251
|
Abstract
The microtubule-based kinesin motors and actin-based myosin motors generate motions associated with intracellular trafficking, cell division, and muscle contraction. Early studies suggested that these molecular motors work by very different mechanisms. Recently, however, it has become clear that kinesin and myosin share a common core structure and convert energy from adenosine triphosphate into protein motion using a similar conformational change strategy. Many different types of mechanical amplifiers have evolved that operate in conjunction with the conserved core. This modular design has given rise to a remarkable diversity of kinesin and myosin motors whose motile properties are optimized for performing distinct biological functions.
Collapse
Affiliation(s)
- R D Vale
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| | | |
Collapse
|
252
|
Morimatsu M, Nakamura A, Sumiyoshi H, Sakaba N, Taniguchi H, Kohama K, Higashi-Fujime S. The molecular structure of the fastest myosin from green algae, Chara. Biochem Biophys Res Commun 2000; 270:147-52. [PMID: 10733919 DOI: 10.1006/bbrc.2000.2391] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chara myosin in green algae, Chara corallina, is the fastest myosin of all those observed so far. To shed light on the molecular mechanism of this fast sliding, we determined the primary structure of Chara myosin heavy chain (hc). It has a motor domain, six IQ motifs for calmodulin binding, a coiled-coil structure to dimerize, and a globular tail. Chara myosin hc is very similar to some plant myosins and has been predicted to belong to the class XI. Short loop 1 and loop 2 may account for the characteristics of mechanochemical properties of Chara myosin.
Collapse
Affiliation(s)
- M Morimatsu
- Department of Molecular Biology, School of Science, Nagoya University, Chikusaku, Nagoya, 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
253
|
Abstract
Ca(2+) regulation of contraction in vertebrate striated muscle is exerted primarily through effects on the thin filament, which regulate strong cross-bridge binding to actin. Structural and biochemical studies suggest that the position of tropomyosin (Tm) and troponin (Tn) on the thin filament determines the interaction of myosin with the binding sites on actin. These binding sites can be characterized as blocked (unable to bind to cross bridges), closed (able to weakly bind cross bridges), or open (able to bind cross bridges so that they subsequently isomerize to become strongly bound and release ATP hydrolysis products). Flexibility of the Tm may allow variability in actin (A) affinity for myosin along the thin filament other than through a single 7 actin:1 tropomyosin:1 troponin (A(7)TmTn) regulatory unit. Tm position on the actin filament is regulated by the occupancy of NH-terminal Ca(2+) binding sites on TnC, conformational changes resulting from Ca(2+) binding, and changes in the interactions among Tn, Tm, and actin and as well as by strong S1 binding to actin. Ca(2+) binding to TnC enhances TnC-TnI interaction, weakens TnI attachment to its binding sites on 1-2 actins of the regulatory unit, increases Tm movement over the actin surface, and exposes myosin-binding sites on actin previously blocked by Tm. Adjacent Tm are coupled in their overlap regions where Tm movement is also controlled by interactions with TnT. TnT also interacts with TnC-TnI in a Ca(2+)-dependent manner. All these interactions may vary with the different protein isoforms. The movement of Tm over the actin surface increases the "open" probability of myosin binding sites on actins so that some are in the open configuration available for myosin binding and cross-bridge isomerization to strong binding, force-producing states. In skeletal muscle, strong binding of cycling cross bridges promotes additional Tm movement. This movement effectively stabilizes Tm in the open position and allows cooperative activation of additional actins in that and possibly neighboring A(7)TmTn regulatory units. The structural and biochemical findings support the physiological observations of steady-state and transient mechanical behavior. Physiological studies suggest the following. 1) Ca(2+) binding to Tn/Tm exposes sites on actin to which myosin can bind. 2) Ca(2+) regulates the strong binding of M.ADP.P(i) to actin, which precedes the production of force (and/or shortening) and release of hydrolysis products. 3) The initial rate of force development depends mostly on the extent of Ca(2+) activation of the thin filament and myosin kinetic properties but depends little on the initial force level. 4) A small number of strongly attached cross bridges within an A(7)TmTn regulatory unit can activate the actins in one unit and perhaps those in neighboring units. This results in additional myosin binding and isomerization to strongly bound states and force production. 5) The rates of the product release steps per se (as indicated by the unloaded shortening velocity) early in shortening are largely independent of the extent of thin filament activation ([Ca(2+)]) beyond a given baseline level. However, with a greater extent of shortening, the rates depend on the activation level. 6) The cooperativity between neighboring regulatory units contributes to the activation by strong cross bridges of steady-state force but does not affect the rate of force development. 7) Strongly attached, cycling cross bridges can delay relaxation in skeletal muscle in a cooperative manner. 8) Strongly attached and cycling cross bridges can enhance Ca(2+) binding to cardiac TnC, but influence skeletal TnC to a lesser extent. 9) Different Tn subunit isoforms can modulate the cross-bridge detachment rate as shown by studies with mutant regulatory proteins in myotubes and in in vitro motility assays. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- A M Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195-7290, USA.
| | | | | |
Collapse
|
254
|
Abstract
Myosins constitute a large superfamily of actin-dependent molecular motors. Phylogenetic analysis currently places myosins into 15 classes. The conventional myosins which form filaments in muscle and non-muscle cells form class II. There has been extensive characterization of these myosins and much is known about their function. With the exception of class I and class V myosins, little is known about the structure, enzymatic properties, intracellular localization and physiology of most unconventional myosin classes. This review will focus on myosins from class IV, VI, VII, VIII, X, XI, XII, XIII, XIV and XV. In addition, the function of myosin II in non-muscle cells will also be discussed.
Collapse
Affiliation(s)
- J R Sellers
- National Heart, Lung and Blood Institute, National Institutes of Health, Building 10, Room 8N202, Bethesda, MD 20892, USA.
| |
Collapse
|
255
|
Reck-Peterson SL, Provance DW, Mooseker MS, Mercer JA. Class V myosins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1496:36-51. [PMID: 10722875 DOI: 10.1016/s0167-4889(00)00007-0] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- S L Reck-Peterson
- Cell Biology Department, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
256
|
Barylko B, Binns DD, Albanesi JP. Regulation of the enzymatic and motor activities of myosin I. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1496:23-35. [PMID: 10722874 DOI: 10.1016/s0167-4889(00)00006-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myosins I were the first unconventional myosins to be purified and they remain the best characterized. They have been implicated in various motile processes, including organelle translocation, ion channel gating and cytoskeletal reorganization but their exact cellular functions are still unclear. All members of the myosin I family, from yeast to man, have three structural domains: a catalytic head domain that binds ATP and actin; a tail domain believed to be involved in targeting the myosins to specific subcellular locations and a junction or neck domain that connects them and interacts with light chains. In this review we discuss how each of these three domains contributes to the regulation of myosin I enzymatic activity, motor activity and subcellular localization.
Collapse
Affiliation(s)
- B Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75235-9041, USA.
| | | | | |
Collapse
|
257
|
Hirayama Y, Sutoh K, Watabe S. Structure-function relationships of the two surface loops of myosin heavy chain isoforms from thermally acclimated carp. Biochem Biophys Res Commun 2000; 269:237-41. [PMID: 10694506 DOI: 10.1006/bbrc.2000.2273] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure-function relationships of fast skeletal myosin isoforms remain poorly understood. To shed some light, we constructed chimeric myosins comprised of Dictyostelium myosin heavy chain backbone with carp loop sequences and analyzed their functional properties. A loop 2-10 chimeric myosin having the loop 2 sequence of the fast skeletal isoform predominantly expressed in carp acclimated to 10 degrees C showed V(max) in actin-activated Mg(2+)-ATPase activity 1.4-fold higher than a loop 2-30 chimera constructed from the loop 2 sequence of the dominant isoform in carp acclimated to 30 degrees C. These two chimera exhibited no significant differences in sliding velocity of actin filaments in in vitro motility assay. Contrastingly, both loop 1-associated chimeras, loop 1-10 and loop 1-30, did not differ in both ATPase activity and in sliding velocity of actin filaments.
Collapse
Affiliation(s)
- Y Hirayama
- Laboratory of Aquatic Molecular Biology and Biotechnology, University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | | | | |
Collapse
|
258
|
Polosukhina K, Eden D, Chinn M, Highsmith S. CaATP as a substrate to investigate the myosin lever arm hypothesis of force generation. Biophys J 2000; 78:1474-81. [PMID: 10692332 PMCID: PMC1300745 DOI: 10.1016/s0006-3495(00)76700-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In an effort to test the lever arm model of force generation, the effects of replacing magnesium with calcium as the ATP-chelated divalent cation were determined for several myosin and actomyosin reactions. The isometric force produced by glycerinated muscle fibers when CaATP is the substrate is 20% of the value obtained with MgATP. For myosin subfragment 1 (S1), the degree of lever arm rotation, determined using transient electric birefringence to measure rates of rotational Brownian motion in solution, is not significantly changed when calcium replaces magnesium in an S1-ADP-vanadate complex. Actin activates S1 CaATPase activity, although less than it does MgATPase activity. The increase in actin affinity when S1. CaADP. P(i) is converted to S1. CaADP is somewhat greater than it is for the magnesium case. The ionic strength dependence of actin binding indicates that the change in apparent electrostatic charge at the acto-S1 interface for the S1. CaADP. P(i) to S1. CaADP step is similar to the change when magnesium is bound. In general, CaATP is an inferior substrate compared to MgATP, but all the data are consistent with force production by a lever arm mechanism for both substrates. Possible reasons for the reduced magnitude of force when CaATP is the substrate are discussed.
Collapse
Affiliation(s)
- K Polosukhina
- Department of Biochemistry, University of the Pacific, School of Dentistry, San Francisco, California 94115-2399, USA
| | | | | | | |
Collapse
|
259
|
Schwarz EC, Neuhaus EM, Kistler C, Henkel AW, Soldati T. Dictyostelium myosin IK is involved in the maintenance of cortical tension and affects motility and phagocytosis. J Cell Sci 2000; 113 ( Pt 4):621-33. [PMID: 10652255 DOI: 10.1242/jcs.113.4.621] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dictyostelium discoideum myosin Ik (MyoK) is a novel type of myosin distinguished by a remarkable architecture. MyoK is related to class I myosins but lacks a cargo-binding tail domain and carries an insertion in a surface loop suggested to modulate motor velocity. This insertion shows similarity to a secondary actin-binding site present in the tail of some class I myosins, and indeed a GST-loop construct binds actin. Probably as a consequence, binding of MyoK to actin was not only ATP- but also salt-dependent. Moreover, as both binding sites reside within its motor domain and carry potential sites of regulation, MyoK might represent a new form of actin crosslinker. MyoK was distributed in the cytoplasm with a significant enrichment in dynamic regions of the cortex. Absence of MyoK resulted in a drop of cortical tension whereas overexpression led to significantly increased tension. Absence and overexpression of MyoK dramatically affected the cortical actin cytoskeleton and resulted in reduced initial rates of phagocytosis. Cells lacking MyoK showed excessive ruffling, mostly in the form of large lamellipodia, accompanied by a thicker basal actin cortex. At early stages of development, aggregation of myoK null cells was slowed due to reduced motility. Altogether, the data indicate a distinctive role for MyoK in the maintenance and dynamics of the cell cortex.
Collapse
Affiliation(s)
- E C Schwarz
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
260
|
Abstract
The crystal structures of smooth muscle and scallop striated muscle myosin have both been completed in the past 18 months. Structural studies of unconventional myosins, in particular the stunning discovery that myosin VI moves backwards on actin, are starting to have deep impact on the field and have induced new ways of thinking about actin-based motility. Sophisticated genetic, biochemical and biophysical studies were used to test and refine hypotheses of the molecular mechanism of motility that were developed in the past. Although all these studies confirmed some aspects of these hypotheses, they also raised many new unresolved questions. Much of the evidence points to the importance of the actin-myosin binding process and an associated disorder-to-order transition.
Collapse
Affiliation(s)
- N Volkmann
- The Burnham Institute, La Jolla, 92037, USA.
| | | |
Collapse
|
261
|
Yanagida T, Kitamura K, Tanaka H, Hikikoshi Iwane A, Esaki S. Single molecule analysis of the actomyosin motor. Curr Opin Cell Biol 2000; 12:20-5. [PMID: 10679365 DOI: 10.1016/s0955-0674(99)00052-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Progress in imaging techniques and nano-manipulation of single molecules has been remarkable. These techniques have allowed the accurate determination of myosin-head-induced displacements and of how the mechanical cycles of the actomyosin motor are coupled to ATP hydrolysis. This has been achieved by measuring mechanical and chemical events of actomyosin directly at the single molecule level. Recent studies have made detailed measurements of myosin step size and mechanochemical coupling. The results of these studies suggest a new model for the mechanism of motion underlying actomyosin motors, which differs from the currently accepted lever-arm swinging model.
Collapse
Affiliation(s)
- T Yanagida
- Single Molecule Process Project, Department of Physiology I, ICORP, JST, Osaka University Medical School, Mino, Suita, 565-0871, 562-0035, Japan.
| | | | | | | | | |
Collapse
|
262
|
Ryu WS, Berry RM, Berg HC. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 2000; 403:444-7. [PMID: 10667798 DOI: 10.1038/35000233] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rotation of the bacterial flagellar motor is driven by an ensemble of torque-generating units containing the proteins MotA and MotB. Here, by inducing expression of MotA in motA- cells under conditions of low viscous load, we show that the limiting speed of the motor is independent of the number of units: at vanishing load, one unit turns the motor as rapidly as many. This result indicates that each unit may remain attached to the rotor for most of its mechanochemical cycle, that is, that it has a high duty ratio. Thus, torque generators behave more like kinesin, the protein that moves vesicles along microtubules, than myosin, the protein that powers muscle. However, their translation rates, stepping frequencies and power outputs are much higher, being greater than 30 microm s(-1), 12 kHz and 1.5 x 10(5) pN nm s(-1), respectively.
Collapse
Affiliation(s)
- W S Ryu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
263
|
Thedinga E, Karim N, Kraft T, Brenner B. A single-fiber in vitro motility assay. In vitro sliding velocity of F-actin vs. unloaded shortening velocity in skinned muscle fibers. J Muscle Res Cell Motil 1999; 20:785-96. [PMID: 10730581 DOI: 10.1023/a:1005658825375] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We describe an approach that allows us to form a micro in vitro motility assay with as little myosin as can be retrieved from a short (approximately 10 mm) segment of a single skinned skeletal muscle fiber (diameter some 100 microm). Myosin is directly extracted from the single fiber segment by a high ionic strength solution in the presence of MgATP, and the extracted myosin is immediately applied to a miniaturized flow cell that has been pretreated with BSA. The observed sliding velocities of fluorescently labeled F-actin are essentially identical with those reported in the literature. Since at the single fiber level most muscle fibers contain only a single myosin heavy chain isoform this approach allows us to determine without additional purification steps, the sliding velocity driven by myosins with different heavy chain isoforms. In addition, this approach can be used to directly correlate under identical experimental conditions unloaded shortening velocity measured in segments of skinned muscle fibers with the in vitro sliding velocity of fluorescently labeled F-actin by extraction of myosin from the same skinned fibers. Such direct correlation was performed with different myosin heavy chain isoforms as well as at different temperatures and ionic strengths. Under all conditions studied, unloaded shortening velocity was 4- to 8-fold faster than sliding velocity in the motility assay even at high temperature (22 degrees C) and ionic strengths >50 mM. This suggests that sliding velocity in the motility assay is limited by additional factors beyond those thought to limit velocity of unloaded shortening in muscle fibers. One such factor might be unspecific ionic interactions between F-actin and the substrate in the motility assay resulting in somewhat higher sensitivity for ionic strength of sliding velocity in the motility assay. This might become of special relevance when using in vitro sliding velocity in assessing functional consequences of mutations involving charged residues of actin or myosin.
Collapse
Affiliation(s)
- E Thedinga
- Department of Molecular and Cell Physiology, Medical School Hannover, Germany
| | | | | | | |
Collapse
|
264
|
Hiratsuka T. ATP-induced opposite changes in the local environments around Cys(697) (SH2) and Cys(707) (SH1) of the myosin motor domain revealed by the prodan fluorescence. J Biol Chem 1999; 274:29156-63. [PMID: 10506171 DOI: 10.1074/jbc.274.41.29156] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To obtain a consistent view of the nucleotide-induced conformational changes around Cys(697) (SH2) and Cys(707) (SH1) in skeletal myosin subfragment-1 (S-1), the two thiols were labeled with the same environmentally sensitive fluorophore, 6-acyl-2-dimethylaminonaphthalene group, using 6-acryloyl-2-dimethylaminonaphthalene (acrylodan, AD) and 6-bromoacetyl-2-dimethylaminonaphthalene (BD), respectively. The resultant fluorescent derivatives, AD-S-1 and BD-S-1, have the same fluorophore at either SH2 or SH1, which was verified by inspections of changes in the ATPases and the localization of fluorescence after tryptic digestion and CNBr cleavage for the two derivatives. Especially, AD was found to be a very useful fluorescent reagent that readily reacts with only SH2 of S-1. Measurements of the nucleotide-induced changes in fluorescence emission spectra of AD-S-1 and BD-S-1 suggested that during ATP hydrolysis the environment around the fluorophore at SH2 is very distinct from that around the fluorophore at SH1, being defined as that the former has the hydrophobic and closed characteristics, whereas the latter has the hydrophilic and open ones. The KI quenching study of the fluorescence of the two S-1 derivatives confirmed these results. The most straightforward interpretation for the present results is that during ATP hydrolysis, the helix containing SH2 is buried in hydrophobic side chains and rather reinforced, whereas the adjacent helix containing SH1 moves away from its stabilizing tertiary structural environment.
Collapse
Affiliation(s)
- T Hiratsuka
- Department of Chemistry, Asahikawa Medical College, Asahikawa, Hokkaido 078-8510, Japan.
| |
Collapse
|
265
|
Corrie JE, Brandmeier BD, Ferguson RE, Trentham DR, Kendrick-Jones J, Hopkins SC, van der Heide UA, Goldman YE, Sabido-David C, Dale RE, Criddle S, Irving M. Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature 1999; 400:425-30. [PMID: 10440371 DOI: 10.1038/22704] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A new method is described for measuring motions of protein domains in their native environment on the physiological timescale. Pairs of cysteines are introduced into the domain at sites chosen from its static structure and are crosslinked by a bifunctional rhodamine. Domain orientation in a reconstituted macromolecular complex is determined by combining fluorescence polarization data from a small number of such labelled cysteine pairs. This approach bridges the gap between in vitro studies of protein structure and cellular studies of protein function and is used here to measure the tilt and twist of the myosin light-chain domain with respect to actin filaments in single muscle cells. The results reveal the structural basis for the lever-arm action of the light-chain domain of the myosin motor during force generation in muscle.
Collapse
Affiliation(s)
- J E Corrie
- National Institute for Medical Research, Mill Hill, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Soldati T, Geissler H, Schwarz EC. How many is enough? Exploring the myosin repertoire in the model eukaryote Dictyostelium discoideum. Cell Biochem Biophys 1999; 30:389-411. [PMID: 10403058 DOI: 10.1007/bf02738121] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The cytoplasm of eukaryotic cells is a very complex milieu and unraveling how its unique cytoarchitecture is achieved and maintained is a central theme in modern cell biology. It is crucial to understand how organelles and macro-complexes of RNA and/or proteins are transported to and/or maintained at their specific cellular locations. The importance of filamentous-actin-directed myosin-powered cargo transport was only recently realized, and after an initial explosion in the identification of new molecules, the field is now concentrating on their functional dissection. Direct connections of myosins to a variety of cellular tasks are now slowly emerging, such as in cytokinesis, phagocytosis, endocytosis, polarized secretion and exocytosis, axonal transport, etc. Unconventional myosins have been identified in a wide variety of organisms, making the presence of actin and myosins a hallmark of eukaryotism. The genome of S. cerevisiae encodes only five myosins, whereas a mammalian cell has the capacity to express between two and three dozen myosins. Why is it so crucial to arrive at this final census? The main questions that we would like to discuss are the following. How many distinct myosin-powered functions are carried out in a typical higher eukaryote? Or, in other words, what is the minimal set of myosins essential to accomplish the multitude of tasks related to motility and intracellular dynamics in a multicellular organism? And also, as a corollary, what is the degree of functional redundancy inside a given myosin class? In that respect, the choice of a model organism suitable for such an investigation is more crucial than ever. Here we argue that Dictyostelium discoideum is affirming its position as an ideal system of intermediate complexity to study myosin-powered trafficking and is or will soon become the second eukaryote for which complete knowledge of the whole repertoire of myosins is available.
Collapse
Affiliation(s)
- T Soldati
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | | | | |
Collapse
|
267
|
Weiss A, Schiaffino S, Leinwand LA. Comparative sequence analysis of the complete human sarcomeric myosin heavy chain family: implications for functional diversity. J Mol Biol 1999; 290:61-75. [PMID: 10388558 DOI: 10.1006/jmbi.1999.2865] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The conventional myosin motor proteins that drive mammalian skeletal and cardiac muscle contraction include eight sarcomeric myosin heavy chain (MyHC) isoforms. Six skeletal MyHCs are encoded by genes found in tightly linked clusters on human and mouse chromosomes 17 and 11, respectively. The full coding regions of only two out of six mammalian skeletal MyHCs had been sequenced prior to this work. In an effort to assess the extent of sequence diversity within the human MyHC family we present new full-length coding sequences corresponding to four additional human genes: MyHC-IIb, MyHC-extraocular, MyHC-IIa and MyHC-IIx/d. This represents the first opportunity to compare the full coding sequences of all eight sarcomeric MyHC isoforms within a vertebrate organism. Sequence variability has been analyzed in the context of available structure/function data with an emphasis on potential functional diversity within the family. Results indicate that functional diversity among MyHCs is likely to be accomplished by having small pockets of sequence diversity in an otherwise highly conserved molecule.
Collapse
Affiliation(s)
- A Weiss
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, 10461, USA
| | | | | |
Collapse
|
268
|
Dantzig JA, Barsotti RJ, Manz S, Sweeney HL, Goldman YE. The ADP release step of the smooth muscle cross-bridge cycle is not directly associated with force generation. Biophys J 1999; 77:386-97. [PMID: 10388765 PMCID: PMC1300337 DOI: 10.1016/s0006-3495(99)76897-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
When smooth muscle myosin subfragment 1 (S1) is bound to actin filaments in vitro, the light chain domain tilts upon release of MgADP, producing a approximately 3.5-nm axial motion of the head-rod junction (Whittaker et al., 1995. Nature. 378:748-751). If this motion contributes significantly to the power stroke, rigor tension of smooth muscle should decrease substantially in response to cross-bridge binding of MgADP. To test this prediction, we monitored mechanical properties of permeabilized strips of chicken gizzard muscle in rigor and in the presence of MgADP. For comparison, we also tested psoas and soleus muscle fibers. Any residual bound ADP was minimized by incubation in Mg2+-free rigor solution containing 15 mM EDTA. The addition of 2 mM MgADP, while keeping ionic strength and free Mg2+ concentration constant, resulted in a slight increase in rigor tension in both gizzard and soleus muscles, but a decrease in psoas muscle. In-phase stiffness monitored during small (<0.1%) 500-Hz sinusoidal length oscillations decreased in all three muscle types when MgADP was added. The changes in force and stiffness with the addition of MgADP were similar at ionic strengths from 50 to 200 mM and were reversible. The results with gizzard muscle were similar after thiophosphorylation of the regulatory light chain of myosin. These results suggest that the axial motion of smooth muscle S1 bound to actin, upon dissociation of MgADP, is not associated with force generation. The difference between the present mechanical data and previous structural studies of smooth S1 may be explained if geometrical constraints of the intact contractile filament array alter the motions of the myosin heads.
Collapse
Affiliation(s)
- J A Dantzig
- Department of Physiology and Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6083, USA
| | | | | | | | | |
Collapse
|
269
|
Welikson RE, Buck SH, Patel JR, Moss RL, Vikstrom KL, Factor SM, Miyata S, Weinberger HD, Leinwand LA. Cardiac myosin heavy chains lacking the light chain binding domain cause hypertrophic cardiomyopathy in mice. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H2148-58. [PMID: 10362699 DOI: 10.1152/ajpheart.1999.276.6.h2148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myosin is a chemomechanical motor that converts chemical energy into the mechanical work of muscle contraction. More than 40 missense mutations in the cardiac myosin heavy chain (MHC) gene and several mutations in the two myosin light chains cause a dominantly inherited heart disease called familial hypertrophic cardiomyopathy. Very little is known about the biochemical defects in these alleles and how the mutations lead to disease. Because removal of the light chain binding domain in the lever arm of MHC should alter myosin's force transmission but not its catalytic function, we tested the hypothesis that such a mutant MHC would act as a dominant mutation in cardiac muscle. Hearts from transgenic mice expressing this mutant myosin are asymmetrically hypertrophied, with increases in mass primarily restricted to the cardiac anterior wall. Histological examination demonstrates marked cellular hypertrophy, myocyte disorganization, small vessel coronary disease, and severe valvular pathology that included thickening and plaque formation. Skinned myocytes and multicellular preparations from transgenic hearts exhibited decreased Ca2+ sensitivity of tension and decreased relaxation rates after flash photolysis of diazo 2. These experiments demonstrate that alterations in myosin force transmission are sufficient to trigger the development of hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- R E Welikson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Gunst SJ. Applicability of the sliding filament/crossbridge paradigm to smooth muscle. Rev Physiol Biochem Pharmacol 1999; 134:7-61. [PMID: 10087907 DOI: 10.1007/3-540-64753-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- S J Gunst
- Indiana University School of Medicine, USA
| |
Collapse
|
271
|
Duke TA. Molecular model of muscle contraction. Proc Natl Acad Sci U S A 1999; 96:2770-5. [PMID: 10077586 PMCID: PMC15844 DOI: 10.1073/pnas.96.6.2770] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/1998] [Accepted: 01/07/1999] [Indexed: 11/18/2022] Open
Abstract
A quantitative stochastic model of the mechanochemical cycle of myosin, the protein that drives muscle contraction, is proposed. It is based on three premises: (i) the myosin head incorporates a lever arm, whose equilibrium position adjusts as each of the products of ATP hydrolysis dissociates from the nucleotide pocket; (ii) the chemical reaction rates are modified according to the work done in moving the arm; and (iii) the compliance of myosin's elastic element is designed to permit many molecules to work together efficiently. The model has a minimal number of parameters and provides an explanation, at the molecular level, of many of the mechanical and thermodynamic properties of steadily shortening muscle. In particular, the inflexion in the force-velocity curve at a force approaching the isometric load is reproduced. Moreover, the model indicates that when large numbers of myosin molecules act collectively, their chemical cycles can be synchronized, and that this leads to stepwise motion of the thin filament. The oscillatory transient response of muscle to abrupt changes of load is interpreted in this light.
Collapse
Affiliation(s)
- T A Duke
- Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom.
| |
Collapse
|
272
|
Vemuri R, Lankford EB, Poetter K, Hassanzadeh S, Takeda K, Yu ZX, Ferrans VJ, Epstein ND. The stretch-activation response may be critical to the proper functioning of the mammalian heart. Proc Natl Acad Sci U S A 1999; 96:1048-53. [PMID: 9927691 PMCID: PMC15348 DOI: 10.1073/pnas.96.3.1048] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/1998] [Indexed: 11/18/2022] Open
Abstract
The "stretch-activation" response is essential to the generation of the oscillatory power required for the beating of insect wings. It has been conjectured but not previously shown that a stretch-activation response contributes to the performance of a beating heart. Here, we generated transgenic mice that express a human mutant myosin essential light chain derived from a family with an inherited cardiac hypertrophy. These mice faithfully replicate the cardiac disease of the patients with this mutant allele. They provide the opportunity to study the stretch-activation response before the hearts are distorted by the hypertrophic process. Studies disclose a mismatch between the physiologic heart rate and resonant frequency of the cardiac papillary muscles expressing the mutant essential light chain. This discordance reduces oscillatory power at frequencies that correspond to physiologic heart-rates and is followed by subsequent hypertrophy. It appears, therefore, that the stretch-activation response, first described in insect flight muscle, may play a role in the mammalian heart, and its further study may suggest a new way to modulate human cardiac function.
Collapse
Affiliation(s)
- R Vemuri
- Cardiology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1650, USA
| | | | | | | | | | | | | | | |
Collapse
|
273
|
Bobkova EA, Bobkov AA, Levitsky DI, Reisler E. Effects of SH1 and SH2 modifications on myosin: similarities and differences. Biophys J 1999; 76:1001-7. [PMID: 9916031 PMCID: PMC1300049 DOI: 10.1016/s0006-3495(99)77264-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The properties of myosin modified at the SH2 group (Cys-697) were studied and compared with the previously reported properties of myosin modified at the SH1 group (Cys-707). 4-[N-[(iodoacetoxy)ethyl]-N methylamino]-7-nitrobenz-2-oxa-1, 3-diazole (IANBD) was used for selective modification of the SH2 group on myosin. SH2-labeled heavy meromyosin (SH2-HMM), similar to SH1-labeled HMM (SH1-HMM), did not propel actin filaments in the in vitro motility assays. SH1- and SH2-HMM produced similar amounts of load in the mixtures with unmodified HMM; the sliding speed of actin filaments gradually decreased with an increase in the fraction of either one of the modified HMMs in the mixture. In analogy to SH1-labeled myosin subfragment 1 (SH1-S1), SH2-labeled S1 (SH2-S1) activated regulated actin in the in vitro motility assays. SH2 modification inhibited Mg-ATPase of S1 and its activation by actin. The weak binding of S1 to actin was unaffected whereas the strong binding was weakened by SH2 modification. Overall, our results demonstrate similar behavior of SH1- and SH2-modified myosin heads in the in vitro motility assays despite some differences in their enzymatic properties. The effects of these modifications are ascribed to the location of the SH1-SH2 helix relative to other functional centers of S1.
Collapse
Affiliation(s)
- E A Bobkova
- Department of Chemistry and Biochemistry and Molecular Biology Institute, School of Medicine, University of California, Los Angeles, Los Angeles, California 90095 USA.
| | | | | | | |
Collapse
|
274
|
Katayama E, Ohmori G, Baba N. Three-dimensional image analysis of myosin head in function as captured by quick-freeze deep-etch replica electron microscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 453:37-45. [PMID: 9889812 DOI: 10.1007/978-1-4684-6039-1_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Quick-freeze deep-etch replica electron microscopy combined with mica-flake technique provides high contrast, high time- and spatial-resolution images of protein molecules in solution, whose three-dimensional structure is well preserved. Thus, it might be quite useful to obtain structural information of individual functioning molecules, such as myosin crossbridges under in vitro motility assay conditions. With that method, we could actually show that both heads of heavy meromyosin (HMM) crossbridges are mostly straight and bound to actin filaments with about 45 degree tilt-angle under rigor conditions, whereas they attached to actin through only one head with a wide variety of angles under in vitro sliding conditions. We also demonstrated that free HMM heads are strongly kinked in the presence of ATP or ADP/inorganic vanadate (Vi) in contrast to almost straight configuration in the absence of nucleotide. To examine more detailed structure of individual crossbridges, we tried to reconstruct the three-dimensional architecture of intramolecular subdomains of single HMM molecule. We took a series of tilted images of single HMM-ADP/Vi particle and successfully obtained its 3-D image by filtered back-projection, even with restricted range of tilt-angles. By comparison of the reconstruction with the atomic model of subfragment-1 (S1) without nucleotide, we found some great structural difference, which partly might be attributable to the conformational change by nucleotide binding.
Collapse
Affiliation(s)
- E Katayama
- Department of Fine Morphology, University of Tokyo, Japan
| | | | | |
Collapse
|
275
|
Fujita H, Sugiura S, Momomura S, Sugi H, Sutoh K. Functional characterization of Dictyostelium discoideum mutant myosins equivalent to human familial hypertrophic cardiomyopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 453:131-7. [PMID: 9889823 DOI: 10.1007/978-1-4684-6039-1_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Familial hypertrophic cardiomyopathy (FHC) is caused by missence mutations in beta-myosin heavy chain or other various sarcomeric proteins. To elucidate the functional impact of FHC mutations in myosin heavy chain, we generated Dictyostelium discoideum myosin II mutants equivalent to human FHC mutations by site-directed mutagenesis, and characterized their molecular-basis motor function. The current mutants, i.e. R397Q, F506C, G575R, A699R, K703Q and K703W are equivalent to R403Q, F513C, G584R, G716R, R719Q and R719W FHC mutants respectively. We measured the molecular-basis force and the sliding velocity generated by these myosin mutants. The measurement revealed that the A699R, K703Q and K703W myosins exhibited the lowest level of force with their preserved actin-activated MgATPase activity. F506C mutant showed the least impairment of the motile and enzymatic activities. The motor function of R397Q and G575R myosins were classified as intermediate. These results suggest that ELC binding domain might be important for force production.
Collapse
Affiliation(s)
- H Fujita
- Second Department of Internal Medicine, University of Tokyo, Japan.
| | | | | | | | | |
Collapse
|
276
|
Soldati T, Schwarz EC, Geissler H. Unconventional myosins at the crossroad of signal transduction and cytoskeleton remodeling. PROTOPLASMA 1999; 209:28-37. [PMID: 18987792 DOI: 10.1007/bf01415698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/1998] [Accepted: 12/09/1998] [Indexed: 05/27/2023]
Abstract
The cytoplasm of eukaryotic cells is a complex milieu and unraveling how its unique cytoarchitecture is achieved and maintained is a central theme in modern cell biology. The actin cytoskeleton is essential for the maintenance of cell shape and locomotion, and also provides tracks for active intracellular transport. Myosins, the actin-dependent motor proteins form a superfamily of at least 15 structural classes and have been identified in a wide variety of organisms, making the presence of actin and myosins a hallmark feature of eukaryotes. Direct connections of myosins to a variety of cellular tasks are now emerging, such as in cytokinesis, phagocytosis, endocytosis, polarized secretion and exocytosis, axonal transport. Recent studies reveal that myosins also play an essential role in many aspects of signal transduction and neurosensation.
Collapse
Affiliation(s)
- T Soldati
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
277
|
Liu X, Ito K, Morimoto S, Hikkoshi-Iwane A, Yanagida T, Uyeda TQ. Filament structure as an essential factor for regulation of Dictyostelium myosin by regulatory light chain phosphorylation. Proc Natl Acad Sci U S A 1998; 95:14124-9. [PMID: 9826664 PMCID: PMC24337 DOI: 10.1073/pnas.95.24.14124] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphorylation of the regulatory light chain (RLC) activates the actin-dependent ATPase activity of Dictyostelium myosin II. To elucidate this regulatory mechanism, we characterized two mutant myosins, MyDeltaC1225 and MyDeltaC1528, which are truncated at Ala-1224 and Ser-1527, respectively. These mutant myosins do not contain the C-terminal assembly domain and thus are unable to form filaments. Their activities were only weakly regulated by RLC phosphorylation, suggesting that, unlike smooth muscle myosin, efficient regulation of Dictyostelium myosin II requires filament assembly. Consistent with this hypothesis, wild-type myosin progressively lost the regulation as its concentration in the assay mixture was decreased. Dephosphorylated RLC did not inhibit the activity when the concentration of myosin in the reaction mixture was very low. Furthermore, 3xAsp myosin, which does not assemble efficiently due to point mutations in the tail, also was less well regulated than the wild-type. We conclude that the activity in the monomer state is exempt from inhibition by the dephosphorylated RLC and that the complete regulatory switch is formed only in the filament structure. Interestingly, a chimeric myosin composed of Dictyostelium heavy meromyosin fused to chicken skeletal light meromyosin was not well regulated by RLC phosphorylation. This suggests that, in addition to filament assembly, some specific feature of the filament structure is required for efficient regulation.
Collapse
Affiliation(s)
- X Liu
- Biomolecular Research Group, National Institute for Advanced Interdisciplinary Research, Higashi 1-1-4 Tsukuba, Ibaraki 305-8562, Japan
| | | | | | | | | | | |
Collapse
|
278
|
Abstract
To probe for a lever arm action in the kinesin stepping mechanism, we engineered a rodlike extension piece into the tail of rat kinesin at various points close to the head-tail junction and measured its effects on the temperature dependence of velocity in microtubule gliding assays. The insert comprised two contiguous alpha-actinin triple-coil repeats and was predicted to fold into a stiff rodlike module about 11 nm long. The effects of this module were greater the closer it was placed to the head-tail junction. When inserted distal to the head-tail junction, at Asn401 in the dimeric K partial differential401GST, the insert had no effect. When inserted closer to the heads at Val376 into K partial differential376GST, the insert slowed progress below 22 degreesC but accelerated progress to approximately 125% of wild type above 22 degreesC. The most dramatic effect of the synthetic lever occurred when it was inserted very close to the head-neck junction, at Glu340 into the single-headed construct K partial differential340GST. This construct was immotile without the insert, but motile with it, at about 30% of the velocity of the dimeric control. The alpha-actinin module thus confers some gain-of-function when inserted close to the head-neck junction but not when placed distal to it. The data exclude the presence of a lever arm C-terminal to Val376 in the kinesin tail but suggest that a short-throw lever arm may be present, N-terminal to Val376 and contiguous with the head-neck junction at Ala339.
Collapse
Affiliation(s)
- M Mazumdar
- Molecular Motors Group, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, United Kingdom
| | | |
Collapse
|
279
|
Liang W, Spudich JA. Nucleotide-dependent conformational change near the fulcrum region in Dictyostelium myosin II. Proc Natl Acad Sci U S A 1998; 95:12844-7. [PMID: 9789002 PMCID: PMC23624 DOI: 10.1073/pnas.95.22.12844] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In skeletal muscle myosin, the reactive thiols (SH1 and SH2) are close to a proposed fulcrum region that is thought to undergo a large conformational change. The reactive thiol region is thought to transmit the conformational changes induced by the actin-myosin-ATP interactions to the lever arm, which amplifies the power stroke. In skeletal muscle myosin, SH1 and SH2 can be chemically cross-linked in the presence of nucleotide, trapping the nucleotide in its pocket. Although the flexibility of the reactive thiol region has been well studied in skeletal muscle myosin, crystal structures of truncated nonmuscle myosin II from Dictyostelium in the presence of various ATP analogs do not show changes at the reactive thiol region that would be consistent with the SH1-SH2 cross-linking observed for muscle myosin. To examine the dynamics of the reactive thiol region in Dictyostelium myosin II, we have examined a modified myosin II that has cysteines at the muscle myosin SH1 and SH2 positions. This myosin is specifically cross-linked at SH1-SH2 by a chemical cross-linker in the presence of ADP, but not in its absence. Furthermore, the cross-linked species traps the nucleotide, as in the case of muscle myosin. Thus, the Dictyostelium myosin II shares the same dynamic behavior in the fulcrum region of the molecule as the skeletal muscle myosin. This result emphasizes the importance of nucleotide-dependent changes in this part of the molecule.
Collapse
Affiliation(s)
- W Liang
- Department of Biochemistry and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
280
|
Rovner AS. A long, weakly charged actin-binding loop is required for phosphorylation-dependent regulation of smooth muscle myosin. J Biol Chem 1998; 273:27939-44. [PMID: 9774407 DOI: 10.1074/jbc.273.43.27939] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chimeric substitution of the weak actin-binding loop (ABL) from chicken skeletal muscle myosin for that of gizzard smooth muscle heavy meromyosin (HMM) causes activation of the dephosphorylated mutant (SABL HMM; Rovner, A. S., Freyzon, Y., and Trybus, K. M. (1995) J. Biol. Chem. 270, 30260-30263). The present study determined whether this loss of regulation is due to the greater positive charge density (5 versus 3 clustered lysine residues) or lesser length (14 versus 26 residues) of the mutant ABL. Charge augmentation had little effect on regulation of expressed mutants, but elimination of the 12 N-terminal amino acids from the wild-type ABL significantly increased actin-activated ATPase activity of the dephosphorylated relative to the phosphorylated molecule while conferring the ability to move actin filaments in vitro on the former. Addition of the same 12 residues to the SABL mutant increased the ratio of phosphorylated to dephosphorylated ATPase activity while imparting wild type-like regulation to motility. However, full actin activation of dephosphorylated ATPase activity required both the shorter length and greater positive charge density found in the SABL loop. These results demonstrate that, compared with skeletal, both the greater length and lesser positive charge density of the smooth muscle myosin ABL are required for proper phosphorylation-mediated regulation of the molecule.
Collapse
Affiliation(s)
- A S Rovner
- Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington, Vermont 05405-0068, USA.
| |
Collapse
|
281
|
Khromov AS, Somlyo AV, Somlyo AP. Thiophosphorylation of myosin light chain increases rigor stiffness of rabbit smooth muscle. J Physiol 1998; 512 ( Pt 2):345-50. [PMID: 9763625 PMCID: PMC2231214 DOI: 10.1111/j.1469-7793.1998.345be.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/1998] [Accepted: 08/20/1998] [Indexed: 11/29/2022] Open
Abstract
1. The effect of thiophosphorylation of the regulatory myosin light chain (MLC20) on rigor stiffness was determined in permeabilized rabbit bladder smooth muscle. 2. Rigor stiffness of alpha-toxin-permeabilized smooth muscle was significantly increased by thiophosphorylation of MLC20. This increase may have been due to partial shortening (melting) in the proximal rod region and/or stiffening of the regulatory domain of the myosin head. 3. We suggest that phosphorylation of MLC20, by increasing the stiffness of the S1 lever arm and/or S2 hinge regions of the myosin molecule, favours separation of the two phosphorylated heads and consequent deinhibition of motor domain activity.
Collapse
Affiliation(s)
- A S Khromov
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, PO Box 10011, Charlottesville, VA 22906-0011, USA
| | | | | |
Collapse
|
282
|
Osherov N, Yamashita RA, Chung YS, May GS. Structural requirements for in vivo myosin I function in Aspergillus nidulans. J Biol Chem 1998; 273:27017-25. [PMID: 9756952 DOI: 10.1074/jbc.273.41.27017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the minimal requirements of the tail region for myosin I function in vivo using the filamentous fungus Aspergillus nidulans. The CL3 strain (McGoldrick, C. A., Gruver, C., and May, G. S. (1995) J. Cell Biol. 128, 577-587) was transformed with a variety of myoA constructs containing mutations in the IQ, TH-1-like, SH3, and proline-rich domains by frameshift or in-frame deletions of the tail domains. The resulting strains contained wild type myoA driven by the alcA promoter and a mutant myoA driven by its endogenous promoter. This strategy allowed for selective expression of the wild type and/or mutant form of MYOA by the choice of growth medium. Proper septation and hyphal branching were found to be dependent on the interaction of the IQ motifs with calmodulin, as well as, the presence of its proline-rich domain. Additionally, a single proline-rich motif was sufficient for nearly wild type MYOA function. Most surprisingly, the SH3 domain was not essential for MYOA function. These studies expand our previous knowledge of the function of MYOA to include roles in hyphal morphogenesis, septal wall formation, and cell polarity, laying the groundwork for more detailed investigations on the function of the various tail domains in MYOA.
Collapse
Affiliation(s)
- N Osherov
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
283
|
Xu J, Root DD. Domain motion between the regulatory light chain and the nucleotide site in skeletal myosin. J Struct Biol 1998; 123:150-61. [PMID: 9843669 DOI: 10.1006/jsbi.1998.4023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resonance energy transfer probes were attached to skeletal myosin's nucleotide site and regulatory light chain (RLC) to examine nucleotide analog-induced structural transitions. A novel chemical modification of the RLC was developed for specific labeling of the basic N-terminus without affecting myosin ATPase activity. The modification allows attachment of a terbium chelate to rabbit skeletal RLC and was mapped by tryptic digestion to an amino group on the six N-terminal RLC residues. The use of terbium as a resonance energy transfer donor allowed the determination of the efficiency of energy transfer by sensitized emission lifetime measurements that practically eliminate background from unlabeled donor and acceptor sites as well as potential orientation factor artifacts in the calculation of the critical transfer distance. The nucleotide site was labeled with a functional CY3-labeled nucleotide as an energy transfer acceptor. Of the nucleotide states examined, ADP, ADP. vanadate, ADP. A1F4, and ADP. BeFx, the difference between the ADP and ADP. vanadate states was greatest (0.4-nm change), but was not considered to be statistically significant. The binding of actin to ADP-myosin also failed to produce a statistically significant change (0.3-nm change). These results are not consistent with a number of versions of the swinging lever arm hypothesis.
Collapse
Affiliation(s)
- J Xu
- Division of Biochemistry, University of North Texas, Denton, Texas, 76203, USA
| | | |
Collapse
|
284
|
Abstract
The kinesin motor protein family members move along microtubules with characteristic polarity. Chimeric motors containing the stalk and neck of the minus-end-directed motor, Ncd, fused to the motor domain of plus-end-directed kinesin were analyzed. The Ncd stalk and neck reversed kinesin motor polarity, but mutation of the Ncd neck reverted the chimeric motor to plus-end movement. Thus, residues or regions contributing to motor polarity must be present in both the Ncd neck and the kinesin motor core. The neck-motor junction was critical for Ncd minus-end movement; attachment of the neck to the stalk may also play a role.
Collapse
Affiliation(s)
- S A Endow
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
285
|
Stevens RC, Davis TN. Mlc1p is a light chain for the unconventional myosin Myo2p in Saccharomyces cerevisiae. J Cell Biol 1998; 142:711-22. [PMID: 9700160 PMCID: PMC2148162 DOI: 10.1083/jcb.142.3.711] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/1997] [Revised: 06/15/1998] [Indexed: 02/08/2023] Open
Abstract
In Saccharomyces cerevisiae, the unconventional myosin Myo2p is of fundamental importance in polarized growth. We explore the role of the neck region and its associated light chains in regulating Myo2p function. Surprisingly, we find that precise deletion of the six IQ sites in the neck region results in a myosin, Myo2-Delta6IQp, that can support the growth of a yeast strain at 90% the rate of a wild-type isogenic strain. We exploit this mutant in a characterization of the light chains of Myo2p. First, we demonstrate that the localization of calmodulin to sites of polarized growth largely depends on the IQ sites in the neck of Myo2p. Second, we demonstrate that a previously uncharacterized protein, Mlc1p, is a myosin light chain of Myo2p. MLC1 (YGL106w) is an essential gene that exhibits haploinsufficiency. Reduced levels of MYO2 overcome the haploinsufficiency of MLC1. The mutant MYO2-Delta6IQ is able to suppress haploinsufficiency but not deletion of MLC1. We used a modified gel overlay assay to demonstrate a direct interaction between Mlc1p and the neck of Myo2p. Overexpression of MYO2 is toxic, causing a severe decrease in growth rate. When MYO2 is overexpressed, Myo2p is fourfold less stable than in a wild-type strain. High copies of MLC1 completely overcome the growth defects and increase the stability of Myo2p. Our results suggest that Mlc1p is responsible for stabilizing this myosin by binding to the neck region.
Collapse
Affiliation(s)
- R C Stevens
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA
| | | |
Collapse
|
286
|
Sabido-David C, Hopkins SC, Saraswat LD, Lowey S, Goldman YE, Irving M. Orientation changes of fluorescent probes at five sites on the myosin regulatory light chain during contraction of single skeletal muscle fibres. J Mol Biol 1998; 279:387-402. [PMID: 9642045 DOI: 10.1006/jmbi.1998.1771] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in the orientation of the myosin regulatory light chain (RLC) in single muscle fibres were measured using polarised fluorescence from acetamidotetramethylrhodamine (ATR). Mutants of chicken skeletal RLC containing single cysteine residues at positions 2, 73, 94, 126 and 155 were labelled with either the 5 or 6-isomer of iodo-ATR, giving ten different probes. The labelled RLCs were exchanged into demembranated fibres from rabbit psoas muscle without significant effect on active force generation. Fluorescence polarisation measurements showed that nine out of the ten probe dipoles were more perpendicular to the fibre axis in the absence of ATP (in rigor) than in either relaxation or active contraction. The orientational distribution of the RLC region of the myosin head in active contraction is closer to the relaxed than to the rigor orientation, and is not equivalent to a linear combination of the relaxed and rigor orientations. Rapid length steps were applied to the fibres to synchronise the motions of myosin heads attached to actin. In active contraction the fluorescence polarisation changed both during the step, indicating elastic distortion of the RLC region of the myosin head, and during the subsequent rapid force recovery that is thought to signal the working stroke. The peak change in fluorescence polarisation produced by an active release of 5 nm per half sarcomere indicates an axial tilt of less than 5 degrees for all ten probes, if all the myosin heads in the fibre respond to the length step. This tilting was towards the rigor orientation for all ten probes, and could be explained by 14% of the heads moving to the rigor orientation. An active stretch tilted the heads away from the rigor conformation by a similar extent.
Collapse
|
287
|
Hopkins SC, Sabido-David C, Corrie JE, Irving M, Goldman YE. Fluorescence polarization transients from rhodamine isomers on the myosin regulatory light chain in skeletal muscle fibers. Biophys J 1998; 74:3093-110. [PMID: 9635763 PMCID: PMC1299650 DOI: 10.1016/s0006-3495(98)78016-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Fluorescence polarization was used to examine orientation changes of two rhodamine probes bound to myosin heads in skeletal muscle fibers. Chicken gizzard myosin regulatory light chain (RLC) was labeled at Cys108 with either the 5- or the 6-isomer of iodoacetamidotetramethylrhodamine (IATR). Labeled RLC (termed Cys108-5 or Cys108-6) was exchanged for the endogenous RLC in single, skinned fibers from rabbit psoas muscle. Three independent fluorescence polarization ratios were used to determine the static angular distribution of the probe dipoles with respect to the fiber axis and the extent of probe motions on the nanosecond time scale of the fluorescence lifetime. We used step changes in fiber length to partially synchronize the transitions between biochemical, structural, and mechanical states of the myosin cross-bridges. Releases during active contraction tilted the Cys108-6 dipoles away from the fiber axis. This response saturated for releases beyond 3 nm/half-sarcomere (h.s.). Stretches in active contraction caused the dipoles to tilt toward the fiber axis, with no evidence of saturation for stretches up to 7 nm/h.s. These nonlinearities of the response to length changes are consistent with a partition of approximately 90% of the probes that did not tilt when length changes were applied and 10% of the probes that tilted. The responding fraction tilted approximately 30 degrees for a 7.5 nm/h.s. release and traversed the plane perpendicular to the fiber axis for larger releases. Stretches in rigor tilted Cys108-6 dipoles away from the fiber axis, which was the opposite of the response in active contraction. The transition from the rigor-type to the active-type response to stretch preceded the main force development when fibers were activated from rigor by photolysis of caged ATP in the presence of Ca2+. Polarization ratios for Cys108-6 in low ionic strength (20 mM) relaxing solution were compatible with a combination of the relaxed (200 mM ionic strength) and rigor intensities, but the response to length changes was of the active type. The nanosecond motions of the Cys108-6 dipole were restricted to a cone of approximately 20 degrees half-angle, and those of Cys108-5 dipole to a cone of approximately 25 degrees half-angle. These values changed little between relaxation, active contraction, and rigor. Cys108-5 showed very small-amplitude tilting toward the fiber axis for both stretches and releases in active contraction, but much larger amplitude tilting in rigor. The marked differences in these responses to length steps between the two probe isomers and between active contraction and rigor suggest that the RLC undergoes a large angle change (approximately 60 degrees) between these two states. This motion is likely to be a combination of tilting of the RLC relative to the fiber axis and twisting of the RLC about its own axis.
Collapse
Affiliation(s)
- S C Hopkins
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia 19104-6083, USA
| | | | | | | | | |
Collapse
|
288
|
Abstract
Myosin is thought to generate force by a rotation between the relative orientations of two domains. Direct measurements of distances between the domains could potentially confirm and quantify these conformational changes, but efforts have been hampered by the large distances involved. Here we show that luminescence resonance energy transfer (LRET), which uses a luminescent lanthanide as the energy-transfer donor, is capable of measuring these long distances. Specifically, we measure distances between the catalytic domain (Cys707) and regulatory light chain domain (Cys108) of the myosin head. An energy transfer efficiency of 21.2 +/- 1.9% is measured in the myosin complex without nucleotide or actin, corresponding to a distance of 73 A, consistent with the crystal structure of Rayment et al. Upon binding to actin, the energy transfer efficiency decreases by 4.5 +/- 1.0%, indicating a conformational change in myosin that involves a relative rotation and/or translation of Cys707 relative to the light chain domain. Addition of ADP also alters the energy transfer efficiency, likely through a rotation of the probe attached to Cys707. These results demonstrate that LRET is capable of making accurate measurements on the relatively large actomyosin complex, and is capable of detecting conformational changes between the catalytic and light chain domains of myosin.
Collapse
Affiliation(s)
- E Burmeister Getz
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | |
Collapse
|
289
|
Hoenger A, Sack S, Thormählen M, Marx A, Müller J, Gross H, Mandelkow E. Image reconstructions of microtubules decorated with monomeric and dimeric kinesins: comparison with x-ray structure and implications for motility. J Cell Biol 1998; 141:419-30. [PMID: 9548720 PMCID: PMC2148453 DOI: 10.1083/jcb.141.2.419] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have decorated microtubules with monomeric and dimeric kinesin constructs, studied their structure by cryoelectron microscopy and three-dimensional image reconstruction, and compared the results with the x-ray crystal structure of monomeric and dimeric kinesin. A monomeric kinesin construct (rK354, containing only a short neck helix insufficient for coiled-coil formation) decorates microtubules with a stoichiometry of one kinesin head per tubulin subunit (alpha-beta-heterodimer). The orientation of the kinesin head (an anterograde motor) on the microtubule surface is similar to that of ncd (a retrograde motor). A longer kinesin construct (rK379) forms a dimer because of the longer neck helix forming a coiled-coil. Unexpectedly, this construct also decorates the microtubule with a stoichiometry of one head per tubulin subunit, and the orientation is similar to that of the monomeric construct. This means that the interaction with microtubules causes the two heads of a kinesin dimer to separate sufficiently so that they can bind to two different tubulin subunits. This result is in contrast to recent models and can be explained by assuming that the tubulin-kinesin interaction is antagonistic to the coiled-coil interaction within a kinesin dimer.
Collapse
Affiliation(s)
- A Hoenger
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
290
|
Vosberg HP. [Genetic causes of hypertrophic cardiomyopathy]. MEDIZINISCHE KLINIK (MUNICH, GERMANY : 1983) 1998; 93:252-9. [PMID: 9594535 DOI: 10.1007/bf03044801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypertrophic cardiomyopathy is a dominantly inherited disease of the heart. Heterogeneous sets of mutations responsible for this condition have been identified in seven genes coding for proteins involved in the contraction mechanism or in the control of contraction of the myocardium. Known mutations imply structural and functional changes in the following proteins: in ventricle specific beta-myosin heavy chain, in essential and regulatory myosin light chains, in troponin subunits T and I, in alpha-tropomyosin and in myosin binding protein-C. The gene of one additional genomic HCM-locus is not known. Since two thirds or more of all cases can be traced to one of the respective genes, HCM has been classified as a disease of the cardiac sarcomere. Heterogeneity does not only exist between genes, but also within genes. At least 84 different mutations have been identified to date. More than half of them have been detected in the beta-myosin heavy chain gene. Thus, mutations in this gene account for most of the cases of HCM. The extent of data about causes is in contrast to the lack of definite knowledge about pathogenic mechanisms. Since the disorder is in many cases mild with symptoms developing frequently not before the end of the second decade, myocardial dysfunctions can presumably not directly be traced to altered contractility, but rather to effects which accumulate with a long asymptomatic lag period and which gradually lead to hypertrophy, conduction problems and ultimately to cardiac failure. The disease may be considered as an indirect and secondary response to a mildly distorted contraction process. The rapid progress in the analysis of causes suggests that the study of genes will assume a role in the context of the clinical management of HCM, in particular regarding diagnosis, prognosis, counselling of patients and families and--possibly--therapy.
Collapse
Affiliation(s)
- H P Vosberg
- Max-Planck-Institut für physiologische und klinische Forschung, Abteilung Experimentelle Kardiologie, Bad Nauheim.
| |
Collapse
|
291
|
Affiliation(s)
- Y E Goldman
- Department of Physiology and Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia 19104-6083, USA
| |
Collapse
|
292
|
Romberg L, Pierce DW, Vale RD. Role of the kinesin neck region in processive microtubule-based motility. J Cell Biol 1998; 140:1407-16. [PMID: 9508773 PMCID: PMC2132664 DOI: 10.1083/jcb.140.6.1407] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/1997] [Revised: 01/07/1998] [Indexed: 02/06/2023] Open
Abstract
Kinesin is a dimeric motor protein that can move along a microtubule for several microns without releasing (termed processive movement). The two motor domains of the dimer are thought to move in a coordinated, hand-over-hand manner. A region adjacent to kinesin's motor catalytic domain (the neck) contains a coiled coil that is sufficient for motor dimerization and has been proposed to play an essential role in processive movement. Recent models have suggested that the neck enables head-to-head communication by creating a stiff connection between the two motor domains, but also may unwind during the mechanochemical cycle to allow movement to new tubulin binding sites. To test these ideas, we mutated the neck coiled coil in a 560-amino acid (aa) dimeric kinesin construct fused to green fluorescent protein (GFP), and then assayed processivity using a fluorescence microscope that can visualize single kinesin-GFP molecules moving along a microtubule. Our results show that replacing the kinesin neck coiled coil with a 28-aa residue peptide sequence that forms a highly stable coiled coil does not greatly reduce the processivity of the motor. This result argues against models in which extensive unwinding of the coiled coil is essential for movement. Furthermore, we show that deleting the neck coiled coil decreases processivity 10-fold, but surprisingly does not abolish it. We also demonstrate that processivity is increased by threefold when the neck helix is elongated by seven residues. These results indicate that structural features of the neck coiled coil, although not essential for processivity, can tune the efficiency of single molecule motility.
Collapse
Affiliation(s)
- L Romberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
293
|
Hancock WO, Howard J. Processivity of the motor protein kinesin requires two heads. J Cell Biol 1998; 140:1395-405. [PMID: 9508772 PMCID: PMC2132675 DOI: 10.1083/jcb.140.6.1395] [Citation(s) in RCA: 233] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/1997] [Revised: 01/09/1998] [Indexed: 02/06/2023] Open
Abstract
A single kinesin molecule can move for hundreds of steps along a microtubule without dissociating. One hypothesis to account for this processive movement is that the binding of kinesin's two heads is coordinated so that at least one head is always bound to the microtubule. To test this hypothesis, the motility of a full-length single-headed kinesin heterodimer was examined in the in vitro microtubule gliding assay. As the surface density of single-headed kinesin was lowered, there was a steep fall both in the rate at which microtubules landed and moved over the surface, and in the distance that microtubules moved, indicating that individual single-headed kinesin motors are not processive and that some four to six single-headed kinesin molecules are necessary and sufficient to move a microtubule continuously. At high ATP concentration, individual single-headed kinesin molecules detached from microtubules very slowly (at a rate less than one per second), 100-fold slower than the detachment during two-headed motility. This slow detachment directly supports a coordinated, hand-over-hand model in which the rapid detachment of one head in the dimer is contingent on the binding of the second head.
Collapse
Affiliation(s)
- W O Hancock
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195-7290, USA
| | | |
Collapse
|
294
|
Baker JE, Brust-Mascher I, Ramachandran S, LaConte LE, Thomas DD. A large and distinct rotation of the myosin light chain domain occurs upon muscle contraction. Proc Natl Acad Sci U S A 1998; 95:2944-9. [PMID: 9501195 PMCID: PMC19674 DOI: 10.1073/pnas.95.6.2944] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/1997] [Indexed: 02/06/2023] Open
Abstract
For more than 30 years, the fundamental goal in molecular motility has been to resolve force-generating motor protein structural changes. Although low-resolution structural studies have provided evidence for force-generating myosin rotations upon muscle activation, these studies did not resolve structural states of myosin in contracting muscle. Using electron paramagnetic resonance, we observed two distinct orientations of a spin label attached specifically to a single site on the light chain domain of myosin in relaxed scallop muscle fibers. The two probe orientations, separated by a 36 degrees +/- 5 degrees axial rotation, did not change upon muscle activation, but the distribution between them changed substantially, indicating that a fraction (17% +/- 2%) of myosin heads undergoes a large (at least 30 degrees) axial rotation of the myosin light chain domain upon force generation and muscle contraction. The resulting model helps explain why this observation has remained so elusive and provides insight into the mechanisms by which motor protein structural transitions drive molecular motility.
Collapse
Affiliation(s)
- J E Baker
- Department of Biochemistry, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
295
|
Affiliation(s)
- R Cooke
- Department of Biochemistry and Biophysics and Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
296
|
Schaub MC, Hefti MA, Zuellig RA, Morano I. Modulation of contractility in human cardiac hypertrophy by myosin essential light chain isoforms. Cardiovasc Res 1998; 37:381-404. [PMID: 9614495 DOI: 10.1016/s0008-6363(97)00258-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiac hypertrophy is an adaptive response that normalizes wall stress and compensates for increased workload. It is accompanied by distinct qualitative and quantitative changes in the expression of protein isoforms concerning contractility, intracellular Ca(2+)-homeostasis and metabolism. Changes in the myosin subunit isoform expression improves contractility by an increase in force generation at a given Ca(2+)-concentration (increased Ca(2+)-sensitivity) and by improving the economy of the chemo-mechanical transduction process per amount of utilised ATP (increased duty ratio). In the human atrium this is achieved by partial replacement of the endogenous fast myosin by the ventricular slow-type heavy and light chains. In the hypertrophic human ventricle the slow-type beta-myosin heavy chains remain unchanged, but the ectopic expression of the atrial myosin essential light chain (ALC1) partially replaces the endogenous ventricular isoform (VLC1). The ventricular contractile apparatus with myosin containing ALC1 is characterised by faster cross-bridge kinetics, a higher Ca(2+)-sensitivity of force generation and an increased duty ratio. The mechanism for cross-bridge modulation relies on the extended Ala-Pro-rich N-terminus of the essential light chains of which the first eleven residues interact with the C-terminus of actin. A change in charge in this region between ALC1 and VLC1 explains their functional difference. The intracellular Ca(2+)-handling may be impaired in heart failure, resulting in either higher or lower cytosolic Ca(2+)-levels. Thus the state of the cardiomyocyte determines whether this hypertrophic adaptation remains beneficial or becomes detrimental during failure. Also discussed are the effects on contractility of long-term changes in isoform expression of other sarcomeric proteins. Positive and negative modulation of contractility by short-term phosphorylation reactions at multiple sites in the myosin regulatory light chain, troponin-I, troponin-T, alpha-tropomyosin and myosin binding protein-C are considered in detail.
Collapse
Affiliation(s)
- M C Schaub
- Institute of Pharmacology, University of Zurich, Switzerland.
| | | | | | | |
Collapse
|
297
|
Smith DA. A strain-dependent ratchet model for [phosphate]- and [ATP]-dependent muscle contraction. J Muscle Res Cell Motil 1998; 19:189-211. [PMID: 9536445 DOI: 10.1023/a:1005316830289] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A minimal strain-dependent ratchet model of muscle cross-bridge action is proposed which is broadly compatible with structural and kinetic constraints. Its essential features are: (1) dynamic binding of the S1-products complex to actin through a disorder-order transition coupled to the release of inorganic phosphate; (2) the absence of a force-generating rotation of the myosin head between the two force-holding states A.M.ADP and A.M; (3) strain-control of ADP release and ATP binding, giving net isometric tension and directed motility by the selective dissociation of negatively strained bound states. With a disordered pre-force state, the binding rate to state A.M.ADP need not be symmetric in x, the actin site displacement. With faster binding at positive x, the model predicts many steady-state and transient properties of striated muscle observed experimentally, including phases 2-4 of tension recovery from length changes and their dependence on excess phosphate (which enhances and accelerates phase 3) and reduced ATP (which gives a bimodal phase 2 and slows one mode). The response to large perturbations is often sensitive to the number of actin sites used, and to the inclusion of a 1 nm displacement of the neck region on release of ADP. The latter stabilizes the periodic tension behaviour produced by repeated releases.
Collapse
Affiliation(s)
- D A Smith
- Randall Institute, King's College, London, UK
| |
Collapse
|
298
|
Zang JH, Cavet G, Sabry JH, Wagner P, Moores SL, Spudich JA. On the role of myosin-II in cytokinesis: division of Dictyostelium cells under adhesive and nonadhesive conditions. Mol Biol Cell 1997; 8:2617-29. [PMID: 9398680 PMCID: PMC25732 DOI: 10.1091/mbc.8.12.2617] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have investigated the role of myosin in cytokinesis in Dictyostelium cells by examining cells under both adhesive and nonadhesive conditions. On an adhesive surface, both wild-type and myosin-null cells undergo the normal processes of mitotic rounding, cell elongation, polar ruffling, furrow ingression, and separation of daughter cells. When cells are denied adhesion through culturing in suspension or on a hydrophobic surface, wild-type cells undergo these same processes. However, cells lacking myosin round up and polar ruffle, but fail to elongate, furrow, or divide. These differences show that cell division can be driven by two mechanisms that we term Cytokinesis A, which requires myosin, and Cytokinesis B, which is cell adhesion dependent. We have used these approaches to examine cells expressing a myosin whose two light chain-binding sites were deleted (DeltaBLCBS-myosin). Although this myosin is a slower motor than wild-type myosin and has constitutively high activity due to the abolition of regulation by light-chain phosphorylation, cells expressing DeltaBLCBS-myosin were previously shown to divide in suspension (Uyeda et al., 1996). However, we suspected their behavior during cytokinesis to be different from wild-type cells given the large alteration in their myosin. Surprisingly, DeltaBLCBS-myosin undergoes relatively normal spatial and temporal changes in localization during mitosis. Furthermore, the rate of furrow progression in cells expressing a DeltaBLCBS-myosin is similar to that in wild-type cells.
Collapse
Affiliation(s)
- J H Zang
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
299
|
Abstract
The unconventional myosins are a superfamily of actin-based motor proteins that are expressed in a wide range of cell types and organisms. Thirteen classes of unconventional myosin have been defined, and current efforts are focused on elucidating their individual functions in vivo. Here, we report the identification of a family of unconventional myosin genes in Caenorhabditis elegans. The hum-1, hum-2, hum-3 and hum-6 (heavy chain of an unconventional myosin) genes encode members of myosin classes I, V, VI and VII, respectively. The hum-4 gene encodes a high molecular mass myosin (ca 307 kDa) that is one of the most highly divergent myosins, and is the founding and only known member of class XII. The physical position of each hum gene has been determined. The hum-1, hum-2 and hum-3 genes have been mapped by extrapolation near previously uncharacterized mutations, several of which are lethal, identifying potentially essential unconventional myosin genes in C. elegans.
Collapse
Affiliation(s)
- J P Baker
- University Program in Genetics and Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
300
|
|