251
|
Kannan S, Kwon C. Regulation of cardiomyocyte maturation during critical perinatal window. J Physiol 2019; 598:2941-2956. [PMID: 30571853 DOI: 10.1113/jp276754] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
A primary limitation in the use of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) for both patient health and scientific investigation is the failure of these cells to achieve full functional maturity. In vivo, cardiomyocytes undergo numerous adaptive structural, functional and metabolic changes during maturation. By contrast, PSC-CMs fail to fully undergo these developmental processes, instead remaining arrested at an embryonic stage of maturation. There is thus a significant need to understand the biological processes underlying proper CM maturation in vivo. Here, we discuss what is known regarding the initiation and coordination of CM maturation. We postulate that there is a critical perinatal window, ranging from embryonic day 18.5 to postnatal day 14 in mice, in which the maturation process is exquisitely sensitive to perturbation. While the initiation mechanisms of this process are unknown, it is increasingly clear that maturation proceeds through interconnected regulatory circuits that feed into one another to coordinate concomitant structural, functional and metabolic CM maturation. We highlight PGC1α, SRF and the MEF2 family as transcription factors that may potentially mediate this cross-talk. We lastly discuss several emerging technologies that will facilitate future studies into the mechanisms of CM maturation. Further study will not only produce a better understanding of its key processes, but provide practical insights into developing a robust strategy to produce mature PSC-CMs.
Collapse
Affiliation(s)
- Suraj Kannan
- Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA
| | - Chulan Kwon
- Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA
| |
Collapse
|
252
|
Navaei A, Rahmani Eliato K, Ros R, Migrino RQ, Willis BC, Nikkhah M. The influence of electrically conductive and non-conductive nanocomposite scaffolds on the maturation and excitability of engineered cardiac tissues. Biomater Sci 2019; 7:585-595. [DOI: 10.1039/c8bm01050a] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We developed different classes of hydrogels, with conductive and non-conductive nanomaterials, to study cardiac tissue maturation and excitability.
Collapse
Affiliation(s)
- Ali Navaei
- School of Biological and Health Systems Engineering (SBHSE)
- Arizona State University
- Tempe
- USA
| | | | - Robert Ros
- Department of Physics
- Arizona State University
- Tempe
- USA
- Center for Biological Physics
| | - Raymond Q. Migrino
- Phoenix Veterans Affairs Health Care System
- Phoenix
- USA
- University of Arizona College of Medicine
- Phoenix
| | - Brigham C. Willis
- University of Arizona College of Medicine
- Phoenix
- USA
- Phoenix Children's Hospital
- Phoenix
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE)
- Arizona State University
- Tempe
- USA
| |
Collapse
|
253
|
Mannhardt I, Warncke C, Trieu HK, Müller J, Eschenhagen T. Piezo-bending actuators for isometric or auxotonic contraction analysis of engineered heart tissue. J Tissue Eng Regen Med 2018; 13:3-11. [PMID: 30334614 DOI: 10.1002/term.2755] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/28/2018] [Accepted: 09/24/2018] [Indexed: 01/02/2023]
Abstract
Engineered heart tissue (EHT) has proven as valuable tool for disease modelling, drug safety screening, and cardiac repair. Especially in combination with the stem cell technology, these in vitro models of the human heart have generated interest not only of basic cardiovascular researchers but also of regulatory authorities responsible for drug safety. A main limitation of 3D-based assays for evaluating cardiotoxicity is their limited throughput. We integrated piezo-bending actuators in a 24-well system for the generation of strip-like rat and human EHT attached to hollow, elastic silicone posts. Muscle contractions of EHTs induced a measurable electrical current in the piezo-bending actuators that could be analysed for contraction amplitude, frequency, and contraction and relaxation kinetics. Compared with the standard video-optical analysis of contractile activity, the new system allows for (a) the analysis of several tissues in parallel, (b) switching between auxotonic and isometric contractions by inserting a stiff metal post in the silicone post opposing the piezo actuator, (c) continuous measurement over days with low data volume (megabyte), (d) automated measurement without the necessity of adjustment of tissue position for video-optical analysis, (e) reduced complexity and costs, (f) high sensitivity of contraction detection, (g) calculation of absolute contraction force, and (h) suitability for variable tissue geometries. The new set-up for contraction analysis based on piezo-bending actuators is a promising new method for the parallel screening of EHT for pharmacological drug effects and other applications of muscle tissue engineering (e.g., skeletal muscle engineering or cardiac repair).
Collapse
Affiliation(s)
- Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Christoph Warncke
- Institute of Microsystems Technology, Hamburg University of Technology, Hamburg, Germany
| | - Hoc Khiem Trieu
- Institute of Microsystems Technology, Hamburg University of Technology, Hamburg, Germany
| | - Jörg Müller
- Institute of Microsystems Technology, Hamburg University of Technology, Hamburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| |
Collapse
|
254
|
Huang NF, Serpooshan V, Morris VB, Sayed N, Pardon G, Abilez OJ, Nakayama KH, Pruitt BL, Wu SM, Yoon YS, Zhang J, Wu JC. Big bottlenecks in cardiovascular tissue engineering. Commun Biol 2018; 1:199. [PMID: 30480100 PMCID: PMC6249300 DOI: 10.1038/s42003-018-0202-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/26/2018] [Indexed: 02/08/2023] Open
Abstract
Although tissue engineering using human-induced pluripotent stem cells is a promising approach for treatment of cardiovascular diseases, some limiting factors include the survival, electrical integration, maturity, scalability, and immune response of three-dimensional (3D) engineered tissues. Here we discuss these important roadblocks facing the tissue engineering field and suggest potential approaches to overcome these challenges.
Collapse
Affiliation(s)
- Ngan F Huang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, 94305, CA, USA.
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, 94305, CA, USA.
- Veteran Affairs Palo Alto Health Care System, Palo Alto, 94304, CA, USA.
| | - Vahid Serpooshan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, 94305, CA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, 30332, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, 30307, GA, USA
| | - Viola B Morris
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, 30332, GA, USA
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, 30307, GA, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Gaspard Pardon
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, 94305, CA, USA
- Department of Bioengineering, Stanford University, Stanford, 94305, CA, USA
| | - Oscar J Abilez
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, 94305, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Karina H Nakayama
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, 94305, CA, USA
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, 94305, CA, USA
- Veteran Affairs Palo Alto Health Care System, Palo Alto, 94304, CA, USA
| | - Beth L Pruitt
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, 94305, CA, USA
- Department of Bioengineering, Stanford University, Stanford, 94305, CA, USA
- Department of Mechanical Engineering, Stanford University, Stanford, 94305, CA, USA
- Departments of Mechanical Engineering; BioMolecular Science and Engineering; and Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, 94305, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, 94305, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, 94305, CA, USA
| | - Young-Sup Yoon
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, 30332, GA, USA
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, 30307, GA, USA
| | - Jianyi Zhang
- Department of Bioengineering, School of Medicine, University of Alabama at Birmingham, Birmingham, 35294, AL, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, 94305, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, 94305, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, 94305, CA, USA
| |
Collapse
|
255
|
Lau E, Paik DT, Wu JC. Systems-Wide Approaches in Induced Pluripotent Stem Cell Models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:395-419. [PMID: 30379619 DOI: 10.1146/annurev-pathmechdis-012418-013046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human induced pluripotent stem cells (iPSCs) provide a renewable supply of patient-specific and tissue-specific cells for cellular and molecular studies of disease mechanisms. Combined with advances in various omics technologies, iPSC models can be used to profile the expression of genes, transcripts, proteins, and metabolites in relevant tissues. In the past 2 years, large panels of iPSC lines have been derived from hundreds of genetically heterogeneous individuals, further enabling genome-wide mapping to identify coexpression networks and elucidate gene regulatory networks. Here, we review recent developments in omics profiling of various molecular phenotypes and the emergence of human iPSCs as a systems biology model of human diseases.
Collapse
Affiliation(s)
- Edward Lau
- Stanford Cardiovascular Institute, and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California 94305, USA;
| | - David T Paik
- Stanford Cardiovascular Institute, and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California 94305, USA;
| | - Joseph C Wu
- Stanford Cardiovascular Institute, and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California 94305, USA; .,Department of Radiology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
256
|
Wang B, Tu X, Wei J, Wang L, Chen Y. Substrate elasticity dependent colony formation and cardiac differentiation of human induced pluripotent stem cells. Biofabrication 2018; 11:015005. [DOI: 10.1088/1758-5090/aae0a5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
257
|
Grandy R, Tomaz RA, Vallier L. Modeling Disease with Human Inducible Pluripotent Stem Cells. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:449-468. [PMID: 30355153 DOI: 10.1146/annurev-pathol-020117-043634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the physiopathology of disease remains an essential step in developing novel therapeutics. Although animal models have certainly contributed to advancing this enterprise, their limitation in modeling all the aspects of complex human disorders is one of the major challenges faced by the biomedical research field. Human induced pluripotent stem cells (hiPSCs) derived from patients represent a great opportunity to overcome this deficiency because these cells cover the genetic diversity needed to fully model human diseases. Here, we provide an overview of the history of hiPSC technology and discuss common challenges and approaches that we and others have faced when using hiPSCs to model disease. Our emphasis is on liver disease, and consequently, we review the progress made using this technology to produce functional liver cells in vitro and how these systems are being used to recapitulate a diversity of developmental, metabolic, genetic, and infectious liver disorders.
Collapse
Affiliation(s)
- Rodrigo Grandy
- Wellcome and MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom; .,Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
| | - Rute A Tomaz
- Wellcome and MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom; .,Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
| | - Ludovic Vallier
- Wellcome and MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom; .,Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
| |
Collapse
|
258
|
Ariyasinghe NR, Lyra-Leite DM, McCain ML. Engineering cardiac microphysiological systems to model pathological extracellular matrix remodeling. Am J Physiol Heart Circ Physiol 2018; 315:H771-H789. [PMID: 29906229 PMCID: PMC6230901 DOI: 10.1152/ajpheart.00110.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/27/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
Many cardiovascular diseases are associated with pathological remodeling of the extracellular matrix (ECM) in the myocardium. ECM remodeling is a complex, multifactorial process that often contributes to declines in myocardial function and progression toward heart failure. However, the direct effects of the many forms of ECM remodeling on myocardial cell and tissue function remain elusive, in part because conventional model systems used to investigate these relationships lack robust experimental control over the ECM. To address these shortcomings, microphysiological systems are now being developed and implemented to establish direct relationships between distinct features in the ECM and myocardial function with unprecedented control and resolution in vitro. In this review, we will first highlight the most prominent characteristics of ECM remodeling in cardiovascular disease and describe how these features can be mimicked with synthetic and natural biomaterials that offer independent control over multiple ECM-related parameters, such as rigidity and composition. We will then detail innovative microfabrication techniques that enable precise regulation of cellular architecture in two and three dimensions. We will also describe new approaches for quantifying multiple aspects of myocardial function in vitro, such as contractility, action potential propagation, and metabolism. Together, these collective technologies implemented as cardiac microphysiological systems will continue to uncover important relationships between pathological ECM remodeling and myocardial cell and tissue function, leading to new fundamental insights into cardiovascular disease, improved human disease models, and novel therapeutic approaches.
Collapse
Affiliation(s)
- Nethika R Ariyasinghe
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
| | - Davi M Lyra-Leite
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
259
|
Greenberg MJ, Daily NJ, Wang A, Conway MK, Wakatsuki T. Genetic and Tissue Engineering Approaches to Modeling the Mechanics of Human Heart Failure for Drug Discovery. Front Cardiovasc Med 2018; 5:120. [PMID: 30283789 PMCID: PMC6156537 DOI: 10.3389/fcvm.2018.00120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
Heart failure is the leading cause of death in the western world and as such, there is a great need for new therapies. Heart failure has a variable presentation in patients and a complex etiology; however, it is fundamentally a condition that affects the mechanics of cardiac contraction, preventing the heart from generating sufficient cardiac output under normal operating pressures. One of the major issues hindering the development of new therapies has been difficulties in developing appropriate in vitro model systems of human heart failure that recapitulate the essential changes in cardiac mechanics seen in the disease. Recent advances in stem cell technologies, genetic engineering, and tissue engineering have the potential to revolutionize our ability to model and study heart failure in vitro. Here, we review how these technologies are being applied to develop personalized models of heart failure and discover novel therapeutics.
Collapse
Affiliation(s)
- Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Ann Wang
- InvivoSciences Inc., Madison, WI, United States
| | | | | |
Collapse
|
260
|
Contractile deficits in engineered cardiac microtissues as a result of MYBPC3 deficiency and mechanical overload. Nat Biomed Eng 2018; 2:955-967. [PMID: 31015724 PMCID: PMC6482859 DOI: 10.1038/s41551-018-0280-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 07/20/2018] [Indexed: 12/26/2022]
Abstract
The integration of in vitro cardiac tissue models, human induced pluripotent stem cells (hiPSCs) and genome-editing tools allows for the enhanced interrogation of physiological phenotypes and the recapitulation of disease pathologies. Here, in a cardiac tissue model consisting of filamentous 3D matrices populated with cardiomyocytes (CMs) derived from healthy wild-type hiPSCs (WT hiPSC-CMs) or from isogenic hiPSCs deficient in the sarcomere protein cardiac myosin binding protein C (MYBPC3−/− hiPSC-CMs), we show that the WT microtissues adapted to the mechanical environment with increased contraction force commensurate to matrix stiffness, whereas the MYBPC3−/− microtissues exhibited impaired force-development kinetics regardless of matrix stiffness and deficient contraction force only when grown on matrices with high fiber stiffness. Under mechanical overload, the MYBPC3−/− microtissues had a higher degree of calcium transient abnormalities, and exhibited an accelerated decay of calcium dynamics as well as calcium desensitization, which accelerated when contracting against stiffer fibers. Our findings suggest that MYBPC3 deficiency and the presence of environmental stresses synergistically lead to contractile deficits in the cardiac tissues.
Collapse
|
261
|
Scalable Cardiac Differentiation of Pluripotent Stem Cells Using Specific Growth Factors and Small Molecules. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:39-69. [PMID: 29071404 DOI: 10.1007/10_2017_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The envisioned routine application of human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) for therapies and industry-compliant screening approaches will require efficient and highly reproducible processes for the mass production of well-characterized CM batches.On their way toward beating CMs, hPSCs initially undergo an epithelial-to-mesenchymal transition into a primitive-streak (PS)-like population that later gives rise to all endodermal and mesodermal lineages, including cardiovascular progenies (CVPs). CVPs are multipotent and possess the capability to give rise to all major cell types of the heart, including CMs, endothelial cells, cardiac fibroblasts, and smooth muscle cells. This article provides an historical overview and describes the stepwise development of protocols that typically result in the appearance of beating CMs within 7-12 days of hPSC differentiation.We describe the development of directed and closely controlled cardiomyogenic differentiation, which now enables the induction of >90% CM purity without further lineage enrichment. Although secreted lineage specifiers (revealed from developmental biology) were initially used, we outline the advantages of chemical pathway modulators, as defined by more recent screening approaches. Subsequently, we discuss the use of defined culture media for upscaling the production of hPSC-CMs in controlled bioreactors and how this, in principle, unlimited source of human CMs can be used to progress heart regeneration and stimulate the drug discovery pipeline. Graphical Abstract.
Collapse
|
262
|
Bruyneel AA, McKeithan WL, Feyen DA, Mercola M. Will iPSC-cardiomyocytes revolutionize the discovery of drugs for heart disease? Curr Opin Pharmacol 2018; 42:55-61. [PMID: 30081259 DOI: 10.1016/j.coph.2018.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/01/2018] [Indexed: 12/30/2022]
Abstract
Cardiovascular disease remains the largest single cause of mortality in the Western world, despite significant advances in clinical management over the years. Unfortunately, the development of new cardiovascular medicines is stagnating and can in part be attributed to the difficulty of screening for novel therapeutic strategies due to a lack of suitable models. The advent of human induced pluripotent stem cells and the ability to make limitless numbers of cardiomyocytes could revolutionize heart disease modeling and drug discovery. This review summarizes the state of the art in the field, describes the strengths and weaknesses of the technology, and applications where the model system would be most appropriate.
Collapse
Affiliation(s)
- Arne An Bruyneel
- The Cardiovascular Institute and Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Wesley L McKeithan
- The Cardiovascular Institute and Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dries Am Feyen
- The Cardiovascular Institute and Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark Mercola
- The Cardiovascular Institute and Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
263
|
Smith LR, Cho S, Discher DE. Stem Cell Differentiation is Regulated by Extracellular Matrix Mechanics. Physiology (Bethesda) 2018; 33:16-25. [PMID: 29212889 DOI: 10.1152/physiol.00026.2017] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022] Open
Abstract
Stem cells mechanosense the stiffness of their microenvironment, which impacts differentiation. Although tissue hydration anti-correlates with stiffness, extracellular matrix (ECM) stiffness is clearly transduced into gene expression via adhesion and cytoskeleton proteins that tune fates. Cytoskeletal reorganization of ECM can create heterogeneity and influence fates, with fibrosis being one extreme.
Collapse
Affiliation(s)
- Lucas R Smith
- Molecular & Cell Biophysics Lab, Physical Sciences Oncology Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sangkyun Cho
- Molecular & Cell Biophysics Lab, Physical Sciences Oncology Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dennis E Discher
- Molecular & Cell Biophysics Lab, Physical Sciences Oncology Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
264
|
Debbi L, Drori S, Tzlil S. The Influence of the Timing of Cyclic Load Application on Cardiac Cell Contraction. Front Physiol 2018; 9:917. [PMID: 30072912 PMCID: PMC6058596 DOI: 10.3389/fphys.2018.00917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/22/2018] [Indexed: 02/01/2023] Open
Abstract
Cardiac cells are subjected to mechanical load during each heart-beat. Normal heart load is essential for physiological development and cardiac function. At the same time, excessive load can induce pathologies such as cardiac hypertrophy. While the forces working on the heart as an organ are well-understood, information regarding stretch response at the cellular level is limited. Since cardiac stretch-response depends on the amplitude and pattern of the applied load as well as its timing during the beating cycle, the directionality of load application and its phase relative to action potential generation must be controlled precisely. Here, we design a new experimental setup, which enables high-resolution fluorescence imaging of cultured cardiac cells under cyclic uniaxial mechanical load and electrical stimulation. Cyclic stretch was applied in different phases relative to the electrical stimulus and the effect on cardiac cell beating was monitored. The results show a clear phase-dependent response and provide insight into cardiac response to excessive loading conditions.
Collapse
Affiliation(s)
- Lior Debbi
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Stavit Drori
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shelly Tzlil
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
265
|
Ma X, Liu J, Zhu W, Tang M, Lawrence N, Yu C, Gou M, Chen S. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev 2018; 132:235-251. [PMID: 29935988 PMCID: PMC6226327 DOI: 10.1016/j.addr.2018.06.011] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/04/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
3D bioprinting is emerging as a promising technology for fabricating complex tissue constructs with tailored biological components and mechanical properties. Recent advances have enabled scientists to precisely position materials and cells to build functional tissue models for in vitro drug screening and disease modeling. This review presents state-of-the-art 3D bioprinting techniques and discusses the choice of cell source and biomaterials for building functional tissue models that can be used for personalized drug screening and disease modeling. In particular, we focus on 3D-bioprinted liver models, cardiac tissues, vascularized constructs, and cancer models for their promising applications in medical research, drug discovery, toxicology, and other pre-clinical studies.
Collapse
Affiliation(s)
- Xuanyi Ma
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Justin Liu
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wei Zhu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Min Tang
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Natalie Lawrence
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Claire Yu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, PR China
| | - Shaochen Chen
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, PR China.
| |
Collapse
|
266
|
Hansen KJ, Laflamme MA, Gaudette GR. Development of a Contractile Cardiac Fiber From Pluripotent Stem Cell Derived Cardiomyocytes. Front Cardiovasc Med 2018; 5:52. [PMID: 29942806 PMCID: PMC6004416 DOI: 10.3389/fcvm.2018.00052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/04/2018] [Indexed: 01/25/2023] Open
Abstract
Stem cell therapy has the potential to regenerate cardiac function after myocardial infarction. In this study, we sought to examine if fibrin microthread technology could be leveraged to develop a contractile fiber from human pluripotent stem cell derived cardiomyocytes (hPS-CM). hPS-CM seeded onto fibrin microthreads were able to adhere to the microthread and began to contract seven days after initial seeding. A digital speckle tracking algorithm was applied to high speed video data (>60 fps) to determine contraction behaviour including beat frequency, average and maximum contractile strain, and the principal angle of contraction of hPS-CM contracting on the microthreads over 21 days. At day 7, cells seeded on tissue culture plastic beat at 0.83 ± 0.25 beats/sec with an average contractile strain of 4.23±0.23%, which was significantly different from a beat frequency of 1.11 ± 0.45 beats/sec and an average contractile strain of 3.08±0.19% at day 21 (n = 18, p < 0.05). hPS-CM seeded on microthreads beat at 0.84 ± 0.15 beats/sec with an average contractile strain of 3.56±0.22%, which significantly increased to 1.03 ± 0.19 beats/sec and 4.47±0.29%, respectively, at 21 days (n = 18, p < 0.05). At day 7, 27% of the cells had a principle angle of contraction within 20 degrees of the microthread, whereas at day 21, 65% of hPS-CM were contracting within 20 degrees of the microthread (n = 17). Utilizing high speed calcium transient data (>300 fps) of Fluo-4AM loaded hPS-CM seeded microthreads, conduction velocities significantly increased from 3.69 ± 1.76 cm/s at day 7 to 24.26 ± 8.42 cm/s at day 21 (n = 5-6, p < 0.05). hPS-CM seeded microthreads exhibited positive expression for connexin 43, a gap junction protein, between cells. These data suggest that the fibrin microthread is a suitable scaffold for hPS-CM attachment and contraction. In addition, extended culture allows cells to contract in the direction of the thread, suggesting alignment of the cells in the microthread direction.
Collapse
Affiliation(s)
- Katrina J. Hansen
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Michael A. Laflamme
- Toronto General Hospital Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, Canada
| | - Glenn R. Gaudette
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
267
|
Liu C, Kawana M, Song D, Ruppel KM, Spudich JA. Controlling load-dependent kinetics of β-cardiac myosin at the single-molecule level. Nat Struct Mol Biol 2018; 25:505-514. [PMID: 29867217 PMCID: PMC6092189 DOI: 10.1038/s41594-018-0069-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/26/2018] [Indexed: 01/29/2023]
Abstract
Concepts in molecular tension sensing in biology are growing and have their origins in studies of muscle contraction. In the heart muscle, a key parameter of contractility is the detachment rate of myosin from actin, which determines the time that myosin is bound to actin in a force-producing state and, importantly, depends on the load (force) against which myosin works. Here we measure the detachment rate of single molecules of human β-cardiac myosin and its load dependence. We find that both can be modulated by both small-molecule compounds and cardiomyopathy-causing mutations. Furthermore, effects of mutations can be reversed by introducing appropriate compounds. Our results suggest that activating versus inhibitory perturbations of cardiac myosin are discriminated by the aggregate result on duty ratio, average force, and ultimately average power output and suggest that cardiac contractility can be controlled by tuning the load-dependent kinetics of single myosin molecules.
Collapse
Affiliation(s)
- Chao Liu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| | - Masataka Kawana
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dan Song
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
268
|
Chen H, Zhang A, Wu JC. Harnessing cell pluripotency for cardiovascular regenerative medicine. Nat Biomed Eng 2018; 2:392-398. [PMID: 31011193 PMCID: PMC10902213 DOI: 10.1038/s41551-018-0244-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/26/2018] [Indexed: 01/14/2023]
Abstract
Human pluripotent stem cells (hPSCs), in particular embryonic stem cells and induced pluripotent stem cells, have received enormous attention in cardiovascular regenerative medicine owing to their ability to expand and differentiate into functional cardiomyocytes and other cardiovascular cell types. Despite the potential applications of hPSCs for tissue regeneration in patients suffering from cardiovascular disease, whether hPSC-based therapies can be safe and efficacious remains inconclusive, with strong evidence from clinical trials lacking. Critical factors limiting therapeutic efficacy are the degree of maturity and purity of the hPSC-derived differentiated progeny, and the tumorigenic risk associated with residual undifferentiated cells. In this Review, we discuss recent advances in cardiac-cell differentiation from hPSCs and in the direct reprogramming of non-myocyte cells for cardiovascular regenerative applications. We also discuss approaches for the delivery of cells to diseased tissue, and how such advances are contributing to progress in cardiac tissue engineering for tackling heart disease.
Collapse
Affiliation(s)
- Haodong Chen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Angela Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
269
|
Bruyneel AAN, McKeithan WL, Feyen DAM, Mercola M. Using iPSC Models to Probe Regulation of Cardiac Ion Channel Function. Curr Cardiol Rep 2018; 20:57. [DOI: 10.1007/s11886-018-1000-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
270
|
Yuan H, Marzban B, Kit Parker K. Myofibrils in Cardiomyocytes Tend to Assemble Along the Maximal Principle Stress Directions. J Biomech Eng 2018; 139:2653368. [PMID: 28857113 DOI: 10.1115/1.4037795] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 11/08/2022]
Abstract
The mechanisms underlying the spatial organization of self-assembled myofibrils in cardiac tissues remain incompletely understood. By modeling cells as elastic solids under active cytoskeletal contraction, we found a good correlation between the predicted maximal principal stress directions and the in vitro myofibril orientations in individual cardiomyocytes. This implies that actomyosin fibers tend to assemble along the maximal tensile stress (MTS) directions. By considering the dynamics of focal adhesion and myofibril formation in the model, we showed that different patterns of myofibril organizations in mature versus immature cardiomyocytes can be explained as the consequence of the different levels of force-dependent remodeling of focal adhesions. Further, we applied the mechanics model to cell pairs and showed that the myofibril organizations can be regulated by a combination of multiple factors including cell shape, cell-substrate adhesions, and cell-cell adhesions. This mechanics model can guide the rational design in cardiac tissue engineering where recapitulating in vivo myofibril organizations is crucial to the contractile function of the heart.
Collapse
Affiliation(s)
- Hongyan Yuan
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI 02881 e-mail:
| | - Bahador Marzban
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI 02881
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 e-mail:
| |
Collapse
|
271
|
Bhogal NK, Hasan A, Gorelik J. The Development of Compartmentation of cAMP Signaling in Cardiomyocytes: The Role of T-Tubules and Caveolae Microdomains. J Cardiovasc Dev Dis 2018; 5:jcdd5020025. [PMID: 29751502 PMCID: PMC6023514 DOI: 10.3390/jcdd5020025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/18/2018] [Accepted: 04/28/2018] [Indexed: 12/26/2022] Open
Abstract
3′-5′-cyclic adenosine monophosphate (cAMP) is a signaling messenger produced in response to the stimulation of cellular receptors, and has a myriad of functional applications depending on the cell type. In the heart, cAMP is responsible for regulating the contraction rate and force; however, cAMP is also involved in multiple other functions. Compartmentation of cAMP production may explain the specificity of signaling following a stimulus. In particular, transverse tubules (T-tubules) and caveolae have been found to be critical structural components for the spatial confinement of cAMP in cardiomyocytes, as exemplified by beta-adrenergic receptor (β-ARs) signaling. Pathological alterations in cardiomyocyte microdomain architecture led to a disruption in compartmentation of the cAMP signal. In this review, we discuss the difference between atrial and ventricular cardiomyocytes in respect to microdomain organization, and the pathological changes of atrial and ventricular cAMP signaling in response to myocyte dedifferentiation. In addition, we review the role of localized phosphodiesterase (PDE) activity in constraining the cAMP signal. Finally, we discuss microdomain biogenesis and maturation of cAMP signaling with the help of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Understanding these mechanisms may help to overcome the detrimental effects of pathological structural remodeling.
Collapse
Affiliation(s)
- Navneet K Bhogal
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Alveera Hasan
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
272
|
Madl CM, Heilshorn SC, Blau HM. Bioengineering strategies to accelerate stem cell therapeutics. Nature 2018; 557:335-342. [PMID: 29769665 PMCID: PMC6773426 DOI: 10.1038/s41586-018-0089-z] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023]
Abstract
Although only a few stem cell-based therapies are currently available to patients, stem cells hold tremendous regenerative potential, and several exciting clinical applications are on the horizon. Biomaterials with tuneable mechanical and biochemical properties can preserve stem cell function in culture, enhance survival of transplanted cells and guide tissue regeneration. Rapid progress with three-dimensional hydrogel culture platforms provides the opportunity to grow patient-specific organoids, and has led to the discovery of drugs that stimulate endogenous tissue-specific stem cells and enabled screens for drugs to treat disease. Therefore, bioengineering technologies are poised to overcome current bottlenecks and revolutionize the field of regenerative medicine.
Collapse
Affiliation(s)
- Christopher M Madl
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
273
|
Dunn KK, Palecek SP. Engineering Scalable Manufacturing of High-Quality Stem Cell-Derived Cardiomyocytes for Cardiac Tissue Repair. Front Med (Lausanne) 2018; 5:110. [PMID: 29740580 PMCID: PMC5928319 DOI: 10.3389/fmed.2018.00110] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/03/2018] [Indexed: 12/29/2022] Open
Abstract
Recent advances in the differentiation and production of human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) have stimulated development of strategies to use these cells in human cardiac regenerative therapies. A prerequisite for clinical trials and translational implementation of hPSC-derived CMs is the ability to manufacture safe and potent cells on the scale needed to replace cells lost during heart disease. Current differentiation protocols generate fetal-like CMs that exhibit proarrhythmogenic potential. Sufficient maturation of these hPSC-derived CMs has yet to be achieved to allow these cells to be used as a regenerative medicine therapy. Insights into the native cardiac environment during heart development may enable engineering of strategies that guide hPSC-derived CMs to mature. Specifically, considerations must be made in regard to developing methods to incorporate the native intercellular interactions and biomechanical cues into hPSC-derived CM production that are conducive to scale-up.
Collapse
Affiliation(s)
- Kaitlin K Dunn
- University of Wisconsin-Madison, Chemical and Biological Engineering, Madison, WI, United States
| | - Sean P Palecek
- University of Wisconsin-Madison, Chemical and Biological Engineering, Madison, WI, United States
| |
Collapse
|
274
|
Xu C, Wang L, Yu Y, Yin F, Zhang X, Jiang L, Qin J. Bioinspired onion epithelium-like structure promotes the maturation of cardiomyocytes derived from human pluripotent stem cells. Biomater Sci 2018; 5:1810-1819. [PMID: 28657075 DOI: 10.1039/c7bm00132k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Organized cardiomyocyte alignment is critical to maintain the mechanical properties of the heart. In this study, we present a new and simple strategy to fabricate a biomimetic microchip designed with an onion epithelium-like structure and investigate the guided behavior of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) on the substrate. The hiPSC-CMs were observed to be confined by the three dimensional surficial features morphologically, analogous to the in vivo microenvironment, and exhibited an organized anisotropic alignment on the onion epithelium-like structure with good beating function. The calcium imaging of hiPSC-CMs demonstrated a more mature Ca2+ spark pattern as well. Furthermore, the expression of sarcomere genes (TNNI3, MYH6 and MYH7), potassium channel genes (KCNE1 and KCNH2), and calcium channel genes (RYR2) was significantly up-regulated on the substrate with an onion epithelium-like structure instead of the surface without the structure, indicating a more matured status of cardiomyocytes induced by this structure. It appears that the biomimetic micropatterned structure, analogous to in vivo cellular organization, is an important factor that might promote the maturation of hiPSC-CMs, providing new biological insights to guide hiPSC-CM maturation by biophysical factors. The established approach may offer an effective in vitro model for investigating cardiomyocyte differentiation, maturation and tissue engineering applications.
Collapse
Affiliation(s)
- Cong Xu
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | | | | | | | | | | | | |
Collapse
|
275
|
Wheelwright M, Win Z, Mikkila JL, Amen KY, Alford PW, Metzger JM. Investigation of human iPSC-derived cardiac myocyte functional maturation by single cell traction force microscopy. PLoS One 2018; 13:e0194909. [PMID: 29617427 PMCID: PMC5884520 DOI: 10.1371/journal.pone.0194909] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/13/2018] [Indexed: 11/24/2022] Open
Abstract
Recent advances have made it possible to readily derive cardiac myocytes from human induced pluripotent stem cells (hiPSC-CMs). HiPSC-CMs represent a valuable new experimental model for studying human cardiac muscle physiology and disease. Many laboratories have devoted substantial effort to examining the functional properties of isolated hiPSC-CMs, but to date, force production has not been adequately characterized. Here, we utilized traction force microscopy (TFM) with micro-patterning cell printing to investigate the maximum force production of isolated single hiPSC-CMs under varied culture and assay conditions. We examined the role of length of differentiation in culture and the effects of varied extracellular calcium concentration in the culture media on the maturation of hiPSC-CMs. Results show that hiPSC-CMs developing in culture for two weeks produced significantly less force than cells cultured from one to three months, with hiPSC-CMs cultured for three months resembling the cell morphology and function of neonatal rat ventricular myocytes in terms of size, dimensions, and force production. Furthermore, hiPSC-CMs cultured long term in conditions of physiologic calcium concentrations were larger and produced more force than hiPSC-CMs cultured in standard media with sub-physiological calcium. We also examined relationships between cell morphology, substrate stiffness and force production. Results showed a significant relationship between cell area and force. Implementing directed modifications of substrate stiffness, by varying stiffness from embryonic-like to adult myocardium-like, hiPSC-CMs produced maximal forces on substrates with a lower modulus and significantly less force when assayed on increasingly stiff adult myocardium-like substrates. Calculated strain energy measurements paralleled these findings. Collectively, these findings further establish single cell TFM as a valuable approach to illuminate the quantitative physiological maturation of force in hiPSC-CMs.
Collapse
Affiliation(s)
- Matthew Wheelwright
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Zaw Win
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jennifer L. Mikkila
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Kamilah Y. Amen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Patrick W. Alford
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
276
|
Morphometric analysis of spread platelets identifies integrin α IIbβ 3-specific contractile phenotype. Sci Rep 2018; 8:5428. [PMID: 29615672 PMCID: PMC5882949 DOI: 10.1038/s41598-018-23684-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/13/2018] [Indexed: 11/17/2022] Open
Abstract
Haemostatic platelet function is intimately linked to cellular mechanics and cytoskeletal morphology. How cytoskeletal reorganizations give rise to a highly contractile phenotype that is necessary for clot contraction remains poorly understood. To elucidate this process in vitro, we developed a morphometric screen to quantify the spatial organization of actin fibres and vinculin adhesion sites in single spread platelets. Platelets from healthy donors predominantly adopted a bipolar morphology on fibrinogen and fibronectin, whereas distinguishable, more isotropic phenotypes on collagen type I or laminin. Specific integrin αIIbβ3 inhibitors induced an isotropic cytoskeletal organization in a dose-dependent manner. The same trend was observed with decreasing matrix stiffness. Circular F-actin arrangements in platelets from a patient with type II Glanzmann thrombasthenia (GT) were consistent with the residual activity of a small number of αIIbβ3 integrins. Cytoskeletal morphologies in vitro thus inform about platelet adhesion receptor identity and functionality, and integrin αIIbβ3 mechanotransduction fundamentally determines the adoption of a bipolar phenotype associated with contraction. Super-resolution microscopy and electron microscopies further confirmed the stress fibre-like contractile actin architecture. For the first time, our assay allows the unbiased and quantitative assessment of platelet morphologies and could help to identify defective platelet behaviour contributing to elusive bleeding phenotypes.
Collapse
|
277
|
Becker M, Maring JA, Schneider M, Herrera Martin AX, Seifert M, Klein O, Braun T, Falk V, Stamm C. Towards a Novel Patch Material for Cardiac Applications: Tissue-Specific Extracellular Matrix Introduces Essential Key Features to Decellularized Amniotic Membrane. Int J Mol Sci 2018; 19:E1032. [PMID: 29596384 PMCID: PMC5979550 DOI: 10.3390/ijms19041032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022] Open
Abstract
There is a growing need for scaffold material with tissue-specific bioactivity for use in regenerative medicine, tissue engineering, and for surgical repair of structural defects. We developed a novel composite biomaterial by processing human cardiac extracellular matrix (ECM) into a hydrogel and combining it with cell-free amniotic membrane via a dry-coating procedure. Cardiac biocompatibility and immunogenicity were tested in vitro using human cardiac fibroblasts, epicardial progenitor cells, murine HL-1 cells, and human immune cells derived from buffy coat. Processing of the ECM preserved important matrix proteins as demonstrated by mass spectrometry. ECM coating did not alter the mechanical characteristics of decellularized amniotic membrane but did cause a clear increase in adhesion capacity, cell proliferation and viability. Activated monocytes secreted less pro-inflammatory cytokines, and both macrophage polarization towards the pro-inflammatory M1 type and T cell proliferation were prevented. We conclude that the incorporation of human cardiac ECM hydrogel shifts and enhances the bioactivity of decellularized amniotic membrane, facilitating its use in future cardiac applications.
Collapse
Affiliation(s)
- Matthias Becker
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
| | - Janita A Maring
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
| | - Maria Schneider
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
| | - Aarón X Herrera Martin
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, 13353 Berlin, Germany.
| | - Martina Seifert
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
| | - Oliver Klein
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
| | - Thorsten Braun
- Department of Obstetrics and Gynecology, Charite Medical University, 13353 Berlin, Germany.
| | - Volkmar Falk
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 13316 Berlin, Germany.
- Deutsches Herzzentrum Berlin (DHZB), Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Christof Stamm
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 13316 Berlin, Germany.
- Deutsches Herzzentrum Berlin (DHZB), Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
278
|
Pasqualini FS, Agarwal A, O'Connor BB, Liu Q, Sheehy SP, Parker KK. Traction force microscopy of engineered cardiac tissues. PLoS One 2018; 13:e0194706. [PMID: 29590169 PMCID: PMC5874032 DOI: 10.1371/journal.pone.0194706] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/08/2018] [Indexed: 01/08/2023] Open
Abstract
Cardiac tissue development and pathology have been shown to depend sensitively on microenvironmental mechanical factors, such as extracellular matrix stiffness, in both in vivo and in vitro systems. We present a novel quantitative approach to assess cardiac structure and function by extending the classical traction force microscopy technique to tissue-level preparations. Using this system, we investigated the relationship between contractile proficiency and metabolism in neonate rat ventricular myocytes (NRVM) cultured on gels with stiffness mimicking soft immature (1 kPa), normal healthy (13 kPa), and stiff diseased (90 kPa) cardiac microenvironments. We found that tissues engineered on the softest gels generated the least amount of stress and had the smallest work output. Conversely, cardiomyocytes in tissues engineered on healthy- and disease-mimicking gels generated significantly higher stresses, with the maximal contractile work measured in NRVM engineered on gels of normal stiffness. Interestingly, although tissues on soft gels exhibited poor stress generation and work production, their basal metabolic respiration rate was significantly more elevated than in other groups, suggesting a highly ineffective coupling between energy production and contractile work output. Our novel platform can thus be utilized to quantitatively assess the mechanotransduction pathways that initiate tissue-level structural and functional remodeling in response to substrate stiffness.
Collapse
Affiliation(s)
- Francesco Silvio Pasqualini
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States of America
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| | - Ashutosh Agarwal
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States of America
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States of America
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute, Miami, FL, United States of America
| | - Blakely Bussie O'Connor
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States of America
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| | - Qihan Liu
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States of America
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| | - Sean P. Sheehy
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States of America
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States of America
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
279
|
Leonard A, Bertero A, Powers JD, Beussman KM, Bhandari S, Regnier M, Murry CE, Sniadecki NJ. Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. J Mol Cell Cardiol 2018; 118:147-158. [PMID: 29604261 DOI: 10.1016/j.yjmcc.2018.03.016] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 12/30/2022]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) grown in engineered heart tissue (EHT) can be used for drug screening, disease modeling, and heart repair. However, the immaturity of hiPSC-CMs currently limits their use. Because mechanical loading increases during development and facilitates cardiac maturation, we hypothesized that afterload would promote maturation of EHTs. To test this we developed a system in which EHTs are suspended between a rigid post and a flexible one, whose resistance to contraction can be modulated by applying braces of varying length. These braces allow us to adjust afterload conditions over two orders of magnitude by increasing the flexible post resistance from 0.09 up to 9.2 μN/μm. After three weeks in culture, optical tracking of post deflections revealed that auxotonic twitch forces increased in correlation with the degree of afterload, whereas twitch velocities decreased with afterload. Consequently, the power and work of the EHTs were maximal under intermediate afterloads. When studied isometrically, the inotropy of EHTs increased with afterload up to an intermediate resistance (0.45 μN/μm) and then plateaued. Applied afterload increased sarcomere length, cardiomyocyte area and elongation, which are hallmarks of maturation. Furthermore, progressively increasing the level of afterload led to improved calcium handling, increased expression of several key markers of cardiac maturation, including a shift from fetal to adult ventricular myosin heavy chain isoforms. However, at the highest afterload condition, markers of pathological hypertrophy and fibrosis were also upregulated, although the bulk tissue stiffness remained the same for all levels of applied afterload tested. Together, our results indicate that application of moderate afterloads can substantially improve the maturation of hiPSC-CMs in EHTs, while high afterload conditions may mimic certain aspects of human cardiac pathology resulting from elevated mechanical overload.
Collapse
Affiliation(s)
- Andrea Leonard
- Department of Mechanical Engineering, University of Washington, Seattle 98107, WA, USA; Center for Cardiovascular Biology, University of Washington, Seattle 98109, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle 98109, WA, USA
| | - Alessandro Bertero
- Department of Pathology, University of Washington, Seattle 98109, WA, USA; Center for Cardiovascular Biology, University of Washington, Seattle 98109, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle 98109, WA, USA
| | - Joseph D Powers
- Department of Bioengineering, University of Washington, Seattle 98107, WA, USA; Center for Cardiovascular Biology, University of Washington, Seattle 98109, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle 98109, WA, USA
| | - Kevin M Beussman
- Department of Mechanical Engineering, University of Washington, Seattle 98107, WA, USA; Center for Cardiovascular Biology, University of Washington, Seattle 98109, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle 98109, WA, USA
| | - Shiv Bhandari
- Department of Medicine, University of Washington, Seattle 98195, WA, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle 98107, WA, USA; Center for Cardiovascular Biology, University of Washington, Seattle 98109, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle 98109, WA, USA
| | - Charles E Murry
- Department of Pathology, University of Washington, Seattle 98109, WA, USA; Department of Bioengineering, University of Washington, Seattle 98107, WA, USA; Center for Cardiovascular Biology, University of Washington, Seattle 98109, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle 98109, WA, USA; Department of Medicine, University of Washington, Seattle 98195, WA, USA; Division of Cardiology, University of Washington, Seattle 98195, WA, USA.
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle 98107, WA, USA; Department of Bioengineering, University of Washington, Seattle 98107, WA, USA; Center for Cardiovascular Biology, University of Washington, Seattle 98109, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle 98109, WA, USA.
| |
Collapse
|
280
|
Wanjare M, Hou L, Nakayama KH, Kim JJ, Mezak NP, Abilez OJ, Tzatzalos E, Wu JC, Huang NF. Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells. Biomater Sci 2018; 5:1567-1578. [PMID: 28715029 DOI: 10.1039/c7bm00323d] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Engineering of myocardial tissue constructs is a promising approach for treatment of coronary heart disease. To engineer myocardial tissues that better mimic the highly ordered physiological arrangement and function of native cardiomyocytes, we generated electrospun microfibrous polycaprolactone scaffolds with either randomly oriented (14 μm fiber diameter) or parallel-aligned (7 μm fiber diameter) microfiber arrangement and co-seeded the scaffolds with human induced pluripotent stem cell-derived cardiomyocytes (iCMs) and endothelial cells (iECs) for up to 12 days after iCM seeding. Here we demonstrated that aligned microfibrous scaffolds induced iCM alignment along the direction of the aligned microfibers after 2 days of iCM seeding, as well as promoted greater iCM maturation by increasing the sarcomeric length and gene expression of myosin heavy chain adult isoform (MYH7), in comparison to randomly oriented scaffolds. Furthermore, the benefit of scaffold anisotropy was evident in the significantly higher maximum contraction velocity of iCMs on the aligned scaffolds, compared to randomly oriented scaffolds, at 12 days of culture. Co-seeding of iCMs with iECs led to reduced contractility, compared to when iCMs were seeded alone. These findings demonstrate a dominant role of scaffold anisotropy in engineering cardiovascular tissues that maintain iCM organization and contractile function.
Collapse
Affiliation(s)
- Maureen Wanjare
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Luqia Hou
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Karina H Nakayama
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Joseph J Kim
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Nicholas P Mezak
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Oscar J Abilez
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | | | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Ngan F Huang
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA and Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
281
|
Tan SH, Ye L. Maturation of Pluripotent Stem Cell-Derived Cardiomyocytes: a Critical Step for Drug Development and Cell Therapy. J Cardiovasc Transl Res 2018; 11:375-392. [PMID: 29557052 DOI: 10.1007/s12265-018-9801-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022]
Abstract
Cardiomyocytes derived from human pluripotent stem cells (hPSCs) are emerging as an invaluable alternative to primarily sourced cardiomyocytes. The potentially unlimited number of hPSC-derived cardiomyocytes (hPSC-CMs) that may be obtained in vitro facilitates high-throughput applications like cell transplantation for myocardial repair, cardiotoxicity testing during drug development, and patient-specific disease modeling. Despite promising progress in these areas, a major disadvantage that limits the use of hPSC-CMs is their immaturity. Improvements to the maturity of hPSC-CMs are necessary to capture physiologically relevant responses. Herein, we review and discuss the different maturation strategies undertaken by others to improve the morphology, contractility, electrophysiology, and metabolism of these derived cardiomyocytes.
Collapse
Affiliation(s)
- Shi Hua Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore.
| |
Collapse
|
282
|
Population-based mechanistic modeling allows for quantitative predictions of drug responses across cell types. NPJ Syst Biol Appl 2018; 4:11. [PMID: 29507757 PMCID: PMC5825396 DOI: 10.1038/s41540-018-0047-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
Quantitative mismatches between human physiology and experimental models can be problematic for the development of effective therapeutics. When the effects of drugs on human adult cardiac electrophysiology are of interest, phenotypic differences with animal cells, and more recently stem cell-derived models, can present serious limitations. We addressed this issue through a combination of mechanistic mathematical modeling and statistical analyses. Physiological metrics were simulated in heterogeneous populations of models describing cardiac myocytes from adult ventricles and those derived from induced pluripotent stem cells (iPSC-CMs). These simulated measures were used to construct a cross-cell type regression model that predicts adult myocyte drug responses from iPSC-CM behaviors. We found that (1) quantitatively accurate predictions of responses to selective or non-selective ion channel blocking drugs could be generated based on iPSC-CM responses under multiple experimental conditions; (2) altering extracellular ion concentrations is an effective experimental perturbation for improving the model’s predictive strength; (3) the method can be extended to predict and contrast drug responses in diseased as well as healthy cells, indicating a broader application of the concept. This cross-cell type model can be of great value in drug development, and the approach, which can be applied to other fields, represents an important strategy for overcoming experimental model limitations. The quantitative limitations of experimental models, which can impair the development of effective therapeutics, can be overcome through a combination of mechanistic simulations and statistical analysis. A team from Icahn School of Medicine at Mount Sinai led by Eric Sobie devised a computational method to quantitatively translate drug responses across cell types. The method involves mechanism-based simulations of heterogeneous populations combined with a multivariable regression model that translates between cell types. Simulation results presented in the study show that the response to a drug in one cell type can be predicted with quantitative accuracy from physiological recordings made in another cell type, as can differential drug responses observed in diseased compared with healthy cells. This methodology can be used in drug development to better predict clinical responses based on experiments performed in preclinical models.
Collapse
|
283
|
Chopra A, Kutys ML, Zhang K, Polacheck WJ, Sheng CC, Luu RJ, Eyckmans J, Hinson JT, Seidman JG, Seidman CE, Chen CS. Force Generation via β-Cardiac Myosin, Titin, and α-Actinin Drives Cardiac Sarcomere Assembly from Cell-Matrix Adhesions. Dev Cell 2018; 44:87-96.e5. [PMID: 29316444 DOI: 10.1016/j.devcel.2017.12.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/16/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022]
Abstract
Truncating mutations in the sarcomere protein titin cause dilated cardiomyopathy due to sarcomere insufficiency. However, it remains mechanistically unclear how these mutations decrease sarcomere content in cardiomyocytes. Utilizing human induced pluripotent stem cell-derived cardiomyocytes, CRISPR/Cas9, and live microscopy, we characterize the fundamental mechanisms of human cardiac sarcomere formation. We observe that sarcomerogenesis initiates at protocostameres, sites of cell-extracellular matrix adhesion, where nucleation and centripetal assembly of α-actinin-2-containing fibers provide a template for the fusion of Z-disk precursors, Z bodies, and subsequent striation. We identify that β-cardiac myosin-titin-protocostamere form an essential mechanical connection that transmits forces required to direct α-actinin-2 centripetal fiber assembly and sarcomere formation. Titin propagates diastolic traction stresses from β-cardiac myosin, but not α-cardiac myosin or non-muscle myosin II, to protocostameres during sarcomerogenesis. Ablating protocostameres or decoupling titin from protocostameres abolishes sarcomere assembly. Together these results identify the mechanical and molecular components critical for human cardiac sarcomerogenesis.
Collapse
Affiliation(s)
- Anant Chopra
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Matthew L Kutys
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Kehan Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - William J Polacheck
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Calvin C Sheng
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rebeccah J Luu
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jeroen Eyckmans
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - J Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Cardiology Center, University of Connecticut Health, Farmington, CT 06030, USA.
| | - Jonathan G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
284
|
Moeller J, Denisin AK, Sim JY, Wilson RE, Ribeiro AJS, Pruitt BL. Controlling cell shape on hydrogels using lift-off protein patterning. PLoS One 2018; 13:e0189901. [PMID: 29298336 PMCID: PMC5752030 DOI: 10.1371/journal.pone.0189901] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023] Open
Abstract
Polyacrylamide gels functionalized with extracellular matrix proteins are commonly used as cell culture platforms to evaluate the combined effects of extracellular matrix composition, cell geometry and substrate rigidity on cell physiology. For this purpose, protein transfer onto the surface of polyacrylamide hydrogels must result in geometrically well-resolved micropatterns with homogeneous protein distribution. Yet the outcomes of micropatterning methods have not been pairwise evaluated against these criteria. We report a high-fidelity photoresist lift-off patterning method to pattern ECM proteins on polyacrylamide hydrogels with elastic moduli ranging from 5 to 25 kPa. We directly compare the protein transfer efficiency and pattern geometrical accuracy of this protocol to the widely used microcontact printing method. Lift-off patterning achieves higher protein transfer efficiency, increases pattern accuracy, increases pattern yield, and reduces variability of these factors within arrays of patterns as it bypasses the drying and transfer steps of microcontact printing. We demonstrate that lift-off patterned hydrogels successfully control cell size and shape and enable long-term imaging of actin intracellular structure and lamellipodia dynamics when we culture epithelial cells on these substrates.
Collapse
Affiliation(s)
- Jens Moeller
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Aleksandra K. Denisin
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Joo Yong Sim
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Robin E. Wilson
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Alexandre J. S. Ribeiro
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Beth L. Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Stanford Cardiovascular Institute, Stanford University, Stanford, California, United States of America
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
285
|
Musunuru K, Sheikh F, Gupta RM, Houser SR, Maher KO, Milan DJ, Terzic A, Wu JC. Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling and Precision Medicine: A Scientific Statement From the American Heart Association. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2018; 11:e000043. [PMID: 29874173 PMCID: PMC6708586 DOI: 10.1161/hcg.0000000000000043] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Induced pluripotent stem cells (iPSCs) offer an unprece-dented opportunity to study human physiology and disease at the cellular level. They also have the potential to be leveraged in the practice of precision medicine, for example, personalized drug testing. This statement comprehensively describes the provenance of iPSC lines, their use for cardiovascular disease modeling, their use for precision medicine, and strategies through which to promote their wider use for biomedical applications. Human iPSCs exhibit properties that render them uniquely qualified as model systems for studying human diseases: they are of human origin, which means they carry human genomes; they are pluripotent, which means that in principle, they can be differentiated into any of the human body's somatic cell types; and they are stem cells, which means they can be expanded from a single cell into millions or even billions of cell progeny. iPSCs offer the opportunity to study cells that are genetically matched to individual patients, and genome-editing tools allow introduction or correction of genetic variants. Initial progress has been made in using iPSCs to better understand cardiomyopathies, rhythm disorders, valvular and vascular disorders, and metabolic risk factors for ischemic heart disease. This promising work is still in its infancy. Similarly, iPSCs are only just starting to be used to identify the optimal medications to be used in patients from whom the cells were derived. This statement is intended to (1) summarize the state of the science with respect to the use of iPSCs for modeling of cardiovascular traits and disorders and for therapeutic screening; (2) identify opportunities and challenges in the use of iPSCs for disease modeling and precision medicine; and (3) outline strategies that will facilitate the use of iPSCs for biomedical applications. This statement is not intended to address the use of stem cells as regenerative therapy, such as transplantation into the body to treat ischemic heart disease or heart failure.
Collapse
|
286
|
Park M, Yoon YS. Cardiac Regeneration with Human Pluripotent Stem Cell-Derived Cardiomyocytes. Korean Circ J 2018; 48:974-988. [PMID: 30334384 PMCID: PMC6196153 DOI: 10.4070/kcj.2018.0312] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/27/2018] [Indexed: 12/29/2022] Open
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), which are collectively called pluripotent stem cells (PSCs), have emerged as a promising source for regenerative medicine. Particularly, human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have shown robust potential for regenerating injured heart. Over the past two decades, protocols to differentiate hPSCs into CMs at high efficiency have been developed, opening the door for clinical application. Studies further demonstrated therapeutic effects of hPSC-CMs in small and large animal models and the underlying mechanisms of cardiac repair. However, gaps remain in explanations of the therapeutic effects of engrafted hPSC-CMs. In addition, bioengineering technologies improved survival and therapeutic effects of hPSC-CMs in vivo. While most of the original concerns associated with the use of hPSCs have been addressed, several issues remain to be resolved such as immaturity of transplanted cells, lack of electrical integration leading to arrhythmogenic risk, and tumorigenicity. Cell therapy with hPSC-CMs has shown great potential for biological therapy of injured heart; however, more studies are needed to ensure the therapeutic effects, underlying mechanisms, and safety, before this technology can be applied clinically.
Collapse
Affiliation(s)
- Misun Park
- Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young Sup Yoon
- Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.,Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
287
|
Sala L, van Meer BJ, Tertoolen LGJ, Bakkers J, Bellin M, Davis RP, Denning C, Dieben MAE, Eschenhagen T, Giacomelli E, Grandela C, Hansen A, Holman ER, Jongbloed MRM, Kamel SM, Koopman CD, Lachaud Q, Mannhardt I, Mol MPH, Mosqueira D, Orlova VV, Passier R, Ribeiro MC, Saleem U, Smith GL, Burton FL, Mummery CL. MUSCLEMOTION: A Versatile Open Software Tool to Quantify Cardiomyocyte and Cardiac Muscle Contraction In Vitro and In Vivo. Circ Res 2017; 122:e5-e16. [PMID: 29282212 PMCID: PMC5805275 DOI: 10.1161/circresaha.117.312067] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/19/2017] [Accepted: 12/23/2017] [Indexed: 12/31/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: There are several methods to measure cardiomyocyte and muscle contraction, but these require customized hardware, expensive apparatus, and advanced informatics or can only be used in single experimental models. Consequently, data and techniques have been difficult to reproduce across models and laboratories, analysis is time consuming, and only specialist researchers can quantify data. Objective: Here, we describe and validate an automated, open-source software tool (MUSCLEMOTION) adaptable for use with standard laboratory and clinical imaging equipment that enables quantitative analysis of normal cardiac contraction, disease phenotypes, and pharmacological responses. Methods and Results: MUSCLEMOTION allowed rapid and easy measurement of movement from high-speed movies in (1) 1-dimensional in vitro models, such as isolated adult and human pluripotent stem cell-derived cardiomyocytes; (2) 2-dimensional in vitro models, such as beating cardiomyocyte monolayers or small clusters of human pluripotent stem cell-derived cardiomyocytes; (3) 3-dimensional multicellular in vitro or in vivo contractile tissues, such as cardiac “organoids,” engineered heart tissues, and zebrafish and human hearts. MUSCLEMOTION was effective under different recording conditions (bright-field microscopy with simultaneous patch-clamp recording, phase contrast microscopy, and traction force microscopy). Outcomes were virtually identical to the current gold standards for contraction measurement, such as optical flow, post deflection, edge-detection systems, or manual analyses. Finally, we used the algorithm to quantify contraction in in vitro and in vivo arrhythmia models and to measure pharmacological responses. Conclusions: Using a single open-source method for processing video recordings, we obtained reliable pharmacological data and measures of cardiac disease phenotype in experimental cell, animal, and human models.
Collapse
Affiliation(s)
- Luca Sala
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Berend J van Meer
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Leon G J Tertoolen
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Jeroen Bakkers
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Milena Bellin
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Richard P Davis
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Chris Denning
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Michel A E Dieben
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Thomas Eschenhagen
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Elisa Giacomelli
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Catarina Grandela
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Arne Hansen
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Eduard R Holman
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Monique R M Jongbloed
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Sarah M Kamel
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Charlotte D Koopman
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Quentin Lachaud
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Ingra Mannhardt
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Mervyn P H Mol
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Diogo Mosqueira
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Valeria V Orlova
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Robert Passier
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Marcelo C Ribeiro
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Umber Saleem
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Godfrey L Smith
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Francis L Burton
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.)
| | - Christine L Mummery
- From the Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (L.S., B.J.v.M., L.G.J.T., M.B., R.P.D., M.A.E.D., E.G., C.G., M.R.M.J., M.P.H.M., V.V.O., R.P., C.L.M.); Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Science, University of Glasgow, United Kingdom (Q.L., G.L.S., F.L.B.); Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham, United Kingdom (C.D., D.M.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany (T.E., A.H., I.M., U.S.); DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck (T.E., A.H., I.M., U.S.); Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (U.S.); Hart Long Centrum, Leiden University Medical Center, The Netherlands (E.R.H., M.R.M.J.); Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands (R.P., M.C.R., C.L.M.).; Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, The Netherlands (J.B., S.M.K., C.D.K.); and Clyde Biosciences, Ltd, BioCity Scotland, United Kingdom (G.L.S., F.L.B.).
| |
Collapse
|
288
|
Affiliation(s)
- Jean Scotty Cadet
- From the Department of Medicine (J.S.C., T.J.K.), Department of Cell and Regenerative Biology (T.J.K.), and Stem Cell and Regenerative Medicine Center (J.S.C., T.J.K.), School of Medicine and Public Health, University of Wisconsin-Madison
| | - Timothy J Kamp
- From the Department of Medicine (J.S.C., T.J.K.), Department of Cell and Regenerative Biology (T.J.K.), and Stem Cell and Regenerative Medicine Center (J.S.C., T.J.K.), School of Medicine and Public Health, University of Wisconsin-Madison.
| |
Collapse
|
289
|
Ogle BM, Bursac N, Domian I, Huang NF, Menasché P, Murry CE, Pruitt B, Radisic M, Wu JC, Wu SM, Zhang J, Zimmermann WH, Vunjak-Novakovic G. Distilling complexity to advance cardiac tissue engineering. Sci Transl Med 2017; 8:342ps13. [PMID: 27280684 DOI: 10.1126/scitranslmed.aad2304] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The promise of cardiac tissue engineering is in the ability to recapitulate in vitro the functional aspects of a healthy heart and disease pathology as well as to design replacement muscle for clinical therapy. Parts of this promise have been realized; others have not. In a meeting of scientists in this field, five central challenges or "big questions" were articulated that, if addressed, could substantially advance the current state of the art in modeling heart disease and realizing heart repair.
Collapse
Affiliation(s)
- Brenda M Ogle
- Department of Biomedical Engineering, Stem Cell Institute, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ibrahim Domian
- Harvard Medical School and Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA. Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Philippe Menasché
- Department of Cardiovascular Surgery, INSERM U 970, Hôpital Européen Georges Pompidou and University Paris Descartes, 75006 Paris, France
| | - Charles E Murry
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, Departments of Pathology, Bioengineering, and Medicine, University of Washington, Seattle, WA 98109, USA
| | - Beth Pruitt
- Departments of Mechanical Engineering and, by courtesy, Molecular and Cellular Physiology and Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Joseph C Wu
- Stanford Cardiovascular Institute and Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sean M Wu
- Departments of Medicine and Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), partner site Göttingen, 37075 Göttingen, Germany
| | - Gordana Vunjak-Novakovic
- Departments of Biomedical Engineering and Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
290
|
Abstract
Cell-matrix and cell-cell interactions influence intracellular signalling and play an important role in physiologic and pathologic processes. Detachment of cells from the surrounding microenvironment alters intracellular signalling. Here, we demonstrate and characterise an integrated microfluidic device to culture single and clustered cells in tuneable microenvironments and then directly analyse the lysate of each cell in situ, thereby eliminating the need to detach cells prior to analysis. First, we utilise microcontact printing to pattern cells in confined geometries. We then utilise a microscale isoelectric focusing (IEF) module to separate, detect, and analyse lamin A/C from substrate-adhered cells seeded and cultured at varying (500, 2000, and 9000 cells per cm2) densities. We report separation performance (minimum resolvable pI difference of 0.11) that is on par with capillary IEF and independent of cell density. Moreover, we map lamin A/C and β-tubulin protein expression to morphometric information (cell area, circumference, eccentricity, form factor, and cell area factor) of single cells and observe poor correlation with each of these parameters. By eliminating the need for cell detachment from substrates, we enhance detection of cell receptor proteins (CD44 and β-integrin) and dynamic phosphorylation events (pMLCS19) that are rendered undetectable or disrupted by enzymatic treatments. Finally, we optimise protein solubilisation and separation performance by tuning lysis and electrofocusing (EF) durations. We observe enhanced separation performance (decreased peak width) with longer EF durations by 25.1% and improved protein solubilisation with longer lysis durations. Overall, the combination of morphometric analyses of substrate-adhered cells, with minimised handling, will yield important insights into our understanding of adhesion-mediated signalling processes.
Collapse
Affiliation(s)
- Elaine J Su
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, USA.
| | | |
Collapse
|
291
|
Sala L, Bellin M, Mummery CL. Integrating cardiomyocytes from human pluripotent stem cells in safety pharmacology: has the time come? Br J Pharmacol 2017; 174:3749-3765. [PMID: 27641943 PMCID: PMC5647193 DOI: 10.1111/bph.13577] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/27/2016] [Accepted: 08/11/2016] [Indexed: 12/20/2022] Open
Abstract
Cardiotoxicity is a severe side effect of drugs that induce structural or electrophysiological changes in heart muscle cells. As a result, the heart undergoes failure and potentially lethal arrhythmias. It is still a major reason for drug failure in preclinical and clinical phases of drug discovery. Current methods for predicting cardiotoxicity are based on guidelines that combine electrophysiological analysis of cell lines expressing ion channels ectopically in vitro with animal models and clinical trials. Although no new cases of drugs linked to lethal arrhythmias have been reported since the introduction of these guidelines in 2005, their limited predictive power likely means that potentially valuable drugs may not reach clinical practice. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are now emerging as potentially more predictive alternatives, particularly for the early phases of preclinical research. However, these cells are phenotypically immature and culture and assay methods not standardized, which could be a hurdle to the development of predictive computational models and their implementation into the drug discovery pipeline, in contrast to the ambitions of the comprehensive pro-arrhythmia in vitro assay (CiPA) initiative. Here, we review present and future preclinical cardiotoxicity screening and suggest possible hPSC-CM-based strategies that may help to move the field forward. Coordinated efforts by basic scientists, companies and hPSC banks to standardize experimental conditions for generating reliable and reproducible safety indices will be helpful not only for cardiotoxicity prediction but also for precision medicine. LINKED ARTICLES This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc.
Collapse
Affiliation(s)
- Luca Sala
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenZAThe Netherlands
| | - Milena Bellin
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenZAThe Netherlands
| | - Christine L Mummery
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenZAThe Netherlands
- Department of Applied Stem Cell TechnologiesUniversity of TwenteEnschedeThe Netherlands
| |
Collapse
|
292
|
Niu H, Lin D, Tang W, Ma Y, Duan B, Yuan Y, Liu C. Surface Topography Regulates Osteogenic Differentiation of MSCs via Crosstalk between FAK/MAPK and ILK/β-Catenin Pathways in a Hierarchically Porous Environment. ACS Biomater Sci Eng 2017; 3:3161-3175. [DOI: 10.1021/acsbiomaterials.7b00315] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Haoyi Niu
- Key
Laboratory for Ultrafine Materials of Ministry of Education and
The State Key Laboratory of Bioreactor Engineering, and ‡Engineering Research Center for
Biomaterials of Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Dan Lin
- Key
Laboratory for Ultrafine Materials of Ministry of Education and
The State Key Laboratory of Bioreactor Engineering, and ‡Engineering Research Center for
Biomaterials of Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wei Tang
- Key
Laboratory for Ultrafine Materials of Ministry of Education and
The State Key Laboratory of Bioreactor Engineering, and ‡Engineering Research Center for
Biomaterials of Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yifan Ma
- Key
Laboratory for Ultrafine Materials of Ministry of Education and
The State Key Laboratory of Bioreactor Engineering, and ‡Engineering Research Center for
Biomaterials of Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Bing Duan
- Key
Laboratory for Ultrafine Materials of Ministry of Education and
The State Key Laboratory of Bioreactor Engineering, and ‡Engineering Research Center for
Biomaterials of Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yuan Yuan
- Key
Laboratory for Ultrafine Materials of Ministry of Education and
The State Key Laboratory of Bioreactor Engineering, and ‡Engineering Research Center for
Biomaterials of Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Changsheng Liu
- Key
Laboratory for Ultrafine Materials of Ministry of Education and
The State Key Laboratory of Bioreactor Engineering, and ‡Engineering Research Center for
Biomaterials of Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| |
Collapse
|
293
|
McKeithan WL, Savchenko A, Yu MS, Cerignoli F, Bruyneel AAN, Price JH, Colas AR, Miller EW, Cashman JR, Mercola M. An Automated Platform for Assessment of Congenital and Drug-Induced Arrhythmia with hiPSC-Derived Cardiomyocytes. Front Physiol 2017; 8:766. [PMID: 29075196 PMCID: PMC5641590 DOI: 10.3389/fphys.2017.00766] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
The ability to produce unlimited numbers of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) harboring disease and patient-specific gene variants creates a new paradigm for modeling congenital heart diseases (CHDs) and predicting proarrhythmic liabilities of drug candidates. However, a major roadblock to implementing hiPSC-CM technology in drug discovery is that conventional methods for monitoring action potential (AP) kinetics and arrhythmia phenotypes in vitro have been too costly or technically challenging to execute in high throughput. Herein, we describe the first large-scale, fully automated and statistically robust analysis of AP kinetics and drug-induced proarrhythmia in hiPSC-CMs. The platform combines the optical recording of a small molecule fluorescent voltage sensing probe (VoltageFluor2.1.Cl), an automated high throughput microscope and automated image analysis to rapidly generate physiological measurements of cardiomyocytes (CMs). The technique can be readily adapted on any high content imager to study hiPSC-CM physiology and predict the proarrhythmic effects of drug candidates.
Collapse
Affiliation(s)
- Wesley L McKeithan
- Department of Medicine, Cardiovascular Institute, Stanford University, Stanford, CA, United States.,Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Alex Savchenko
- Department of Medicine, Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Michael S Yu
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.,Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | | | - Arne A N Bruyneel
- Department of Medicine, Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | | | - Alexandre R Colas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Evan W Miller
- Departments of Chemistry, Molecular and Cell Biology, Helen Wills Neuroscience, University of California, Berkeley, Berkeley, CA, United States
| | - John R Cashman
- Human BioMolecular Research Institute, San Diego, CA, United States
| | - Mark Mercola
- Department of Medicine, Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
294
|
Magdy T, Schuldt AJT, Wu JC, Bernstein D, Burridge PW. Human Induced Pluripotent Stem Cell (hiPSC)-Derived Cells to Assess Drug Cardiotoxicity: Opportunities and Problems. Annu Rev Pharmacol Toxicol 2017; 58:83-103. [PMID: 28992430 DOI: 10.1146/annurev-pharmtox-010617-053110] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Billions of US dollars are invested every year by the pharmaceutical industry in drug development, with the aim of introducing new drugs that are effective and have minimal side effects. Thirty percent of in-pipeline drugs are excluded in an early phase of preclinical and clinical screening owing to cardiovascular safety concerns, and several lead molecules that pass the early safety screening make it to market but are later withdrawn owing to severe cardiac side effects. Although the current drug safety screening methodologies can identify some cardiotoxic drug candidates, they cannot accurately represent the human heart in many aspects, including genomics, transcriptomics, and patient- or population-specific cardiotoxicity. Despite some limitations, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a powerful and evolving technology that has been shown to recapitulate many attributes of human cardiomyocytes and their drug responses. In this review, we discuss the potential impact of the inclusion of the hiPSC-CM platform in premarket candidate drug screening.
Collapse
Affiliation(s)
- Tarek Magdy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA; .,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Adam J T Schuldt
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA; .,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Daniel Bernstein
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA; .,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
295
|
Parikh SS, Blackwell DJ, Gomez-Hurtado N, Frisk M, Wang L, Kim K, Dahl CP, Fiane A, Tønnessen T, Kryshtal DO, Louch WE, Knollmann BC. Thyroid and Glucocorticoid Hormones Promote Functional T-Tubule Development in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circ Res 2017; 121:1323-1330. [PMID: 28974554 DOI: 10.1161/circresaha.117.311920] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 12/16/2022]
Abstract
RATIONALE Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are increasingly being used for modeling heart disease and are under development for regeneration of the injured heart. However, incomplete structural and functional maturation of hiPSC-CM, including lack of T-tubules, immature excitation-contraction coupling, and inefficient Ca-induced Ca release remain major limitations. OBJECTIVE Thyroid and glucocorticoid hormones are critical for heart maturation. We hypothesized that their addition to standard protocols would promote T-tubule development and mature excitation-contraction coupling of hiPSC-CM when cultured on extracellular matrix with physiological stiffness (Matrigel mattress). METHODS AND RESULTS hiPSC-CM were generated using a standard chemical differentiation method supplemented with T3 (triiodothyronine) and/or Dex (dexamethasone) during days 16 to 30 followed by single-cell culture for 5 days on Matrigel mattress. hiPSC-CM treated with T3+Dex, but not with either T3 or Dex alone, developed an extensive T-tubule network. Notably, Matrigel mattress was necessary for T-tubule formation. Compared with adult human ventricular cardiomyocytes, T-tubules in T3+Dex-treated hiPSC-CM were less organized and had more longitudinal elements. Confocal line scans demonstrated spatially and temporally uniform Ca release that is characteristic of excitation-contraction coupling in the heart ventricle. T3+Dex enhanced elementary Ca release measured by Ca sparks and promoted RyR2 (ryanodine receptor) structural organization. Simultaneous measurements of L-type Ca current and intracellular Ca release confirmed enhanced functional coupling between L-type Ca channels and RyR2 in T3+Dex-treated cells. CONCLUSIONS Our results suggest a permissive role of combined thyroid and glucocorticoid hormones during the cardiac differentiation process, which when coupled with further maturation on Matrigel mattress, is sufficient for T-tubule development, enhanced Ca-induced Ca release, and more ventricular-like excitation-contraction coupling. This new hormone maturation method could advance the use of hiPSC-CM for disease modeling and cell-based therapy.
Collapse
Affiliation(s)
- Shan S Parikh
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - Daniel J Blackwell
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - Nieves Gomez-Hurtado
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - Michael Frisk
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - Lili Wang
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - Kyungsoo Kim
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - Christen P Dahl
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - Arnt Fiane
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - Theis Tønnessen
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - Dmytro O Kryshtal
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - William E Louch
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.)
| | - Bjorn C Knollmann
- From the Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine (S.S.P., D.J.B., N.G.-H., L.W., K.K., D.O.K., B.C.K.), Department of Pharmacology (S.S.P., B.C.K.), Vanderbilt University Medical School, Nashville, TN; Institute for Experimental Medical Research, Oslo University Hospital, Norway (M.F., T.T., W.E.L.); University of Oslo, Norway (M.F., T.T., W.E.L.); Department of Cardiology (C.P.D.), and Department of Cardiothoracic Surgery (A.F.), Oslo University Hospital Rikshospitalet, Norway; and Oslo University Hospital Ullevål, Norway (T.T.).
| |
Collapse
|
296
|
Mahmoudi M, Yu M, Serpooshan V, Wu JC, Langer R, Lee RT, Karp JM, Farokhzad OC. Multiscale technologies for treatment of ischemic cardiomyopathy. NATURE NANOTECHNOLOGY 2017; 12:845-855. [PMID: 28875984 PMCID: PMC5717755 DOI: 10.1038/nnano.2017.167] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/13/2017] [Indexed: 05/02/2023]
Abstract
The adult mammalian heart possesses only limited capacity for innate regeneration and the response to severe injury is dominated by the formation of scar tissue. Current therapy to replace damaged cardiac tissue is limited to cardiac transplantation and thus many patients suffer progressive decay in the heart's pumping capacity to the point of heart failure. Nanostructured systems have the potential to revolutionize both preventive and therapeutic approaches for treating cardiovascular disease. Here, we outline recent advancements in nanotechnology that could be exploited to overcome the major obstacles in the prevention of and therapy for heart disease. We also discuss emerging trends in nanotechnology affecting the cardiovascular field that may offer new hope for patients suffering massive heart attacks.
Collapse
Affiliation(s)
- Morteza Mahmoudi
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Mikyung Yu
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Vahid Serpooshan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Robert Langer
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
- Department of Medicine, Division of Cardiology, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, Massachusetts 02138, USA
| | - Jeffrey M. Karp
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Omid C. Farokhzad
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| |
Collapse
|
297
|
Bernstein D. Induced Pluripotent Stem Cell-Derived Cardiomyocytes: A Platform for Testing For Drug Cardiotoxicity. PROGRESS IN PEDIATRIC CARDIOLOGY 2017; 46:2-6. [PMID: 29200805 PMCID: PMC5708578 DOI: 10.1016/j.ppedcard.2017.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Off-target cardiotoxicity has been a significant impediment to the development of new drugs. Traditional platforms for screening for cardiotoxicity are both overly sensitive and limited in their ability to predict cardiotoxicity that is often only uncovered after years of clinical use. A major impediment has been the lack of a human cardiomyocyte cell line. The recent discovery that adult somatic human cells (white blood cells or skin fibroblasts) can be reprogrammed into pluripotent stem cells (hiPSCs) and then differentiated into beating cardiomyocytes (hiPSC-CMs) provides an exciting new platform for drug cardiotoxicity and efficacy testing. One major advantage of using patient-derived hiPSC-CMs for drug testing is their ability to recapitulate population genetic variations (single nucleotide polymorphisms) that influence drug toxicity, providing a powerful new tool in the field of pharmacogenomics and personalized medicine.
Collapse
Affiliation(s)
- Daniel Bernstein
- Department of Pediatrics (Cardiology), Stanford University, Stanford, California USA
| |
Collapse
|
298
|
Cadar AG, Feaster TK, Durbin MD, Hong CC. Production of Single Contracting Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Matrigel Mattress Technique. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2017; 42:4A.14.1-4A.14.7. [PMID: 28806851 PMCID: PMC5577013 DOI: 10.1002/cpsc.32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This unit describes the published Matrigel mattress method. Briefly, we describe the preparation of the mattress, replating of the human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) on the Matrigel mattress, and hiPSC-CM mattress maintenance. Adherence to this protocol will yield individual, robustly shortening hiPSC-CMs, which can be used for downstream applications. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Adrian G. Cadar
- Department of Molecular Physiology & Biophysics, Nashville, TN 37232 USA
- Department of Medicine/Division of Cardiovascular Medicine, Nashville, TN 37232 USA
| | | | - Matthew D. Durbin
- Department of Pediatrics/Division of Neonatology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Charles C. Hong
- Department of Medicine/Division of Cardiovascular Medicine, Nashville, TN 37232 USA
- Research Medicine, Veterans Affairs Tennessee Valley Healthcare System Nashville, TN 37212
| |
Collapse
|
299
|
Peter AK, Bjerke MA, Leinwand LA. Biology of the cardiac myocyte in heart disease. Mol Biol Cell 2017; 27:2149-60. [PMID: 27418636 PMCID: PMC4945135 DOI: 10.1091/mbc.e16-01-0038] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/23/2016] [Indexed: 12/21/2022] Open
Abstract
Cardiac hypertrophy is a major risk factor for heart failure, and it has been shown that this increase in size occurs at the level of the cardiac myocyte. Cardiac myocyte model systems have been developed to study this process. Here we focus on cell culture tools, including primary cells, immortalized cell lines, human stem cells, and their morphological and molecular responses to pathological stimuli. For each cell type, we discuss commonly used methods for inducing hypertrophy, markers of pathological hypertrophy, advantages for each model, and disadvantages to using a particular cell type over other in vitro model systems. Where applicable, we discuss how each system is used to model human disease and how these models may be applicable to current drug therapeutic strategies. Finally, we discuss the increasing use of biomaterials to mimic healthy and diseased hearts and how these matrices can contribute to in vitro model systems of cardiac cell biology.
Collapse
Affiliation(s)
- Angela K Peter
- Biofrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Maureen A Bjerke
- Biofrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Leslie A Leinwand
- Biofrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| |
Collapse
|
300
|
Judge LM, Perez-Bermejo JA, Truong A, Ribeiro AJ, Yoo JC, Jensen CL, Mandegar MA, Huebsch N, Kaake RM, So PL, Srivastava D, Pruitt BL, Krogan NJ, Conklin BR. A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress. JCI Insight 2017; 2:94623. [PMID: 28724793 DOI: 10.1172/jci.insight.94623] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022] Open
Abstract
Molecular chaperones regulate quality control in the human proteome, pathways that have been implicated in many diseases, including heart failure. Mutations in the BAG3 gene, which encodes a co-chaperone protein, have been associated with heart failure due to both inherited and sporadic dilated cardiomyopathy. Familial BAG3 mutations are autosomal dominant and frequently cause truncation of the coding sequence, suggesting a heterozygous loss-of-function mechanism. However, heterozygous knockout of the murine BAG3 gene did not cause a detectable phenotype. To model BAG3 cardiomyopathy in a human system, we generated an isogenic series of human induced pluripotent stem cells (iPSCs) with loss-of-function mutations in BAG3. Heterozygous BAG3 mutations reduced protein expression, disrupted myofibril structure, and compromised contractile function in iPSC-derived cardiomyocytes (iPS-CMs). BAG3-deficient iPS-CMs were particularly sensitive to further myofibril disruption and contractile dysfunction upon exposure to proteasome inhibitors known to cause cardiotoxicity. We performed affinity tagging of the endogenous BAG3 protein and mass spectrometry proteomics to further define the cardioprotective chaperone complex that BAG3 coordinates in the human heart. Our results establish a model for evaluating protein quality control pathways in human cardiomyocytes and their potential as therapeutic targets and susceptibility factors for cardiac drug toxicity.
Collapse
Affiliation(s)
- Luke M Judge
- Department of Pediatrics, UCSF, San Francisco, California, USA.,Gladstone Institutes, San Francisco, California, USA
| | - Juan A Perez-Bermejo
- Gladstone Institutes, San Francisco, California, USA.,Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA
| | - Annie Truong
- Gladstone Institutes, San Francisco, California, USA
| | - Alexandre Js Ribeiro
- Gladstone Institutes, San Francisco, California, USA.,Stanford Cardiovascular Institute and Mechanical Engineering Department, and
| | - Jennie C Yoo
- Gladstone Institutes, San Francisco, California, USA
| | | | | | | | - Robyn M Kaake
- Gladstone Institutes, San Francisco, California, USA
| | - Po-Lin So
- Gladstone Institutes, San Francisco, California, USA
| | - Deepak Srivastava
- Department of Pediatrics, UCSF, San Francisco, California, USA.,Gladstone Institutes, San Francisco, California, USA
| | - Beth L Pruitt
- Stanford Cardiovascular Institute and Mechanical Engineering Department, and.,Bioengineering and Molecular and Cellular Physiology Departments, Stanford University, Stanford, California, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, California, USA.,Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA
| | - Bruce R Conklin
- Gladstone Institutes, San Francisco, California, USA.,Department of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|