251
|
Wang J, Tan W, Li G, Wu D, He H, Xu J, Yi M, Zhang Y, Aghvami SA, Fraden S, Xu B. Enzymatic Insertion of Lipids Increases Membrane Tension for Inhibiting Drug Resistant Cancer Cells. Chemistry 2020; 26:15116-15120. [PMID: 32579262 DOI: 10.1002/chem.202002974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Indexed: 12/19/2022]
Abstract
Although lipids contribute to cancer drug resistance, it is challenging to target diverse range of lipids. Here, we show enzymatically inserting exceedingly simple synthetic lipids into membranes for increasing membrane tension and selectively inhibiting drug resistant cancer cells. The lipid, formed by conjugating dodecylamine to d-phosphotyrosine, self-assembles to form micelles. Enzymatic dephosphorylation of the micelles inserts the lipids into membranes and increases membrane tension. The micelles effectively inhibit a drug resistant glioblastoma cell (T98G) or a triple-negative breast cancer cell (HCC1937), without inducing acquired drug resistance. Moreover, the enzymatic reaction of the micelles promotes the accumulation of the lipids in the membranes of subcellular organelles (e.g., endoplasmic reticulum (ER), Golgi, and mitochondria), thus activating multiple regulated cell death pathways. This work, in which for the first time membrane tension is increased to inhibit cancer cells, illustrates a new and powerful supramolecular approach for antagonizing difficult drug targets.
Collapse
Affiliation(s)
- Jiaqing Wang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Guanying Li
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Difei Wu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Jiashu Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - S Ali Aghvami
- Department of Physic, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Seth Fraden
- Department of Physic, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| |
Collapse
|
252
|
AP-1 and TGFß cooperativity drives non-canonical Hedgehog signaling in resistant basal cell carcinoma. Nat Commun 2020; 11:5079. [PMID: 33033234 PMCID: PMC7546632 DOI: 10.1038/s41467-020-18762-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022] Open
Abstract
Tumor heterogeneity and lack of knowledge about resistant cell states remain a barrier to targeted cancer therapies. Basal cell carcinomas (BCCs) depend on Hedgehog (Hh)/Gli signaling, but can develop mechanisms of Smoothened (SMO) inhibitor resistance. We previously identified a nuclear myocardin-related transcription factor (nMRTF) resistance pathway that amplifies noncanonical Gli1 activity, but characteristics and drivers of the nMRTF cell state remain unknown. Here, we use single cell RNA-sequencing of patient tumors to identify three prognostic surface markers (LYPD3, TACSTD2, and LY6D) which correlate with nMRTF and resistance to SMO inhibitors. The nMRTF cell state resembles transit-amplifying cells of the hair follicle matrix, with AP-1 and TGFß cooperativity driving nMRTF activation. JNK/AP-1 signaling commissions chromatin accessibility and Smad3 DNA binding leading to a transcriptional program of RhoGEFs that facilitate nMRTF activity. Importantly, small molecule AP-1 inhibitors selectively target LYPD3+/TACSTD2+/LY6D+ nMRTF human BCCs ex vivo, opening an avenue for improving combinatorial therapies.
Collapse
|
253
|
Foulkes MJ, Tolliday FH, Henry KM, Renshaw SA, Jones S. Evaluation of the anti-inflammatory effects of synthesised tanshinone I and isotanshinone I analogues in zebrafish. PLoS One 2020; 15:e0240231. [PMID: 33022012 PMCID: PMC7537861 DOI: 10.1371/journal.pone.0240231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/22/2020] [Indexed: 01/13/2023] Open
Abstract
During inflammation, dysregulated neutrophil behaviour can play a major role in a range of chronic inflammatory diseases, for many of which current treatments are generally ineffective. Recently, specific naturally occurring tanshinones have shown promising anti-inflammatory effects by targeting neutrophils in vivo, yet such tanshinones, and moreover, their isomeric isotanshinone counterparts, are still a largely underexplored class of compounds, both in terms of synthesis and biological effects. To explore the anti-inflammatory effects of isotanshinones, and the tanshinones more generally, a series of substituted tanshinone and isotanshinone analogues was synthesised, alongside other structurally similar molecules. Evaluation of these using a transgenic zebrafish model of neutrophilic inflammation revealed differential anti-inflammatory profiles in vivo, with a number of compounds exhibiting promising effects. Several compounds reduce initial neutrophil recruitment and/or promote resolution of neutrophilic inflammation, of which two also result in increased apoptosis of human neutrophils. In particular, the methoxy-substituted tanshinone 39 specifically accelerates resolution of inflammation without affecting the recruitment of neutrophils to inflammatory sites, making this a particularly attractive candidate for potential pro-resolution therapeutics, as well as a possible lead for future development of functionalised tanshinones as molecular tools and/or chemical probes. The structurally related β-lapachones promote neutrophil recruitment but do not affect resolution. We also observed notable differences in toxicity profiles between compound classes. Overall, we provide new insights into the in vivo anti-inflammatory activities of several novel tanshinones, isotanshinones, and structurally related compounds.
Collapse
Affiliation(s)
- Matthew J. Foulkes
- Department of Chemistry, The University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity & Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Faith H. Tolliday
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity & Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Katherine M. Henry
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity & Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity & Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Simon Jones
- Department of Chemistry, The University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
254
|
Bagnoud M, Briner M, Remlinger J, Meli I, Schuetz S, Pistor M, Salmen A, Chan A, Hoepner R. c-Jun N-Terminal Kinase as a Therapeutic Target in Experimental Autoimmune Encephalomyelitis. Cells 2020; 9:cells9102154. [PMID: 32977663 PMCID: PMC7598244 DOI: 10.3390/cells9102154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
c-Jun N-terminal kinase (JNK) is upregulated during multiple sclerosis relapses and at the peak of experimental autoimmune encephalomyelitis (EAE). We aim to investigate the effects of pharmacological pan-JNK inhibition on the course of myelin oligodendrocyte glycoprotein (MOG35-55) EAE disease using in vivo and in vitro experimental models. EAE was induced in female C57BL/6JRj wild type mice using MOG35-55. SP600125 (SP), a reversible adenosine triphosphate competitive pan-JNK inhibitor, was then given orally after disease onset. Positive correlation between SP plasma and brain concentration was observed. Nine, but not three, consecutive days of SP treatment led to a significant dose-dependent decrease of mean cumulative MOG35-55 EAE severity that was associated with increased mRNA expression of interferon gamma (INF-γ) and tumor necrosis factor alpha (TNF-α) in the spinal cord. On a histological level, reduced spinal cord immune cell-infiltration predominantly of CD3+ T cells as well as increased activity of Iba1+ cells were observed in treated animals. In addition, in vitro incubation of murine and human CD3+ T cells with SP resulted in reduced T cell apoptosis and proliferation. In conclusion, our study demonstrates that pharmacological pan-JNK inhibition might be a treatment strategy for autoimmune central nervous system demyelination.
Collapse
Affiliation(s)
- Maud Bagnoud
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.B.); (J.R.); (I.M.); (S.S.); (M.P.); (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3010 Bern, Switzerland
- Correspondence: ; Tel.: +41-31-6323076
| | - Myriam Briner
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.B.); (J.R.); (I.M.); (S.S.); (M.P.); (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Jana Remlinger
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.B.); (J.R.); (I.M.); (S.S.); (M.P.); (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3010 Bern, Switzerland
| | - Ivo Meli
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.B.); (J.R.); (I.M.); (S.S.); (M.P.); (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Sara Schuetz
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.B.); (J.R.); (I.M.); (S.S.); (M.P.); (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Maximilian Pistor
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.B.); (J.R.); (I.M.); (S.S.); (M.P.); (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Anke Salmen
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.B.); (J.R.); (I.M.); (S.S.); (M.P.); (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.B.); (J.R.); (I.M.); (S.S.); (M.P.); (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Robert Hoepner
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (M.B.); (J.R.); (I.M.); (S.S.); (M.P.); (A.S.); (A.C.); (R.H.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
255
|
Saha P, Guha S, Biswas SC. P38K and JNK pathways are induced by amyloid-β in astrocyte: Implication of MAPK pathways in astrogliosis in Alzheimer's disease. Mol Cell Neurosci 2020; 108:103551. [PMID: 32896578 DOI: 10.1016/j.mcn.2020.103551] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Astrocyte activation is one of the crucial hallmarks of Alzheimer's disease (AD) along with amyloid-β (Aβ) plaques, neurofibrillary tangles and neuron death. Glial scar and factors secreted from activated astrocytes have important contribution on neuronal health in AD. In this study, we investigated the mechanisms of astrocyte activation both in in vitro and in vivo models of AD. In this regard, mitogen activated protein kinase (MAPK) signalling cascades that control several fundamental and stress related cellular events, has been implicated in astrocyte activation in various neurological diseases. We checked activation of different MAPKs by western blot and immunocytochemistry and found that both JNK and p38K, but not ERK pathways are activated in Aβ-treated astrocytes in culture and in Aβ-infused rat brain cortex. Next, to investigate the downstream consequences of these two MAPKs (JNK and p38K) in Aβ-induced astrocyte activation, we individually blocked these pathways by specific inhibitors in presence and absence of Aβ and checked Aβ-induced cellular proliferation, morphological changes and glial fibrillary acidic protein (GFAP) upregulation. We found that activation of both JNK and p38K signalling cascades are involved in astrocyte proliferation evoked by Aβ, whereas only p38K pathway is implicated in morphological changes and GFAP upregulation in astrocytes exposed to Aβ. To further validate the implication of p38K pathway in Aβ-induced astrocyte activation, we also observed that transcription factor ATF2, a downstream phosphorylation substrate of p38, is phosphorylated upon Aβ treatment. Taken together, our study indicates that p38K and JNK pathways mediate astrocyte activation and both the pathways are involved in cellular proliferation but only p38K pathway contributes in morphological changes triggered by Aβ.
Collapse
Affiliation(s)
- Pampa Saha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Subhalakshmi Guha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Subhas Chandra Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
256
|
Carnosine Impedes PDGF-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells In Vitro and Sprout Outgrowth Ex Vivo. Nutrients 2020; 12:nu12092697. [PMID: 32899420 PMCID: PMC7551855 DOI: 10.3390/nu12092697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023] Open
Abstract
Carnosine, a naturally producing dipeptide, exhibits various beneficial effects. However, the possible role of carnosine in vascular disorders associated with pathological conditions, including proliferation and migration of vascular smooth muscle cells (VSMCs), largely remains unrevealed. Here, we investigated the regulatory role and mechanism of carnosine in platelet-derived growth factor (PDGF)-induced VSMCs. Carnosine inhibited the proliferation of PDGF-induced VSMCs without any cytotoxic effects. Carnosine treatment also induced G1-phase cell cycle arrest by causing a p21WAF1-mediated reduction in the expression of both cyclin-dependent kinases (CDKs) and cyclins in PDGF-treated VSMCs. Carnosine treatment suppressed c-Jun N-terminal kinase (JNK) phosphorylation in PDGF-stimulated signaling. Additionally, carnosine significantly prevented the migration of VSMCs exposed to PDGF. Carnosine abolished matrix metalloproteinase (MMP)-9 activity via reduced transcriptional binding activity of NF-κB, Sp-1, and AP-1 motifs in PDGF-treated VSMCs. Moreover, using aortic assay ex vivo, it was observed that carnosine addition attenuated PDGF-stimulated sprout outgrowth of VSMCs. Taken together, these results demonstrated that carnosine impeded the proliferation and migration of PDGF-stimulated VSMCs by regulating cell cycle machinery, JNK signaling, and transcription factor-mediated MMP-9 activity as well as prevented ex vivo sprout outgrowth of blood vessels. Thus, carnosine may be a potential candidate for preventing vascular proliferative disease.
Collapse
|
257
|
Chen JK, Guo MK, Bai XH, Chen LQ, Su SM, Li L, Li JQ. Astragaloside IV ameliorates intermittent hypoxia-induced inflammatory dysfunction by suppressing MAPK/NF-κB signalling pathways in Beas-2B cells. Sleep Breath 2020; 24:1237-1245. [PMID: 31907823 DOI: 10.1007/s11325-019-01947-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE Intermittent hypoxia is a characteristic pathological change in obstructive sleep apnoea (OSA) that can initiate oxidative stress reaction and pro-inflammatory cytokine release. The purpose of this study was to assess the effect and protective mechanism of Astragaloside IV (AS-IV) in intermittent hypoxia-induced human lung epithelial Beas-2B cells. METHODS Human lung epithelial Beas-2B cells were exposed to intermittent hypoxia or normoxia in the absence or presence of AS-IV. MTT assay was performed to determine the cell viability. The levels of reactive oxygen species (ROS), lactate dehydrogenase (LDH), malonaldehyde (MDA), and superoxide dismutase (SOD) were measured to evaluate oxidative stress. The levels of cytokines interleukin (IL)-8, IL-1β, and IL-6 were evaluated by enzyme-linked immunosorbent assay and real-time PCR. The expression of Toll-like receptor 4 (TLR4), mitogen-activated protein kinase (MAPK), and nuclear transcription factor-kappa B (NF-κB) signalling pathways was analysed by western blot. RESULTS The results showed that AS-IV significantly reduced the levels of ROS, LDH, MDA, IL-8, IL-1β, and IL-6, and increased the level of SOD in intermittent hypoxia-induced Beas-2B cells. It also suppressed the phosphorylation of MAPKs, including P38, c-Jun N-terminal kinase and extracellular signal-regulated kinase, and inhibited the activation of the NF-κB signalling pathway by reducing the phosphorylation of IκBα and p65. CONCLUSIONS AS-IV attenuates inflammation and oxidative stress by inhibiting TLR4-mediated MAPK/NF-κB signalling pathways in intermittent hypoxia-induced Beas-2B cells.
Collapse
Affiliation(s)
- Jian-Kun Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- The Third Comprehensive Department, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Ming-Kai Guo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- The Third Comprehensive Department, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Xiao-Hui Bai
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- The Third Comprehensive Department, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Li-Qin Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- The Third Comprehensive Department, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Shun-Mei Su
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- The Third Comprehensive Department, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Li Li
- The First Respiratory Department, The First People's Hospital of Kashi, Xinjiang, 844000, China.
| | - Ji-Qiang Li
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
- The Third Comprehensive Department, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China.
| |
Collapse
|
258
|
Kim W, Tanabe K, Kuroyanagi G, Matsushima-Nishiwaki R, Fujita K, Kawabata T, Sakai G, Tachi J, Hioki T, Nakashima D, Yamaguchi S, Otsuka T, Tokuda H, Kozawa O, Iida H. Tramadol enhances PGF 2α-stimulated osteoprotegerin synthesis in osteoblasts. Heliyon 2020; 6:e04779. [PMID: 32904295 PMCID: PMC7452493 DOI: 10.1016/j.heliyon.2020.e04779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/15/2020] [Accepted: 08/20/2020] [Indexed: 11/27/2022] Open
Abstract
Osteoprotegerin (OPG) synthesized by osteoblasts is currently considered a crucial regulator to suppress the formation and function of osteoclasts. We previously showed that the synthesis of OPG is stimulated by prostaglandin F2α (PGF2α) in the involvement of p38 mitogen-activated protein kinase (MAPK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p44/p42 MAPK in osteoblast-like MC3T3-E1 cells. We also found that Rho-kinase is involved in the signaling of PGF2α upstream of p38 MAPK in these cells. Tramadol is widely used to treat chronic pain, such as low back pain associated with osteoporosis. We investigated whether or not tramadol affects the OPG release induced by PGF2α in osteoblast-like MC3T3-E1 cells. The levels of OPG in the conditioned medium were measured by an enzyme-linked immunosorbent assay. The mRNA expression of OPG was determined with real-time reverse transcription polymerase chain reaction. The phosphorylation of target protein was determined with a Western blot analysis. PGF2α induced the release and the mRNA expression of OPG, which tramadol significantly enhanced. Morphine, a selective μ-opioid receptor (MOR) agonist, also enhanced the PGF2α-induced OPG release. In addition, naloxone, a MOR antagonist, suppressed the enhancement by tramadol or morphine of the PGF2α-induced OPG synthesis. Tramadol upregulated the phosphorylation of SAPK/JNK and p38 MAPK stimulated by PGF2α but not that of p44/p42 MAPK or myosin phosphatase targeting protein (MYPT), a substrate of Rho-kinase. The inhibitors of both p38 MAPK and SAPK/JNK, SB203580 and SP600125, respectively, reduced the tramadol amplification of OPG release stimulated by PGF2α. The present results strongly suggest that tramadol enhances the synthesis of OPG stimulated by PGF2α through MOR in osteoblasts, and that the amplifying effect is exerted at upstream of p38 MAPK and SAPK/JNK but downstream of Rho-kinase.
Collapse
Affiliation(s)
- Woo Kim
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Gen Kuroyanagi
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | - Kazuhiko Fujita
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Tetsu Kawabata
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Go Sakai
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Junko Tachi
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Tomoyuki Hioki
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Dermatology, Kizawa Memorial Hospital, Minokamo 505-0034, Japan
| | - Daiki Nakashima
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Shinobu Yamaguchi
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Clinical Laboratory/Biobank of Medical Genome Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Corresponding author.
| |
Collapse
|
259
|
JNK Signaling Regulates Cellular Mechanics of Cortical Interneuron Migration. eNeuro 2020; 7:ENEURO.0132-20.2020. [PMID: 32737185 PMCID: PMC7642122 DOI: 10.1523/eneuro.0132-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/01/2020] [Accepted: 07/15/2020] [Indexed: 12/27/2022] Open
Abstract
Aberrant migration of inhibitory interneurons can alter the formation of cortical circuitry and lead to severe neurologic disorders including epilepsy, autism, and schizophrenia. However, mechanisms involved in directing the migration of interneurons remain incompletely understood. Using a mouse model, we performed live-cell confocal microscopy to explore the mechanisms by which the c-Jun NH2-terminal kinase (JNK) pathway coordinates leading process branching and nucleokinesis, two cell biological processes that are essential for the guided migration of cortical interneurons. Pharmacological inhibition of JNK signaling disrupts the kinetics of leading process branching, rate and amplitude of nucleokinesis, and leads to the rearward mislocalization of the centrosome and primary cilium to the trailing process. Genetic loss of Jnk from interneurons also impairs leading process branching and nucleokinesis, suggesting that important mechanics of interneuron migration depend on the intrinsic activity of JNK. These findings highlight key roles for JNK signaling in leading process branching, nucleokinesis, and the trafficking of centrosomes and cilia during interneuron migration, and further implicates JNK signaling as an important mediator of cortical development.
Collapse
|
260
|
PIM 3 kinase, a proto-oncogene product, regulates phosphorylation of the measles virus nucleoprotein tail domain at Ser 479 and Ser 510. Biochem Biophys Res Commun 2020; 531:267-274. [PMID: 32800554 DOI: 10.1016/j.bbrc.2020.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
The tail domain of the measles virus (MeV) N protein is typically phosphorylated at S479 and S510. However, the protein kinase responsible for this phosphorylation has not been identified. To identify the protein kinase responsible, we conducted an in vitro kinase assay in the presence of various protein kinase inhibitors. Phosphorylation of S479 and S510 was suppressed in the presence of SP600125. We demonstrated that purified PIM 3 kinase, which is sensitive to SP600125, successfully phosphorylated both phosphorylation sites. Inhibitors of PIM kinase, CX6258 and LY294002, also suppressed phosphorylation of the N protein. These findings indicate that PIM 3 kinase is associated with the tail domain of the N protein and that PIM 3 kinase regulates N protein phosphorylation.
Collapse
|
261
|
Mulder SE, Dasgupta A, King RJ, Abrego J, Attri KS, Murthy D, Shukla SK, Singh PK. JNK signaling contributes to skeletal muscle wasting and protein turnover in pancreatic cancer cachexia. Cancer Lett 2020; 491:70-77. [PMID: 32735910 DOI: 10.1016/j.canlet.2020.07.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 02/09/2023]
Abstract
Cancer cachexia patients experience significant muscle wasting, which impairs the quality of life and treatment efficacy for patients. Skeletal muscle protein turnover is imparted by increased expression of ubiquitin-proteasome pathway components. Mitogen-activated protein kinases p38 and ERK have been shown to augment E3 ubiquitin ligase expression. Utilizing reverse-phase protein arrays, we identified pancreatic cancer cell-conditioned media-induced activation of JNK signaling in myotubes differentiated from C2C12 myoblasts. Inhibition of JNK signaling with SP600125 reduced cancer cell-conditioned media-induced myotube atrophy, myosin heavy chain protein turnover, and mRNA expression of cachexia-specific ubiquitin ligases Trim63 and Fbxo32. Furthermore, utilizing an orthotopic pancreatic cancer cachexia mouse model, we demonstrated that treatment of tumor-bearing mice with SP600125 improved longitudinal measurements of forelimb grip strength. Post-necropsy measurements demonstrated that SP600125 treatment rescued body weight, carcass weight, and gastrocnemius muscle weight loss without impacting tumor growth. JNK inhibitor treatment also rescued myofiber degeneration and reduced the muscle expression of Trim63 and Fbxo32. These data demonstrate that JNK signaling contributes to muscle wasting in cancer cachexia, and its inhibition has the potential to be utilized as an anti-cachectic therapy.
Collapse
Affiliation(s)
- Scott E Mulder
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Aneesha Dasgupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ryan J King
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jaime Abrego
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kuldeep S Attri
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Divya Murthy
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surendra K Shukla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Pankaj K Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
262
|
Kirpotina LN, Schepetkin IA, Hammaker D, Kuhs A, Khlebnikov AI, Quinn MT. Therapeutic Effects of Tryptanthrin and Tryptanthrin-6-Oxime in Models of Rheumatoid Arthritis. Front Pharmacol 2020; 11:1145. [PMID: 32792961 PMCID: PMC7394103 DOI: 10.3389/fphar.2020.01145] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/13/2020] [Indexed: 01/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease involving joint and bone damage that is mediated in part by proteases and cytokines produced by synovial macrophages and fibroblast-like synoviocytes (FLS). Although current biological therapeutic strategies for RA have been effective in many cases, new classes of therapeutics are needed. We investigated anti-inflammatory properties of the natural alkaloid tryptanthrin (TRYP) and its synthetic derivative tryptanthrin-6-oxime (TRYP-Ox). Both TRYP and TRYP-Ox inhibited matrix metalloproteinase (MMP)-3 gene expression in interleukin (IL)-1β-stimulated primary human FLS, as well as IL-1β–induced secretion of MMP-1/3 by FLS and synovial SW982 cells and IL-6 by FLS, SW982 cells, human umbilical vein endothelial cells (HUVECs), and monocytic THP-1 cells, although TRYP-Ox was generally more effective and had no cytotoxicity in vitro. Evaluation of the therapeutic potential of TRYP and TRYP-Ox in vivo in murine arthritis models showed that both compounds significantly attenuated the development of collagen-induced arthritis (CIA) and collagen-antibody–induced arthritis (CAIA), with comparable efficacy. Collagen II (CII)-specific antibody levels were similarly reduced in TRYP- and TRYP-Ox-treated CIA mice. TRYP and TRYP-Ox also suppressed proinflammatory cytokine production by lymph node cells from CIA mice, with TRYP-Ox being more effective in inhibiting IL-17A, granulocyte-macrophage colony-stimulating factor (GM-CSF), and receptor activator of nuclear factor-κB ligand (RANKL). Thus, even though TRYP-Ox generally had a better in vitro profile, possibly due to its ability to inhibit c-Jun N-terminal kinase (JNK), both TRYP and TRYP-Ox were equally effective in inhibiting the clinical symptoms and damage associated with RA. Overall, TRYP and/or TRYP-Ox may represent potential new directions for the pursuit of novel treatments for RA.
Collapse
Affiliation(s)
- Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Deepa Hammaker
- Division of Rheumatology, Allergy, and Immunology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Amanda Kuhs
- Division of Rheumatology, Allergy, and Immunology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, Russia.,Research Institute of Biological Medicine, Altai State University, Barnaul, Russia
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
263
|
Akakpo JY, Ramachandran A, Duan L, Schaich MA, Jaeschke MW, Freudenthal BD, Ding WX, Rumack BH, Jaeschke H. Delayed Treatment With 4-Methylpyrazole Protects Against Acetaminophen Hepatotoxicity in Mice by Inhibition of c-Jun n-Terminal Kinase. Toxicol Sci 2020; 170:57-68. [PMID: 30903181 DOI: 10.1093/toxsci/kfz077] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Acetaminophen (APAP) overdose is the most common cause of hepatotoxicity and acute liver failure in the United States and many western countries. However, the only clinically approved antidote, N-acetylcysteine, has a limited therapeutic window. 4-Methylpyrazole (4MP) is an antidote for methanol and ethylene glycol poisoning, and we have recently shown that cotreatment of 4MP with APAP effectively prevents toxicity by inhibiting Cyp2E1. To evaluate if 4MP can be used therapeutically, C57BL/6J mice were treated with 300 mg/kg APAP followed by 50 mg/kg 4MP 90 min later (after the metabolism phase). In these experiments, 4MP significantly attenuated liver injury at 3, 6, and 24 h after APAP as shown by 80%-90% reduction in plasma alanine aminotransferase activities and reduced areas of necrosis. 4MP prevented c-Jun c-Jun N-terminal kinase (JNK) activation and its mitochondrial translocation, and reduced mitochondrial oxidant stress and nuclear DNA fragmentation. 4MP also prevented JNK activation in other liver injury models. Molecular docking experiments showed that 4MP can bind to the ATP binding site of JNK. These data suggest that treatment with 4MP after the metabolism phase effectively prevents APAP-induced liver injury in the clinically relevant mouse model in vivo mainly through the inhibition of JNK activation. 4MP, a drug approved for human use, is as effective as N-acetylcysteine or can be even more effective in cases of severe overdoses with prolonged metabolism (600 mg/kg). 4MP acts on alternative therapeutic targets and thus may be a novel approach to treatment of APAP overdose in patients that complements N-acetylcysteine.
Collapse
Affiliation(s)
| | | | - Luqi Duan
- Department of Pharmacology Toxicology & Therapeutics
| | - Matthew A Schaich
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | | | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Wen-Xing Ding
- Department of Pharmacology Toxicology & Therapeutics
| | - Barry H Rumack
- Department of Emergency Medicine and Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | | |
Collapse
|
264
|
Schröder SK, Asimakopoulou A, Tillmann S, Koschmieder S, Weiskirchen R. TNF-α controls Lipocalin-2 expression in PC-3 prostate cancer cells. Cytokine 2020; 135:155214. [PMID: 32712458 DOI: 10.1016/j.cyto.2020.155214] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022]
Abstract
Prostate cancer (PCa) is one of the most common and deadly cancers in men worldwide. The surrounding tumor microenvironment (TME) is important in tumor progression, as cytokines and soluble mediators including tumor necrosis factor (TNF-α) or lipocalin-2 (LCN2) can influence tumor growth and formation of metastasis. The exact mechanisms on how these pleiotropic factors affect PCa are still unknown. In this study, we showed for the first time that LCN2 mRNA and protein expression are strongly inducible by TNF-α in the highly metastatic human PCa cell line PC-3. In addition, we observed higher levels of secreted LCN2 in cell culture medium of TNF-α-treated PC-3 cells. We found that different signaling pathways such as p38, NF-κB or JNK were activated shortly after TNF-α treatment. Moreover, the mRNA levels of IL-1β and IL-8 were also significantly increased after 24 h stimulation. Mechanistically, the NF-κB pathway and the JNK signaling axis are directly responsible for LCN2 upregulation. This was shown by the fact that pretreatment with the JNK inhibitors SP600125 or JNK-IN-8 strongly downregulated phosphorylation of c-Jun protein and markedly reduced TNF-α-mediated LCN2 upregulation in PC-3 cells. Likewise, the NF-κB inhibitor QNZ was able to repress TNF-α-induced LCN2 expression in PC-3 cells. Taking into consideration that LCN2 has been described as a tumor promoting factor in PCa, our results indicate that JNK regulates LCN2 expression and unmasks the JNK signaling axis as a possible therapeutic target for patients with PCa.
Collapse
Affiliation(s)
- Sarah K Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Anastasia Asimakopoulou
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Stefan Tillmann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
265
|
Ren L, Yan X, Gao X, Cui J, Yan P, Wu C, Li W, Liu S. Maternal effects shape the alternative splicing of parental alleles in reciprocal cross hybrids of Megalobrama amblycephala × Culter alburnus. BMC Genomics 2020; 21:457. [PMID: 32616060 PMCID: PMC7330940 DOI: 10.1186/s12864-020-06866-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/23/2020] [Indexed: 01/02/2023] Open
Abstract
Background Maternal effects contribute to adaptive significance for shaping various phenotypes of many traits. Potential implications of maternal effects are the cause of expression diversity, but these effects on mRNA expression and alternative splicing (AS) have not been fully elucidated in hybrid animals. Results Two reciprocal cross hybrids following hybridization of Megalobrama amblycephala (blunt snout bream, BSB) and Culter alburnus (topmouth culter, TC) were used as a model to investigate maternal effects. By comparing the expression of BSB- and TC- homoeologous genes between the two reciprocal cross hybrids, we identified 49–348 differentially expressed BSB-homoeologous genes and 54–354 differentially expressed TC-homoeologous genes. 2402, 2959, and 3418 AS events between the two reciprocal cross hybrids were detected in Illumina data of muscle, liver, and gonad, respectively. Moreover, 21,577 (TC-homoeologs) and 30,007 (BSB-homoeologs) AS events were found in the 20,131 homoeologous gene pairs of TBF3 based on PacBio data, while 30,561 (TC-homoeologs) and 30,305 (BSB-homoeologs) AS events were found in BTF3. These results further improve AS prediction at the homoeolog level. The various AS patterns in bmpr2a belonging to the bone morphogenetic protein family were selected as AS models to investigate the expression diversity and its potential effects to body shape traits. Conclusions The distribution of differentially expressed genes and AS in BSB- and TC-subgenomes exhibited various changes between the two reciprocal cross hybrids, suggesting that maternal effects were the cause of expression diversity. These findings provide a novel insight into mRNA expression changes and AS under maternal effects in lower vertebrates.
Collapse
Affiliation(s)
- Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Xiaojing Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Xin Gao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Jialin Cui
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Pengcheng Yan
- Tang Tang Biomedical Technology (BeiJing) Co., Ltd., Beijing, P.R. China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, Hunan, P.R. China. .,College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China.
| |
Collapse
|
266
|
Dou X, Huang H, Jiang L, Zhu G, Jin H, Jiao N, Zhang L, Liu Z, Zhang L. Rational modification, synthesis and biological evaluation of 3,4-dihydroquinoxalin-2(1H)-one derivatives as potent and selective c-Jun N-terminal kinase 3 (JNK3) inhibitors. Eur J Med Chem 2020; 201:112445. [PMID: 32603981 DOI: 10.1016/j.ejmech.2020.112445] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/15/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022]
Abstract
The c-Jun N-terminal kinase 3 (JNK3) plays key roles in a wide range of diseases, including neurodegeneration diseases, inflammation diseases, cancers, cardiovascular diseases, and metabolic disorders. Previously, we have identified a lead compound, (Z)-3-(2-(naphthalen-1-yl)-2-oxoethylidene)-3,4-dihydroquinoxalin-2(1H)-one (J46), which contains a 3,4-dihydroquinoxalin-2(1H)-one core structure as a key fragment to inhibit JNK3. However, compound J46 displayed high DDR1 and EGFR (T790M, L858R) inhibition and poor physicochemical properties, especially clogD and water-solubility, in its biological studies. Herein, we optimized compound J46 by structure-based drug design and exploiting the selectivity and physicochemical properties of various warhead groups to obtain compound J46-37, which not only exhibited a potent inhibition against JNK3 but also showed more than 50-fold potency better than DDR1 and EGFR (T790M, L858R). Furthermore, the selectivity and structure-activity relationship of novel synthesized 3,4-dihydroquinoxalin-2(1H)-one derivatives were analyzed by molecular docking and molecular dynamics simulation. Overall, compound J46-37, as a highly selective inhibitor of JNK3 with well physicochemical properties, is worth developing as therapies for the treatment of diseases related to JNK3.
Collapse
Affiliation(s)
- Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Huixia Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lan Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Guiwang Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
267
|
Hioki T, Tokuda H, Nakashima D, Fujita K, Kawabata T, Sakai G, Kim W, Tachi J, Tanabe K, Matsushima-Nishiwaki R, Otsuka T, Iida H, Kozawa O. HSP90 inhibitors strengthen extracellular ATP-stimulated synthesis of interleukin-6 in osteoblasts: Amplification of p38 MAP kinase. Cell Biochem Funct 2020; 39:88-97. [PMID: 32567086 DOI: 10.1002/cbf.3566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/03/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
Abstract
Heat shock protein 90 (HSP90) is expressed ubiquitously in a variety of cell types including osteoblasts. HSP90 acts as a key driver of proteostasis under pathophysiological conditions. Here, we investigated the involvement of HSP90 in extracellular ATP-stimulated interleukin (IL)-6 synthesis and HSP90 downstream signalling in osteoblast-like MC3T3-E1 cells. In osteoblasts, extracellular ATP stimulates the synthesis of IL-6, a bone-remodelling agent. Geldanamycin, 17-allylamino-17-demethoxy-geldanamycin (17-AAG) and onalespib, three different HSP90 inhibitors, amplified the ATP-stimulated IL-6 release. Geldanamycin increased IL-6 mRNA expression elicited by ATP. ATP enhanced the triiodothyronine-induced osteocalcin release, but HSP90 inhibitors suppressed the release. Extracellular ATP induced the phosphorylation of p44/p42 mitogen-activated protein kinase (MAPK), p38 MAPK, c-Jun N-terminal kinase (JNK), p70 S6 kinase, Akt, and myosin phosphatase-targeting subunit (MYPT), a Rho-kinase substrate. SB203580, an inhibitor of p38 MAPK, suppressed ATP-stimulated IL-6 release. Inhibitors of MEK1/2 (PD98059), JNK (SP600125), upstream kinase of p70 S6 kinase (rapamycin) and Akt (deguelin), all increased IL-6 release. Y27632, a Rho-kinase inhibitor, failed to affect the IL-6 release stimulated by ATP. Geldanamycin and 17-AAG both amplified ATP-induced p38 MAPK phosphorylation, although geldanamycin inhibited the phosphorylation of Akt induced by ATP. In addition, SB203580 significantly reduced the amplification by geldanamycin of the IL-6 release. Taken together, our results strongly suggest that HSP90 inhibitors up-regulate extracellular ATP-stimulated IL-6 synthesis via amplification of p38 MAPK activation in osteoblasts. SIGNIFICANCE OF THE STUDY: Heat shock protein 90 (HSP90) acts as a key driver of proteostasis under pathophysiological conditions in a variety of cell types. We have previously shown that HSP90 is expressed at high levels in osteoblast-like MC3T3-E1 cells, even in their quiescent state, consistent with HSP90 performing an important physiological function in osteoblasts. In the present study, we investigated whether HSP90 is implicated in extracellular ATP-induced interleukin (IL)-6 synthesis in osteoblast-like MC3T3-E1 cells. Our results strongly suggest that HSP90 inhibitors up-regulate extracellular ATP-stimulated IL-6 synthesis via amplification of p38 mitogen-activated protein kinase activation in osteoblasts.
Collapse
Affiliation(s)
- Tomoyuki Hioki
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Dermatology, Kizawa Memorial Hospital, Minokamo, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Clinical Laboratory/Biobank of Medical Genome Centre, National Centre for Geriatrics and Gerontology, Obu, Japan
| | - Daiki Nakashima
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Anaesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiko Fujita
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsu Kawabata
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Go Sakai
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Woo Kim
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Anaesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Junko Tachi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Anaesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kumiko Tanabe
- Department of Anaesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Takanobu Otsuka
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroki Iida
- Department of Anaesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
268
|
Loch-Caruso R, Korte CS, Hogan KA, Liao S, Harris C. Tert-Butyl Hydroperoxide Stimulated Apoptosis Independent of Prostaglandin E 2 and IL-6 in the HTR-8/SVneo Human Placental Cell Line. Reprod Sci 2020; 27:2104-2114. [PMID: 32542535 DOI: 10.1007/s43032-020-00231-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/10/2020] [Accepted: 06/03/2020] [Indexed: 01/05/2023]
Abstract
Significant gaps exist in our knowledge of how cellular redox status, sometimes referred to as oxidative stress, impacts placental trophoblasts. The present study used tert-butyl hydroperoxide (TBHP) as a known generator of reactive oxygen species (ROS) in the extravillous trophoblast cell line HTR-8/SVneo to examine the role of cellular redox disruption of prostaglandin E2 (PGE2) and the cytokine IL-6 in cell death. Cells were exposed to 0, 12.5, 25, or 50 μM TBHP for 4, 8, and 24 h to ascertain effects on cell viability, caspase 3/7 activity, PGE2 release, PTGS2 mRNA expression, and IL-6 release. Experiments with inhibitors included the cyclooxygenase inhibitor indomethacin, mitogen-activated protein kinase inhibitors (PD169316, U0126, or SP600125), or treatments to counter expected consequences of TBHP-stimulated generation of ROS (deferoxamine [DFO], butylated hydroxyanisole [BHA], and N,N'-diphenyl-1,4-phenylenediamine [DPPD]) using 24-h exposure to 50 μM TBHP. Cell viability, measured by ATP content, decreased 24% relative to controls with a 24-h exposure to 50 μM TBHP, but not at lower TBHP concentrations nor at earlier time points. Exposure to 50 μM TBHP increased caspase 3/7 activity, an indicator of apoptosis, after 8 and 24 h. Antioxidant treatment markedly reduced TBHP-stimulated caspase 3/7 activity, PGE2 release, and IL-6 release. TBHP-stimulated IL-6 release was blocked by PD169316 but unaltered by indomethacin. These data suggest that TBHP-stimulated IL-6 release and caspase 3/7 activation were independent of PGE2 yet were interrupted by treatments with known antioxidant properties, providing new insight into relationships between PGE2, IL-6, and apoptosis under conditions of chemically induced cellular oxidation.
Collapse
Affiliation(s)
- Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA.
| | - Cassandra S Korte
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA.,College of Arts and Sciences, Lynn University, Boca Raton, FL, 33431, USA
| | - Kelly A Hogan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA.,Mayo Clinic, Rochester, MN, 55905, USA
| | - Sarah Liao
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA.,Ardent Mills LCC, Denver, CO, 80202, USA
| | - Craig Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| |
Collapse
|
269
|
Duong MTH, Lee JH, Ahn HC. C-Jun N-terminal kinase inhibitors: Structural insight into kinase-inhibitor complexes. Comput Struct Biotechnol J 2020; 18:1440-1457. [PMID: 32637042 PMCID: PMC7327381 DOI: 10.1016/j.csbj.2020.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/07/2020] [Accepted: 06/07/2020] [Indexed: 12/12/2022] Open
Abstract
The activation of c-Jun N-terminal kinases (JNKs) plays an important role in physiological processes including neuronal function, immune activity, and development, and thus, JNKs have been a therapeutic target for various diseases such as neurodegenerative diseases, inflammation, and cancer. Efforts to develop JNK-specific inhibitors have been ongoing for several decades. In this process, the structures of JNK in complex with various inhibitors have contributed greatly to the design of novel compounds and to the elucidation of structure-activity relationships. Almost 100 JNK structures with various compounds have been determined. Here we summarize the information gained from these structures and classify the inhibitors into several groups based on the binding mode. These groups include inhibitors in the open conformation and closed conformation of the gatekeeper residue, non-ATP site binders, peptides, covalent inhibitors, and type II kinase inhibitors. Through this work, deep insight into the interaction of inhibitors with JNKs can be gained and this will be helpful for developing novel, potent, and selective inhibitors.
Collapse
Affiliation(s)
- Men Thi Hoai Duong
- Department of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi 10326, South Korea
| | - Joon-Hwa Lee
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Hee-Chul Ahn
- Department of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi 10326, South Korea
| |
Collapse
|
270
|
Carriba P, Davies AM. How CD40L reverse signaling regulates axon and dendrite growth. Cell Mol Life Sci 2020; 78:1065-1083. [PMID: 32506167 PMCID: PMC7897621 DOI: 10.1007/s00018-020-03563-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/01/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022]
Abstract
CD40-activated CD40L reverse signaling is a major physiological regulator of axon and dendrite growth from developing hippocampal pyramidal neurons. Here we have studied how CD40L-mediated reverse signaling promotes the growth of these processes. Cultures of hippocampal pyramidal neurons were established from Cd40-/- mouse embryos to eliminate endogenous CD40/CD40L signaling, and CD40L reverse signaling was stimulated by a CD40-Fc chimera. CD40L reverse signaling increased phosphorylation and hence activation of proteins in the PKC, ERK, and JNK signaling pathways. Pharmacological activators and inhibitors of these pathways revealed that whereas activation of JNK inhibited growth, activation of PKC and ERK1/ERK2 enhanced growth. Experiments using combinations of pharmacological reagents revealed that these signaling pathways regulate growth by functioning as an interconnected and interdependent network rather than acting in a simple linear sequence. Immunoprecipitation studies suggested that stimulation of CD40L reverse signaling generated a receptor complex comprising CD40L, PKCβ, and the Syk tyrosine kinase. Our studies have begun to elucidate the molecular network and interactions that promote axon and dendrite growth from developing hippocampal neurons following activation of CD40L reverse signaling.
Collapse
Affiliation(s)
- Paulina Carriba
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, Wales.
| | - Alun M Davies
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, Wales
| |
Collapse
|
271
|
Wozniak JM, Silva TA, Thomas D, Siqueira-Neto JL, McKerrow JH, Gonzalez DJ, Calvet CM. Molecular dissection of Chagas induced cardiomyopathy reveals central disease associated and druggable signaling pathways. PLoS Negl Trop Dis 2020; 14:e0007980. [PMID: 32433643 PMCID: PMC7279607 DOI: 10.1371/journal.pntd.0007980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/08/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Chagas disease, the clinical presentation of T. cruzi infection, is a major human health concern. While the acute phase of Chagas disease is typically asymptomatic and self-resolving, chronically infected individuals suffer numerous sequelae later in life. Cardiomyopathies in particular are the most severe consequence of chronic Chagas disease and cannot be reversed solely by parasite load reduction. To prioritize new therapeutic targets, we unbiasedly interrogated the host signaling events in heart tissues isolated from a Chagas disease mouse model using quantitative, multiplexed proteomics. We defined the host response to infection at both the proteome and phospho-proteome levels. The proteome showed an increase in the immune response and a strong repression of several mitochondrial proteins. Complementing the proteome studies, the phospho-proteomic survey found an abundance of phospho-site alterations in plasma membrane and cytoskeletal proteins. Bioinformatic analysis of kinase activity provided substantial evidence for the activation of NDRG2 and JNK/p38 kinases during Chagas disease. A significant activation of DYRK2 and AMPKA2 and the inhibition of casein family kinases were also predicted. We concluded our analyses by linking the diseased heart proteome profile to known therapeutic interventions, uncovering a potential to target mitochondrial proteins, secreted immune effectors and core kinases for the treatment of chronic Chagas disease. Together, this study provides molecular insight into host proteome and phospho-proteome responses to T. cruzi infection in the heart for the first time, highlighting pathways that can be further validated for functional contributions to disease and suitability as drug targets.
Collapse
Affiliation(s)
- Jacob M. Wozniak
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Department of Pharmacology; University of California San Diego; La Jolla, CA, United States of America
| | - Tatiana Araújo Silva
- Cellular Ultrastructure Laboratory; Oswaldo Cruz Institute, FIOCRUZ; Rio de Janeiro, RJ, Brazil
| | - Diane Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - David J. Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Department of Pharmacology; University of California San Diego; La Jolla, CA, United States of America
- * E-mail: (DJG); (CMC)
| | - Claudia M. Calvet
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Cellular Ultrastructure Laboratory; Oswaldo Cruz Institute, FIOCRUZ; Rio de Janeiro, RJ, Brazil
- * E-mail: (DJG); (CMC)
| |
Collapse
|
272
|
Yiqi Huoxue Recipe Improves Liver Regeneration in Rats after Partial Hepatectomy via JNK Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9085801. [PMID: 32419833 PMCID: PMC7201470 DOI: 10.1155/2020/9085801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022]
Abstract
The liver is the only visceral organ that exhibits a remarkable capability of regenerating in response to partial hepatectomy (PH) or chemical injury. Improving liver regeneration (LR) ability is the basis for the favourable treatment outcome of patients after PH, which can serve as a potential indicator for postoperative survival. The present study aimed to investigate the protective effects of Yiqi Huoxue recipe (YQHX) on LR after PH in rats and further elucidate its underlying mechanism. A two-thirds PH rat model was used in this study. Wistar rats were randomly divided into four groups: sham-operated, PH, YQHX + PH, and Fuzheng Huayu decoction (FZHY) + PH groups. All rats were sacrificed under anesthesia at 24 and 72 h after surgery. The rates of LR were calculated, and the expression levels of cyclin D1 and c-jun were determined by immunohistochemical staining. The protein levels of p-JNK1/2, JNK1/2, p-c-jun, c-jun, Bax, and Bcl-2 were detected by Western blotting, while the mRNA levels of JNK1, JNK2, c-jun, Bax, and Bcl-2 were examined by real-time polymerase chain reaction (RT-PCR). At the corresponding time points, YQHX and FZHY administration dramatically induced the protein levels of p-JNK1/2 compared to the PH group (p < 0.05), while FZHY + PH group showed prominently increase in p-JNK1/2 protein levels compared to the YQHX + PH group (p < 0.05). A similar trend was observed for the expression levels of p-c-jun. Compared to the PH group, YQHX and FZHY markedly reduced the mRNA and protein expression levels of Bax at 24 h after PH, while those in the FZHY + PH group decreased more obviously (p < 0.05). Besides, in comparison with the PH group, YQHX and FZHY administration predominantly upregulated the mRNA and protein expression levels of Bcl-2 at 24 and 72 h after PH (p < 0.05). In conclusion, YQHX improves LR in rats after PH by inhibiting hepatocyte apoptosis via the JNK signaling pathway.
Collapse
|
273
|
Mycobacterium tuberculosis YrbE3A Promotes Host Innate Immune Response by Targeting NF-κB/JNK Signaling. Microorganisms 2020; 8:microorganisms8040584. [PMID: 32316659 PMCID: PMC7232258 DOI: 10.3390/microorganisms8040584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis is considered a successful pathogen with multiple strategies to undermine host immunity. The YrbE3A is encoded by Rv1964 within the RD15 region present in the genome of Mtb, but missing in M. bovis, M. bovis BCG (Pasteur) strain, and M. smegmatis (Ms). However, little is known about its function. In this study, the YrbE3A gene was cloned into pMV261 and expressed in Ms and BCG, while the strains with the vector served as the controls. The YrbE3A was expressed on the mycobacterial membrane, and the purified protein could stimulate RAW264.7 cells to produce IL-6. Furthermore, the effect of the recombinant strains on cytokine secretion by RAW264.7 was confirmed, which varied with the host strains. Ms_YrbE3A increased significantly higher levels of TNF-α and IL-6 than did Ms_vec, while BCG_YrbE3A enhanced higher TNF-α than BCG_vec. The pathways associated with NF-κB p65 and MAPK p38/JNK, other than Erk1/2, regulated this process. In addition, mice were infected with Ms_YrbE3A and Ms-vec and were kinetically examined. Compared to Ms-vec, Ms_YrbE3A induced more serious inflammatory damage, higher levels of TNF-α and IL-6, higher numbers of lymphocytes, neutrophils, and monocytes in a time-dependent way, but lower lung bacterial load in lung. These findings may contribute to a better understanding of Mtb pathogenesis.
Collapse
|
274
|
Ly TD, Plümers R, Fischer B, Schmidt V, Hendig D, Kuhn J, Knabbe C, Faust I. Activin A-Mediated Regulation of XT-I in Human Skin Fibroblasts. Biomolecules 2020; 10:E609. [PMID: 32295230 PMCID: PMC7226200 DOI: 10.3390/biom10040609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022] Open
Abstract
Fibrosis is a fundamental feature of systemic sclerosis (SSc) and is characterized by excessive accumulation of extracellular matrix components like proteoglycans (PG) or collagens in skin and internal organs. Serum analysis from SSc patients showed an increase in the enzyme activity of xylosyltransferase (XT), the initial enzyme in PG biosynthesis. There are two distinct XT isoforms-XT-I and XT-II-in humans, but until now only XT-I is associated with fibrotic remodelling for an unknown reason. The aim of this study was to identify new XT mediators and clarify the underlying mechanisms, in view of developing putative therapeutic anti-fibrotic interventions in the future. Therefore, we used different cytokines and growth factors, small molecule inhibitors as well as small interfering RNAs, and assessed the cellular XT activity and XYLT1 expression in primary human dermal fibroblasts by radiochemical activity assays and qRT-PCR. We identified a new function of activin A as a regulator of XYLT1 mRNA expression and XT activity. While the activin A-induced XT-I increase was found to be mediated by activin A receptor type 1B, MAPK and Smad pathways, the activin A treatment did not alter the XYLT2 expression. Furthermore, we observed a reciprocal regulation of XYLT1 and XYLT2 transcription after inhibition of the activin A pathway components. These results improve the understanding of the differential expression regulation of XYLT isoforms under pathological fibroproliferative conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
275
|
Semba T, Sammons R, Wang X, Xie X, Dalby KN, Ueno NT. JNK Signaling in Stem Cell Self-Renewal and Differentiation. Int J Mol Sci 2020; 21:E2613. [PMID: 32283767 PMCID: PMC7177258 DOI: 10.3390/ijms21072613] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
C-JUN N-terminal kinases (JNKs), which belong to the mitogen-activated protein kinase (MAPK) family, are evolutionarily conserved kinases that mediate cell responses to various types of extracellular stress insults. They regulate physiological processes such as embryonic development and tissue regeneration, playing roles in cell proliferation and programmed cell death. JNK signaling is also involved in tumorigenesis and progression of several types of malignancies. Recent studies have shown that JNK signaling has crucial roles in regulating the traits of cancer stem cells (CSCs). Here we describe the functions of the JNK signaling pathway in self-renewal and differentiation, which are essential features of various types of stem cells, such as embryonic, induced pluripotent, and adult tissue-specific stem cells. We also review current knowledge of JNK signaling in CSCs and discuss its role in maintaining the CSC phenotype. A better understanding of JNK signaling as an essential regulator of stemness may provide a basis for the development of regenerative medicine and new therapeutic strategies against malignant tumors.
Collapse
Affiliation(s)
- Takashi Semba
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rachel Sammons
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.S.); (K.N.D.)
| | - Xiaoping Wang
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuemei Xie
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.S.); (K.N.D.)
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Naoto T. Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
276
|
Regulatory expression of bone morphogenetic protein 6 by 2,2'-dipyridyl. Biochim Biophys Acta Gen Subj 2020; 1864:129610. [PMID: 32251709 DOI: 10.1016/j.bbagen.2020.129610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Expression of hepcidin, a hormone produced by hepatocytes which negatively regulates the circulating iron levels, is known to be positively regulated by BMP6, a member of transforming growth factor (TGF)-β family. Previous studies have shown that iron status is sensed by sinusoidal endothelial cells of hepatic lamina, leading to the modulation of BMP6 expression. METHODS ISOS-1, HUVEC, F-2, and SK-HEP1 endothelial cells were treated with either iron or 2,2'-dipyridyl (2DP), a cell-permeable iron-chelator, and expression level of Bmp6 was examined. To identify factors affecting Bmp6 transcription, stimulus screening for regulator of transcription (SSRT) was developed. RESULTS Treatment with iron slightly increased the expression levels of Bmp6, while 2DP unexpectedly increased Bmp6 expression in a dose-dependent manner. 2DP-induced Bmp6 expression was resistant to co-treatment with iron. 2DP-induced Bmp6 expression was also detected in HUVEC, F-2 cells, and SK-HEP1 cells. Luciferase-based reporter assays indicated that forced expression of JunB increased the transcription of Bmp6. 2DP induced phosphorylation of JunB; co-treatment with SP600125 blocked the 2DP-induced Bmp6 expression partially. JunB-induced Bmp6 transcription was not affected by mutations of putative JunB-responsive elements. Some endoplasmic reticulum stress inducers increased the expression of Bmp6. SSRT revealed pathways regulating Bmp6 transcription positively and negatively. Hepa1-6 liver cells and C2C12 myogenic cells were prone to 2DP induced Bmp6 expression. CONCLUSIONS The present study reveals non‑iron-regulated Bmp6 expression in endothelial cells. GENERAL SIGNIFICANCE Regulatory expression of Bmp6 may be important as a key step for fine tuning of BMP activity.
Collapse
|
277
|
Hammouda MB, Ford AE, Liu Y, Zhang JY. The JNK Signaling Pathway in Inflammatory Skin Disorders and Cancer. Cells 2020; 9:E857. [PMID: 32252279 PMCID: PMC7226813 DOI: 10.3390/cells9040857] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs), with its members JNK1, JNK2, and JNK3, is a subfamily of (MAPK) mitogen-activated protein kinases. JNK signaling regulates a wide range of cellular processes, including cell proliferation, differentiation, survival, apoptosis, and inflammation. Dysregulation of JNK pathway is associated with a wide range of immune disorders and cancer. Our objective is to provide a review of JNK proteins and their upstream regulators and downstream effector molecules in common skin disorders, including psoriasis, dermal fibrosis, scleroderma, basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma.
Collapse
Affiliation(s)
- Manel B. Hammouda
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA; (M.B.H.); (A.E.F.); (Y.L.)
| | - Amy E. Ford
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA; (M.B.H.); (A.E.F.); (Y.L.)
| | - Yuan Liu
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA; (M.B.H.); (A.E.F.); (Y.L.)
| | - Jennifer Y. Zhang
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA; (M.B.H.); (A.E.F.); (Y.L.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
278
|
Fang Y, Zhang L, Dong X, Wang H, He L, Zhong S. Downregulation of vdac2 inhibits spermatogenesis via JNK and P53 signalling in mice exposed to cadmium. Toxicol Lett 2020; 326:114-122. [PMID: 32199951 DOI: 10.1016/j.toxlet.2020.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
Previous studies have reported the reproductive toxicity of cadmium (Cd); however, the effect of Cd on spermatogenesis and the underlying mechanism remain to be elucidated. In this study, mouse Leydig TM3 cells were treated with CdCl2 (0, 5, 10 and 50 μM) for 24 h to evaluate cytotoxicity, and C57BL/6 mice were treated intragastrically with 0.4 mL CdCl2 (0, 0.01, 0.05 and 0.1 g/L) for 2 months to investigate changes in spermatogenesis. The results showed that Cd aggravated apoptosis and proliferation in a dose-dependent manner, concomitant with deteriorated spermatogenesis and testosterone synthesis. For mechanism exploration, RNA-seq was used to profile alterations in gene expression in response to Cd, and the results indicated focus on P53/JNK signalling pathways and membrane proteins. We found that P53/JNK signalling pathways were activated upon Cd treatment, with the Cd-triggered downregulation of the vdac2 gene. P53/JNK pathway blockade ameliorated the Cd-induced inhibition of steroidogenic acute regulatory protein (STAR) expression and testosterone synthesis. Additionally, vdac2 knockdown in TM3 cells contributed to the phosphorylation of JNK/P53 and reduced the testosterone content. Vdac2 overexpression rescued the aforementioned Cd-induced events. Collectively, our study identified an innovative biomarker of Cd exposure in mice. The results demonstrated that vdac2 downregulation inhibits spermatogenesis via the JNK/P53 cascade. This finding may contribute to our understanding of the regulatory mechanism of Cd reproductive toxicity and provide a candidate list for sperm abnormality factors and pathways.
Collapse
Affiliation(s)
- Yu Fang
- Department of Medical Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Lang Zhang
- Department of Medical Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Xin Dong
- Department of Medical Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Li He
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Shan Zhong
- Department of Medical Genetics, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
279
|
The JNK inhibitor AS602801 Synergizes with Enzalutamide to Kill Prostate Cancer Cells In Vitro and In Vivo and Inhibit Androgen Receptor Expression. Transl Oncol 2020; 13:100751. [PMID: 32199273 PMCID: PMC7082632 DOI: 10.1016/j.tranon.2020.100751] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/26/2020] [Indexed: 01/13/2023] Open
Abstract
In our previous study, we observed that androgen deprivation therapy (ADT) may induce a compensatory increase in MAPK or JNK signaling. Here, we tested the effects of the MEK inhibitors PD0325901 and GSK1120212, ERK1/2 inhibitor GDC-0994, and the JNK inhibitor AS602801 alone and in combination with the AR inhibitor enzalutamide (ENZ) in androgen-sensitive LNCaP cells and androgen-resistant C4-2 and 22Rv1 cells. Enzalutamide combined with AS602801 synergistically killed LNCaP, C4-2, and 22Rv1 cells, and decreased migration and invasion of LNCaP and C4-2 cells. We studied the combination of enzalutamide with AS602801 in vivo using luciferase labeled LNCaP xenografts, and observed that combination of ENZ with AS602801 significantly suppressed tumor growth compared with either drug alone. Importantly, combination therapy resulted in dramatic loss of AR mRNA and protein. Surprisingly, mechanistic studies and Nanostring data suggest that AS602801 likely activates JNK signaling to induce apoptosis. Since AS602801 had sufficient safety and toxicity profile to advance from Phase I to Phase II in clinical trials, repurposing of this compound may represent an opportunity for rapid translation for clinical therapy of CRPC patients.
Collapse
|
280
|
Sen A, Ta M. Altered Adhesion and Migration of Human Mesenchymal Stromal Cells under Febrile Temperature Stress Involves NF-κβ Pathway. Sci Rep 2020; 10:4473. [PMID: 32161303 PMCID: PMC7066177 DOI: 10.1038/s41598-020-61361-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/18/2020] [Indexed: 11/23/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are clinically beneficial for regenerative treatment of chronic inflammation and autoimmune disorders. However, to attain maximum efficacy from the transplanted MSCs, evaluation of its interaction with the microenvironment, becomes critical. Fever being an important hallmark of inflammation, we investigated the effect of febrile temperature stress on adhesion and migration of umbilical cord-derived MSCs. 40 °C-exposure altered cellular morphology with significant cell flattening, delayed cell-matrix de-adhesion response and slower migration of MSCs, accompanied by suppressed directionality ratio and cell trajectory. Corresponding to the observed changes, mRNA expression of extracellular matrix genes like COLs and VTN were upregulated, while matrix metalloproteinase MMP-1, showed a significant downregulation. NF-κβ pathway inhibition at 40 °C, led to reversal of gene expression pattern, cell spreading, de-adhesion dynamics and migration rate. Independent knockdown of p65 and p53 at 40 °C indicated inhibitory role of p65/p53/p21 axis in regulation of MMP-1 expression. P21 inhibits JNK activity, and JNK pathway inhibition at 40 °C resulted in further downregulation of MMP-1. Hence, our study provides the first evidence of cell migration getting adversely affected in MSCs under elevated temperature stress due to an inverse relationship between p65/p53/p21 and MMP1 with a possible involvement of the JNK pathway.
Collapse
Affiliation(s)
- Ankita Sen
- Indian Institute of Science Education and Research, Kolkata, India
| | - Malancha Ta
- Indian Institute of Science Education and Research, Kolkata, India.
| |
Collapse
|
281
|
Kim HY, Kim TJ, Kang L, Kim YJ, Kang MK, Kim J, Ryu JH, Hyeon T, Yoon BW, Ko SB, Kim BS. Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke. Biomaterials 2020; 243:119942. [PMID: 32179302 DOI: 10.1016/j.biomaterials.2020.119942] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Exosomes and extracellular nanovesicles (NV) derived from mesenchymal stem cells (MSC) may be used for the treatment of ischemic stroke owing to their multifaceted therapeutic benefits that include the induction of angiogenesis, anti-apoptosis, and anti-inflammation. However, the most serious drawback of using exosomes and NV for ischemic stroke is the poor targeting on the ischemic lesion of brain after systemic administration, thereby yielding a poor therapeutic outcome. In this study, we show that magnetic NV (MNV) derived from iron oxide nanoparticles (IONP)-harboring MSC can drastically improve the ischemic-lesion targeting and the therapeutic outcome. Because IONP stimulated expressions of therapeutic growth factors in the MSC, MNV contained greater amounts of those therapeutic molecules compared to NV derived from naive MSC. Following the systemic injection of MNV into transient middle-cerebral-artery-occlusion (MCAO)-induced rats, the magnetic navigation increased the MNV localization to the ischemic lesion by 5.1 times. The MNV injection and subsequent magnetic navigation promoted the anti-inflammatory response, angiogenesis, and anti-apoptosis in the ischemic brain lesion, thereby yielding a considerably decreased infarction volume and improved motor function. Overall, the proposed MNV approach may overcome the major drawback of the conventional MSC-exosome therapy or NV therapy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Han Young Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Jung Kim
- Department of Neurology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Lami Kang
- Department of Neurology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Young-Ju Kim
- Department of Neurology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Min Kyoung Kang
- Department of Neurology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Jonghoon Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Ju Hee Ryu
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Taeghwan Hyeon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Byung-Woo Yoon
- Department of Neurology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Sang-Bae Ko
- Department of Neurology, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
282
|
Yang C, Luo J, Luo X, Jia W, Fang Z, Yi S, Li L. Morusin exerts anti-cancer activity in renal cell carcinoma by disturbing MAPK signaling pathways. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:327. [PMID: 32355771 PMCID: PMC7186639 DOI: 10.21037/atm.2020.02.107] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Renal cell carcinoma (RCC) has gradually become a severe type of kidney malignant tumor, which warrants an urgent need for highly efficacious therapeutic agents. Morusin, a typical prenylated flavonoid, has been revealed to possess anticarcinogenic effects against several cancers by inhibiting cell proliferation and tumorigenesis. Methods Cells proliferation was examined by CCK-8. Migration assays were performed using a 24-well transwell chamber. Apoptotic cells were detected using the Annexin V PE/7-AAD apoptosis detection kit. Cell cycle analysis was carried out by flow cytometry. Western blotting and quantitative real time (qRT) PCR were used to exam the change of target gene in mRNA and protein level. Nude mouse xenograft experiments were performed to identify vivo function of morusin. Results Here, we evaluated the effect of morusin against RCC. We treated three RCC cell lines, 769-P, 786-O, and OSRC-2, with morusin to study its effects on cell growth, migration, apoptosis, cell cycle and cancer-related pathways. Additionally, we assessed the effects of morusin on tumor growth using a nude mouse model. Morusin could inhibit cell growth and migration, induce cell apoptosis and downregulate apoptosis-related proteins, and disturb the cell cycle arrest in the G1 phase. Additionally, morusin could suppress RCC tumorigenesis in vivo. Moreover, mitogen-activated protein kinase (MAPK) signal pathways were found to be involved in morusin-induced anti-cancer activity. P-p38 and P-JNK levels were up-regulated by morusin, while the ERK phosphorylation level was down-regulated. Conclusions Our results show that morusin could inhibit the growth of RCC cells in vitro and in vivo through MAPK signal pathways. Thus, morusin could be a potential anti-cancer agent for RCC.
Collapse
Affiliation(s)
- Chengfei Yang
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing 400037, China
| | - Jing Luo
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing 400037, China
| | - Xing Luo
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing 400037, China
| | - Weisheng Jia
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing 400037, China
| | - Zhenqiang Fang
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing 400037, China
| | - Shanhong Yi
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing 400037, China
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing 400037, China
| |
Collapse
|
283
|
Cui Y, Li Y, Huang N, Xiong Y, Cao R, Meng L, Liu J, Feng Z. Structure based modification of chalcone analogue activates Nrf2 in the human retinal pigment epithelial cell line ARPE-19. Free Radic Biol Med 2020; 148:52-59. [PMID: 31887452 DOI: 10.1016/j.freeradbiomed.2019.12.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022]
Abstract
Oxidative stress-induced degeneration of retinal pigment epithelial (RPE) cells is known to be a key contributor to the development of age-related macular degeneration (AMD). Activation of the nuclear factor-(erythroid-derived 2)-related factor-2 (Nrf2)-mediated cellular defense system is believed to be a valid therapeutic approach. In the present study, we designed and synthesized a novel chalcone analogue, 1-(2,3,4-trimethoxyphenyl)-2-(3,4,5-trimethoxyphenyl)-acrylketone (Tak), as a Nrf2 activator. The potency of Tak was measured in RPE cells by the induction of the Nrf2-dependent antioxidant genes HO-1, NQO-1, GCLc, and GCLm, which were regulated through the Erk pathway. We also showed that Tak could protect RPE cells against oxidative stress-induced cell death and mitochondrial dysfunction. Furthermore, by modifying the α, β unsaturated carbonyl entity in Tak, we showed that the induction of antioxidant genes was abolished, indicating that this unique feature in Tak was responsible for the Nrf2 activation. These results suggest that Tak is a potential candidate for clinical application against AMD.
Collapse
Affiliation(s)
- Yuting Cui
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuan Li
- Institute of Basic Medical Science, Xi'an Medical University, Xi'an, 710021, PR China
| | - Na Huang
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yue Xiong
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ruijun Cao
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lingjie Meng
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
284
|
Ahmed MB, Islam SU, Lee YS. Decursin negatively regulates LPS-induced upregulation of the TLR4 and JNK signaling stimulated by the expression of PRP4 in vitro. Anim Cells Syst (Seoul) 2020; 24:44-52. [PMID: 32158615 PMCID: PMC7048231 DOI: 10.1080/19768354.2020.1726811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 02/03/2020] [Indexed: 02/08/2023] Open
Abstract
The current investigation was carried out to analyze the correlation of bacterial lipopolysaccharide (LPS) and pre-mRNA processing factor 4B (PRP4) in inducing inflammatory response and cell actin cytoskeleton rearrangement in macrophages (Raw 264.7) and colorectal (HCT116) as well as skin cancer (B16-F10) cells. Cell lines were stimulated with LPS, and the expression of PRP4 as well as pro-inflammatory cytokines and proteins like IL-6, IL-1β, TLR4, and NF-κB were assayed. The results demonstrated that LPS markedly increased the expression of PRP4, IL-6, IL-1β, TLR4, and NF-κB in the cells. LPS and PRP4 concomitantly altered the morphology of cells from an aggregated, flattened shape to a round shape. Decursin, a pyranocoumarin from Angelica gigas, inhibited the LPS and PRP4-induced inflammatory response, and reversed the induction of morphological changes. Finally, we established a possible link of LPS with TLR4 and JNK signaling, through which it activated PRP4. Our study provides molecular insights for LPS and PRP4-related pathogenesis and a basis for developing new strategies against metastasis in colorectal cancer and skin melanoma. Our study emphasizes that decursin may be an effective treatment strategy for various cancers in which LPS and PRP4 perform a critical role in inducing inflammatory response and morphological changes leading to cell survival and protection against anti-cancer drugs.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - Young Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
285
|
Kawabata T, Tokuda H, Kuroyanagi G, Fujita K, Sakai G, Kim W, Matsushima-Nishiwaki R, Iida H, Yata KI, Wang S, Mizoguchi A, Otsuka T, Kozawa O. Incretin accelerates platelet-derived growth factor-BB-induced osteoblast migration via protein kinase A: The upregulation of p38 MAP kinase. Sci Rep 2020; 10:2341. [PMID: 32047216 PMCID: PMC7012849 DOI: 10.1038/s41598-020-59392-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/27/2020] [Indexed: 11/18/2022] Open
Abstract
Incretins, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), secreted from enteroendocrine cells after food ingestion, are currently recognized to regulate glucose metabolism through insulin secretion. We previously demonstrated that platelet-derived growth factor-BB (PDGF-BB) induces the migration of osteoblast-like MC3T3-E1 cells through mitogen-activated protein (MAP) kinases, including p38 MAP kinase. In the present study, we investigated whether or not incretins affect the osteoblast migration. The PDGF-BB-induced cell migration was significantly reinforced by GLP-1, GIP or cAMP analogues in MC3T3-E1 cells and normal human osteoblasts. The upregulated migration by GLP-1 or cAMP analogues was suppressed by H89, an inhibitor of protein kinase A. The amplification by GLP-1 of migration induced by PDGF-BB was almost completely reduced by SB203580, a p38 MAP kinase inhibitor in MC3T3-E1 cells and normal human osteoblasts. In addition, GIP markedly strengthened the PDGF-BB-induced phosphorylation of p38 MAP kinase. Exendin-4, a GLP-1 analogue, induced Rho A expression and its translocation from cytoplasm to plasma membranes in osteoblasts at the epiphyseal lines of developing mouse femurs in vivo. These results strongly suggest that incretins accelerates the PDGF-BB-induced migration of osteoblasts via protein kinase A, and the up-regulation of p38 MAP kinase is involved in this acceleration. Our findings may highlight the novel potential of incretins to bone physiology and therapeutic strategy against bone repair.
Collapse
Affiliation(s)
- Tetsu Kawabata
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.,Department of Orthopedic Surgery, Toyokawa City Hospital, Toyokawa, 442-8561, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Clinical Laboratory/Medical Genome Center Biobank, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Gen Kuroyanagi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Kazuhiko Fujita
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Go Sakai
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Woo Kim
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | | | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Ken-Ichiro Yata
- Department of Neurology, Graduate School of Medicine, Mie University, Tsu, 514-8507, Japan
| | - Shujie Wang
- Deaprtment of Neural Regeneration and Cell Communication, Graduate School of Medicine, Mie University, Tsu, 514-8507, Japan
| | - Akira Mizoguchi
- Deaprtment of Neural Regeneration and Cell Communication, Graduate School of Medicine, Mie University, Tsu, 514-8507, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.
| |
Collapse
|
286
|
Wu Q, Wu W, Jacevic V, Franca TCC, Wang X, Kuca K. Selective inhibitors for JNK signalling: a potential targeted therapy in cancer. J Enzyme Inhib Med Chem 2020; 35:574-583. [PMID: 31994958 PMCID: PMC7034130 DOI: 10.1080/14756366.2020.1720013] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) signalling regulates both cancer cell apoptosis and survival. Emerging evidence show that JNK promoted tumour progression is involved in various cancers, that include human pancreatic-, lung-, and breast cancer. The pro-survival JNK oncoprotein functions in a cell context- and cell type-specific manner to affect signal pathways that modulate tumour initiation, proliferation, and migration. JNK is therefore considered a potential oncogenic target for cancer therapy. Currently, designing effective and specific JNK inhibitors is an active area in the cancer treatment. Some ATP-competitive inhibitors of JNK, such as SP600125 and AS601245, are widely used in vitro; however, this type of inhibitor lacks specificity as they indiscriminately inhibit phosphorylation of all JNK substrates. Moreover, JNK has at least three isoforms with different functions in cancer development and identifying specific selective inhibitors is crucial for the development of targeted therapy in cancer. Some selective inhibitors of JNK are identified; however, their clinical studies in cancer are relatively less conducted. In this review, we first summarised the function of JNK signalling in cancer progression; there is a focus on the discussion of the novel selective JNK inhibitors as potential targeting therapy in cancer. Finally, we have offered a future perspective of the selective JNK inhibitors in the context of cancer therapies. We hope this review will help to further understand the role of JNK in cancer progression and provide insight into the design of novel selective JNK inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Vesna Jacevic
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,National Poison Control Centre, Military Medical Academy, Belgrade, Serbia.,Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Tanos C C Franca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, Brazil
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
287
|
Bae H, Lee JY, Song G, Lim W. Function of CCL5 in maternal-fetal interface of pig during early pregnancy. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103503. [PMID: 31563460 DOI: 10.1016/j.dci.2019.103503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Chemokines refer to chemoattractant cytokines, which have crucial functions in inflammation and immune responses in multiple cellular processes. In the present study, we described the potential role of porcine CCL5 in embryo implantation and fetal-maternal environment during early pregnancy. We first carried out phylogenetic analysis of porcine CCL5, and analyzed the cell specific localization of CCL5 and its receptor CCR3 in a kinetic approach within porcine estrous cycles and early gestation stage. In addition, CCL5 stimulated porcine uterine luminal epithelial (pLE) and porcine trophectoderm (pTr) cell proliferations, and cell cycle progressions via AKT and MAPK intracellular signaling tractions. Furthermore, CCL5 attenuated tunicamycin-induced endoplasmic reticulum (ER) stress signaling, and lipopolysaccharides-triggered inflammatory responses in pLE and pTr cells. Taken together, our study showed that CCL5 is involved in the placental development or promotes the placental development.
Collapse
Affiliation(s)
- Hyocheol Bae
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
288
|
Myers AK, Cunningham JG, Smith SE, Snow JP, Smoot CA, Tucker ES. JNK signaling is required for proper tangential migration and laminar allocation of cortical interneurons. Development 2020; 147:dev180646. [PMID: 31915148 PMCID: PMC6983726 DOI: 10.1242/dev.180646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
The precise migration of cortical interneurons is essential for the formation and function of cortical circuits, and disruptions to this key developmental process are implicated in the etiology of complex neurodevelopmental disorders, including schizophrenia, autism and epilepsy. We have recently identified the Jun N-terminal kinase (JNK) pathway as an important mediator of cortical interneuron migration in mice, regulating the proper timing of interneuron arrival into the cortical rudiment. In the current study, we demonstrate a vital role for JNK signaling at later stages of corticogenesis, when interneurons transition from tangential to radial modes of migration. Pharmacological inhibition of JNK signaling in ex vivo slice cultures caused cortical interneurons to rapidly depart from migratory streams and prematurely enter the cortical plate. Similarly, genetic loss of JNK function led to precocious stream departure ex vivo, and stream disruption, morphological changes and abnormal allocation of cortical interneurons in vivo These data suggest that JNK signaling facilitates the tangential migration and laminar deposition of cortical interneurons, and further implicates the JNK pathway as an important regulator of cortical development.
Collapse
Affiliation(s)
- Abigail K Myers
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Neuroscience Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Jessica G Cunningham
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Neuroscience Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Skye E Smith
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Biochemistry Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - John P Snow
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Catherine A Smoot
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Neuroscience Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Eric S Tucker
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| |
Collapse
|
289
|
Tam SY, Wu VW, Law HK. JNK Pathway Mediates Low Oxygen Level Induced Epithelial-Mesenchymal Transition and Stemness Maintenance in Colorectal Cancer Cells. Cancers (Basel) 2020; 12:cancers12010224. [PMID: 31963305 PMCID: PMC7017419 DOI: 10.3390/cancers12010224] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Epithelial-mesenchymal transition (EMT) and cancer cell stemness maintenance (SM) are important factors for cancer metastasis. Although hypoxia has been considered as a possible factor for EMT induction and promotion of SM, studies in this area, apart from hypoxia-inducible factor (HIF) pathways and severe hypoxia, are scant. This study aimed to evaluate the effects of different oxygen levels on EMT induction and SM and elucidate the signaling pathways involved in colorectal cancer cells. (2) Methods: Cell morphological analysis, migration assay, immunofluorescence staining of cytoskeleton and Western blotting were performed on human colorectal cancer cells HT-29, DLD-1, and SW-480 cultured at 1%, 10%, and normal (21%) O2 levels. The role played by c-Jun N-terminal kinase (JNK) was evaluated through the use of the specific JNK inhibitor SP600125. (3) Results: This study evaluated 1% and 10% O2 are possible conditions for EMT induction and SM. This study also demonstrated the partial relieve of EMT induction and SM by SP600125, showing the importance of the JNK pathway in these processes. Furthermore, this study proposed a novel pathway on the regulation of Akt by JNK-c-Jun. (4) Conclusions: This study suggests 10% O2 as another possible condition for EMT induction, and SM and JNK pathways play important roles in these processes through multiple factors. Inhibition of JNK could be explored as treatment for inhibiting metastasis in colorectal cancer cells.
Collapse
|
290
|
Anti-Inflammatory Effects of Modified Buyang Huanwu Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6458460. [PMID: 32419816 PMCID: PMC7201499 DOI: 10.1155/2020/6458460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Methods A cytotoxicity assay for BHD was performed using the MTT assay. Following treatment with BHD, mBHD-1, and mBHD-2 in the presence of lipopolysaccharide (LPS), nitric oxide (NO) secretion was detected in cell supernatants using a NO detection kit. The expression of proinflammatory mediators was detected using RT-PCR and western blotting. To verify the mechanism of mBHD, specific inhibitors of JNK (SP600125) or p38 (SB203580) were used for co-treatment with mBHD, and then the changes in NO and nitric oxide synthase (iNOS) were measured. Results Both mBHD-1 and mBHD-2 showed greater anti-inflammatory effects than BHD. Both mBHD-1 and mBHD-2 inhibited NO secretion and decreased the expression of IL-1β, IL-6, TNF-α, and iNOS. Treatment with a p38 inhibitor and a JNK inhibitor in mBHD-1- and mBHD-2-treated cells resulted in inhibition of NO and iNOS. Conclusion We provided the first experimental evidence that mBHD may be a more useful anti-inflammatory than BHD. High concentrations or long-term use of BHD may be harmful to inflammatory status. Therefore, the length of treatment and concentration should be considered depending on the targeted disease.
Collapse
|
291
|
Kumar S, Principe DR, Singh SK, Viswakarma N, Sondarva G, Rana B, Rana A. Mitogen-Activated Protein Kinase Inhibitors and T-Cell-Dependent Immunotherapy in Cancer. Pharmaceuticals (Basel) 2020; 13:E9. [PMID: 31936067 PMCID: PMC7168889 DOI: 10.3390/ph13010009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/13/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling networks serve to regulate a wide range of physiologic and cancer-associated cell processes. For instance, a variety of oncogenic mutations often lead to hyperactivation of MAPK signaling, thereby enhancing tumor cell proliferation and disease progression. As such, several components of the MAPK signaling network have been proposed as viable targets for cancer therapy. However, the contributions of MAPK signaling extend well beyond the tumor cells, and several MAPK effectors have been identified as key mediators of the tumor microenvironment (TME), particularly with respect to the local immune infiltrate. In fact, a blockade of various MAPK signals has been suggested to fundamentally alter the interaction between tumor cells and T lymphocytes and have been suggested a potential adjuvant to immune checkpoint inhibition in the clinic. Therefore, in this review article, we discuss the various mechanisms through which MAPK family members contribute to T-cell biology, as well as circumstances in which MAPK inhibition may potentiate or limit cancer immunotherapy.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Daniel R. Principe
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Gautam Sondarva
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
292
|
Almstedt E, Elgendy R, Hekmati N, Rosén E, Wärn C, Olsen TK, Dyberg C, Doroszko M, Larsson I, Sundström A, Arsenian Henriksson M, Påhlman S, Bexell D, Vanlandewijck M, Kogner P, Jörnsten R, Krona C, Nelander S. Integrative discovery of treatments for high-risk neuroblastoma. Nat Commun 2020; 11:71. [PMID: 31900415 PMCID: PMC6941971 DOI: 10.1038/s41467-019-13817-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
Despite advances in the molecular exploration of paediatric cancers, approximately 50% of children with high-risk neuroblastoma lack effective treatment. To identify therapeutic options for this group of high-risk patients, we combine predictive data mining with experimental evaluation in patient-derived xenograft cells. Our proposed algorithm, TargetTranslator, integrates data from tumour biobanks, pharmacological databases, and cellular networks to predict how targeted interventions affect mRNA signatures associated with high patient risk or disease processes. We find more than 80 targets to be associated with neuroblastoma risk and differentiation signatures. Selected targets are evaluated in cell lines derived from high-risk patients to demonstrate reversal of risk signatures and malignant phenotypes. Using neuroblastoma xenograft models, we establish CNR2 and MAPK8 as promising candidates for the treatment of high-risk neuroblastoma. We expect that our method, available as a public tool (targettranslator.org), will enhance and expedite the discovery of risk-associated targets for paediatric and adult cancers. We lack effective treatment for half of children with high-risk neuroblastoma. Here, the authors introduce an algorithm that can predict the effect of interventions on gene expression signatures associated with high disease processes and risk, and identify and validate promising drug targets.
Collapse
Affiliation(s)
- Elin Almstedt
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Ramy Elgendy
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Neda Hekmati
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Emil Rosén
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Caroline Wärn
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Thale Kristin Olsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Milena Doroszko
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Ida Larsson
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anders Sundström
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Marie Arsenian Henriksson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Sven Påhlman
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, SE-223 81, Lund, Sweden
| | - Daniel Bexell
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, SE-223 81, Lund, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden.,Department of Medicine, Integrated Cardio-Metabolic Centre Single Cell Facility, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Rebecka Jörnsten
- Mathematical Sciences, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Cecilia Krona
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
293
|
The role of JNK in prostate cancer progression and therapeutic strategies. Biomed Pharmacother 2020; 121:109679. [DOI: 10.1016/j.biopha.2019.109679] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/10/2019] [Accepted: 11/16/2019] [Indexed: 12/31/2022] Open
|
294
|
Zhao YY, Fu H, Liang XY, Zhang BL, Wei LL, Zhu JX, Chen MW, Zhao YF. Lipopolysaccharide inhibits GPR120 expression in macrophages via Toll-like receptor 4 and p38 MAPK activation. Cell Biol Int 2020; 44:89-97. [PMID: 31322778 DOI: 10.1002/cbin.11204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/05/2019] [Indexed: 01/24/2023]
Abstract
Free fatty acid receptor G protein-coupled receptor 120 (GPR120) is highly expressed in macrophages and was reported to inhibit lipopolysaccharide (LPS)-stimulated cytokine expression. Under inflammation, macrophages exhibit striking functional changes, but changes in GPR120 expression and signaling are not known. In this study, the effects of LPS treatment on macrophage GPR120 expression and activation were investigated. The results showed that LPS inhibited GPR120 expression in mouse macrophage cell line Ana-1 cells. Moreover, LPS treatment inhibited GPR120 expression in mouse alveolar macrophages both in vitro and in vivo. The inhibitory effect of LPS on GPR120 expression was blocked by Toll-like receptor 4 (TLR4) inhibitor TAK242 and p38 mitogen-activated protein kinase inhibitor LY222820, but not by ERK1/2 inhibitor U0126 and c-Jun N-terminal kinase inhibitor SP600125. LPS-induced inhibition of GPR120 expression was not attenuated by GPR120 agonists TUG891 and GW9508. TUG891 inhibited the phagocytosis of alveolar macrophages, and LPS treatment counteracted the effects of TUG891 on phagocytosis. These results indicate that pretreatment with LPS inhibits GPR120 expression and activation in macrophages. It is suggested that LPS-induced inhibition of GPR120 expression is a reaction enhancing the LPS-induced pro-inflammatory response of macrophages.
Collapse
Affiliation(s)
- Yan-Yan Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Hui Fu
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Xiang-Yan Liang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Bi-Lin Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Lan-Lan Wei
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Juan-Xia Zhu
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Ming-Wei Chen
- Shaanxi Provincial Research Center for Prevention and Treatment of Respiratory Diseases, Xi'an Medical University, Xi'an, 710021, China
| | - Yu-Feng Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| |
Collapse
|
295
|
Resumption of Autophagy by Ubisol-Q 10 in Presenilin-1 Mutated Fibroblasts and Transgenic AD Mice: Implications for Inhibition of Senescence and Neuroprotection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7404815. [PMID: 31934268 PMCID: PMC6942887 DOI: 10.1155/2019/7404815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/10/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia and is associated with loss of memory, amyloid-beta plaque buildup, and neurofibrillary tangles. These features might be a result of neuronal cell death in the cerebral cortex and hippocampal regions of the brain. AD pathologies can be attributed to a variety of biochemical consequences including mitochondrial dysfunction, increased oxidative stress, and autophagy inhibition. Unfortunately, current therapeutics are limited only to symptomatic relief and do not halt the progression of neurodegeneration. Previous in vitro experiments have shown that a water-soluble formulation of coenzyme-Q10, Ubisol-Q10, can stabilize the mitochondria, prevent oxidative stress, and inhibit premature senescence in fibroblasts of AD patients. Since autophagy plays a critical role in maintenance and survival of neurons, we hypothesized that Ubisol-Q10 treatment could result in resumption of autophagy. Indeed, we observed induction of autophagy by Ubisol-Q10 treatment in AD fibroblasts as well as in the brains of transgenic AD mice. We found increased expression of autophagy-related genes beclin-1 and JNK1 following Ubisol-Q10 treatment of AD fibroblasts. These results were confirmed at the protein level by immunofluorescence and Western blotting. Interestingly, despite reduction of oxidative stress in cells due to Ubisol-Q10 treatment, autophagy inhibition leads to resumption of premature senescence in these PS-1 mutated fibroblasts indicating that autophagy is critical to prevent the senescence phenotype. Withdrawal of Ubisol-Q10 treatment also leads to the return of the senescence phenotype in AD fibroblasts indicating that constant supplementation of Ubisol-Q10 is required. Additionally, Ubisol-Q10 supplementation in the drinking water of double transgenic AD mice leads to increased expression of beclin-1 and JNK1 in the cortical region. Thus, the activation of autophagy by Ubisol-Q10 could be the mechanism for its ability to halt the progression of AD pathology in transgenic AD mice shown previously.
Collapse
|
296
|
Ray S, Lach R, Heesom KJ, Valekunja UK, Encheva V, Snijders AP, Reddy AB. Phenotypic proteomic profiling identifies a landscape of targets for circadian clock-modulating compounds. Life Sci Alliance 2019; 2:2/6/e201900603. [PMID: 31792063 PMCID: PMC6892409 DOI: 10.26508/lsa.201900603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
This study provides comprehensive insights into the mechanism of action and cellular effects of circadian period–modulating compounds, which is critical for clearly defining molecular targets to modulate daily rhythms for therapeutic benefit. Determining the exact targets and mechanisms of action of drug molecules that modulate circadian rhythms is critical to develop novel compounds to treat clock-related disorders. Here, we have used phenotypic proteomic profiling (PPP) to systematically determine molecular targets of four circadian period–lengthening compounds in human cells. We demonstrate that the compounds cause similar changes in phosphorylation and activity of several proteins and kinases involved in vital pathways, including MAPK, NGF, B-cell receptor, AMP-activated protein kinases (AMPKs), and mTOR signaling. Kinome profiling further indicated inhibition of CKId, ERK1/2, CDK2/7, TNIK, and MST4 kinases as a common mechanism of action for these clock-modulating compounds. Pharmacological or genetic inhibition of several convergent kinases lengthened circadian period, establishing them as novel circadian targets. Finally, thermal stability profiling revealed binding of the compounds to clock regulatory kinases, signaling molecules, and ubiquitination proteins. Thus, phenotypic proteomic profiling defines novel clock effectors that could directly inform precise therapeutic targeting of the circadian system in humans.
Collapse
Affiliation(s)
- Sandipan Ray
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA .,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Kate J Heesom
- Proteomics Facility, University of Bristol, Bristol, UK
| | - Utham K Valekunja
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Akhilesh B Reddy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA .,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
297
|
c-Jun N terminal kinase signaling pathways mediate cannabinoid tolerance in an agonist-specific manner. Neuropharmacology 2019; 164:107847. [PMID: 31758947 DOI: 10.1016/j.neuropharm.2019.107847] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022]
Abstract
Tolerance to the antinociceptive effects of cannabinoids represents a significant limitation to their clinical use in managing chronic pain. Tolerance likely results from desensitization and down-regulation of the cannabinoid type 1 receptor (CB1R), with CB1R desensitization occurring via phosphorylation of CB1Rs by a G protein-coupled receptor kinase and subsequent association with an arrestin protein. Previous studies have shown that (1) desensitization-resistant S426A/S430A mice exhibit a modest delay in tolerance for Δ9-THC and (-)-CP55,940 but a more pronounced disruption in tolerance for WIN 55,212-2 and (2) that c-Jun N-terminal kinase (JNK) signaling may selectively mediate antinociceptive tolerance to morphine compared to other opioid analgesics. In the current study, we found that pretreatment with the JNK inhibitor SP600125 (3 mg/kg) attenuates tolerance to the antinociceptive in the formalin test and to the anti-allodynic effects of Δ9-THC (6 mg/kg) in cisplatin-evoked neuropathic pain using wild-type mice. We also find that SP600125 causes an especially robust reduction in tolerance to the antinociceptive effects of Δ9-THC (30 mg/kg), but not WIN 55,212-2 (10 mg/kg) in the tail-flick assay using S426A/S430A mice. Interestingly, SP600125 pretreatment accelerated tolerance to the antinociceptive and anti-allodynic effects of (-)-CP55,940 (0.3 mg/kg) in mice with acute and neuropathic pain. These results demonstrate that inhibition of JNK signaling pathways delay tolerance to Δ9-THC, but not to CP55,940 or WIN55,212-2, demonstrating that the mechanisms of cannabinoid tolerance are agonist-specific.
Collapse
|
298
|
Wan Z, Tang J, Ren L, Xiao Y, Liu S. Optimization Techniques to Deeply Mine the Transcriptomic Profile of the Sub-Genomes in Hybrid Fish Lineage. Front Genet 2019; 10:911. [PMID: 31737028 PMCID: PMC6833921 DOI: 10.3389/fgene.2019.00911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/29/2019] [Indexed: 11/13/2022] Open
Abstract
It has been shown that reciprocal cross allodiploid lineage with sub-genomes derived from the cross of Megalobrama amblycephala (BSB) × Culter alburnus (TC) generates the variations in phenotypes and genotypes, but it is still a challenge to deeply mine biological information in the transcriptomic profile of this lineage owing to its genomic complexity and lack of efficient data mining methods. In this paper, we establish an optimization model by non-negative matrix factorization approach for deeply mining the transcriptomic profile of the sub-genomes in hybrid fish lineage. A new so-called spectral conjugate gradient algorithm is developed to solve a sequence of large-scale subproblems such that the original complicated model can be efficiently solved. It is shown that the proposed method can provide a satisfactory result of taxonomy for the hybrid fish lineage such that their genetic characteristics are revealed, even for the samples with larger detection errors. Particularly, highly expressed shared genes are found for each class of the fish. The hybrid progeny of TC and BSB displays significant hybrid characteristics. The third generation of TC-BSB hybrid progeny (BTF3 and TBF3) shows larger trait separation.
Collapse
Affiliation(s)
- Zhong Wan
- School of Mathematics and Statistics, Central South University, Changsha, China
| | - Jiayi Tang
- School of Mathematics and Statistics, Central South University, Changsha, China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| |
Collapse
|
299
|
Bawazeer MA, Theoharides TC. IL-33 stimulates human mast cell release of CCL5 and CCL2 via MAPK and NF-κB, inhibited by methoxyluteolin. Eur J Pharmacol 2019; 865:172760. [PMID: 31669588 DOI: 10.1016/j.ejphar.2019.172760] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022]
Abstract
Mast Cells (MCs) are critical for allergic reactions but also play important roles in inflammation, following stimulation by non-allergic triggers such as cytokines. Upon stimulation, MCs secrete numerous newly synthesized mediators, but the mechanism of the release of chemokines, which are important in the pathogenesis of allergic and inflammatory diseases, remains unknown. IL-33 is an "alarmin", known to augment allergic stimulation of MCs, but its effect on the release of chemokines is not known. The present work investigated the action of IL-33 on the release of the chemokines CCL5 and CCL2 from human MCs, as well as the inhibitory effect of the flavonoid 3',4',5,7-tetramethoxyflavone (methoxyluteolin). Stimulation of cultured human MCs (LAD2) and primary MCs (hCBMCs) by IL-33 (1-100 ng/ml) increased the gene expression and the release of CCL5 (P < 0.0001) and CCL2 (P < 0.01). Stimulation with IL-33 (10 ng/ml) activated MAPK components, as shown by phosphorylation of p38α MAPK, JNK, and c-Jun using Western blot analysis. Inhibition of these responses by known inhibitors confirmed that CCL5 and CCL2 are stimulated by the activation of p38α MAPK, JNK, and IκB-α. The gene expression and the release of CCL5 and CCL2 stimulated by IL-33 were significantly inhibited by 2 h pre-treatment with methoxyluteolin (10, 50, 100 μM). The inhibition by methoxyluteolin (50 μM) was not mediated via MAPK inhibition as phosphorylated p38α MAPK and JNK expression were not affected. In conclusion, IL-33 plays an important role in chemokine release from human MCs and that is by activation of more than one signaling pathway. The inhibitory effect of methoxyluteolin may indicate that it can be developed as a novel treatment for inflammatory diseases.
Collapse
Affiliation(s)
- Mona Abubakr Bawazeer
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA; College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
300
|
Noguchi H. Regulation of c-Jun NH 2-Terminal Kinase for Islet Transplantation. J Clin Med 2019; 8:jcm8111763. [PMID: 31652814 PMCID: PMC6912371 DOI: 10.3390/jcm8111763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Islet transplantation has been demonstrated to provide superior glycemic control with reduced glucose lability and hypoglycemic events compared with standard insulin therapy. However, the insulin independence rate after islet transplantation from one donor pancreas has remained low. The low frequency of islet grafting is dependent on poor islet recovery from donors and early islet loss during the first hours following grafting. The reduction in islet mass during pancreas preservation, islet isolation, and islet transplantation leads to β-cell death by apoptosis and the prerecruitment of intracellular death signaling pathways, such as c-Jun NH2-terminal kinase (JNK), which is one of the stress groups of mitogen-activated protein kinases (MAPKs). In this review, we show some of the most recent contributions to the advancement of knowledge of the JNK pathway and several possibilities for the treatment of diabetes using JNK inhibitors.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan.
| |
Collapse
|