251
|
Jones RG, Parsons M, Bonnard M, Chan VS, Yeh WC, Woodgett JR, Ohashi PS. Protein kinase B regulates T lymphocyte survival, nuclear factor kappaB activation, and Bcl-X(L) levels in vivo. J Exp Med 2000; 191:1721-34. [PMID: 10811865 PMCID: PMC2193154 DOI: 10.1084/jem.191.10.1721] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The serine/threonine kinase protein kinase B (PKB)/Akt mediates cell survival in a variety of systems. We have generated transgenic mice expressing a constitutively active form of PKB (gag-PKB) to examine the effects of PKB activity on T lymphocyte survival. Thymocytes and mature T cells overexpressing gag-PKB displayed increased active PKB, enhanced viability in culture, and resistance to a variety of apoptotic stimuli. PKB activity prolonged the survival of CD4(+)CD8(+) double positive (DP) thymocytes in fetal thymic organ culture, but was unable to prevent antigen-induced clonal deletion of thymocytes expressing the major histocompatibility complex class I-restricted P14 T cell receptor (TCR). In mature T lymphocytes, PKB can be activated in response to TCR stimulation, and peptide-antigen-specific proliferation is enhanced in T cells expressing the gag-PKB transgene. Both thymocytes and T cells overexpressing gag-PKB displayed elevated levels of the antiapoptotic molecule Bcl-X(L). In addition, the activation of peripheral T cells led to enhanced nuclear factor (NF)-kappaB activation via accelerated degradation of the NF-kappaB inhibitory protein IkappaBalpha. Our data highlight a physiological role for PKB in promoting survival of DP thymocytes and mature T cells, and provide evidence for the direct association of three major survival molecules (PKB, Bcl-X(L), and NF-kappaB) in vivo in T lymphocytes.
Collapse
Affiliation(s)
- Russell G. Jones
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Michael Parsons
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | - Vera S.F. Chan
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Wen-Chen Yeh
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
- Amgen Institute, Toronto, Ontario M5G 2C1, Canada
| | - James R. Woodgett
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Pamela S. Ohashi
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
- Department of Immunology, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| |
Collapse
|
252
|
Abstract
Motoneurons require neurotrophic factors for their survival and axonal projection during development, as well as nerve regeneration. By using the axotomy-induced neuronal death paradigm and adenovirus-mediated gene transfer, we attempted to gain insight into the functional significances of major growth factor receptor downstream cascades, Ras-extracellular signal-regulated kinase (Ras-ERK) pathway and phosphatidylinositol-3 kinase-Akt (PI3K-Akt) pathway. After neonatal hypoglossal nerve transection, the constitutively active Akt-overexpressing neurons could survive as well as those overexpressing Bcl-2, whereas the constitutively active ERK kinase (MEK)-overexpressing ones failed to survive. A dominant negative Akt experiment demonstrated that inhibition of Akt pathway hastened axotomy-induced neuronal death in the neonate. In addition, the dominant active Akt-overexpressing adult hypoglossal neurons showed accelerated axonal regeneration after axotomy. These results suggest that Akt plays dual roles in motoneuronal survival and nerve regeneration in vivo and that PI3K-Akt pathway is probably more vital in neuronal survival after injury than Ras-ERK pathway.
Collapse
|
253
|
Tatsuta T, Shiraishi A, Mountz JD. The prodomain of caspase-1 enhances Fas-mediated apoptosis through facilitation of caspase-8 activation. J Biol Chem 2000; 275:14248-54. [PMID: 10799503 DOI: 10.1074/jbc.275.19.14248] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caspase-1 (interleukin-1beta converting enzyme) is produced in the form of a latent precursor, which is cleaved to yield a prodomain in addition to the p20 and p10 subunits. It has been established that the (p20/p10)(2) heterotetramer processes the latent precursor of interleukin-1beta into an active form during apoptosis, but the function of the residual prodomain of caspase-1 (Pro-C1) has not been established. To evaluate the involvement of Pro-C1 in apoptosis, a Pro-C1 expression vector was transfected into the HeLa cell line, which is susceptible to Fas-mediated apoptosis. Expression of recombinant Pro-C1 in HeLa cells enhanced apoptosis mediated by Fas, but not etoposide-induced apoptosis. This enhancement of Fas-mediated apoptosis was abolished by inhibitors of caspase-8 (Ile-Glu-Thr-Asp-fluoromethyl ketone) and caspase-3 (Asp-Glu-Val-Asp-aldehyde) but was only slightly diminished by an inhibitor of caspase-1 (acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone). During apoptosis induced by an agonistic anti-Fas antibody, the activation of caspase-8 and caspase-3 was more pronounced and occurred more rapidly in HeLa/Pro-C1 cells than in the empty vector transfectant (HeLa/vec) cells; in contrast, caspase-1 was not activated in either HeLa/Pro-C1 or HeLa/vec cells. These results demonstrate an additional and novel function for caspase-1 in which Pro-C1 acts to enhance Fas-mediated apoptosis, most probably through facilitation of the activation of caspase-8.
Collapse
Affiliation(s)
- T Tatsuta
- Neuroscience and Immunology Research Laboratories, Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa, Tokyo 140-8710, Japan.
| | | | | |
Collapse
|
254
|
Häcki J, Egger L, Monney L, Conus S, Rossé T, Fellay I, Borner C. Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2. Oncogene 2000; 19:2286-95. [PMID: 10822379 DOI: 10.1038/sj.onc.1203592] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis involves mitochondrial steps such as the release of the apoptogenic factor cytochrome c which are effectively blocked by Bcl-2. Although Bcl-2 may have a direct action on the mitochondrial membrane, it also resides and functions on the endoplasmic reticulum (ER), and there is increasing evidence for a role of the ER in apoptosis regulation as well. Here we uncover a hitherto unrecognized, apoptotic crosstalk between the ER and mitochondria that is controlled by Bcl-2. After triggering massive ER dilation due to an inhibition of secretion, the drug brefeldin A (BFA) induces the release of cytochrome c from mitochondria in a caspase-8- and Bid-independent manner. This is followed by caspase-3 activation and DNA/nuclear fragmentation. Surprisingly, cytochrome c release by BFA is not only blocked by wild-type Bcl-2 but also by a Bcl-2 variant that is exclusively targeted to the ER (Bcl-2/cb5). Similar findings were obtained with tunicamycin, an agent interfering with N-linked glycosylations in the secretory system. Thus, apoptotic agents perturbing ER functions induce a novel crosstalk between the ER and mitochondria that can be interrupted by ER-based Bcl-2.
Collapse
Affiliation(s)
- J Häcki
- Institute of Biochemistry, University of Fribourg, Switzerland
| | | | | | | | | | | | | |
Collapse
|
255
|
Hermisson M, Wagenknecht B, Wolburg H, Glaser T, Dichgans J, Weller M. Sensitization to CD95 ligand-induced apoptosis in human glioma cells by hyperthermia involves enhanced cytochrome c release. Oncogene 2000; 19:2338-45. [PMID: 10822385 DOI: 10.1038/sj.onc.1203554] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CD95L-induced apoptosis involves caspase activation and is facilitated when RNA and protein synthesis are inhibited. Here, we report that hyperthermia sensitizes malignant glioma cells to CD95L- and APO2L-induced apoptosis in the absence, but not in the presence, of inhibitors of RNA and protein synthesis. Hyperthermia does not alter CD95 expression at the cell surface and does not modulate the morphology of CD95-mediated cell death on electron microscopy. Bcl-2 gene transfer inhibits apoptosis and abrogates the sensitization mediated by hyperthermia. Hyperthermia does not overcome resistance to apoptosis conferred by the viral caspase inhibitor, crm-A, indicating the absolute requirement for the activation of crm-A-sensitive caspases, probably caspase 8, for apoptosis. CD95L-evoked DEVD-amc-cleaving caspase activity is enhanced by hyperthermia, suggesting that hyperthermia operates upstream of caspase processing to promote apoptosis. There is no uniformly enhanced processing of three caspase 3 substrates, poly-ADP ribose polymerase (PARP), protein kinase C (PKC) delta and DNA fragmentation factor (DFF) 45. Yet, hyperthermia promotes CD95L-evoked DNA fragmentation. Interestingly, hyperthermia enhances the CD95L-evoked release of cytochrome c in the absence, but not in the presence, of CHX. In contrast, the reduction of the mitochondrial membrane potential is enhanced by hyperthermia both in the absence and presence of CHX, and enhanced cytochrome c release is not associated with significantly enhanced caspase 9 processing. The potentiation of cytochrome c release at hyperthermic conditions in the absence of CHX is abrogated by Bcl-2. Thus, either hyperthermia or inhibition of protein synthesis by CHX potentiate cytotoxic cytokine-induced apoptosis. These pathways show no synergy, but rather redundance, indicating that CHX may function to promote apoptosis in response to cytotoxic cytokines by inhibiting the synthesis of specific proteins whose synthesis, function or degradation is temperature-sensitive.
Collapse
Affiliation(s)
- M Hermisson
- Department of Neurology, University of Tübingen, School of Medicine, Germany
| | | | | | | | | | | |
Collapse
|
256
|
Hausmann G, O'Reilly LA, van Driel R, Beaumont JG, Strasser A, Adams JM, Huang DC. Pro-apoptotic apoptosis protease-activating factor 1 (Apaf-1) has a cytoplasmic localization distinct from Bcl-2 or Bcl-x(L). J Cell Biol 2000; 149:623-34. [PMID: 10791976 PMCID: PMC2174854 DOI: 10.1083/jcb.149.3.623] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/1999] [Accepted: 03/23/2000] [Indexed: 12/26/2022] Open
Abstract
How Bcl-2 and its pro-survival relatives prevent activation of the caspases that mediate apoptosis is unknown, but they appear to act through the caspase activator apoptosis protease-activating factor 1 (Apaf-1). According to the apoptosome model, the Bcl-2-like proteins preclude Apaf-1 activity by sequestering the protein. To explore Apaf-1 function and to test this model, we generated monoclonal antibodies to Apaf-1 and used them to determine its localization within diverse cells by subcellular fractionation and confocal laser scanning microscopy. Whereas Bcl-2 and Bcl-x(L) were prominent on organelle membranes, endogenous Apaf-1 was cytosolic and did not colocalize with them, even when these pro-survival proteins were overexpressed or after apoptosis was induced. Immunogold electron microscopy confirmed that Apaf-1 was dispersed in the cytoplasm and not on mitochondria or other organelles. After the death stimuli, Bcl-2 and Bcl-x(L) precluded the release of the Apaf-1 cofactor cytochrome c from mitochondria and the formation of larger Apaf-1 complexes, which are steps that presage apoptosis. However, neither Bcl-2 nor Bcl-x(L) could prevent the in vitro activation of Apaf-1 induced by the addition of exogenous cytochrome c. Hence, rather than sequestering Apaf-1 as proposed by the apoptosome model, Bcl-2-like proteins probably regulate Apaf-1 indirectly by controlling upstream events critical for its activation.
Collapse
Affiliation(s)
- George Hausmann
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Lorraine A. O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Rosemary van Driel
- The Baker Medical Research Institute, Melbourne, Victoria 8008, Australia
| | - Jennifer G. Beaumont
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Jerry M. Adams
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - David C.S. Huang
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| |
Collapse
|
257
|
Abstract
BACKGROUND Glutathione (GSH) maintains an optimum cellular redox potential. Chemical depletion, physical efflux from the cell, or intracellular redistribution of this thiol antioxidant is associated with the onset of apoptosis. The aim of this study was to determine the effects of a thiol-depleting agent, diethylmaleate (DEM), on androgen sensitive and insensitive prostate carcinoma cells. METHODS LNCaP and PC-3 cell lines were induced to undergo apoptosis by DEM and diamide. Apoptosis was quantified by annexin V binding and propidium iodide incorporation using flow cytometry and was confirmed by DNA gel electrophoresis. Intracellular GSH was quantified using a thiol quantitation kit and the generation of reactive oxygen intermediates was measured using dihydrorhodamine 123. Western blot assessed caspase-3, caspase-8, Bcl-2, and Bcl-XL protein expression. Mitochondrial permeability was measured using DiOC6 and stabilized using bongkrekic acid. RESULTS DEM and diamide induced apoptosis in both androgen sensitive and insensitive cells. Apoptosis was also induced in an LNCaP transfectant cell line overexpressing Bcl-2. Apoptosis was caspase-3 dependent and caspase-8 independent. Bongkrekic acid partially prevented the effects of DEM on mitochondrial permeability but was unable to prevent the induction of apoptosis. Decreased Bcl-2 and Bci-XL protein expression was observed at the time of initial caspase-3 activation. CONCLUSIONS This study demonstrates that thiol depletion can be used as an effective means of activating caspase-3 in both androgen sensitive and insensitive prostate carcinoma cells. Direct activation of this effector caspase may serve as a useful strategy for inducing apoptosis in prostate carcinoma cells.
Collapse
Affiliation(s)
- R N Coffey
- Department of Surgery, University College Dublin, Mater Misericordiae Hospital, Ireland
| | | | | | | | | | | | | |
Collapse
|
258
|
Namikawa K, Honma M, Abe K, Takeda M, Mansur K, Obata T, Miwa A, Okado H, Kiyama H. Akt/protein kinase B prevents injury-induced motoneuron death and accelerates axonal regeneration. J Neurosci 2000; 20:2875-86. [PMID: 10751440 PMCID: PMC6772200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/1999] [Revised: 01/20/2000] [Accepted: 01/28/2000] [Indexed: 02/16/2023] Open
Abstract
Motoneurons require neurotrophic factors for their survival and axonal projection during development, as well as nerve regeneration. By using the axotomy-induced neuronal death paradigm and adenovirus-mediated gene transfer, we attempted to gain insight into the functional significances of major growth factor receptor downstream cascades, Ras-extracellular signal-regulated kinase (Ras-ERK) pathway and phosphatidylinositol-3 kinase-Akt (PI3K-Akt) pathway. After neonatal hypoglossal nerve transection, the constitutively active Akt-overexpressing neurons could survive as well as those overexpressing Bcl-2, whereas the constitutively active ERK kinase (MEK)-overexpressing ones failed to survive. A dominant negative Akt experiment demonstrated that inhibition of Akt pathway hastened axotomy-induced neuronal death in the neonate. In addition, the dominant active Akt-overexpressing adult hypoglossal neurons showed accelerated axonal regeneration after axotomy. These results suggest that Akt plays dual roles in motoneuronal survival and nerve regeneration in vivo and that PI3K-Akt pathway is probably more vital in neuronal survival after injury than Ras-ERK pathway.
Collapse
Affiliation(s)
- K Namikawa
- Department of Anatomy, Asahikawa Medical College, Asahikawa, Hokkaido, 078-8510 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Wertz IE, Dixit VM. Characterization of calcium release-activated apoptosis of LNCaP prostate cancer cells. J Biol Chem 2000; 275:11470-7. [PMID: 10753965 DOI: 10.1074/jbc.275.15.11470] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Apoptosis inhibition rather than enhanced cellular proliferation occurs in prostate cancer (CaP), the most commonly diagnosed malignancy in American men. Therefore, it is important to characterize residual apoptotic pathways in CaP cells. When intracellular Ca(2+) stores are released and plasma membrane "store-operated" Ca(2+) entry channels subsequently open, cytosolic [Ca(2+)] increases and is thought to induce apoptosis. However, cells incapable of releasing Ca(2+) stores are resistant to apoptotic stimuli, indicating that Ca(2+) store release is also important. We investigated whether release of intracellular Ca(2+) stores is sufficient to induce apoptosis of the CaP cell line LNCaP. We developed a method to release stored Ca(2+) without elevating cytosolic [Ca(2+)]; this stimulus induced LNCaP cell apoptosis. We compared the apoptotic pathways activated by intracellular Ca(2+) store release with the dual insults of store release and cytosolic [Ca(2+)] elevation. Earlier processing of caspases-3 and -7 occurred when intracellular store release was the sole Ca(2+) perturbation. Apoptosis was attenuated in both conditions in stable transfected cells expressing antiapoptotic proteins Bclx(L) and catalytically inactive caspase-9, and in both scenarios inactive caspase-9 became complexed with caspase-7. Thus, intracellular Ca(2+) store release initiates an apoptotic pathway similar to that elicited by the dual stimuli of cytosolic [Ca(2+)] elevation and intracellular store release.
Collapse
Affiliation(s)
- I E Wertz
- Department of Human Physiology, School of Medicine, University of California, Davis, California 95616, USA
| | | |
Collapse
|
260
|
O'Gorman DM, McKenna SL, McGahon AJ, Knox KA, Cotter TG. Sensitisation of HL60 human leukaemic cells to cytotoxic drug-induced apoptosis by inhibition of PI3-kinase survival signals. Leukemia 2000; 14:602-11. [PMID: 10764145 DOI: 10.1038/sj.leu.2401726] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drug resistance remains a serious limiting factor in the treatment of acute myeloid leukaemia (AML) either at initial presentation or following primary or subsequent relapses. Using specific kinase inhibitors, this study has investigated the contribution of the Ras/PI3-kinase regulated survival pathways to drug resistance and suppression of apoptosis in a cell line derived from AML (HL60). Inhibition of the Raf/MAP-kinase (ERK) pathway with a specific MAP-kinase inhibitor, apigenin did not sensitise HL60 cells to drug-induced apoptosis, indicating a lack of involvement in chemoresistance. In contrast, the PI3-kinase inhibitors, LY294002 and wortmannin, did induce a significant increase in apoptosis in combination with cytotoxic drugs. The contribution of downstream mediators of PI3-kinase, p70S6-kinase and PKB/Akt were then investigated. While inhibition of p70S6-kinase with rapamycin did not increase drug-induced apoptosis, PI3-kinase inhibition resulted in notable dephosphorylation of PKB, suggesting that the PI3-kinase/PKB survival pathway may play a major role in chemoresistance in AML. This pathway has been reported to mediate heterodimer interactions with the proapoptotic regulator, Bad. In contrast to previous studies, we found no evidence of Bad binding to anti-apoptotic Bcl-2, Bcl-XL or McI-1, or of alterations in Bax heterodimers. This suggests that alternative targets of PI3-kinase/PKB, distinct from the Bcl-2 family may be responsible for contributing to survival factor-mediated drug resistance in AML.
Collapse
Affiliation(s)
- D M O'Gorman
- Department of Biochemistry, University College Cork, Ireland, UK
| | | | | | | | | |
Collapse
|
261
|
Sato K, Eguchi Y, Kodama TS, Tsujimoto Y. Regions essential for the interaction between Bcl-2 and SMN, the spinal muscular atrophy disease gene product. Cell Death Differ 2000; 7:374-83. [PMID: 10773822 DOI: 10.1038/sj.cdd.4400660] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The SMN gene is implicated in spinal muscular atrophy (SMA), and its product has been shown to interact with Bcl-2 protein to enhance its anti-apoptotic activity. In this study, we determined the regions that were essential for the interaction of Bcl-2 and SMN by co-immunoprecipitation of deletion mutants. Bcl-2 lacking its amino-terminal 20 amino acid residues or its carboxyl-terminal membrane-anchoring domain showed no or greatly reduced binding with SMN, respectively. However, Bcl-2 lacking other regions could still bind to SMN. Because Bcl-2 lacking the membrane-anchoring domain could bind to SMN in a yeast two-hybrid system, the amino-terminal region of Bcl-2 seems to be the most important domain for binding with SMN. A fragment of SMN encoded by exon 6 could bind to Bcl-2, but SMN lacking this region could not. From these results, we concluded that Bcl-2 and SMN proteins bound with each other at the amino-terminal region near the BH4 domain of Bcl-2 and the region encoded by exon 6 of SMN, both regions known to be important for their function.
Collapse
Affiliation(s)
- K Sato
- Department of Medical Genetics, Biomedical Research Center (B8), Osaka University Graduate School of Medicine, and CREST, Japan Science and Technology Corp., 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
262
|
Yoshida T, Higuchi T, Hagiyama H, Strasser A, Nishioka K, Tsubata T. Rapid B cell apoptosis induced by antigen receptor ligation does not require Fas (CD95/APO-1), the adaptor protein FADD/MORT1 or CrmA-sensitive caspases but is defective in both MRL-+/+ and MRL-lpr/lpr mice. Int Immunol 2000; 12:517-26. [PMID: 10744653 DOI: 10.1093/intimm/12.4.517] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antigen receptor ligation-induced apoptosis is thought to play a role in self-tolerance by deleting autoreactive lymphocytes. Antigen receptor ligation-induced apoptosis of mature T cells and T cell lines requires autocrine or paracrine activation of Fas (CD95/APO-1). Whether B cell antigen receptor (BCR)-mediated apoptosis requires Fas or related molecules is unclear. Here we demonstrate that expression of either CrmA, the cowpox virus serpin, or an inhibitor of the adapter protein FADD/MORT1 blocks Fas-mediated apoptosis but has no effect on BCR ligation-induced apoptosis of the B cell line WEHI-231. In contrast, expression of Bcl-2 blocks BCR-mediated but not Fas-induced apoptosis in WEHI-231 cells. These results indicate that BCR ligation activates an apoptotic signaling pathway distinct from Fas-mediated apoptosis in WEHI-231 cells, and that BCR-mediated apoptosis of WEHI-231 cells does not require Fas or related molecules such as DR3, DR4 and DR5, as all of these death receptors require FADD/MORT1 and/or CrmA-sensitive caspases for induction of apoptosis. Moreover, extensive BCR ligation induces death of mature B cells from C57BL/6-lpr/lpr mice as efficiently as those from C57BL/6 mice, indicating that Fas is not essential for BCR-mediated apoptosis of mature B cells. In contrast, BCR ligation-induced apoptosis is reduced in mature B cells from MRL mice and this is not affected by the lpr mutation. Since MRL-lpr/lpr mice but not C57BL/6-lpr/lpr mice develop severe autoimmune disease, defects in BCR-mediated apoptosis in the MRL background, together with lpr mutation, may contribute to the development of severe autoimmune disease in MRL-lpr/lpr mice by allowing survival of self-reactive B cells.
Collapse
Affiliation(s)
- T Yoshida
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | | | | | | | | | | |
Collapse
|
263
|
Fernández Y, España L, Mañas S, Fabra A, Sierra A. Bcl-xL promotes metastasis of breast cancer cells by induction of cytokines resistance. Cell Death Differ 2000; 7:350-9. [PMID: 10773819 DOI: 10.1038/sj.cdd.4400662] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Metastasis is a highly complex process involving the survival of tumor cells, both in the blood stream and within specific organs. Cell-death and survival are determined by a number of gene products from an expanding family of the Bcl-2 gene, either promoting or preventing apoptosis. Furthermore, the survival of tumor cells may favor the accumulation of additional genetic alterations causing further growth and invasive opportunities which may lead to metastasis. To examine whether the prevention of cell-death influences the metastatic behavior, we transfected a human breast cancer cell line MDA-MB-435 with the Bcl-xL cDNA and then studied metastatic ability of the selected clones in vivo. Our results show that Bcl-xL-clones had a decreased tumor growth latency and an increased metastatic ability. Apoptosis-resistance to cytokines was induced in 435 cells by Bcl-xL-expression with minor modifications in their proliferation rates. These cells also showed diminished adhesion to extracellular matrix proteins and a survival advantage in suspension over 435/Neo cells. Moreover, to determine survival in blood stream and in cells lodged in the lungs, we injected 435/Bcl-xL and 435/Neo cells at 1:3 proportion i.v., and animals were killed at intervals of 15' to 16 h after injection. Tumor cells were recovered from the lungs and Southern-blot analysis revealed the presence of exogenous Bcl-xL cDNA. These results showed that 435/Bcl-xL cells had a survival advantage in circulation over 435/Neo cells. This advantage in vivo was attributable to Bcl-xL expression. We conclude that Bcl-xL expression in breast cancer cells can increase metastatic activity. This advantage could be created by inducing resistance to apoptosis against cytokines, increasing cell survival in circulation, and enhancing anchorage-independent growth.
Collapse
Affiliation(s)
- Y Fernández
- Department of Cancer and Metastasis, Institut de Recerca Oncológica, Hospital Duran i Reynals, Ciutat Sanitaria i Universitaria de Bellvitge, Autovia de Castelldefels, Km 7.2, Barcelona, Spain
| | | | | | | | | |
Collapse
|
264
|
Abstract
Apoptosis is an essential physiological process by which multicellular organisms eliminate superfluous cells. An expanding family of Bcl-2 proteins plays a pivotal role in the decision step of apoptosis, and the differential expression of Bcl-2 members and their binding proteins allows the regulation of apoptosis in a tissue-specific manner mediated by diverse extra- and intracellular signals. The Bcl-2 proteins can be divided into three subgroups: 1) antiapoptotic proteins with multiple Bcl-2 homology (BH) domains and a transmembrane region, 2) proapoptotic proteins with the same structure but missing the BH4 domain, and 3) proapoptotic ligands with only the BH3 domain. In the mammalian ovary, a high rate of follicular cell apoptosis continues during reproductive life. With the use of the yeast two-hybrid system, the characterization of ovarian Bcl-2 genes serves as a paradigm to understand apoptosis regulation in a tissue-specific manner. We identified Mcl-1 as the main ovarian antiapoptotic Bcl-2 protein, the novel Bok (Bcl-2-related ovarian killer) as the proapoptotic protein, as well as BOD (Bcl-2-related ovarian death agonist) and BAD as the proapoptotic ligands. The activity of the proapoptotic ligand BAD is regulated by upstream follicle survival factors through its binding to constitutively expressed 14-3-3 or hormone-induced P11. In contrast, the channel-forming Mcl-1 and Bok regulate cytochrome c release and, together with the recently discovered Diva/Boo, control downstream apoptosis-activating factor (Apaf)-1 homologs and caspases. Elucidation of the role of Bcl-2 members and their interacting proteins in the tissue-specific regulation of apoptosis could facilitate an understanding of normal physiology and allow the development of new therapeutic approaches for pathological states.
Collapse
Affiliation(s)
- S Y Hsu
- Division of Reproductive Biology, Department of Gynecology and Obstetrics, Stanford University School of Medicine, Stanford, California 94305-5317, USA
| | | |
Collapse
|
265
|
Newmeyer DD, Bossy-Wetzel E, Kluck RM, Wolf BB, Beere HM, Green DR. Bcl-xL does not inhibit the function of Apaf-1. Cell Death Differ 2000; 7:402-7. [PMID: 10773825 DOI: 10.1038/sj.cdd.4400665] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Bcl-2 and its relative, Bcl-xL, inhibit apoptotic cell death primarily by controlling the activation of caspase proteases. Previous reports have suggested at least two distinct mechanisms: Bcl-2 and Bcl-xL may inhibit either the formation of the cytochrome c/Apaf-1/caspase-9 apoptosome complex (by preventing cytochrome c release from mitochondria) or the function of this apoptosome (through a direct interaction of Bcl-2 or Bcl-xL with Apaf-1). To evaluate this latter possibility, we added recombinant Bcl-xL protein to cell-free apoptotic systems derived from Jurkat cells and Xenopus eggs. At low concentrations (50 nM), Bcl-xL was able to block the release of cytochrome c from mitochondria. However, although Bcl-xL did associate with Apaf-1, it was unable to inhibit caspase activation induced by the addition of cytochrome c, even at much higher concentrations (1-5 microM). These observations, together with previous results obtained with Bcl-2, argue that Bcl-xL and Bcl-2 cannot block the apoptosome-mediated activation of caspase-9.
Collapse
Affiliation(s)
- D D Newmeyer
- La Jolla Institute for Allergy and Immunology, 10355 Science Center Road, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
266
|
Shimizu S, Konishi A, Kodama T, Tsujimoto Y. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc Natl Acad Sci U S A 2000; 97:3100-5. [PMID: 10737788 PMCID: PMC16199 DOI: 10.1073/pnas.97.7.3100] [Citation(s) in RCA: 324] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A change of mitochondrial membrane permeability is essential for apoptosis, leading to translocation of apoptogenic cytochrome c and apoptosis-inducing factor into the cytoplasm. We recently showed that the Bcl-2 family of proteins regulate cytochrome c release and the mitochondrial membrane potential (Deltapsi) by directly modulating the activity of the voltage-dependent anion channel (VDAC) through binding. Here we investigated the biochemical role of the conserved N-terminal homology domain (BH4) of Bcl-x(L), which has been shown to be essential for inhibition of apoptosis, with respect to the regulation of mitochondrial membrane permeability and found that BH4 was required for Bcl-x(L) to prevent cytochrome c release and Deltapsi loss. A study using VDAC liposomes revealed that Bcl-x(L), but not Bcl-x(L) lacking the BH4 domain, inhibited VDAC activity. Furthermore, BH4 oligopeptides of Bcl-2 and Bcl-x(L), but not mutant peptides, were able to inhibit both VDAC activity on liposomes even in the presence of Bax and apoptotic Deltapsi loss in isolated mitochondria. It was also shown that the BH4 domain, fused to the protein transduction domain of HIV TAT protein (TAT-BH4), efficiently prevented apoptotic cell death. These results indicate that the BH4 of Bcl-2/Bcl-x(L) is essential and sufficient for inhibiting VDAC activity, which in turn prevents apoptotic mitochondrial changes, and for preventing apoptotic cell death. Finally, the data suggest that the TAT-BH4 peptide is potentially useful as a therapeutic agent for diseases caused by accelerated apoptosis.
Collapse
Affiliation(s)
- S Shimizu
- Osaka University Graduate School of Medicine, Biomedical Research Center, Department of Medical Genetics, and Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation, 2-2 Yamadaoka, Suita
| | | | | | | |
Collapse
|
267
|
Benedict MA, Hu Y, Inohara N, Núñez G. Expression and functional analysis of Apaf-1 isoforms. Extra Wd-40 repeat is required for cytochrome c binding and regulated activation of procaspase-9. J Biol Chem 2000; 275:8461-8. [PMID: 10722681 DOI: 10.1074/jbc.275.12.8461] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apaf-1 is an important apoptotic signaling molecule that can activate procaspase-9 in a cytochrome c/dATP-dependent fashion. Alternative splicing can create an NH(2)-terminal 11-amino acid insert between the caspase recruitment domain and ATPase domains or an additional COOH-terminal WD-40 repeat. Recently, several Apaf-1 isoforms have been identified in tumor cell lines, but their expression in tissues and ability to activate procaspase-9 remain poorly characterized. We performed analysis of normal tissue mRNAs to examine the relative expression of the Apaf-1 forms and identified Apaf-1XL, containing both the NH(2)-terminal and COOH-terminal inserts, as the major RNA form expressed in all tissues tested. We also identified another expressed isoform, Apaf-1LN, containing the NH(2)-terminal insert, but lacking the additional WD-40 repeat. Functional analysis of all identified Apaf-1 isoforms demonstrated that only those with the additional WD-40 repeat activated procaspase 9 in vitro in response to cytochrome c and dATP, while the NH(2)-terminal insert was not required for this activity. Consistent with this result, in vitro binding assays demonstrated that the additional WD-40 repeat was also required for binding of cytochrome c, subsequent Apaf-1 self-association, binding to procaspase-9, and formation of active Apaf-1 oligomers. These experiments demonstrate the expression of multiple Apaf-1 isoforms and show that only those containing the additional WD-40 repeat bind and activate procaspase-9 in response to cytochrome c and dATP.
Collapse
Affiliation(s)
- M A Benedict
- Department of Pathology, Comprehensive Cancer Center and Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
268
|
Gleichmann M, Weller M, Schulz JB. Insulin-like growth factor-1-mediated protection from neuronal apoptosis is linked to phosphorylation of the pro-apoptotic protein BAD but not to inhibition of cytochrome c translocation in rat cerebellar neurons. Neurosci Lett 2000; 282:69-72. [PMID: 10713398 DOI: 10.1016/s0304-3940(00)00857-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cerebellar granule neurons cultured in the presence of serum and depolarizing potassium concentrations undergo apoptosis when switched to serum-free medium containing physiological potassium concentrations but remain viable after serum deprivation alone. Here, we show that potassium deprivation is associated with the dephosphorylation of the BCL-2-related BAD protein. Exposure to insulin-like growth factor-1 (IGF-1) inhibits both apoptosis and dephosphorylation of BAD. Both effects of IGF-1 do not depend on protein synthesis but are nullified by the phosphatidylinositol-3 kinase inhibitors, wortmannin and LY294002. In contrast to the treatment with cycloheximde, IGF-1 does not block the translocation of cytochrome c from mitochondria to the cytosol. Further, dephosphorylation of BAD alone does not appear to be sufficient to trigger apoptosis, since inhibition of protein synthesis by cycloheximide prevents apoptosis, but not BAD dephosphorylation, after potassium deprivation. These results suggest the coexistence of two parallel pathways, protein synthesis-dependent cytochrome c translocation and protein synthesis-independent dephosphorylation of BAD, both of which have to be activated to induce neuronal apoptosis.
Collapse
Affiliation(s)
- M Gleichmann
- Department of Neurology, University of Tübingen, Medical School, Hoppe-Seyler-Strasse 3, D-72076, Tübingen, Germany
| | | | | |
Collapse
|
269
|
Abstract
Abstract
Our recent studies suggest that human squamous cell carcinoma of the head and neck (SCCHN) is capable of activating an intrinsic mechanism of programmed-cell death in interacting lymphocytes in situ and in vitro. The current study used Jurkat T-cell line as a model to investigate intracellular apoptotic events in T cells interacting with SCCHN. Apoptosis induced in T lymphocytes by tumor cells was in part Fas-mediated, since it was partially, but significantly, inhibited in the presence of anti-Fas ligand Ab or in Fas-resistant Jurkat cells. The synthetic caspase inhibitors, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-FMK) and N-benzyloxycarbonyl-Asp-glu-Val-Asp-fluoromethyl ketone (Z-DEVD-FMK), effectively blocked apoptosis of Jurkat cells co-incubated with SCCHN cell lines, suggesting the involvement of caspases in tumor-induced apoptosis of lymphocytes. Overexpression of CrmA, an inhibitor of caspase-1 and caspase-8, partially inhibited tumor-induced T-cell death. Caspase-8 and caspase-3 were identified as effector molecules in the execution of tumor-induced T-cell death, since the proform enzymes were processed into active subunits during co-incubation of T cells with tumor cells. Furthermore, co-incubation with tumor cells resulted in cleavage of poly(ADP-ribose) polymerase (PARP), a common caspase-3 substrate, and in cleavage of TcR-ζ chain, shown by us to be a T-cell specific caspase-3 substrate. Overexpression of Bcl-2 did not provide protection of T cells from SCCHN-induced DNA degradation. Instead, the Bcl-2 protein was cleaved in the target T cells during their co-incubation with tumor cells. These findings demonstrate that tumor cells can trigger in T lymphocytes caspase-dependent apoptotic cascades, which are not effectively protected by Bcl-2.
Collapse
|
270
|
Dey R, Moraes CT. Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-x(L) in osteosarcoma cells. J Biol Chem 2000; 275:7087-94. [PMID: 10702275 DOI: 10.1074/jbc.275.10.7087] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We explored the role of low mitochondrial membrane potential (DeltaPsim) and the lack of oxidative phosphorylation in apoptosis by assessing the susceptibility of osteosarcoma cell lines with and without mitochondrial DNA to staurosporine-induced death. Our cells without mitochondrial DNA had low DeltaPsim and no functional oxidative phosphorylation. Contrary to our expectation, these cells were more resistant to staurosporine-induced death than were the parental cells. This reduced susceptibility was associated with decreased activation of caspase 3 but not with the mitochondrial permeability transition pore or cytochrome c release from the mitochondria. Apoptosis in both cell lines was associated with an increase in DeltaPsim. Bcl-x(L) could protect both cell types against caspase 3 activation and apoptosis by a mechanism that does not appear to be mediated by mitochondrial function or modulation of DeltaPsim. Nevertheless, we found that Bcl-x(L) expression can stimulate cell respiration in cells with mitochondrial DNA. Our results showed that the lack of functional oxidative phosphorylation and/or low mitochondrial membrane potential are associated with an antiapoptotic effect, possibly contributing to the development of some types of cancer. It also reinforces a model in which Bcl-x(L) can exert an antiapoptotic effect by stimulating oxidative phosphorylation and/or inhibiting caspase activation.
Collapse
Affiliation(s)
- R Dey
- Department of Neurology, University of Miami, School of Medicine, Miami, Florida 33136, USA
| | | |
Collapse
|
271
|
Abstract
The induction of apoptosis, or controlled cell death, by various stimuli has been shown to activate a cascade of endoproteases, called caspases, that cleave numerous cellular proteins necessary for cellular homeostasis. This review discusses this family of proteases together with a variety of mammalian and viral regulatory proteins that act to control this activation.
Collapse
Affiliation(s)
- D K Miller
- Department of Immunology and Rheumatology, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| |
Collapse
|
272
|
Abstract
Programmed cell death or apoptosis plays a fundamental role during animal development, metamorphosis, and tissue homeostasis. It is a genetically controlled physiological process that comprises two distinct and sequential processes: the death of cells, and their subsequent removal by engulfing cells. In the nematode C. elegans, genetic studies led to the discovery of 15 genes that function in programmed cell death (FIG. 1). These 15 genes have been divided into four groups based on the order of their activity during the process of programmed cell death: (1) those involved in the decision making (ces-1 and ces-2); (2) in the process of execution (ced-3, ced-4, ced-9 and egl-1); (3) in the engulfment of dying cells by engulfing cells (ced-1, ced-2, ced-5, ced-6, ced-7, ced-10, ced-12); and (4) those in the degradation of cell corpses within engulfing cells (nuc-1). In the last five years, several genes in the genetic pathway of programmed cell death have been shown to be conserved across a wide range of species; all genes involved in the step of execution in C. elegans have their corresponding mammalian homologs (FIG. 2). Furthermore, emerging evidence from molecular studies of engulfment genes in several species suggests that the signaling process from apoptotic cells to engulfing cells and the subsequent engulfment process might be also conserved across species (TABLE 1).
Collapse
Affiliation(s)
- Q A Liu
- Cold Spring Harbor Laboratory, New York 11724, USA.
| | | |
Collapse
|
273
|
Carmody RJ, Cotter TG. Oxidative stress induces caspase-independent retinal apoptosis in vitro. Cell Death Differ 2000; 7:282-91. [PMID: 10745273 DOI: 10.1038/sj.cdd.4400646] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Apoptosis is the mode of cell death in retinitis pigmentosa (RP), a heterogeneous group of retinal degenerations. The activation of the caspase proteases forms a pivotal step in the initiation and execution phase of apoptosis in many cells. Inhibition of caspases has been reported to prevent apoptosis in many model systems. However, we demonstrate the absence of caspase activation during retinal cell apoptosis in vitro which involves phosphatidylserine (PS) externalisation, DNA nicking and cell shrinkage. In addition, zVAD-fmk, DEVD-CHO and BD-fmk, inhibitors of the caspases, were unable to alter the characteristics or kinetics of apoptosis, implying that retinal cell death in vitro follows a caspase-independent pathway. We have previously demonstrated the ability of reactive oxygen species (ROS) to act as mediators of retinal cell apoptosis in vitro as well as the ability of antioxidants to prevent retinal cell apoptosis. Here we demonstrate the oxidative inactivation of caspases in this model of retinal apoptosis and provide evidence for an oxidative stress driven cell death pathway that does not involve caspase activity and which retains key features of apoptotic cell death. Furthermore, our data indicates that apoptotic events such as PS exposure, DNA nicking and cell shrinkage may occur independently of caspase activity.
Collapse
Affiliation(s)
- R J Carmody
- Tumour Biology Laboratory, Department of Biochemistry, Lee Maltings, University College Cork, Cork, Ireland
| | | |
Collapse
|
274
|
Middleton G, Cox SW, Korsmeyer S, Davies AM. Differences in bcl-2- and bax-independent function in regulating apoptosis in sensory neuron populations. Eur J Neurosci 2000; 12:819-27. [PMID: 10762311 DOI: 10.1046/j.1460-9568.2000.00966.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bcl-2 and Bax are cytoplasmic proteins that have antagonistic actions on apoptosis. To investigate the extent to which these proteins function independently in regulating neuronal apoptosis, we studied the in vivo and in vitro development of two populations of sensory neurons of mouse embryos that lack one or both proteins. Absence of Bcl-2 increased neuronal apoptosis and reduced the number of neurons in both the trigeminal and nodose ganglia during the period of naturally occurring neuronal death. Absence of Bax reduced neuronal apoptosis and increased the number of surviving neurons in these ganglia and promoted sustained neuronal survival in neurotrophin-free cultures. In contrast, the elimination of both Bcl-2 and Bax had different consequences for these populations of neurons. In nodose ganglia, apoptosis was suppressed just as effectively in embryos lacking both proteins as in embryos lacking Bax alone, and neurons that lacked both proteins survived just as effectively in neurotrophin-free medium as Bax-deficient neurons. This suggests that for nodose neurons, the suppression of apoptosis by Bcl-2 is entirely dependent on the presence of Bax. In trigeminal ganglia, although neuronal apoptosis was reduced in embryos lacking both proteins compared with wild-type embryos, there were significantly more apoptotic neurons and significantly fewer surviving neurons in embryos lacking both proteins compared with Bax-deficient embryos, and significantly fewer trigeminal neurons from embryos lacking both proteins survived in neurotrophin-free medium compared with trigeminal neurons that lacked Bax alone. This suggests that for trigeminal neurons, Bcl-2 functions partly independently of Bax in regulating survival. Our results therefore suggest that the relative independence of Bcl-2 and Bax in regulating neuronal survival differs from one population of neurons to another.
Collapse
Affiliation(s)
- G Middleton
- School of Biomedical Sciences, Biomedical Building, University of St. Andrews, St. Andrews, Fife KY16 9AJ, Scotland
| | | | | | | |
Collapse
|
275
|
Marcelli M, Marani M, Li X, Sturgis L, Haidacher SJ, Trial JA, Mannucci R, Nicoletti I, Denner L. Heterogeneous apoptotic responses of prostate cancer cell lines identify an association between sensitivity to staurosporine-induced apoptosis, expression of Bcl-2 family members, and caspase activation. Prostate 2000; 42:260-73. [PMID: 10679755 DOI: 10.1002/(sici)1097-0045(20000301)42:4<260::aid-pros3>3.0.co;2-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The goal of this work was to identify mechanisms for the inability of metastatic prostate cancer cells to engage the apoptotic pathway following hormonal or cytotoxic therapy. METHODS Genotypically diverse cell lines isolated from patients with metastatic disease were used. RESULTS The LNCaP and TsuPr(1) lines exhibited quintessential apoptotic features in response to the pleiotropic apoptotic inducer staurosporine (STS): rapid cytochrome c translocation to the cytosol, proteolytic processing and catalytic activation of caspase-3 and -7, proteolytic inactivation of the death substrates DNA fragmentation factor (DFF) and poly-ADP-ribose polymerase (PARP), and TUNEL-positive polyfragmented nuclei. In contrast, DU-145 and PC-3 cells exhibited few, if any, of these features, while appearing necrotic by confocal microscopy. The presence of caspase-3 and -7 without proteolytic processing suggested that the apoptotic blockade was upstream of executioner caspases in these resistant cell lines. To identify the locus of this block, Western blot analysis of cytochrome c subcellular localization and of pro- and antiapoptotic Bcl-2 family members was performed, and suggested that heterogeneous expression of these proteins might be the underlying mechanism for apoptotic resistance to STS in these cell lines. Thus, the absence of the proapoptotic Bax in DU-145 cells indicated a mechanism for apoptotic resistance of these cells. Similarly, decreased Bax expression during STS treatment, coupled with overexpression of the antiapoptotic Bcl-x(L) and inability to translocate cytochrome c to the cytosol, provided a mechanism for the insensitivity of PC-3 cells. CONCLUSIONS These observations suggest that activation of the apoptotic machinery in metastatic prostate cancer cell lines may be determined by expression levels of Bcl-2 family members, by the ability of cytochrome c to translocate to the cytosol, and by the ability of the caspase pathway to react in response to activation of the mitochondrial phase.
Collapse
Affiliation(s)
- M Marcelli
- Departments of Medicine, Molecular and Cellular Biology, Veterans Administration Medical Center and Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Abstract
In the last decade, basic cancer research has produced remarkable advances in our understanding of cancer biology and cancer genetics. Among the most important of these advances is the realization that apoptosis and the genes that control it have a profound effect on the malignant phenotype. For example, it is now clear that some oncogenic mutations disrupt apoptosis, leading to tumor initiation, progression or metastasis. Conversely, compelling evidence indicates that other oncogenic changes promote apoptosis, thereby producing selective pressure to override apoptosis during multistage carcinogenesis. Finally, it is now well documented that most cytotoxic anticancer agents induce apoptosis, raising the intriguing possibility that defects in apoptotic programs contribute to treatment failure. Because the same mutations that suppress apoptosis during tumor development also reduce treatment sensitivity, apoptosis provides a conceptual framework to link cancer genetics with cancer therapy. An intense research effort is uncovering the underlying mechanisms of apoptosis such that, in the next decade, one envisions that this information will produce new strategies to exploit apoptosis for therapeutic benefit.
Collapse
Affiliation(s)
- S W Lowe
- Cold Spring Harbor Laboratory, 1 Bungtown Road, PO Box 100, Cold Spring Harbor, New York, NY 11724, USA.
| | | |
Collapse
|
277
|
Chen F, Hersh BM, Conradt B, Zhou Z, Riemer D, Gruenbaum Y, Horvitz HR. Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death. Science 2000; 287:1485-9. [PMID: 10688797 DOI: 10.1126/science.287.5457.1485] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Caenorhabditis elegans Bcl-2-like protein CED-9 prevents programmed cell death by antagonizing the Apaf-1-like cell-death activator CED-4. Endogenous CED-9 and CED-4 proteins localized to mitochondria in wild-type embryos, in which most cells survive. By contrast, in embryos in which cells had been induced to die, CED-4 assumed a perinuclear localization. CED-4 translocation induced by the cell-death activator EGL-1 was blocked by a gain-of-function mutation in ced-9 but was not dependent on ced-3 function, suggesting that CED-4 translocation precedes caspase activation and the execution phase of programmed cell death. Thus, a change in the subcellular localization of CED-4 may drive programmed cell death.
Collapse
Affiliation(s)
- F Chen
- Howard Hughes Medical Institute, Department of Biology, 68-425, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
278
|
Belka C, Rudner J, Wesselborg S, Stepczynska A, Marini P, Lepple-Wienhues A, Faltin H, Bamberg M, Budach W, Schulze-Osthoff K. Differential role of caspase-8 and BID activation during radiation- and CD95-induced apoptosis. Oncogene 2000; 19:1181-90. [PMID: 10713706 DOI: 10.1038/sj.onc.1203401] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Activation of the CD95 death receptor as well as ionizing radiation induces apoptotic cell death in human lymphoma cells. The activation of caspases is a hallmark of apoptosis induction irrespective of the apoptotic trigger. In contrast to death receptor signaling, the exact mechanisms of radiation-induced caspase activation are not well understood. We provide evidence that both, radiation and CD95 stimulation, induce the rapid activation of caspase-8 and BID followed by apoptosis in Jurkat T-cells. To analyse the relative position of caspase-8 within the apoptotic cascade we studied caspase activation and apoptosis in Jurkat cells overexpressing Bcl-2 or Bcl-xL. Caspase-8 activation, pro-apoptotic BID cleavage and apoptosis in response to radiation were abrogated in these cells, while the responses to CD95 stimulation were only partially attenuated by overexpression of Bcl-2 family members. In parallel, the breakdown of the mitochondrial transmembrane potential (DeltaPsim) in response to radiation was inhibited by overexpression of Bcl-2/Bcl-xL Jurkat cells genetically deficient for caspase-8 were found to be completely resistant towards CD95. However, radiation-induced apoptotic responses in caspase-8-negative cells displayed only a modest reduction. We conclude that ionizing radiation activates caspase-8 and BID downstream of mitochondrial damage suggesting that, in contrast to CD95, both events function as executioners rather than initiators of the apoptotic process.
Collapse
Affiliation(s)
- C Belka
- Department of Radiation Oncology, University of Tuebingen, Hoppe Seyler Str. 3, D-72076 Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Affiliation(s)
- P Chen
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9039, USA
| | | |
Collapse
|
280
|
Coldwell MJ, Mitchell SA, Stoneley M, MacFarlane M, Willis AE. Initiation of Apaf-1 translation by internal ribosome entry. Oncogene 2000; 19:899-905. [PMID: 10702798 DOI: 10.1038/sj.onc.1203407] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The apoptotic protease activating factor (Apaf-1) plays a central role in apoptosis: interaction of this protein with procaspase-9 leads to cleavage and activation of this initiator caspase. In common with other mRNAs whose protein products have a major regulatory function, the 5' untranslated region (UTR) of Apaf-1 is long, G-C rich and has the potential to form secondary structure. We have shown that the 5' UTR of Apaf-1 contains an internal ribosome entry segment, located in a 233 nucleotide region towards the 3' end of the leader, and that the translation initiation of this mRNA occurs only by internal ribosome entry. The Apaf-1 IRES is active in almost all human cell types tested, including Human cervical carcinoma (HeLa), Human liver carcinoma (HepG2), Human breast carcinoma (MCF7), Human embryonic kidney (HK293), African Green Monkey kidney (COS7) and Human lung (MRC5). The Apaf-1 IRES initiates translation as efficiently as the HRV IRES, but is less active than the c-myc IRES. We propose that the Apaf-1 IRES ensures that a constant cellular level of Apaf-1 protein is maintained even under conditions where cap-dependent translation is compromised. Oncogene (2000) 19, 899 - 905.
Collapse
Affiliation(s)
- M J Coldwell
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH
| | | | | | | | | |
Collapse
|
281
|
Abstract
p53-mediated apoptosis involves multiple mechanisms. A number of p53-regulated apoptosis-related genes have been identified. Some of these genes encode proteins that are important in controlling the integrity of mitochondria while the others code for membrane death receptors. p53 may also induce apoptosis by interfering with the growth factor-mediated survival signals. Although the transactivation-deficient p53 can induce apoptosis, evidence suggests that both the transcription-dependent and independent functions are needed for full apoptotic activity. p73 and p63 are two other members of the p53 family that show homology to p53 in their respective transactivation, DNA-binding and oligomerization domains. Both p73 and p63 transactivate p53-regulated promoters and induce apoptosis. Evidence suggests that both p73 and p63 may mediate apoptosis via some of the same mechanisms that are utilized by p53. However, both p73 and p63 exhibit features that are different from those of p53. Hence, both p73 and p63 are predicted to mediate apoptosis via mechanisms that are completely distinct from those engaged by p53. J. Cell. Physiol. 182:171-181, 2000. Published 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- M S Sheikh
- Department of Pharmacology, State University of New York-Health Science Center, Syracuse, NY 13210, USA
| | | |
Collapse
|
282
|
Sawyer ST, Jacobs-Helber SM. Unraveling distinct intracellular signals that promote survival and proliferation: study of erythropoietin, stem cell factor, and constitutive signaling in leukemic cells. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2000; 9:21-9. [PMID: 10738968 DOI: 10.1089/152581600319586] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This review summarizes selected recent studies of the intracellular signals that allow erythroid cells to survive and proliferate under the control of erythropoietin (EPO) and alteration in signals that contribute to EPO-independent survival and proliferation. The hypothesis explored is that the proliferation and survival signals are distinct and can be separately studied with the proper cell lines and growth factor stimulation. The anti- and pro-apoptotic proteins Bcl-XL and BAD are highly implicated in EPO-dependent survival of erythroid cells. Stat5 activity appears to be upstream of Bcl-XL expression such that pathologic, constitutive activation of Stat5 may be a common event in leukemic cells that become resistant to apoptosis by constitutive expression of Bcl-XL. Other signals apparently also control the expression of Bcl-XL, such as the expression of JunB which seem to be required to suppress Bcl-XL expression when EPO is withdrawn. Apoptosis may also be triggered by inactivation of Bcl-XL by BAD. Dephosphorylation of BAD as a result of withdrawal of survival factors converts prosurvival BAD to proapoptotic BAD. Phosphorylation of BAD at the serine 112 residue seems critical to promoting survival. Constitutive activation of a kinase that phosphorylates BAD serine 112 may, therefore, contribute to resistance to apoptosis in leukemic cells. We describe the resistance of erythroleukemic cells to apoptosis induced by EPO withdrawal apparently caused by constitutive BAD phosphorylation. The resistance to apoptosis in these cells is reversed by treatment with the PI3-kinase inhibitor, LY294002, suggesting that resistance to apoptosis in these cells likely results from constitutive P13-kinase that is an upstream activator of an S-112 BAD kinase. The MAP kinase cascade is apparently active in EPO-dependent and stem cell factor (SCF)-dependent proliferation but not survival. In addition, autocrine tumor necrosis factor-a! (TNF-alpha) may also be a proliferation factor not affecting survival. P13-kinase seems to be required for full EPO-dependent proliferation but is not required for EPO-dependent survival (but it can promote survival when activated).
Collapse
Affiliation(s)
- S T Sawyer
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0613, USA
| | | |
Collapse
|
283
|
Suminami Y, Nagashima S, Vujanovic NL, Hirabayashi K, Kato H, Whiteside TL. Inhibition of apoptosis in human tumour cells by the tumour-associated serpin, SCC antigen-1. Br J Cancer 2000; 82:981-9. [PMID: 10732775 PMCID: PMC2374407 DOI: 10.1054/bjoc.1999.1028] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The squamous cell carcinoma antigen (SCC Ag) is a tumour-associated protein and a member of the serine protease inhibitor (serpin) family. The SCC Ag has been used as a serologic tumour marker for SCC progression, and its elevated serum levels are a risk factor for disease relapse. However, the biologic significance of this intracytoplasmic protein in cancer cells remains unknown. In this report, we demonstrated that apoptosis induced by 7-ethyl-10-hydroxycamptothecin, tumour necrosis factor-alpha (TNF-alpha) or interleukin (IL)-2-activated natural killer (NK) cells was significantly inhibited in tumour cells transduced with the SCC Ag-1 cDNA, as compared to control cells in vitro. Also, inhibition of the SCC Ag-1 expression in tumour cells by transfection of antisense SCC Ag-1 cDNA was accompanied by significantly increased sensitivity of these cells to apoptosis induced by etoposide or TNF-alpha. The mechanism of protection of tumour cells from apoptosis involved inhibition of caspase-3 activity and/or upstream proteases. In vivo, tumour cells overexpressing the SCC Ag-1 formed significantly larger tumours in nude mice than the SCC Ag-1-negative controls. Thus, overexpression of the SCC Ag-1, a member of the serpin family, in human cancer cells contributed to their survival by mediating protection from drug-, cytokine- or effector cell-induced apoptosis.
Collapse
Affiliation(s)
- Y Suminami
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
284
|
Proteasome inhibitors induce cytochrome c-caspase-3-like protease-mediated apoptosis in cultured cortical neurons. J Neurosci 2000. [PMID: 10627603 DOI: 10.1523/jneurosci.20-01-00259.2000] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ubiquitin-proteasome protein degradation pathway is crucial in controlling intracellular levels of a variety of short-lived proteins and maintaining cellular growth and metabolism. In a previous study, we showed the accumulation of conjugated ubiquitin in CA1 neurons of the gerbil after 5 min of forebrain ischemia (; ). The accumulation of conjugated ubiquitin may reflect proteasome malfunction. In the present study, we investigated the effects of proteasome inhibitors on primary neuronal cultures to determine whether proteasomal malfunction induces neuronal death. When carbobenzoxy-Leu-Leu-Leu-aldehyde or lactacystin, two different types of proteasome inhibitors, were separately used to suppress proteasome activity, we observed induction of apoptotic neuronal cell death in both cases. During the apoptotic process, mitochondrial membrane potential was disrupted, cytochrome-c was released from mitochondria into the cytosol, and caspase-3-like proteases were activated. Apoptosis was inhibited by pretreatment with acetyl-aspartyl-glutamyl-valyl-aspart-1-aldehyde or overexpression of Bcl-x/(L). These results demonstrated that suppression of proteasome function induces neuronal apoptosis via the release of cytochrome c from mitochondria and activation of caspase-3-like proteases.
Collapse
|
285
|
Ribozyme-mediated inhibition of caspase-3 protects cerebellar granule cells from apoptosis induced by serum-potassium deprivation. J Neurosci 2000. [PMID: 10627595 DOI: 10.1523/jneurosci.20-01-00179.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Apoptosis is an important mechanism of physiological and pathological cell death. It is regulated by several gene products, including caspases and the bcl-2-like proteins, whose roles have been demonstrated in numerous systems. One of these is a model of cerebellar granule cells (CGCs) in which apoptosis is induced by acute removal of serum and depolarizing concentrations of potassium. Previous work by several authors showed that benzyloxycarbonyl-DEVD-fluoromethylketone, a somewhat selective caspase inhibitor, significantly protected CGCs from apoptosis; however, because this molecule targets multiple caspases, it is not known whether a single caspase is primarily responsible for effecting cell death in this model. We attempted to answer this question by cotransfecting CGCs with green fluorescent protein reporter and a hammerhead ribozyme directed against caspase-3 mRNA. Maximal protection by this ribozyme was observed after 24 hr of deprivation, at which time apoptosis was 18 +/- 0.7% compared with 32 +/- 2% in control cells. Significant protection was also observed with human inhibitor of apoptosis (IAP)-like protein-X-linked IAP, a specific inhibitor of caspase-3, -7, and -9, and with p35, a general caspase inhibitor. Overexpression of bcl-2 produced almost complete protection from apoptosis after 24 hr of serum-K(+) deprivation (5 +/- 2 vs 44 +/- 2% in control cells). These results confirm that caspases play an important role in CGC apoptosis and indicate that caspase-3 itself is a significant mediator of this process.
Collapse
|
286
|
Abstract
The Bcl-2 family of proteins that consists of anti-apoptotic and pro-apoptotic members determines life-or-death of a cell by controlling the release of mitochondrial apoptogenic factors, cytochrome c and apoptosis-inducing factor (AIF), that activate downstream executional phases, including the activation of death proteases called caspases. Cytochrome c release is, thus, central to apoptotic signal transduction in mammals, making study of the mechanism for cytochrome c release a major issue. Several models for cytochrome c release have been proposed, including rupture of mitochondrial outer membrane and involvement of a specific channel. Here, we provide an overview of recent findings on the role of Bcl-2 family members in the life-or-death decision of a cell.
Collapse
Affiliation(s)
- Y Tsujimoto
- Department of Medical Genetics, Biomedical Research Center, Osaka University Graduate School of Medicine, CREST of Japan Science and Technology Corp. (JST), 2-2 Yamadaoka, Suita, Osaka, Japan.
| | | |
Collapse
|
287
|
Roy G, Horton JK, Roy R, Denning T, Mitra S, Boldogh I. Acquired alkylating drug resistance of a human ovarian carcinoma cell line is unaffected by altered levels of pro- and anti-apoptotic proteins. Oncogene 2000; 19:141-50. [PMID: 10644989 DOI: 10.1038/sj.onc.1203318] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In a systematic study to elucidate the involvement of pro- and anti-apoptotic proteins in alkylating drug resistance of tumor cells, we utilized the A2780(100) line, that was selected by repeated exposure of A2780 cell line (human ovarian carcinoma line) to chlorambucil (CBL). A2780(100) was 5 - 10-fold more resistant to nitrogen mustards (IC50 of 50 - 60 microM) and other DNA crosslinking agents, e.g., cisplatin, and also to DNA topoisomerase inhibitor etoposide (ETO) than A2780. CBL (125 microM) induced extensive apoptosis in A2780 associated with mitochondrial damage but not in A2780(100). No significant differences were observed between A2780 and A2780(100) cells in the basal levels, or the enhanced levels in some cases after CBL treatment, of DNA repair proteins involved in repair of alkyl base adducts or in repair of DNA crosslinks or double strand break repair. However, the basal levels of anti-apoptotic proteins Bcl-xL and Mcl-1 were 4 - 8-fold higher in A2780(100) than in A2780 neither of which expressed Bcl-2. In contrast, the levels of pro-apoptotic Bax and Bak were 3 - 5-fold higher in the CBL-treated A2780 but not in A2780(100). ETO (5 microM) induced apoptosis in A2780 without altering the levels of Bax and Bak in these cells. At the same time, neither overexpression of Bcl-xL in A2780, nor its antisense expression in A2780(100), and nor overexpression of Bax in A2780(100), significantly affected drug sensitivity of either line. Our results suggest that a change in an early step in DNA damage processing which affects intracellular signaling, such as enhanced DNA double-strand break repair, could be the primary cause for development of resistance in A2780(100) cells to drugs which induce DNA crosslinks or double strand-breaks.
Collapse
Affiliation(s)
- G Roy
- Sealy Center for Molecular Sciences, University of Texas Medical Branch, Galveston, Texas, TX 77555, USA
| | | | | | | | | | | |
Collapse
|
288
|
Eldadah BA, Ren RF, Faden AI. Ribozyme-mediated inhibition of caspase-3 protects cerebellar granule cells from apoptosis induced by serum-potassium deprivation. J Neurosci 2000; 20:179-86. [PMID: 10627595 PMCID: PMC6774112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Apoptosis is an important mechanism of physiological and pathological cell death. It is regulated by several gene products, including caspases and the bcl-2-like proteins, whose roles have been demonstrated in numerous systems. One of these is a model of cerebellar granule cells (CGCs) in which apoptosis is induced by acute removal of serum and depolarizing concentrations of potassium. Previous work by several authors showed that benzyloxycarbonyl-DEVD-fluoromethylketone, a somewhat selective caspase inhibitor, significantly protected CGCs from apoptosis; however, because this molecule targets multiple caspases, it is not known whether a single caspase is primarily responsible for effecting cell death in this model. We attempted to answer this question by cotransfecting CGCs with green fluorescent protein reporter and a hammerhead ribozyme directed against caspase-3 mRNA. Maximal protection by this ribozyme was observed after 24 hr of deprivation, at which time apoptosis was 18 +/- 0.7% compared with 32 +/- 2% in control cells. Significant protection was also observed with human inhibitor of apoptosis (IAP)-like protein-X-linked IAP, a specific inhibitor of caspase-3, -7, and -9, and with p35, a general caspase inhibitor. Overexpression of bcl-2 produced almost complete protection from apoptosis after 24 hr of serum-K(+) deprivation (5 +/- 2 vs 44 +/- 2% in control cells). These results confirm that caspases play an important role in CGC apoptosis and indicate that caspase-3 itself is a significant mediator of this process.
Collapse
Affiliation(s)
- B A Eldadah
- Georgetown Institute for Cognitive and Computation Sciences, Departments of Neuroscience, Neurology, and Pharmacology, Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|
289
|
Abstract
Mitochondria are the major ATP producer of the mammalian cell. Moreover, mitochondria are also the main intracellular source and target of reactive oxygen species (ROS) that are continually generated as by-products of aerobic metabolism in human cells. A low level of ROS generated from the respiratory chain was recently proposed to take part in the signaling from mitochondria to the nucleus. Several structural characteristics of mitochondria and the mitochondrial genome enable them to sense and respond to extracellular and intracellular signals or stresses in order to sustain the life of the cell. It has been established that mitochondrial respiratory function declines with age, and that defects in the respiratory chain increase the production of ROS and free radicals in mitochondria. Within a certain concentration range, ROS may induce stress responses of the cell by altering the expression of a number of genes in order to uphold energy metabolism to rescue the cell. However, beyond this threshold, ROS may elicit apoptosis by induction of mitochondrial membrane permeability transition and release of cytochrome c. Intensive research in the past few years has established that mitochondria play a pivotal role in the early phase of apoptosis in mammalian cells. In this article, the role of mitochondria in the determination of life and death of the cell is reviewed on the basis of recent findings gathered from this and other laboratories.
Collapse
Affiliation(s)
- H C Lee
- Department of Biochemistry and Center for Cellular and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
290
|
Qiu JH, Asai A, Chi S, Saito N, Hamada H, Kirino T. Proteasome inhibitors induce cytochrome c-caspase-3-like protease-mediated apoptosis in cultured cortical neurons. J Neurosci 2000; 20:259-65. [PMID: 10627603 PMCID: PMC6774120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/1999] [Revised: 09/22/1999] [Accepted: 10/18/1999] [Indexed: 02/15/2023] Open
Abstract
The ubiquitin-proteasome protein degradation pathway is crucial in controlling intracellular levels of a variety of short-lived proteins and maintaining cellular growth and metabolism. In a previous study, we showed the accumulation of conjugated ubiquitin in CA1 neurons of the gerbil after 5 min of forebrain ischemia (; ). The accumulation of conjugated ubiquitin may reflect proteasome malfunction. In the present study, we investigated the effects of proteasome inhibitors on primary neuronal cultures to determine whether proteasomal malfunction induces neuronal death. When carbobenzoxy-Leu-Leu-Leu-aldehyde or lactacystin, two different types of proteasome inhibitors, were separately used to suppress proteasome activity, we observed induction of apoptotic neuronal cell death in both cases. During the apoptotic process, mitochondrial membrane potential was disrupted, cytochrome-c was released from mitochondria into the cytosol, and caspase-3-like proteases were activated. Apoptosis was inhibited by pretreatment with acetyl-aspartyl-glutamyl-valyl-aspart-1-aldehyde or overexpression of Bcl-x/(L). These results demonstrated that suppression of proteasome function induces neuronal apoptosis via the release of cytochrome c from mitochondria and activation of caspase-3-like proteases.
Collapse
Affiliation(s)
- J H Qiu
- Laboratory for Neuroscience and Neurooncology, Faculty of Medicine, University of Tokyo, Tokyo, 113-8655 Japan
| | | | | | | | | | | |
Collapse
|
291
|
Schutte B, Ramaekers FC. Molecular switches that govern the balance between proliferation and apoptosis. PROGRESS IN CELL CYCLE RESEARCH 2000; 4:207-17. [PMID: 10740827 DOI: 10.1007/978-1-4615-4253-7_18] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tissue modelling during embryogenesis and tissue homeostasis during adult life is governed by a dynamic equilibrium between growth and programmed cell death (apoptosis). Growth control and apoptosis are intimately associated, and a disturbance of the balance between these two processes often leads to pathological situations, such as for example cell accumulations in cancer. To date many of the molecular mechanisms controlling growth control on the one hand, and apoptosis on the other hand are known, whereas the switch that controls the decision between both pathways remains elusive. A cell is continuously exposed to multiple opposing "death" and "survival" triggers. A challenging question is how a cell senses these signals and decides to live or die. A decision in favour of survival should automatically result in a shut down of the death pathways. Alternatively, a decision for death should result in inhibition of futile attempts to survive. The molecular events controlling this balance of signals will be discussed with special emphasis on the role of cyclin-dependent kinases and the ubiquitin-dependent and proteasome-mediated protein degradation pathway.
Collapse
Affiliation(s)
- B Schutte
- Department of Molecular Cell Biology and Genetics, University of Maastricht, The Netherlands
| | | |
Collapse
|
292
|
Fiers W, Beyaert R, Declercq W, Vandenabeele P. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 1999; 18:7719-30. [PMID: 10618712 DOI: 10.1038/sj.onc.1203249] [Citation(s) in RCA: 626] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell death is an essential phenomenon in normal development and homeostasis, but also plays a crucial role in various pathologies. Our understanding of the molecular mechanisms involved has increased exponentially, although it is still far from complete. The morphological features of a cell dying either by apoptosis or by necrosis are remarkably conserved for quite different cell types derived from lower or higher organisms. At the molecular level, several gene products play a similar, crucial role in a major cell death pathway in a worm and in man. However, one should not oversimplify. It is now evident that there are multiple pathways leading to cell death, and some cells may have the required components for one pathway, but not for another, or contain endogenous inhibitors which preclude a particular pathway. Furthermore, different pathways can co-exist in the same cell and are switched on by specific stimuli. Apoptotic cell death, reported to be non-inflammatory, and necrotic cell death, which may be inflammatory, are two extremes, while the real situation is usually more complex. We here review the distinguishing features of the various cell death pathways: caspases (cysteine proteases cleaving after particular aspartate residues), mitochondria and/or reactive oxygen species are often, but not always, key components. As these various caspase-dependent and caspase-independent cell death pathways are becoming better characterized, we may learn to differentiate them, fill in the many gaps in our understanding, and perhaps exploit the knowledge acquired for clinical benefit.
Collapse
Affiliation(s)
- W Fiers
- Department of Molecular Biology, University of Ghent, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
293
|
Ito A, Uehara T, Tokumitsu A, Okuma Y, Nomura Y. Possible involvement of cytochrome c release and sequential activation of caspases in ceramide-induced apoptosis in SK-N-MC cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1452:263-74. [PMID: 10590315 DOI: 10.1016/s0167-4889(99)00131-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ceramide is characterized as a second messenger of apoptosis induced by various agents such as tumor necrosis factor (TNF-alpha), Fas ligand, hydrogen peroxide, heat shock and ionizing radiation. In this study, we investigated the mechanism of ceramide-induced apoptosis using a human neuroblastoma cell line, SK-N-MC. N-Acetyl-sphingosine (C2-ceramide), a cell-permeable ceramide analogue, was able to induce apoptosis in SK-N-MC cells as estimated by DNA fragmentation and chromatin condensation. C2-ceramide-induced DNA fragmentation was blocked by caspase inhibitor (Z-Asp-CH(2)-DCB). An increase in caspase-3 (CPP32)-like protease activity was evident during C2-ceramide-induced apoptosis, suggesting that caspases are involved in this apoptosis. Moreover, enzymatic cleavage of VDVAD-AFC and LEHD-AFC (specific substrates for caspase-2 and -9, respectively) was increased by treatment with C2-ceramide. To elucidate which types of caspase are activated in C2-ceramide-treated cells, we performed Western blot analysis using antibodies against each isoform. Both proforms of caspase-2 and -3 were decreased in response to C2-ceramide in a time-dependent manner. Mitochondrial cytochrome c is also time-dependently released into the cytosol in response to treatment with C2-ceramide. Addition of cytochrome c into the S-100 fractions prepared from SK-N-MC cells could activate caspase-2 in cell-free systems. These results suggest the possibility that cytochrome c released to the cytosol can activate caspases (caspase-9, -3, and -2) during C2-ceramide-induced apoptosis of SK-N-MC cells.
Collapse
Affiliation(s)
- A Ito
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
294
|
Vander Heiden MG, Thompson CB. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol 1999; 1:E209-16. [PMID: 10587660 DOI: 10.1038/70237] [Citation(s) in RCA: 501] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Programmed cell death (apoptosis) is used by multicellular organisms during development and to maintain homeostasis within mature tissues. One of the first genes shown to regulate apoptosis was bcl-2. Subsequently, a number of Bcl-2-related proteins have been identified. Despite overwhelming evidence that Bcl-2 proteins are evolutionarily conserved regulators of apoptosis, their precise biochemical function remains controversial. Three biochemical properties of Bcl-2 proteins have been identified: their ability to localize constitutively and/or inducibly to the outer mitochondrial, outer nuclear and endoplasmic reticular membranes, their ability to form heterodimers with proteins bearing an amphipathic helical BH3 domain, and their ability to form ion-conducting channels in synthetic membranes. The discovery that mitochondria can play a key part in the induction of apoptosis has focused attention on the role that Bcl-2 proteins may have in regulating either mitochondrial physiology or mitochondria-dependent caspase activation. Here we attempt to synthesize our current understanding of the part played by mitochondria in apoptosis with a consideration of how Bcl-2 proteins might control cell death through an ability to regulate mitochondrial physiology.
Collapse
Affiliation(s)
- M G Vander Heiden
- Committee on Immunology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
295
|
Leo CP, Hsu SY, Chun SY, Bae HW, Hsueh AJ. Characterization of the antiapoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) and the stimulation of its message by gonadotropins in the rat ovary. Endocrinology 1999; 140:5469-77. [PMID: 10579309 DOI: 10.1210/endo.140.12.7171] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The majority of ovarian follicles undergo atresia mediated by apoptosis. Bcl-2-related proteins act as regulators of apoptosis via the formation of dimers with proteins inside and outside the Bcl-2 family. Previous studies have identified BAD as a proapoptotic Bcl-2 family member expressed in the ovary. It is known that BAD phosphorylation induced by survival factors leads to its preferential binding to 14-3-3 and suppression of the death-inducing function of BAD. To identify ovarian binding partners for hypophosphorylated BAD, we performed a yeast two-hybrid screening of a rat ovary complementary DNA library using as bait a mutant BAD incapable of binding to 14-3-3. Screening of yeast transformants yielded positive clones encoding the rat ortholog of Mcl-1 (myeloid cell leukemia-1), an antiapoptotic Bcl-2 protein. Amino acid sequence analysis revealed that rat and human Mcl-1 showed a complete conservation of the Bcl-2 homology domains BH1, BH2, and BH3. In the yeast two-hybrid system, Mcl-1 binds to the hypophosphorylated mutant of BAD and interacts preferentially with different proapoptotic (Bax, Bak, Bok, Bik, and BOD) compared with antiapoptotic Bcl-2 family members (Bcl-2, Bcl-xL, Bcl-w, Bfl-1, CED-9, and BHRF-1). Northern blot hybridization demonstrated expression of Mcl-1 transcripts of 2.3 and 3.7 kb in the ovary and diverse other rat tissues. In immature rats, PMSG treatment led to a transient increase in the 2.3-kb Mcl-1 transcript, peaking at 6 h after injection and returning to baseline levels after 24 h. Moreover, the same transcript was induced in the PMSG-primed preovulatory rat ovary 6 h after the administration of ovulatory doses of either hCG or FSH. In situ hybridization studies revealed that the gonadotropin stimulation of ovarian Mcl-1 message occurs in both granulosa and thecal cells. In conclusion, rat Mcl-1 was identified as an ovarian BAD-interacting protein and the message for the antiapoptotic Mcl-1 protein was induced after treatment with gonadotropins in granulosa and thecal cells of growing follicles.
Collapse
Affiliation(s)
- C P Leo
- Department of Gynecology and Obstetrics, Stanford University Medical Center, California 94305-5317, USA
| | | | | | | | | |
Collapse
|
296
|
Liu G, Kleine L, Hébert RL. Advances in the signal transduction of ceramide and related sphingolipids. Crit Rev Clin Lab Sci 1999; 36:511-73. [PMID: 10656539 DOI: 10.1080/10408369991239240] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recently, the sphingolipid metabolites ceramide, sphingosine, ceramide 1-P, and sphingosine 1-P have been implicated as second messengers involved in many different cellular functions. Publications on this topic are appearing at a rapidly increasing rate and new developments in this field are also appearing rapidly. It is thus important to summarize the results obtained from many different laboratories and from different fields of research to obtain a clearer picture of the importance of sphingolipid metabolites. This article reviews the studies from the last few years and includes the effects of a variety of extracellular agents on sphingolipid signal transduction pathways in different tissues and cells and on the mechanisms of regulation. Sphingomyelin exists in a number of functionally distinct pools and is composed of distinct molecular species. Sphingomyelin metabolites may be formed by many different pathways. For example, the generation of ceramide from sphingomyelin can be catalyzed by at least five different sphingomyelinases. A large variety of stimuli can induce the generation of ceramide, leading to activation or inhibition of various cellular events such as proliferation, differentiation, apoptosis, and inflammation. The effect of ceramide on these physiological processes is due to its many different downstream targets. It can activate ceramide-activated protein kinases and ceramide-activated protein phosphatases. It also activates or inhibits PKCs, PLD, PLA2, PC-PLC, nitric oxide synthase, and the ERK and SAPK/JNK signaling cascades. Ceramide activates or inhibits transcription factors, modulates calcium homeostasis and interacts with the retinoblastoma protein to regulate cell cycle progression. Most of the work in this field has involved the study of ceramide effects, but the roles of the other three sphingomyelin metabolites is now attracting much attention. The complex interactions between signaling components and ceramide and the controls regulating these interactions are now being identified and are presented in this review.
Collapse
Affiliation(s)
- G Liu
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
297
|
Cook SA, Sugden PH, Clerk A. Regulation of bcl-2 family proteins during development and in response to oxidative stress in cardiac myocytes: association with changes in mitochondrial membrane potential. Circ Res 1999; 85:940-9. [PMID: 10559141 DOI: 10.1161/01.res.85.10.940] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac myocyte apoptosis is potentially important in many cardiac disorders. In other cells, Bcl-2 family proteins and mitochondrial dysfunction are probably key regulators of the apoptotic response. In the present study, we characterized the regulation of antiapoptotic (Bcl-2, Bcl-xL) and proapoptotic (Bad, Bax) Bcl-2 family proteins in the rat heart during development and in oxidative stress-induced apoptosis. Bcl-2 and Bcl-xL were expressed at high levels in the neonate, and their expression was sustained during development. In contrast, although Bad and Bax were present at high levels in neonatal hearts, they were barely detectable in adult hearts. We confirmed that H(2)O(2) induced cardiac myocyte cell death, stimulating poly(ADP-ribose) polymerase proteolysis (from 2 hours), caspase-3 proteolysis (from 2 hours), and DNA fragmentation (from 8 hours). In unstimulated neonatal cardiac myocytes, Bcl-2 and Bcl-xL were associated with the mitochondria, but Bad and Bax were predominantly present in a crude cytosolic fraction. Exposure of myocytes to H(2)O(2) stimulated rapid translocation of Bad (<5 minutes) to the mitochondria. This was followed by the subsequent degradation of Bad and Bcl-2 (from approximately 30 minutes). The levels of the mitochondrial membrane marker cytochrome oxidase remained unchanged. H(2)O(2) also induced translocation of cytochrome c from the mitochondria to the cytosol within 15 to 30 minutes, which was indicative of mitochondrial dysfunction. Myocytes exposed to H(2)O(2) showed an early loss of mitochondrial membrane potential (assessed by fluorescence-activated cell sorter analysis) from 15 to 30 minutes, which was partially restored by approximately 1 hour. However, a subsequent irreversible loss of mitochondrial membrane potential occurred that correlated with cell death. These data suggest that the regulation of Bcl-2 and mitochondrial function are important factors in oxidative stress-induced cardiac myocyte apoptosis.
Collapse
Affiliation(s)
- S A Cook
- National Heart and Lung Institute, Cardiac Medicine Section (S.A.C., P.H.S.), and the Division of Biomedical Sciences, Molecular Pathology Section (A.C.), Imperial College School of Medicine, London, UK
| | | | | |
Collapse
|
298
|
Brockhaus F, Brüne B. p53 accumulation in apoptotic macrophages is an energy demanding process that precedes cytochrome c release in response to nitric oxide. Oncogene 1999; 18:6403-10. [PMID: 10597241 DOI: 10.1038/sj.onc.1203058] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Apoptosis in response to stress signals activates effector caspases known to be regulated by the release of cytochrome c (Cyt c) from mitochondria and the subsequent ATP-dependent activation of the death regulator apoptotic protease-activating factor 1 (Apaf-1). Experiments were carried out to determine whether the release of Cyt c is evoked by NO. in RAW 264.7 macrophages and to position signaling components relative to mitochondria. S-nitrosoglutathione and spermine-NO caused a fast p53 accumulation, followed by Bcl-xL downregulation, Cyt c release, and caspase activation. These alterations were absent in p53 antisense expressing macrophages (R delta p53asn-11). In Bcl-2 overexpressing cells (Rbcl2-14) Cyt c relocation and caspase activation were abrogated although p53 accumulation remained intact. The use of caspase inhibitors revealed Cyt c release and decreased Bcl-xL expression to be caspase independent. ATP-depleted cells showed a shift from apoptosis towards necrosis and no p53 accumulation or caspase activation upon NO. addition. Conclusively, NO.-mediated apoptosis in macrophages is entirely controlled by the mitochondrial pathway with the implication that Cyt c relocation demands p53 accumulation. Moreover, pulse-chase-experiments in combination with the ATP-depletion protocol identified p53 accumulation and stabilization as an energy requiring process. This allowed to dissect two ATP-dependent steps, one is in association with Apaf-1 formation, while the other resides in p53 accumulation.
Collapse
Affiliation(s)
- F Brockhaus
- University of Erlangen-Nürnberg, Faculty of Medicine, Department of Medicine IV-Experimental Division, Germany
| | | |
Collapse
|
299
|
Abstract
Apoptosis is a highly regulated process of cell death that is required for the development and homeostasis of multicellular organisms. In contrast to necrosis, apoptosis eliminates individual cells without inducing an inflammatory response. Activation or prevention of cell death could be a critical factor in the outcome of an infection. Programmed cell death has been observed as a response to infection by a wide range of animal and plant pathogens and is mediated by an array of pathogen-encoded virulence determinants. Pathogen-induced modulation of the host cell-death pathway may serve to eliminate key immune cells or evade host defenses that can act to limit the infection. Alternatively, suppression of the death pathway may facilitate the proliferation of intracellular pathogens.
Collapse
Affiliation(s)
- Y Weinrauch
- Department of Microbiology, Skirball Institute, New York University School of Medicine, New York 10016, USA
| | | |
Collapse
|
300
|
Saikumar P, Dong Z, Mikhailov V, Denton M, Weinberg JM, Venkatachalam MA. Apoptosis: definition, mechanisms, and relevance to disease. Am J Med 1999; 107:489-506. [PMID: 10569305 DOI: 10.1016/s0002-9343(99)00259-4] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- P Saikumar
- Department of Pathology, University of Texas Health Science Center at San Antonio, 78229-3900, USA
| | | | | | | | | | | |
Collapse
|