, the prognosis of patients with advanced EC remains especially poor. Immunotherapy, such as PD-1/PD-L1 and CTLA-4/B7 blockade, has emerged as a potent treatment for many types of cancer and has been approved in many countries. Based on the results of the ATTRACTION-3 trial, nivolumab, an anti-PD-1 monoclonal antibody, was approved by the US FDA for patients with platinum-resistant, unresectable, recurrent or metastatic esophageal squamous cell carcinoma. The CheckMate 648 trial demonstrated that the combination of nivolumab with platinum-based fluoropyrimidine chemotherapy and combination immunotherapy with nivolumab and ipilimumab, an anti-CTLA-4 monoclonal antibody, showed a survival benefit in patients with advanced esophageal squamous cell carcinoma compared with doublet chemotherapy. This review focuses on nivolumab-containing treatments for patients with advanced esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Go Ikeda
- Department of Head & Neck, Esophageal Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Gastroenterology, Nippon Medical School Graduate School of Medicine, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Jun Miyakoshi
- Department of Head & Neck, Esophageal Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shun Yamamoto
- Department of Head & Neck, Esophageal Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ken Kato
- Department of Head & Neck, Esophageal Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
295
|
Bassetti MF, Morris BA, Sethakorn N, Lang JM, Schehr JL, Zhao SG, Morris ZS, Buehler D, Eickhoff JC, Harari PM, Traynor AM, Campbell TC, Baschnagel AM, Leal TA. Combining Dual Checkpoint Immunotherapy with Ablative Radiation to All Sites of Oligometastatic Non-Small Cell Lung Cancer: Toxicity and Efficacy Results of a Phase 1b Trial. Int J Radiat Oncol Biol Phys 2024; 118:1481-1489. [PMID: 38072321 PMCID: PMC10947887 DOI: 10.1016/j.ijrobp.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE Ablative local treatment of all radiographically detected metastatic sites in patients with oligometastatic non-small cell lung cancer (NSCLC) increases progression-free survival (PFS) and overall survival (OS). Prior studies demonstrated the safety of combining stereotactic body radiation therapy (SBRT) with single-agent immunotherapy. We investigated the safety of combining SBRT to all metastatic tumor sites with dual checkpoint, anticytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4), and anti-programmed cell death ligand 1 (anti-PD-L1) immunotherapy for patients with oligometastatic NSCLC. METHODS AND MATERIALS We conducted a phase 1b clinical trial in patients with oligometastatic NSCLC with up to 6 sites of extracranial metastatic disease. All sites of disease were treated with SBRT to a dose of 30 to 50 Gy in 5 fractions. Dual checkpoint immunotherapy was started 7 days after completion of radiation using anti-CTLA-4 (tremelimumab) and anti-PD-L1 (durvalumab) immunotherapy for a total of 4 cycles followed by durvalumab alone until progression or toxicity. RESULTS Of the 17 patients enrolled in this study, 15 patients received at least 1 dose of combination immunotherapy per protocol. The study was closed early (17 of planned 21 patients) due to slow accrual during the COVID-19 pandemic. Grade 3+ treatment-related adverse events were observed in 6 patients (40%), of which only one was possibly related to the addition of SBRT to immunotherapy. Median PFS was 42 months and median OS has not yet been reached. CONCLUSIONS Delivering ablative SBRT to all sites of metastatic disease in combination with dual checkpoint immunotherapy did not result in excessive rates of toxicity compared with historical studies of dual checkpoint immunotherapy alone. Although the study was not powered for treatment efficacy results, durable PFS and OS results suggest potential therapeutic benefit compared with immunotherapy or radiation alone in this patient population.
Collapse
Affiliation(s)
- Michael F Bassetti
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Brett A Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| | - Nan Sethakorn
- Department of Medical Oncology, Loyola University, Chicago, Illinois
| | - Joshua M Lang
- Department of Medical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jennifer L Schehr
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Shuang George Zhao
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Darya Buehler
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jens C Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Paul M Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Anne M Traynor
- Department of Medical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Toby C Campbell
- Department of Medical Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Andrew M Baschnagel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ticiana A Leal
- Department of Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
296
|
Vaios EJ, Shenker RF, Hendrickson PG, Wan Z, Niedzwiecki D, Winter SF, Shih HA, Dietrich J, Wang C, Salama AKS, Clarke JM, Allen K, Sperduto P, Mullikin T, Kirkpatrick JP, Floyd SR, Reitman ZJ. Long-Term Intracranial Outcomes With Combination Dual Immune-Checkpoint Blockade and Stereotactic Radiosurgery in Patients With Melanoma and Non-Small Cell Lung Cancer Brain Metastases. Int J Radiat Oncol Biol Phys 2024; 118:1507-1518. [PMID: 38097090 PMCID: PMC11056239 DOI: 10.1016/j.ijrobp.2023.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/26/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE The intracranial benefit of offering dual immune-checkpoint inhibition (D-ICPI) with ipilimumab and nivolumab to patients with melanoma or non-small cell lung cancer (NSCLC) receiving stereotactic radiosurgery (SRS) for brain metastases (BMs) is unknown. We hypothesized that D-ICPI improves local control compared with SRS alone. METHODS AND MATERIALS Patients with melanoma or NSCLC treated with SRS from 2014 to 2022 were evaluated. Patients were stratified by treatment with D-ICPI, single ICPI (S-ICPI), or SRS alone. Local recurrence, intracranial progression (IP), and overall survival were estimated using competing risk and Kaplan-Meier analyses. IP included both local and distant intracranial recurrence. RESULTS Two hundred eighty-eight patients (44% melanoma, 56% NSCLC) with 1,704 BMs were included. Fifty-three percent of patients had symptomatic BMs. The median follow-up was 58.8 months. Twelve-month local control rates with D-ICPI, S-ICPI, and SRS alone were 94.73% (95% CI, 91.11%-96.90%), 91.74% (95% CI, 89.30%-93.64%), and 88.26% (95% CI, 84.07%-91.41%). On Kaplan-Meier analysis, only D-ICPI was significantly associated with reduced local recurrence (P = .0032). On multivariate Cox regression, D-ICPI (hazard ratio [HR], 0.4003; 95% CI, 0.1781-0.8728; P = .0239) and planning target volume (HR, 1.022; 95% CI, 1.004-1.035; P = .0059) correlated with local control. One hundred seventy-three (60%) patients developed IP. The 12-month cumulative incidence of IP was 41.27% (95% CI, 30.27%-51.92%), 51.86% (95% CI, 42.78%-60.19%), and 57.15% (95% CI, 44.98%-67.59%) after D-ICPI, S-ICPI, and SRS alone. On competing risk analysis, only D-ICPI was significantly associated with reduced IP (P = .0408). On multivariate Cox regression, D-ICPI (HR, 0.595; 95% CI, 0.373-0.951; P = .0300) and presentation with >10 BMs (HR, 2.492; 95% CI, 1.668-3.725; P < .0001) remained significantly correlated with IP. The median overall survival after D-ICPI, S-ICPI, and SRS alone was 26.1 (95% CI, 15.5-40.7), 21.5 (16.5-29.6), and 17.5 (11.3-23.8) months. S-ICPI, fractionation, and histology were not associated with clinical outcomes. There was no difference in hospitalizations or neurologic adverse events between cohorts. CONCLUSIONS The addition of D-ICPI for patients with melanoma and NSCLC undergoing SRS is associated with improved local and intracranial control. This appears to be an effective strategy, including for patients with symptomatic or multiple BMs.
Collapse
Affiliation(s)
- Eugene J Vaios
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Rachel F Shenker
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Peter G Hendrickson
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Zihan Wan
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Donna Niedzwiecki
- Duke Cancer Institute Biostatistics, Duke University Medical Center, Durham, North Carolina
| | - Sebastian F Winter
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jorg Dietrich
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Chunhao Wang
- Departments of Medical Physics, Duke University Medical Center, Durham, North Carolina
| | - April K S Salama
- Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Jeffrey M Clarke
- Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Karen Allen
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Paul Sperduto
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Trey Mullikin
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - John P Kirkpatrick
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina; Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Scott R Floyd
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Zachary J Reitman
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina; Neurosurgery, Duke University Medical Center, Durham, North Carolina; Pathology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
297
|
van Lith PEA, Schreuder K, Jalving M, Reyners AKL, Been LB, Rácz E, Fransen HP, Louwman MWJ. Systemic therapy timing and use in patients with advanced melanoma at the end of life: A retrospective cohort study. J Dermatol 2024; 51:584-591. [PMID: 38078557 PMCID: PMC11483958 DOI: 10.1111/1346-8138.17061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 04/04/2024]
Abstract
Novel systemic therapies for advanced melanoma improve survival, but carry potential serious side effects and high costs. This study aimed to assess the timing and use of systemic therapies in the months before death. Patients diagnosed with advanced melanoma (July 2017-June 2020) who died before July 2020 were selected from the Netherlands Cancer Registry. We evaluated the timing of systemic therapies within 30 days and 3 months before death, and studied patient and tumor characteristics associated with systemic therapy use between diagnosis and death. Out of 1097 patients 68% received systemic therapy. Almost 25% and 10% started a new therapy within 90 days and within 30 days before death, respectively. Female sex, elevated LDH, BRAF mutation, poor ECOG performance status (≥3), and high comorbidity index reduced the odds of receiving immune therapy. Poor performance status and high comorbidity decreased the odds for both therapies. A considerable number of patients started systemic therapy shortly before death, emphasizing the importance of considering potential benefits and drawbacks through shared decision-making.
Collapse
Affiliation(s)
- P. E. A. van Lith
- Department of Research and DevelopmentNetherlands Comprehensive Cancer OrganizationUtrechtThe Netherlands
- Department of SurgeryUniversity Medical Centre Groningen, University of GroningenGroningenThe Netherlands
| | - K. Schreuder
- Department of Research and DevelopmentNetherlands Comprehensive Cancer OrganizationUtrechtThe Netherlands
| | - M. Jalving
- Department of Medical OncologyUniversity Medical Centre Groningen, University of GroningenGroningenThe Netherlands
| | - A. K. L. Reyners
- Department of Medical OncologyUniversity Medical Centre Groningen, University of GroningenGroningenThe Netherlands
| | - L. B. Been
- Department of Surgical OncologyUniversity Medical Centre Groningen, University of GroningenGroningenThe Netherlands
| | - E. Rácz
- Department of DermatologyUniversity of Medical Centre Groningen, University of GroningenGroningenThe Netherlands
| | - H. P. Fransen
- Department of Research and DevelopmentNetherlands Comprehensive Cancer OrganizationUtrechtThe Netherlands
- Netherlands Association for Palliative Care (PZNL)UtrechtThe Netherlands
| | - M. W. J. Louwman
- Department of Research and DevelopmentNetherlands Comprehensive Cancer OrganizationUtrechtThe Netherlands
| |
Collapse
|
298
|
Lynch C, Korpics MC, Katipally RR, Wu T, Bestvina CM, Pitroda S, Chmura SJ, Juloori A. Combined Stereotactic Body Radiation Therapy and Immune Checkpoint Inhibition for Liver Metastases: Safety and Outcomes in a Pooled Analysis of 3 Phase 1 Trials. Int J Radiat Oncol Biol Phys 2024; 118:1519-1530. [PMID: 38199382 DOI: 10.1016/j.ijrobp.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
PURPOSE Stereotactic body radiation therapy (SBRT) safely and effectively controls liver metastases (LMs), but its safety and efficacy when combined with immune checkpoint inhibitors (ICIs) are not well characterized. This analysis of 3 phase 1 trials of combination SBRT and ICI evaluates whether LM-SBRT increases the risk for hepatotoxicity when combined with ICI and explores efficacy endpoints. METHODS AND MATERIALS Data were analyzed from 3 phase 1 trials of combination SBRT and ICI for patients with metastatic solid tumors conducted between 2016 and 2020. ICI was administered per trial protocol with LM-SBRT delivered to 45 Gy in 3 fractions with mean liver dose <16 Gy and ≥700 cc of normal liver spared 17.1 Gy. Hepatic adverse events (HAEs) were defined as hepatic failure, autoimmune hepatitis, or elevation of aspartate transaminase, alanine transaminase, bilirubin, or alkaline phosphatase using Common Terminology Criteria for Adverse Events version 4.0. Cumulative incidence of HAEs and local failure were modeled with death as a competing risk. Competing risk regression was performed using Fine-Gray modeling. Survival was estimated via the Kaplan-Meier method. RESULTS Two hundred patients were analyzed, including 81 patients with LM, 57 of whom received LM-SBRT. The 12-month rate of any grade ≥2 HAE was 11% and 10% in LM-SBRT and non-LM-SBRT patients, respectively non-significant (NS). Radiographic evidence for liver disease and dual-agent ICI was significantly associated with HAEs on univariable and multivariable analysis, but liver dose metrics were not. Patients with LM had significantly worse progression-free and overall survival compared with those without, and local failure of treated LM was significantly higher than for treated extrahepatic metastases (28% vs 4% at 12 months, P < .001). CONCLUSIONS Combination LM-SBRT and ICI did not significantly increase the risk for HAEs compared with ICI without LM-SBRT, suggesting hepatotoxicity is largely driven by factors other than liver radiation therapy, such as choice of ICI. LM is associated with worse overall survival and local control outcomes.
Collapse
Affiliation(s)
- Connor Lynch
- Departments of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois
| | - Mark C Korpics
- Departments of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois
| | - Rohan R Katipally
- Departments of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois
| | - Tianming Wu
- Departments of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois
| | | | - Sean Pitroda
- Departments of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois
| | - Steven J Chmura
- Departments of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois
| | - Aditya Juloori
- Departments of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois.
| |
Collapse
|
299
|
Euvrard R, Robert M, Mainbourg S, Dalle S, Lega JC. Association between immune-related adverse events and prognosis in patients treated with immune checkpoint inhibitors in melanoma: A surrogacy analysis. Fundam Clin Pharmacol 2024; 38:369-379. [PMID: 38012082 DOI: 10.1111/fcp.12966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/10/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) represent a breakthrough in oncology in terms of prognosis and safety. They now constitute a cornerstone in the management of metastatic melanoma. However, a new kind of adverse event called immune-related adverse events (irAE) has emerged. These irAE could be conceptually considered as an indicator of the antitumoral immune response, but the association between irAE and prognosis is still a matter of debate. OBJECTIVE The purpose of this study was to investigate the association between the overall survival (OS) and the prevalence of irAE in melanoma. METHODS MEDLINE/PubMed, WebofScience, ClinicalTrials, and WHOTrials databases were searched to identify phase 3 randomized controlled trials (RCT) assessing ICI in melanoma and published up to April 2021. A weighted regression was performed to estimate this association according to standard method of surrogacy analysis. RESULTS A total of 14 RCT including 7646 patients (median age: 59.3 years) with melanoma were included. All types of ICI were represented (ipilimumab, tremelimumab, pembrolizumab, nivolumab, atezolizumab, as well as ipilimumab and nivolumab combination). irAE were frequent but rarely fatal. The combination of ICI caused more irAE than anti-PD1 (or PDL1) and anti-CTLA4 monotherapies. No relationship was found between the occurrence of irAE and OS (beta coefficient 0.078, R2 3%, p = 0.52), nor between cutaneous irAE and OS (beta coefficient 0.080, R2 6%, p = 0.33). CONCLUSION Although limited by the heterogeneity of ICI included in the regression and the low number of included RCT, the present study suggests an absence of association between irAE and prognosis in melanoma.
Collapse
Affiliation(s)
- Romain Euvrard
- Service de Médecine Interne et Pathologie Vasculaire, Hôpital Lyon Sud, Hospices Civils de Lyon, France
| | - Marie Robert
- Service de Médecine Interne et d'immunologie clinique, Université de Lyon 1, Hôpital Édouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Sabine Mainbourg
- Equipe Évaluation et Modélisations des Effets Thérapeutiques, UMR CRNS 5558, Université Claude Bernard Lyon 1, Lyon, France
- Lyon Immunopathology Federation (LIFe), Hospices Civils de Lyon, France
| | - Stéphane Dalle
- Service de Dermatologie, Hôpital Lyon Sud, Hospices Civils de Lyon, France
- ImmuCare (Immunology Cancer Research), Hospices Civils de Lyon, France
| | - Jean-Christophe Lega
- Equipe Évaluation et Modélisations des Effets Thérapeutiques, UMR CRNS 5558, Université Claude Bernard Lyon 1, Lyon, France
- Lyon Immunopathology Federation (LIFe), Hospices Civils de Lyon, France
- ImmuCare (Immunology Cancer Research), Hospices Civils de Lyon, France
- Service de Rhumatologie, Hôpital Lyon Sud, Hospices Civils de lyon, France
| |
Collapse
|
300
|
Haugh AM, Osorio RC, Francois RA, Tawil ME, Tsai KK, Tetzlaff M, Daud A, Vasudevan HN. Targeted DNA Sequencing of Cutaneous Melanoma Identifies Prognostic and Predictive Alterations. Cancers (Basel) 2024; 16:1347. [PMID: 38611025 PMCID: PMC11011039 DOI: 10.3390/cancers16071347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Cutaneous melanoma (CM) can be molecularly classified into four groups: BRAF mutant, NRAS mutant, NF1 mutant and triple wild-type (TWT) tumors lacking any of these three alterations. In the era of immune checkpoint inhibition (ICI) and targeted molecular therapy, the clinical significance of these groups remains unclear. Here, we integrate targeted DNA sequencing with comprehensive clinical follow-up in CM patients. METHODS This was a retrospective cohort study that assessed clinical and molecular features from patients with localized or metastatic CM who underwent targeted next-generation sequencing as part of routine clinical care. A total of 254 patients with CM who had a CLIA-certified targeted sequencing assay performed on their tumor tissue were included. RESULTS Of the 254 patients with cutaneous melanoma, 77 were BRAF mutant (30.3%), 77 were NRAS mutant (30.3%), 47 were NF1 mutant (18.5%), 33 were TWT (13.0%) and the remaining 20 (7.9%) carried mutations in multiple driver genes (BRAF/NRAS/NF1 co-mutated). The majority of this co-mutation group carried mutations in NF1 (n = 19 or 90%) with co-occurring mutations in BRAF or NRAS, often with a weaker oncogenic variant. Consistently, NF1 mutant tumors harbored numerous significantly co-altered genes compared to BRAF or NRAS mutant tumors. The majority of TWT tumors (n = 29, 87.9%) harbor a pathogenic mutation within a known Ras/MAPK signaling pathway component. Of the 154 cases with available TMB data, the median TMB was 20 (range 0.7-266 mutations/Mb). A total of 14 cases (9.1%) were classified as having a low TMB (≤5 mutations/Mb), 64 of 154 (41.6%) had an intermediate TMB (>5 and ≤20 mutations/Mb), 40 of 154 (26.0%) had a high TMB (>20 and ≤50 mutations/Mb) and 36 of 154 (23.4%) were classified as having a very high TMB (>50 mutations/Mb). NRAS mutant melanoma demonstrated significantly decreased overall survival on multivariable analysis (HR for death 2.95, 95% CI 1.13-7.69, p = 0.027, log-rank test) compared with other TCGA molecular subgroups. Of the 116 patients in our cohort with available treatment data, 36 received a combination of dual ICI with anti-CTLA4 and anti-PD1 inhibition as first-line therapy. Elevated TMB was associated with significantly longer progression-free survival following dual-agent ICI (HR 0.26, 95% CI 0.07-0.90, p = 0.033, log-rank test). CONCLUSIONS NRAS mutation in CMs correlated with significantly worse overall survival. Elevated TMB was associated with increased progression-free survival for patients treated with a combination of dual ICI, supporting the potential utility of TMB as a predictive biomarker for ICI response in melanoma.
Collapse
Affiliation(s)
- Alexandra M. Haugh
- Department of Medicine, Division of Hematology/Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94142, USA; (A.M.H.); (K.K.T.); (A.D.)
| | - Robert C. Osorio
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA (M.E.T.)
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Rony A. Francois
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Michael E. Tawil
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA (M.E.T.)
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Katy K. Tsai
- Department of Medicine, Division of Hematology/Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94142, USA; (A.M.H.); (K.K.T.); (A.D.)
| | - Michael Tetzlaff
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Adil Daud
- Department of Medicine, Division of Hematology/Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94142, USA; (A.M.H.); (K.K.T.); (A.D.)
| | - Harish N. Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA (M.E.T.)
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|