251
|
Abraham RS, Ballman KV, Dispenzieri A, Grill DE, Manske MK, Price-Troska TL, Paz NG, Gertz MA, Fonseca R. Functional gene expression analysis of clonal plasma cells identifies a unique molecular profile for light chain amyloidosis. Blood 2005; 105:794-803. [PMID: 15388584 DOI: 10.1182/blood-2004-04-1424] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractImmunoglobulin light chain amyloidosis (AL) is characterized by a clonal expansion of plasma cells within the bone marrow. Gene expression analysis was used to identify a unique molecular profile for AL using enriched plasma cells (CD138+) from the bone marrow of 24 patients with AL and 28 patients with multiple myeloma (MM) and 6 healthy controls. Class prediction analysis (PAM) revealed a subset of 12 genes, which included TNFRSF7 (CD27), SDF-1, and PSMA2, that distinguished between these 2 groups with an estimated and observed accuracy of classification of 92%. This model was validated with an independent dataset of 11 patients with AL and 12 patients with MM with 87% accuracy. Differential expression for the most discriminant genes in the 12-gene subset was validated using quantitative real-time polymerase chain reaction and protein expression analysis, which upheld the observations from the micro-array expression data. Functional analyses using a novel network mapping software revealed a number of potentially significant pathways that were dysregulated in patients with AL, with those regulating proliferation, apoptosis, cell signaling, chemotaxis, and migration being substantially represented. This study provides new insight into the molecular profile of clonal plasma cells and its functional relevance in the pathogenesis of light chain amyloidosis.
Collapse
Affiliation(s)
- Roshini S Abraham
- Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Wilker E, Lu J, Rho O, Carbajal S, Beltrán L, DiGiovanni J. Role of PI3K/Akt signaling in insulin-like growth factor-1 (IGF-1) skin tumor promotion. Mol Carcinog 2005; 44:137-45. [PMID: 16086373 DOI: 10.1002/mc.20132] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Overexpression of human IGF-1 with the bovine keratin 5 (BK5) promoter (BK5.IGF-1 transgenic mice) induces persistent epidermal hyperplasia and leads to spontaneous skin tumor formation. In previous work, PI3K and Akt activities were found to be elevated in the epidermis of BK5.IGF-1 transgenic mice compared to nontransgenic littermates. In the present study, we examined the importance of the PI3K/Akt signaling pathway in mediating the skin phenotype and the skin tumor promoting action of IGF-1 in these mice. Western blot analyses with epidermal lysates showed that signaling components downstream of PI3K/Akt were altered in epidermis of BK5.IGF-1 mice. Increased phosphorylation of GSK-3 (Ser(9/21)), TSC2(Thr(1462)), and mTOR(Ser(2448)) was observed. In addition, hypophosphorylation and increased protein levels of beta-catenin were observed in the epidermis of BK5.IGF-1 mice. These data suggested that components downstream of Akt might be affected, including cell cycle machinery in the epidermis of BK5.IGF-1 mice. Protein levels of cyclins (D1, E, A), E2F1, and E2F4 were all elevated in the epidermis of BK5.IGF-1 mice. Also, immunoprecipitation experiments demonstrated an increase in cdk4/cyclin D1 and cdk2/cyclin E complex formation, suggesting increased cdk activity in the epidermis of transgenic mice. In further studies, the PI3K inhibitor, LY294002, significantly blocked IGF-1-mediated epidermal proliferation and skin tumor promotion in DMBA-initiated BK5.IGF-1 mice. In addition, inhibition of PI3K/Akt with LY294002 reversed many of the cell cycle related changes observed in untreated transgenic animals. Collectively, the current results supported the hypothesis that elevated PI3K/Akt activity and subsequent activation of one or more downstream effector pathways contributed significantly to the tumor promoting action of IGF-1 in the epidermis of BK5.IGF-1 mice.
Collapse
Affiliation(s)
- Erik Wilker
- Department of Carcinogenesis, Science Park-Research Division, University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | | | | | |
Collapse
|
253
|
Itoh K, Lisovsky M, Hikasa H, Sokol SY. Reorganization of actin cytoskeleton by FRIED, a Frizzled-8 associated protein tyrosine phosphatase. Dev Dyn 2005; 234:90-101. [PMID: 16086323 DOI: 10.1002/dvdy.20526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Frizzled receptors transduce signals from the extracellular Wnt ligands through multiple signaling pathways that affect cytoskeletal organization and regulate gene expression. Direct intracellular mediators of Frizzled signaling are largely unknown. We identified FRIED (Frizzled interaction and ectoderm defects) by its association with the C-terminal PDZ-binding motif of Xenopus Frizzled 8. FRIED contains an N-terminal KIND domain, a FERM domain, six PDZ domains, and a tyrosine phosphatase domain, being similar in structure to the protein tyrosine phosphatase PTP-BAS/PTP-BL. We report that FRIED proteins with the FERM domain localize to the apical cortex and can inhibit Wnt8-mediated, but not beta-catenin-mediated, secondary axis induction in Xenopus embryos, suggesting a specific interaction with Wnt signaling. A FRIED construct containing the FERM domain induced reorganization of pigment granules and cortical actin in Xenopus ectoderm. Wnt5a suppressed the depigmentation of ectoderm triggered by FRIED, demonstrating that Wnt5a and FRIED functionally interact to regulate the cytoskeletal organization. Our data are consistent with the possibility that FRIED functions by modulating Rac1 activity. We propose that FRIED is an adaptor protein that serves as a molecular link between Wnt signaling and actin cytoskeleton.
Collapse
Affiliation(s)
- Keiji Itoh
- Department of Molecular Cell and Developmental Biology, Mount Sinai Medical School, New York, NY 10029, USA
| | | | | | | |
Collapse
|
254
|
Salic A, King RW. Identifying Small Molecule Inhibitors of the Ubiquitin‐Proteasome Pathway in Xenopus Egg Extracts. Methods Enzymol 2005; 399:567-85. [PMID: 16338382 DOI: 10.1016/s0076-6879(05)99038-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small molecule inhibitors of the proteasome have been crucial for dissecting the mechanism of proteasome-dependent protein degradation and identifying substrates of the ubiquitin-proteasome system (UPS). To identify small molecules that block ubiquitin-dependent protein degradation through other mechanisms, we have developed pathway-based screening approaches in Xenopus egg extracts. The regulated degradation of UPS substrates can be reconstituted in these extracts, providing an excellent system in which to perform forward chemical genetic screens. The ability to manipulate extracts biochemically and to compare the activity of small molecules across different assays facilitates the identification of potential target proteins. Here we describe methods for identifying inhibitors of the proteolytic pathways that regulate cell cycle progression and Wnt signaling in Xenopus extracts.
Collapse
|
255
|
Liu S, Yu S, Hasegawa Y, Lapushin R, Xu HJ, Woodgett JR, Mills GB, Fang X. Glycogen synthase kinase 3beta is a negative regulator of growth factor-induced activation of the c-Jun N-terminal kinase. J Biol Chem 2004; 279:51075-81. [PMID: 15466414 PMCID: PMC5328675 DOI: 10.1074/jbc.m408607200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The c-Jun N-terminal kinase (JNK)/stress activated protein kinase is preferentially activated by stress stimuli. Growth factors, particularly ligands for G protein-coupled receptors, usually induce only modest JNK activation, although they may trigger marked activation of the related extracellular signal-regulated kinase. In the present study, we demonstrated that homozygous disruption of glycogen synthase kinase 3beta (GSK-3beta) dramatically sensitized mouse embryonic fibroblasts (MEFs) to JNK activation induced by lysophosphatidic acid (LPA) and sphingosine-1-phosphate, two prototype ligands for G protein-coupled receptors. To a lesser degree, a lack of GSK-3beta also potentiated JNK activation in response to epidermal growth factor. In contrast, the absence of GSK-3beta decreased UV light-induced JNK activation. The increased JNK activation induced by LPA in GSK-3beta null MEFs was insufficient to trigger apoptotic cell death or growth inhibition. Instead, the increased JNK activation observed in GSK-3beta-/- MEFs was associated with an increased proliferative response to LPA, which was reduced by the inhibition of JNK. Ectopic expression of GSK-3beta in GSK-3beta-negative MEFs restrained LPA-triggered JNK phosphorylation and induced a concomitant decrease in the mitogenic response to LPA compatible with GSK-3beta through the inhibition of JNK activation, thus limiting LPA-induced cell proliferation. Mutation analysis indicated that GSK-3beta kinase activity was required for GSK-3beta to optimally inhibit LPA-stimulated JNK activation. Thus GSK-3beta serves as a physiological switch to specifically repress JNK activation in response to LPA, sphingosine-1-phosphate, or the epidermal growth factor. These results reveal a novel role for GSK-3beta in signal transduction and cellular responses to growth factors.
Collapse
Affiliation(s)
- Shuying Liu
- Department of Molecular Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
256
|
Le Floch N, Rivat C, De Wever O, Bruyneel E, Mareel M, Dale T, Gespach C. The proinvasive activity of Wnt‐2 is mediated through a noncanonical Wnt pathway coupled to GSK‐3β and c‐ Jun/AP‐1 signaling. FASEB J 2004; 19:144-6. [PMID: 15507471 DOI: 10.1096/fj.04-2373fje] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inappropriate activation of the Wnt/APC/beta-catenin signaling pathways plays a critical role at early stages in a variety of human cancers. However, their respective implication in tumor cell invasion is still hypothetical. Here, we show that two activators of the canonical Wnt/beta-catenin transcription pathway, namely Dvl-2, the Axin 501-560 fragment binding glycogen synthase kinase -3beta (GSK-3beta), and the negative Wnt regulator wt-Axin did not alter cell invasion into type I collagen. In addition, both Dvl-2 and Axin 501-560 exerted a permissive action on the proinvasive activity of HGF and intestinal trefoil factor. Upstream activation of Wnt signaling by the Wnt-2 and Wnt-3a ligands, stable overexpression of Wnt-2, as well as GSK-3beta inhibition by lithium, SB216763, and GSK-3beta dominant negative forms (K85R and R96E) conferred the invasive phenotype through several proinvasive pathways. Induction of the matrix metalloprotease MMP-7 (matrilysin) gene and protein by Wnt-2 was abolished by inactivation of the AP-1 binding site in the promoter. Accordingly, invasion induced by Wnt-2 was prevented by soluble FRP-3 and FRP-1, sequestration of Gbetagamma subunits, depletion of the GSK-3beta protein by RNA interference, the c-Jun dominant negative mutant TAM67 and was not reversed by wt-Axin. Thus, the proinvasive activity of Wnt-2 is mediated by a noncanonical Wnt pathway using GSK-3beta and the AP-1 oncogene. Our data provide a potential clue for our understanding of the action and crosstalk between Wnt activators and other proinvasive pathways, in relation with matrix substrates and proteases in human cancers.
Collapse
Affiliation(s)
- Nathalie Le Floch
- INSERM U482, Signal transduction and Cellular Functions in Diabetes and Digestive Cancers, Hôpital Saint-Antoine, Paris Cedex, France
| | | | | | | | | | | | | |
Collapse
|
257
|
Tian Q, Feetham MC, Tao WA, He XC, Li L, Aebersold R, Hood L. Proteomic analysis identifies that 14-3-3zeta interacts with beta-catenin and facilitates its activation by Akt. Proc Natl Acad Sci U S A 2004; 101:15370-5. [PMID: 15492215 PMCID: PMC524456 DOI: 10.1073/pnas.0406499101] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
beta-Catenin is a central effector of Wnt signaling in embryonic and stem cell development and in tumorigenesis. Here, through a mass spectrometric analysis of a beta-catenin protein complex, we identified 12 proteins as putative beta-catenin interactors. We show that one of them, 14-3-3zeta, enhances beta-catenin-dependent transcription by maintaining a high level of beta-catenin protein in the cytoplasm. More importantly, 14-3-3zeta facilitates activation of beta-catenin by the survival kinase Akt and colocalizes with activated Akt in intestinal stem cells. We propose that Akt phosphorylates beta-catenin, which results in 14-3-3zeta binding and stabilization of beta-catenin, and these interactions may be involved in stem cell development.
Collapse
Affiliation(s)
- Qiang Tian
- Institute for Systems Biology, Seattle, WA 98103, USA.
| | | | | | | | | | | | | |
Collapse
|
258
|
Ballarino M, Fruscalzo A, Marchioni M, Carnevali F. Identification of positive and negative regulatory regions controlling expression of the Xenopus laevis betaTrCP gene. Gene 2004; 336:275-85. [PMID: 15246538 DOI: 10.1016/j.gene.2004.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 03/25/2004] [Accepted: 04/22/2004] [Indexed: 01/24/2023]
Abstract
betaTrCP mediates the ubiquitination and subsequent degradation of several key molecules thereby playing a relevant role in different cellular processes during development and in the adult. In Xenopus embryo, betaTrCP acts as a negative regulator of Wnt signaling by interacting with beta-catenin. In this paper, we report results of the study on expression and regulation of the Xenopus betaTrCP gene. We found that xbetaTrCP is expressed in Xenopus oocytes as three transcripts, which very likely correspond to the previously identified localized mRNAs, and four isoforms. The xbetaTrCP promoter functional and structural analysis showed the presence of elements target of positive transcriptional control. Among them, we have identified a beta-catenin/Tcf signaling responsive region and a 45-bp element containing a sequence motif conforming to the SRF binding site, closer to the transcription initiation sites. There are also elements of transcriptional negative control.
Collapse
Affiliation(s)
- Monica Ballarino
- Consiglio Nazionale delle Ricerche, Istituto di Biologia e Patologia Molecolari, Sezione Acidi Nucleici, Dipartimento di Genetica e Biologia Molecolare ' Charles Darwin', Università 'La Sapienza', P.le Aldo Moro 5, 00185-Rome, Italy
| | | | | | | |
Collapse
|
259
|
Hikasa H, Sokol SY. The involvement of Frodo in TCF-dependent signaling and neural tissue development. Development 2004; 131:4725-34. [PMID: 15329348 DOI: 10.1242/dev.01369] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Frodo is a novel conserved regulator of Wnt signaling that has been identified by its association with Dishevelled, an intracellular component of Wnt signal transduction. To understand further how Frodo functions, we have analyzed its role in neural development using specific morpholino antisense oligonucleotides. We show that Frodo and the closely related Dapper synergistically regulate head development and morphogenesis. Both genes were cell-autonomously required for neural tissue formation, as defined by the pan-neural markers sox2 and nrp1. By contrast,β-catenin was not required for pan-neural marker expression, but was involved in the control of the anteroposterior patterning. In the mesoderm,Frodo and Dapper were essential for the expression of the organizer genes chordin, cerberus and Xnr3, but they were not necessary for the expression of siamois and goosecoid,established targets of β-catenin signaling. Embryos depleted of either gene showed a decreased transcriptional response to TCF3-VP16, aβ-catenin-independent transcriptional activator. Whereas the C terminus of Frodo binds Dishevelled, we demonstrate that the conserved N-terminal domain associates with TCF3. Based on these observations, we propose that Frodo and Dapper link Dsh and TCF to regulate Wnt target genes in a pathway parallel to that of β-catenin.
Collapse
Affiliation(s)
- Hiroki Hikasa
- Department of Microbiology and Molecular Genetics, Harvard Medical School, and Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | | |
Collapse
|
260
|
Ougolkov A, Zhang B, Yamashita K, Bilim V, Mai M, Fuchs SY, Minamoto T. Associations Among -TrCP, an E3 Ubiquitin Ligase Receptor, -Catenin, and NF- B in Colorectal Cancer. J Natl Cancer Inst 2004; 96:1161-70. [PMID: 15292388 DOI: 10.1093/jnci/djh219] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The ubiquitin-proteasome pathway is important in regulating protein signaling pathways that are involved in tumorigenesis. beta-transducin repeat-containing proteins (beta-TrCP) are components of the ubiquitin ligase complex targeting beta-catenin and IkappaBalpha for proteasomal degradation and are thus a negative regulator of Wnt/beta-catenin signaling and a positive regulator of NF-kappaB signaling. We analyzed expression of beta-TrCP in colorectal cancers and its association with types of beta-catenin subcellular localization, an indirect measure of activation. METHODS Levels of beta-TrCP1 mRNA and protein were measured by quantitative reverse transcription-polymerase chain reaction and immunoblotting, respectively, in samples of tumor and normal tissues from 45 patients with colorectal cancer. Types of beta-catenin activation (diffuse or invasion edge) and NF-kappaB activation were examined by immunohistochemistry. Apoptosis was determined by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick-end labeling (TUNEL) assay. All statistical tests were two-sided. RESULTS Compared with the beta-TrCP1 levels in normal tissues, 25 (56%) of 45 tumors had increased beta-TrCP1 mRNA and protein levels. Of the 22 (49%) tumors with beta-catenin activation, 12 had the diffuse type (i.e., nuclear accumulation throughout the tumor) and 10 had the invasion edge type (i.e., nuclear accumulation predominantly in the tumor cells that formed the invasion edge). Increased beta-TrCP1 levels were statistically significantly associated with beta-catenin activation (P =.023) and decreased apoptosis (P =.035). beta-TrCP accumulated in the nuclei of tumor cells that contained increased levels of beta-TrCP1 mRNA and the active form of NF-kappaB. Higher levels of beta-TrCP1 mRNA were detected in primary tumors of patients who had metastases (0.960 arbitrary units, 95% confidence interval = 0.878 to 1.042) than in the tumors of patients who did not (0.722 arbitrary units, 95% confidence interval = 0.600 to 0.844; P =.016). CONCLUSION In colorectal cancer, increased expression of beta-TrCP1 is associated with activation of both beta-catenin and NF-kappaB, suggesting that the integration of these signaling pathways by increased beta-TrCP expression may contribute to an inhibition of apoptosis and tumor metastasis.
Collapse
Affiliation(s)
- Andrei Ougolkov
- Division of Diagnostic Molecular Oncology, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934, Japan
| | | | | | | | | | | | | |
Collapse
|
261
|
Al-Fageeh M, Li Q, Dashwood WM, Myzak MC, Dashwood RH. Phosphorylation and ubiquitination of oncogenic mutants of beta-catenin containing substitutions at Asp32. Oncogene 2004; 23:4839-46. [PMID: 15064718 PMCID: PMC2267883 DOI: 10.1038/sj.onc.1207634] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Beta-Catenin, a member of the Wnt signaling pathway, is downregulated by glycogen synthase kinase-3beta (GSK-3beta)-dependent phosphorylation of Ser/Thr residues in the N-terminus of the protein, followed by ubiquitination and proteosomal degradation. In human and rodent cancers, mutations that substitute one of the critical Ser/Thr residues in the GSK-3beta region of beta-catenin stabilize the protein and activate beta-catenin/TCF/LEF target genes. This study examined three oncogenic beta-catenin mutants from rat colon tumors containing substitutions adjacent to amino-acid residue Ser33, a key target for phosphorylation by GSK-3beta. Compared with wild-type beta-catenin (WT), the beta-catenin mutants D32G, D32N, and D32Y strongly activated TCF-4-dependent transcription in HEK293 cells, and there was accumulation of beta-catenin in the cell lysates. Immunoblotting with phosphospecific antibodies indicated that there was little if any effect on the phosphorylation of Ser37, Thr41 or Ser45; however, the phosphorylation of Ser33 appeared to be affected in the beta-catenin mutants. Specifically, antiphospho-beta-catenin 33/37/41 antibody identified high, intermediate and low expression levels of phosphorylated beta-catenin in cells transfected with D32G, D32N and D32Y, respectively. Experiments with the proteosome inhibitor N-acetyl-Leu-Leu-norleucinal (ALLN) revealed ubiquitinated bands on all three mutant beta-catenins, as well as on WT beta-catenin. The relative order of ubiquitination was WT>D32G>D32N>D32Y, in parallel with findings from the phosphorylation studies. These results are discussed in the context of previous studies, which indicated that amino-acid residue D32 lies within the ubiquitination recognition motif of beta-catenin.
Collapse
Affiliation(s)
- Mohamed Al-Fageeh
- Linus Pauling Institute, Oregon State University, 571 Weniger Hall, Corvallis, OR 97331-6512, USA
| | - Qingjie Li
- Linus Pauling Institute, Oregon State University, 571 Weniger Hall, Corvallis, OR 97331-6512, USA
| | - W Mohaiza Dashwood
- Linus Pauling Institute, Oregon State University, 571 Weniger Hall, Corvallis, OR 97331-6512, USA
| | - Melinda C Myzak
- Linus Pauling Institute, Oregon State University, 571 Weniger Hall, Corvallis, OR 97331-6512, USA
| | - Roderick H Dashwood
- Linus Pauling Institute, Oregon State University, 571 Weniger Hall, Corvallis, OR 97331-6512, USA
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331-6512, USA
- *Correspondence: RH Dashwood, Linus Pauling Institute, Oregon State University, 571 Weniger Hall, Corvallis, OR 97331-6512, USA; E-mail:
| |
Collapse
|
262
|
Tsang M, Maegawa S, Kiang A, Habas R, Weinberg E, Dawid IB. A role for MKP3 in axial patterning of the zebrafish embryo. Development 2004; 131:2769-79. [PMID: 15142973 DOI: 10.1242/dev.01157] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fibroblast growth factors (FGFs) are secreted molecules that can activate the RAS/mitogen-activated protein kinase (MAPK) pathway to serve crucial functions during embryogenesis. Through an in situ hybridization screen for genes with restricted expression patterns during early zebrafish development,we identified a group of genes that exhibit similar expression patterns to FGF genes. We report the characterization of zebrafish MAP kinase phosphatase 3(MKP3; DUSP6 - Zebrafish Information Network), a member of the FGF synexpression group, showing that it has a crucial role in the specification of axial polarity in the early zebrafish embryo. MKP3 dephosphorylates the activated form of MAPK, inhibiting the RAS/MAPK arm of the FGF signaling pathway. Gain- and loss-of-function studies reveal that MKP3 is required to limit the extent of FGF/RAS/MAPK signaling in the early embryo, and that disturbing this inhibitory pathway disrupts dorsoventral patterning at the onset of gastrulation. The earliest mkp3 expression is restricted to the future dorsal region of the embryo where it is initiated by a maternalβ-catenin signal, but soon after its initiation, mkp3 expression comes under the control of FGF signaling. Thus, mkp3 encodes a feedback attenuator of the FGF pathway, the expression of which is initiated at an early stage so as to ensure correct FGF signaling levels at the time of axial patterning.
Collapse
Affiliation(s)
- Michael Tsang
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
263
|
Park CS, Kim SI, Lee MS, Youn CY, Kim DJ, Jho EH, Song WK. Modulation of β-Catenin Phosphorylation/Degradation by Cyclin-dependent Kinase 2. J Biol Chem 2004; 279:19592-9. [PMID: 14985333 DOI: 10.1074/jbc.m314208200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Catenin functions as a downstream component of the Wnt/Wingless signal transduction pathway, and inappropriate control of cytosolic beta-catenin is a crucial step in the genesis of several human cancers. Here we demonstrate that cyclin-dependent kinase 2 (CDK2) in association with cyclin A or cyclin E directly binds to beta-catenin. In vivo and in vitro kinase assays with cyclin-CDK2 demonstrate beta-catenin phosphorylation on residues Ser(33), Ser(37), Thr(41), and Ser(45). This phosphorylation promotes rapid degradation of cytosolic beta-catenin via the beta-TrCP-mediated proteasome pathway. Moreover, cyclin E-CDK2 contributes to rapid degradation of cytosolic beta-catenin levels during G(1) phase by regulating beta-catenin phosphorylation and subsequent degradation. In this way, CDK2 may "fine tune" beta-catenin levels over the course of the cell cycle.
Collapse
Affiliation(s)
- Chun Shik Park
- Department of Life Science, Kwangju Institute of Science and Technology, 1 Oryong-dong, Puk-gu, Kwangju 500-712, Korea
| | | | | | | | | | | | | |
Collapse
|
264
|
He N, Li C, Zhang X, Sheng T, Chi S, Chen K, Wang Q, Vertrees R, Logrono R, Xie J. Regulation of lung cancer cell growth and invasiveness by ?-TRCP. Mol Carcinog 2004; 42:18-28. [PMID: 15536641 DOI: 10.1002/mc.20063] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Beta-transducin-repeat-containing protein (beta-TRCP) serves as a substrate-recognition subunit of Skp1/Cullin/F-box (SCF)(beta-TRCP) E3 ligases, involved in regulation of several important signaling molecules. SCF(beta-TRCP) E3 ligases play a critical role in cell mitosis as well as in various signaling pathways. Here, we provide evidence to support that beta-TRCP negatively regulates cell growth and motility of lung cancer cells. With specific antibodies, we detect loss of beta-TRCP1 protein in several lung cancer cell lines. One cell line contains an inactivated mutation of the beta-TRCP1 gene. Loss of beta-TRCP1 protein is also found in subsets of lung cancer specimens. We observe that retrovirus-mediated stable expression of beta-TRCP1 in beta-TRCP1 negative cells inhibits cell growth in soft-agar and tumor formation in nude mice. Furthermore, expression of beta-TRCP1 alters cell motility, as indicated by morphological changes and a reduced level of active matrix metalloproteinase (MMP)11. Conversely, inactivation of beta-TRCP1 by specific siRNA accelerates cell invasion. Of the 10 known substrates of SCF(beta-TRCP) E3 ligases, the protein level of cell division cycle 25 (CDC25)A is clearly affected in these lung cancer cells. Cells treated with CDC25A inhibitors become less invasive. Thus, loss of beta-TRCP1 may promote both growth and cell motility of lung cancer cells, possibly through regulation of CDC25A and the MMP11 level.
Collapse
Affiliation(s)
- Nonggao He
- Sealy Center for Cancer Cell Biology and Environmental Medicine, University of Texas Medical Branch at Galveston, Texas 77555, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Mantovani F, Banks L. Regulation of the discs large tumor suppressor by a phosphorylation-dependent interaction with the beta-TrCP ubiquitin ligase receptor. J Biol Chem 2003; 278:42477-86. [PMID: 12902344 DOI: 10.1074/jbc.m302799200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discs large (hDlg) tumor suppressor is intimately involved in the control of cell contact, polarity, and proliferation by interacting with several components of the epithelial junctional complex and with the APC tumor suppressor protein. In epithelial cells, hDlg protein stability is regulated through the ubiquitin-proteasome pathway: hDlg is actively degraded in isolated cells, whereas it accumulates upon cell-cell contact. During neoplastic transformation of epithelial cells, loss of the differentiated morphology and progression toward a metastatic phenotype correlate with down-regulation of hDlg levels and loss of contact-dependent stabilization. Here we show that upon hyperphosphorylation, hDlg interacts with the beta-TrCP ubiquitin ligase receptor through a DSGLPS motif within its Src homology 3 domain. As a consequence, overexpression of beta-TrCP enhances ubiquitination of Dlg protein and decreases its stability, whereas a dominant negative beta-TrCP mutant inhibits this process. Furthermore, a mutant Dlg protein that is unable to bind beta-TrCP displays a higher protein stability and is insensitive to beta-TrCP. Using RNA interference, we also demonstrate that endogenous beta-TrCP regulates hDlg protein levels in epithelial cells. Finally, we show that beta-TrCP selectively induces the degradation of the membrane-cytoplasmic pool, without affecting the nuclear pool of hDlg.
Collapse
Affiliation(s)
- Fiamma Mantovani
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, Trieste I-34012, Italy.
| | | |
Collapse
|
266
|
Besnard-Guerin C, Belaïdouni N, Lassot I, Segeral E, Jobart A, Marchal C, Benarous R. HIV-1 Vpu sequesters beta-transducin repeat-containing protein (betaTrCP) in the cytoplasm and provokes the accumulation of beta-catenin and other SCFbetaTrCP substrates. J Biol Chem 2003; 279:788-95. [PMID: 14561767 DOI: 10.1074/jbc.m308068200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human immunodeficiency virus type 1 Vpu protein acts as an adaptor for the proteasomal degradation of CD4 by recruiting CD4 and beta-transducin repeat-containing protein (betaTrCP), the receptor component of the multisubunit SCF-betaTrCP E3 ubiquitin ligase complex. We showed that the expression of a Vpu-green fluorescent fusion protein prevented the proteosomal degradation of betaTrCP substrates such as beta-catenin, IkappaBalpha, and ATF4, which are normally directly targeted to the proteasome for degradation. Beta-catenin was translocated into the nucleus, whereas the tumor necrosis factor-induced nuclear translocation of NFkappaB was impaired. Beta-catenin was also up-regulated in cells producing Vpu+ human immunodeficiency virus type 1 but not in cells producing Vpu-deficient viruses. The overexpression of ATF4 also provoked accumulation of beta-catenin, but to a lower level than that resulting from the expression of Vpu. Finally, the expression of Vpu induces the exclusion of betaTrCP from the nucleus. These data suggest that Vpu is a strong competitive inhibitor of betaTrCP that impairs the degradation of SCFbetaTrCP substrates as long as Vpu has an intact phosphorylation motif and can bind to betaTrCP.
Collapse
Affiliation(s)
- Corinne Besnard-Guerin
- Institut Cochin, Department of Infectious Diseases, INSERM U567, CNRS UMR 8104, Université R Descartes Paris V, 27 Rue du Faubourg St. Jacques, 75014 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
267
|
Usami N, Sekido Y, Maeda O, Yamamoto K, Minna JD, Hasegawa Y, Yoshioka H, Imaizumi M, Ueda Y, Takahashi M, Shimokata K. Beta-catenin inhibits cell growth of a malignant mesothelioma cell line, NCI-H28, with a 3p21.3 homozygous deletion. Oncogene 2003; 22:7923-30. [PMID: 12970740 DOI: 10.1038/sj.onc.1206533] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have found that a malignant mesothelioma cell line, NCI-H28, had a chromosome 3p21.3 homozygous deletion containing the beta-catenin gene (CTNNB1), which suggested that the deletion of beta-catenin might have a growth advantage in the development of this tumor. To determine whether beta-catenin has a growth-inhibitory activity, we transfected wild-type beta-catenin, Ser37Cys mutant beta-catenin as an activated type, and C-terminus deletion mutant beta-catenin that lacks the transcription activity, into the NCI-H28 cells. A non-small cell lung cancer cell line, NCI-H1299, which expressed endogenous beta-catenin, was also studied. We tested the localization of exogenous beta-catenin in the NCI-H28 cells with immunofluorescence, and found that the wild-type beta-catenin and the C-terminus deletion mutant were more strongly expressed in the plasma membrane and cytoplasm than in the nucleus, while the Ser37Cys mutant was more in the nucleus than in the cytoplasm. By using luciferase-reporter assay, the beta-catenin/T-cell factor 4-mediated transactivity of the Ser37Cys mutant was shown to be higher than that of the wild-type beta-catenin in both cell lines. However, the transactivity of the C-terminus deletion mutant was strongly reduced in both. Colony formation of the NCI-H28 cells was reduced by 50% after transfection with the wild-type beta-catenin, and 60% with the Ser37Cys mutant, but only 20% with the C-terminus deletion mutant compared to the vector control. Inhibition of colony formation in NCI-H28 cells was because of apoptosis, manifested by positive staining of Annexin V and TUNEL assays in transfected cells. In contrast, when transfected with the wild-type beta-catenin, no significant reduction in colony formation was seen in beta-catenin wild-type NCI-H1299 cells. In conclusion, our data indicate that inactivation of beta-catenin by a 3p21.3 homozygous deletion might be a crucial event in the development of the mesothelioma NCI-H28 cells. Thus, while beta-catenin is well known to be a positive growth-stimulating factor for many human cancers, it can also act as a potential growth suppressor in some types of human cancer cells.
Collapse
Affiliation(s)
- Noriyasu Usami
- Department of Clinical Preventive Medicine, Nagoya University School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Olmeda D, Castel S, Vilaró S, Cano A. Beta-catenin regulation during the cell cycle: implications in G2/M and apoptosis. Mol Biol Cell 2003; 14:2844-60. [PMID: 12857869 PMCID: PMC165681 DOI: 10.1091/mbc.e03-01-0865] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Beta-catenin is a multifunctional protein involved in cell-cell adhesion and Wnt signal transduction. Beta-catenin signaling has been proposed to act as inducer of cell proliferation in different tumors. However, in some developmental contexts and cell systems beta-catenin also acts as a positive modulator of apoptosis. To get additional insights into the role of beta-catenin in the regulation of the cell cycle and apoptosis, we have analyzed the levels and subcellular localization of endogenous beta-catenin and its relation with adenomatous polyposis coli (APC) during the cell cycle in S-phase-synchronized epithelial cells. Beta-catenin levels increase in S phase, reaching maximum accumulation at late G2/M and then abruptly decreasing as the cells enter into a new G1 phase. In parallel, an increased cytoplasmic and nuclear localization of beta-catenin and APC is observed during S and G2 phases. In addition, strong colocalization of APC with centrosomes, but not beta-catenin, is detected in M phase. Interestingly, overexpression of a stable form of beta-catenin, or inhibition of endogenous beta-catenin degradation, in epidermal keratinocyte cells induces a G2 cell cycle arrest and leads to apoptosis. These results support a role for beta-catenin in the control of cell cycle and apoptosis at G2/M in normal and transformed epidermal keratinocytes.
Collapse
Affiliation(s)
- David Olmeda
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
269
|
Song DH, Dominguez I, Mizuno J, Kaut M, Mohr SC, Seldin DC. CK2 phosphorylation of the armadillo repeat region of beta-catenin potentiates Wnt signaling. J Biol Chem 2003; 278:24018-25. [PMID: 12700239 DOI: 10.1074/jbc.m212260200] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Protein kinase CK2 is a ubiquitous serine/threonine kinase involved in many biological processes. It is overexpressed in many malignancies including rodent and human breast cancer, and is up-regulated in Wnt-transfected mammary epithelial cells, where it can be found in a complex with dishevelled and beta-catenin. beta-Catenin is a substrate for CK2 and inhibition of CK2 reduces levels of beta-catenin and dishevelled. Here we report that inhibition of CK2 using pharmacologic agents or expression of kinase inactive subunits reduces beta-catenin-dependent transcription and protein levels in a proteasome-dependent fashion. The major region of phosphorylation of beta-catenin by CK2 is the central armadillo repeat domain, where carrier proteins like axin and the adenomatous polyposis coli gene product APC interact with beta-catenin. The major CK2 phosphorylation site in this domain is Thr393, a solvent-accessible residue in a key hinge region of the molecule. Mutation of this single amino acid reduces beta-catenin phosphorylation, cotranscriptional activity, and stability. Thus, CK2 is a positive regulator of Wnt signaling through phosphorylation of beta-catenin at Thr393, leading to proteasome resistance and increased protein and co-transcriptional activity.
Collapse
Affiliation(s)
- Diane H Song
- Department of Medicine, Boston University Medical Center, Boston University, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
270
|
Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1653:1-24. [PMID: 12781368 DOI: 10.1016/s0304-419x(03)00005-2] [Citation(s) in RCA: 636] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Wnt signaling pathway, named for its most upstream ligands, the Wnts, is involved in various differentiation events during embryonic development and leads to tumor formation when aberrantly activated. Molecular studies have pinpointed activating mutations of the Wnt signaling pathway as the cause of approximately 90% of colorectal cancer (CRC), and somewhat less frequently in cancers at other sites, such as hepatocellular carcinoma (HCC). Ironically, Wnts themselves are only rarely involved in the activation of the pathway during carcinogenesis. Mutations mimicking Wnt stimulation-generally inactivating APC mutations or activating beta-catenin mutations-result in nuclear accumulation of beta-catenin which subsequently complexes with T-cell factor/lymphoid enhancing factor (TCF/LEF) transcription factors to activate gene transcription. Recent data identifying target genes has revealed a genetic program regulated by beta-catenin/TCF controlling the transcription of a suite of genes promoting cellular proliferation and repressing differentiation during embryogenesis, carcinogenesis, and in the post-embryonic regulation of cell positioning in the intestinal crypts. This review considers the spectra of tumors arising from active Wnt signaling and attempts to place perspective on recent data that begin to elucidate the mechanisms prompting uncontrolled cell growth following induction of Wnt signaling.
Collapse
Affiliation(s)
- Rachel H Giles
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| | | | | |
Collapse
|
271
|
Duchesne C, Charland S, Asselin C, Nahmias C, Rivard N. Negative regulation of beta-catenin signaling by tyrosine phosphatase SHP-1 in intestinal epithelial cells. J Biol Chem 2003; 278:14274-83. [PMID: 12571228 DOI: 10.1074/jbc.m300425200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protein-tyrosine phosphatase SHP-1 is expressed at high levels in hematopoietic cells and at moderate levels in many other cell types including epithelial cells. Although SHP-1 has been shown to be a negative regulator of multiple signaling pathways in hematopoietic cells, very little is known about the biological role of SHP-1 in epithelial cells. In order to elucidate the mechanism(s) responsible for the loss of proliferative potential once committed intestinal epithelial cells begin to differentiate, the role and regulation of SHP-1 were analyzed in both intact epithelium as well as in well established intestinal cell models recapitulating the crypt-villus axis in vitro. Results show that SHP-1 was expressed in the nuclei of all intestinal epithelial cell models as well as in epithelial cells of intact human fetal jejunum and colon. Expression and phosphatase activity levels of SHP-1 were much more elevated in confluent growth-arrested intestinal epithelial cells and in differentiated enterocytes as well. Overexpression of SHP-1 in intestinal epithelial crypt cells significantly inhibited dhfr, c-myc, and cyclin D1 gene expression but did not interfere with c-fos gene expression. In contrast, a mutated inactive form of SHP-1 had no effect on these genes. SHP-1 expression significantly decreased beta-catenin/TCF-dependent transcription in intestinal epithelial crypt cells. Immunoprecipitation experiments revealed that beta-catenin is one of the main binding partners and a substrate for SHP-1. Taken together, our results indicate that SHP-1 may be involved in the regulation of beta-catenin transcriptional function and in the negative control of intestinal epithelial cell proliferation.
Collapse
Affiliation(s)
- Cathia Duchesne
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine, Université de Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | |
Collapse
|
272
|
Lyu J, Costantini F, Jho EH, Joo CK. Ectopic expression of Axin blocks neuronal differentiation of embryonic carcinoma P19 cells. J Biol Chem 2003; 278:13487-95. [PMID: 12569091 DOI: 10.1074/jbc.m300591200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Axin regulates Wnt signaling through down-regulation of beta-catenin. To test the role of Wnt signaling in neuronal differentiation, embryonal carcinoma P19 cells (P19 EC), which can be stimulated to differentiate into a neuron-like phenotype in response to retinoic acid (RA), were used. Reverse transcription-PCR and Western blot analysis showed that Axin is expressed in undifferentiated cells, whereas the level is clearly reduced during RA-induced neuronal differentiation. Interestingly, Axin levels were not reduced during endodermal differentiation of P19 EC cells and F9 EC cells by RA, suggesting that the reduction of the Axin level is a specific property of neuronal differentiation. Western analysis showed that the cytoplasmic level of beta-catenin increased during neuronal differentiation of P19 EC cells. Indirect immunofluorescence with beta-catenin antibody showed that the localization of beta-catenin was changed from membrane in undifferentiated cells to nuclei in neuronal P19 EC cells. Induced expression of Axin during endodermal and early neuronal differentiation, using the Tet-On system, did not block normal differentiation. However, maintenance of the Axin level blocked neuronal differentiation and inhibited expression of a neuron-specific marker protein, beta III-tubulin. Also, ectopic induction of a beta-catenin signaling inhibitor, ICAT, inhibited expression of beta III-tubulin. In contrast, addition of Wnt-3A-conditioned medium during the neuronal differentiation period enhanced the expression of beta III-tubulin. Overall, our data show that Wnt-3a/canonical beta-catenin signaling through the down-regulation of Axin may play an important role in neuronal differentiation.
Collapse
Affiliation(s)
- Jungmook Lyu
- Department of Ophthalmology, Catholic University of Korea, Seoul 137-040, Korea
| | | | | | | |
Collapse
|
273
|
Tinsley JH, Ustinova EE, Xu W, Yuan SY. Src-dependent, neutrophil-mediated vascular hyperpermeability and beta-catenin modification. Am J Physiol Cell Physiol 2002; 283:C1745-51. [PMID: 12388068 DOI: 10.1152/ajpcell.00230.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hyperpermeability response of microvessels in inflammation involves complex signaling reactions and structural modifications in the endothelium. Our goal was to determine the role of Src-family kinases (Src) in neutrophil-mediated venular hyperpermeability and possible interactions between Src and endothelial barrier components. We found that inhibition of Src abolished the increases in albumin permeability caused by C5a-activated neutrophils in intact, perfused coronary venules, as well as in cultured endothelial monolayers. Activated neutrophils increased Src phosphorylation at Tyr416, which is located in the catalytic domain, and decreased phosphorylation at Tyr527 near the carboxyl terminus, events consistent with reports that phosphorylating and transforming activities of Src are upregulated by Tyr416 phosphorylation and negatively regulated by Tyr527 phosphorylation. Furthermore, neutrophil stimulation resulted in association of Src with the endothelial junction protein beta-catenin and beta-catenin tyrosine phosphorylation. These phenomena were abolished by blockage of Src activity. Taken together, our studies link for the first time neutrophil-induced hyperpermeability to a pathway involving Src kinase activation, Src/beta-catenin association, and beta-catenin tyrosine phosphorylation in the microvascular endothelium.
Collapse
Affiliation(s)
- John H Tinsley
- Department of Surgery, Cardiovascular Research Institute, Texas A&M University System Health Science Center, Temple, Texas 76504, USA.
| | | | | | | |
Collapse
|
274
|
Zhu Z, Kirschner M. Regulated proteolysis of Xom mediates dorsoventral pattern formation during early Xenopus development. Dev Cell 2002; 3:557-68. [PMID: 12408807 DOI: 10.1016/s1534-5807(02)00270-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To identify a regulatory role for proteolysis during early Xenopus development, we developed a biochemical screen for proteins that are degraded in an embryonic stage-specific manner. We found that Xom, a homeobox transcriptional repressor of dorsal-specific genes, was degraded precipitously during early gastrulation. Xom degradation is regulated by phosphorylation at a GSK3-like consensus site and is most likely mediated by the SCF-beta-TRCP complex. Expression of nondegradable Xom represses transcription of dorsal genes much more effectively than wild-type Xom and results in a more strongly ventralized phenotype. We propose that regulated Xom proteolysis plays an essential role in the establishment of the dorsoventral axis, by converting a gradient in BMP abundance into a sharp dorsoventral pattern.
Collapse
Affiliation(s)
- Zhenglun Zhu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
275
|
Widlund HR, Horstmann MA, Price ER, Cui J, Lessnick SL, Wu M, He X, Fisher DE. Beta-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. J Cell Biol 2002; 158:1079-87. [PMID: 12235125 PMCID: PMC2173224 DOI: 10.1083/jcb.200202049] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The transcription factor Microphthalmia-associated transcription factor (MITF) is a lineage-determination factor, which modulates melanocyte differentiation and pigmentation. MITF was recently shown to reside downstream of the canonical Wnt pathway during melanocyte differentiation from pluripotent neural crest cells in zebrafish as well as in mammalian melanocyte lineage cells. Although expression of many melanocytic/pigmentation markers is lost in human melanoma, MITF expression remains intact, even in unpigmented tumors, suggesting a role for MITF beyond its role in differentiation. A significant fraction of primary human melanomas exhibit deregulation (via aberrant nuclear accumulation) of beta-catenin, leading us to examine its role in melanoma growth and survival. Here, we show that beta-catenin is a potent mediator of growth for melanoma cells in a manner dependent on its downstream target MITF. Moreover, suppression of melanoma clonogenic growth by disruption of beta-catenin-T-cell transcription factor/LEF is rescued by constitutive MITF. This rescue occurs largely through a prosurvival mechanism. Thus, beta-catenin regulation of MITF expression represents a tissue-restricted pathway that significantly influences the growth and survival behavior of this notoriously treatment-resistant neoplasm.
Collapse
Affiliation(s)
- Hans R Widlund
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Dana 630, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
276
|
Abstract
We have developed a novel Saccharomyces cerevisiae model system to dissect the molecular events of beta-catenin (beta-cat) signaling. Coexpression of mammalian beta-cat with TCF4 or LEF1 results in nuclear accumulation of these proteins and a functional complex that activates reporter gene transcription from constructs containing leukocyte enhancer factor (LEF)/T cell factor (TCF) response elements. Reporter transcription is constitutive, requires expression of both beta-cat and TCF4 or LEF1, and is not supported by mutated LEF/TCF binding elements or by TCF4 or LEF1 mutants. A cytoplasmic domain of E-cadherin or a functional fragment of adenomatous polyposis coli (APC) protein (APC-25) complexes with beta-cat, reduces beta-cat binding to TCF4, and leads to increased cytoplasmic localization of beta-cat and a reduction in reporter activation. Systematic mutation of putative nuclear export signal sequences in APC-25 decreases APC-25 binding to beta-cat and restores reporter gene transcription. Additional beta-cat signaling components, Axin and glycogen synthase kinase 3beta, form a multisubunit complex similar to that found in mammalian cells. Coexpression of the F-box protein beta-transducin repeat-containing protein reduces the stability of beta-cat and decreases reporter activation. Thus, we have reconstituted a functional beta-cat signal transduction pathway in yeast and show that beta-cat signaling can be regulated at multiple levels, including protein subcellular localization, protein complex formation, and protein stability.
Collapse
Affiliation(s)
- Margaret S Lee
- Aventis Pharmaceuticals, Cambridge Genomics Center, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
277
|
Affiliation(s)
- Jin Jiang
- Center for Developmental Biology and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133, USA.
| |
Collapse
|
278
|
Ballarino M, Marchioni M, Carnevali F. The Xenopus laevis beta TrCP gene: genomic organization, alternative splicing, 5' and 3' region characterization and comparison of its structure with that of human beta TrCP genes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:81-92. [PMID: 12151098 DOI: 10.1016/s0167-4781(02)00416-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
beta TrCP plays a relevant role in the control of stability of several key protein factors. In Xenopus, beta TrCP acts as an inhibitor of Wnt signaling and dorsal axis formation. We determined the primary structure of the frog beta TrCP gene, which consists of 14 exons and 13 introns, spanning over 34 kb. Isoforms of x-beta TrCP have been found, which show differences in the NH(2) and COOH regions. NH(2) isoforms differ for the presence or absence of a 30 aa sequence, coded by exon III. In COOH isoforms, 19 C-terminal amino acids are replaced by three different amino acids. Occurrence of two 5' splice donor sites for splicing of intron XIII provides an explanation for these isoforms, based on alternative splicing. The DNA region of the putative beta TrCP promoter contains several TATA elements, one GCCAAT box, and putative binding sites for Ets, Tcf/Lef and NF-kappa B transcription factors. Two transcription initiation sites have been mapped downstream of TATA boxes proximal to ATG for start of translation. Comparison of the Xenopus and human beta TrCP genes indicates high conservation of exon nucleotide and amino acid sequences, size and organization; differences are limited to exons coding for N- and C-terminal regions.
Collapse
Affiliation(s)
- Monica Ballarino
- Consiglio Nazionale delle Ricerche, Centro di Studio per gli Acidi Nucleici, Rome, Italy
| | | | | |
Collapse
|
279
|
Conacci-Sorrell ME, Ben-Yedidia T, Shtutman M, Feinstein E, Einat P, Ben-Ze'ev A. Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev 2002; 16:2058-72. [PMID: 12183361 PMCID: PMC186445 DOI: 10.1101/gad.227502] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Accepted: 06/17/2002] [Indexed: 01/06/2023]
Abstract
beta-catenin and plakoglobin (gamma-catenin) are homologous molecules involved in cell adhesion, linking cadherin receptors to the cytoskeleton. beta-catenin is also a key component of the Wnt pathway by being a coactivator of LEF/TCF transcription factors. To identify novel target genes induced by beta-catenin and/or plakoglobin, DNA microarray analysis was carried out with RNA from cells overexpressing either protein. This analysis revealed that Nr-CAM is the gene most extensively induced by both catenins. Overexpression of either beta-catenin or plakoglobin induced Nr-CAM in a variety of cell types and the LEF/TCF binding sites in the Nr-CAM promoter were required for its activation by catenins. Retroviral transduction of Nr-CAM into NIH3T3 cells stimulated cell growth, enhanced motility, induced transformation, and produced rapidly growing tumors in nude mice. Nr-CAM and LEF-1 expression was elevated in human colon cancer tissue and cell lines and in human malignant melanoma cell lines but not in melanocytes or normal colon tissue. Dominant negative LEF-1 decreased Nr-CAM expression and antibodies to Nr-CAM inhibited the motility of B16 melanoma cells. The results indicate that induction of Nr-CAM transcription by beta-catenin or plakoglobin plays a role in melanoma and colon cancer tumorigenesis, probably by promoting cell growth and motility.
Collapse
|
280
|
Hanai JI, Gloy J, Karumanchi SA, Kale S, Tang J, Hu G, Chan B, Ramchandran R, Jha V, Sukhatme VP, Sokol S. Endostatin is a potential inhibitor of Wnt signaling. J Cell Biol 2002; 158:529-39. [PMID: 12147676 PMCID: PMC2173844 DOI: 10.1083/jcb.200203064] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Endostatin (ES) is a fragment of collagen XVIII that possesses antiangiogenic activity. To gain insight into ES-mediated signaling, we studied the effects of ES RNA on Xenopus embryogenesis and observed developmental abnormalities consistent with impaired Wnt signaling. ES RNA blocked the axis duplication induced by beta-catenin, partially suppressed Wnt-dependent transcription, and stimulated degradation of both wild-type and "stabilized" forms of beta-catenin, the latter suggesting that ES signaling does not involve glycogen synthase kinase 3. Moreover, ES uses a pathway independent of the Siah1 protein in targeting beta-catenin for proteasome-mediated degradation. ES failed to suppress the effects of T cell-specific factor (TCF)-VP16 (TVP), a constitutive downstream transcriptional activator that acts independently of beta-catenin. Importantly, these data were replicated in endothelial cells and also in the DLD-1 colon carcinoma cells with the mutated adenomatous polyposis coli protein. Finally, suppression of endothelial cell migration and inhibition of cell cycle by ES were reversed by TVP. Though high levels of ES were used in both the Xenopus and endothelial cell studies and the effects on beta-catenin signaling were modest, these data argue that at pharmacological concentrations ES may impinge on Wnt signaling and promote beta-catenin degradation.
Collapse
MESH Headings
- Angiogenesis Inhibitors/genetics
- Angiogenesis Inhibitors/metabolism
- Animals
- Body Patterning/genetics
- Cell Movement/genetics
- Collagen/genetics
- Collagen/metabolism
- Collagen Type XVIII
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Endostatins
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Female
- Gene Expression Regulation, Developmental/physiology
- Growth Substances/pharmacology
- Heparan Sulfate Proteoglycans/genetics
- Heparan Sulfate Proteoglycans/metabolism
- Humans
- Mutation/physiology
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oocytes/cytology
- Oocytes/metabolism
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Protein Structure, Tertiary/genetics
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- S Phase/drug effects
- S Phase/physiology
- Signal Transduction/genetics
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Tumor Cells, Cultured
- Ubiquitin-Protein Ligases
- Wnt Proteins
- Xenopus Proteins
- Xenopus laevis/abnormalities
- Xenopus laevis/genetics
- Xenopus laevis/metabolism
- Zebrafish Proteins
- beta Catenin
Collapse
Affiliation(s)
- Jun-ichi Hanai
- Department of Medicine and Center for Study of the Tumor Microenvironment, Division of Nephrology, Hematology-Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Ellison D. Classifying the medulloblastoma: insights from morphology and molecular genetics. Neuropathol Appl Neurobiol 2002; 28:257-82. [PMID: 12175339 DOI: 10.1046/j.1365-2990.2002.00419.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significant advances in the treatment of the medulloblastoma (MB) have been made in the last 30 years, reducing mortality by 2-fold. Further improvements in the cure rate require an increased understanding of the biology of MBs, and this will translate into refinements in their classification. Scrutiny of the cytological variation found among MBs has recently led to the concept of the anaplastic MB, which overlaps the large-cell variant and appears to share its poor prognosis. In contrast, the MB with extensive nodularity, a distinctive nodular/desmoplastic variant occurring in infants, has a better outcome than most MBs in these young patients. Building on cytogenetic studies that have drawn attention to abnormalities on chromosome 17 in over a third of MBs, research shows non-random losses on chromosomes 8, 9, 10, 11 and 16, and gains on chromosomes 1, 7 and 9. Overexpression of ErbB2 receptors and losses on chromosome 17p have been proposed as independent indicators of aggressive behaviour, while high TrkC receptor expression indicates a favourable outcome. There is a strong association between anaplastic/large-cell tumours and MYC amplification, which has previously been linked with aggressive disease, but associations between abnormalities on chromosome 17 and anaplastic/large-cell MBs and between abnormalities in the shh/PTCH pathway and the desmoplastic variant are more controversial. Classification of the MB histopathologically and according to profiles of molecular abnormalities will help both to rationalize approaches to therapy, increasing the cure rate and reducing long-term side-effects, and to suggest novel treatments.
Collapse
Affiliation(s)
- D Ellison
- Northern Institute for Cancer Research, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK.
| |
Collapse
|
282
|
Ulrich HD. Natural substrates of the proteasome and their recognition by the ubiquitin system. Curr Top Microbiol Immunol 2002; 268:137-74. [PMID: 12083004 DOI: 10.1007/978-3-642-59414-4_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The multitude of natural substrates of the 26S proteasome demonstrates convincingly the diversity and flexibility of the ubiquitin/proteasome system: at the same time, the number of pathways in which ubiquitin-dependent degradation is involved highlights the importance of regulated proteolysis for cellular metabolism. This review has addressed recent advances in our understanding of the principles that govern the recognition and targeting of potential substrates. While the mechanism of ubiquitin activation and conjugation is largely understood, the determination of substrate specificity by ubiquitin protein ligases remains a field of active research. Several conserved degradation signals within substrate proteins have been identified, and it is becoming increasingly clear that these serve as docking sites for specific sets of E3s, which in turn adhere to a number of well-defined strategies for the recognition of these motifs. In particular, RING finger proteins are now emerging as a new and apparently widespread class of ubiquitin ligases. The discovery of more and more E3s will undoubtedly reveal even better the common principles in architecture and mechanisms of this class of enzymes. In contrast to substrate recognition by the ubiquitin conjugation system, the way in which a ubiquitylated protein is delivered to the 26S proteasome is poorly understood. There is no doubt that multiubiquitin chains serve as the principal determinant for recognition by the proteasome, and a number of receptors and candidate targeting factors are known, some of which are associated with the proteasome itself; however, unresolved issues are the significance of the different geometries that alternatively linked multiubiquitin chains can adopt, the role of transport between subcellular compartments, as well as the participation of chaperones in the delivery step. Finally, the analysis of ubiquitin-independent, substrate-specific targeting mechanisms, such as the AZ-dependent degradation of ODC, may provide unexpected answers to questions about protein recognition by the 26S proteasome.
Collapse
Affiliation(s)
- H D Ulrich
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse, 35043 Marburg/Lahn, Germany
| |
Collapse
|
283
|
Berset C, Griac P, Tempel R, La Rue J, Wittenberg C, Lanker S. Transferable domain in the G(1) cyclin Cln2 sufficient to switch degradation of Sic1 from the E3 ubiquitin ligase SCF(Cdc4) to SCF(Grr1). Mol Cell Biol 2002; 22:4463-76. [PMID: 12052857 PMCID: PMC133886 DOI: 10.1128/mcb.22.13.4463-4476.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Degradation of Saccharomyces cerevisiae G(1) cyclins Cln1 and Cln2 is mediated by the ubiquitin-proteasome pathway and involves the SCF E3 ubiquitin-ligase complex containing the F-box protein Grr1 (SCF(Grr1)). Here we identify the domain of Cln2 that confers instability and describe the signals in Cln2 that result in binding to Grr1 and rapid degradation. We demonstrate that mutants of Cln2 that lack a cluster of four Cdc28 consensus phosphorylation sites are highly stabilized and fail to interact with Grr1 in vivo. Since one of the phosphorylation sites lies within the Cln2 PEST motif, a sequence rich in proline, aspartate or glutamate, serine, and threonine residues found in many unstable proteins, we fused various Cln2 C-terminal domains containing combinations of the PEST and the phosphoacceptor motifs to stable reporter proteins. We show that fusion of the Cln2 domain to a stabilized form of the cyclin-dependent kinase inhibitor Sic1 (Delta N-Sic1), a substrate of SCF(Cdc4), results in degradation in a phosphorylation-dependent manner. Fusion of Cln2 degradation domains to Delta N-Sic1 switches degradation of Sic1 from SCF(Cdc4) to SCF(Grr1). Delta N-Sic1 fused with a Cln2 domain containing the PEST motif and four phosphorylation sites binds to Grr1 and is unstable and ubiquitinated in vivo. Interestingly, the phosphoacceptor domain of Cln2 binds to Grr1 but is not ubiquitinated and is stable. In summary, we have identified a small transferable domain in Cln2 that can redirect a stabilized SCF(Cdc4) target for SCF(Grr1)-mediated degradation by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Catherine Berset
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97201, USA
| | | | | | | | | | | |
Collapse
|
284
|
Affiliation(s)
- Adam Hurlstone
- Department of Immunology and Centre for Biomedical Genetics, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | |
Collapse
|
285
|
Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 2002; 108:837-47. [PMID: 11955436 DOI: 10.1016/s0092-8674(02)00685-2] [Citation(s) in RCA: 1653] [Impact Index Per Article: 71.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Wnt regulation of beta-catenin degradation is essential for development and carcinogenesis. beta-catenin degradation is initiated upon amino-terminal serine/threonine phosphorylation, which is believed to be performed by glycogen synthase kinase-3 (GSK-3) in complex with tumor suppressor proteins Axin and adnomatous polyposis coli (APC). Here we describe another Axin-associated kinase, whose phosphorylation of beta-catenin precedes and is required for subsequent GSK-3 phosphorylation of beta-catenin. This "priming" kinase is casein kinase Ialpha (CKIalpha). Depletion of CKIalpha inhibits beta-catenin phosphorylation and degradation and causes abnormal embryogenesis associated with excessive Wnt/beta-catenin signaling. Our study uncovers distinct roles and steps of beta-catenin phosphorylation, identifies CKIalpha as a component in Wnt/beta-catenin signaling, and has implications to pathogenesis/therapeutics of human cancers and diabetes.
Collapse
Affiliation(s)
- Chunming Liu
- Division of Neuroscience, Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Bhatia N, Herter JR, Slaga TJ, Fuchs SY, Spiegelman VS. Mouse homologue of HOS (mHOS) is overexpressed in skin tumors and implicated in constitutive activation of NF-kappaB. Oncogene 2002; 21:1501-9. [PMID: 11896578 DOI: 10.1038/sj.onc.1205311] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2001] [Revised: 10/01/2001] [Accepted: 01/09/2002] [Indexed: 12/22/2022]
Abstract
NF-kappaB transcription factor is activated upon ubiquitination and subsequent proteolysis of its inhibitor IkappaB. The phosphorylation-dependent ubiquitination is mediated by SCF E3 ubiquitin ligase. In this study, we identified a novel murine F-box/WD40 repeat-containing protein, mHOS (a homologue of HOS/betaTrCP2). mHOS efficiently binds Skp1 protein (a 'core' component of SCF ubiquitin ligase), and phosphorylated IkappaB(alpha). We found that mHOS associates with SCF-ROC1 E3 ubiquitin ligase activity. We have also observed that mHOS is overexpressed in chemically-induced mouse skin tumors, and its overexpression (but not accelerated IkappaB phosphorylation) coincides with the accelerated degradation of IkappaB in vivo. The role of mHOS in the constitutive activation of NF-kappaB in skin carcinogenesis is discussed.
Collapse
|
287
|
Tice DA, Soloviev I, Polakis P. Activation of the Wnt pathway interferes with serum response element-driven transcription of immediate early genes. J Biol Chem 2002; 277:6118-23. [PMID: 11751871 DOI: 10.1074/jbc.m111255200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutational activation of the Wnt signaling pathway is a common early event in colorectal tumorigenesis, and the identification of target genes regulated by this pathway will provide a better understanding of tumor progression. Gene expression profiling on oligonucleotide microarrays revealed reduced expression of the immediate early genes fos and fosB following stimulation of cells by Wnt-1. Further analysis demonstrated that serum or 12-O-tetradecanoylphorbol-13-acetate activation of several immediate early genes including fos, fosB, junB, and egr1 was inhibited by Wnt signaling. Wnt signaling inhibited transcriptional activation driven by the serum response element without altering the activation of the extracellular signal-regulated kinase cascade or ternary complex formation at the fos serum response element promoter. The Wnt-mediated repression of c-Fos, FosB, and JunB expression was consistent with a decrease in their binding to an AP-1 promoter element and decreased target gene transcription. The expression of fos, fosB, junB, and egr1 was also repressed in human colon tumors relative to patient matched normal tissue. By contrast, the fos family member fra-1 was up-regulated in the human colon tumors, suggesting a compensatory mechanism for the reduction in fos and fosB expression. The results indicate that Wnt signaling can repress the expression of certain immediate early genes, and that this effect is consistent with changes in gene expression observed in human colorectal tumors.
Collapse
Affiliation(s)
- David A Tice
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | |
Collapse
|
288
|
Staal FJT, van Noort M, Strous GJ, Clevers HC. Wnt signals are transmitted through N-terminally dephosphorylated beta-catenin. EMBO Rep 2002; 3:63-8. [PMID: 11751573 PMCID: PMC1083921 DOI: 10.1093/embo-reports/kvf002] [Citation(s) in RCA: 263] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
beta-catenin mediates Wnt signaling by acting as the essential co-activator for TCF transcription factors. Wnt signaling increases the half-life and therefore the absolute level of beta-catenin in responding cells. The current model states that these changes in beta-catenin stability set the threshold for Wnt signaling. However, we find that pharmacological inhibition of proteasome activity by ALLN leads to accumulation of cytosolic beta-catenin but not to increased TCF-mediated transcription. In addition, in temperature-sensitive ubiquitylation mutant CHO cells inhibition of ubiquitylation increases beta-catenin levels, but does not induce transcriptional activation of TCF reporter genes. Using an antibody specific for beta-catenin dephosphorylated at residues Ser37 and Thr41, we show that Wnt signals specifically increase the levels of dephosphorylated beta-catenin, whereas ALLN does not. We conclude that changes in the phosphorylation status of the N-terminus of beta-catenin that occur upon Wnt signaling independently affect the signaling properties and half-life of beta-catenin. Hence, Wnt signals are transduced via N-terminally dephosphorylated beta-catenin.
Collapse
Affiliation(s)
- Frank J T Staal
- Department of Immunology, Erasmus University Rotterdam/University Hospital Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
289
|
Abstract
Colorectal carcinogenesis is a multistep process during which the specialised epithelial cells of intestinal mucosa surface (e.g. colonocytes) accumulate a series of genetic and epigenetic events which lead to a perturbation of their normal cellular functions and turnover. This review will address the mechanisms and biological effects of these abnormalities on the growth control, differentiation, adhesion and survival of the colonocytes.
Collapse
Affiliation(s)
- Andrea Buda
- Division of Histopathology, Department of Pathology and Microbiology, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | | |
Collapse
|
290
|
Chen W, Hu LA, Semenov MV, Yanagawa S, Kikuchi A, Lefkowitz RJ, Miller WE. beta-Arrestin1 modulates lymphoid enhancer factor transcriptional activity through interaction with phosphorylated dishevelled proteins. Proc Natl Acad Sci U S A 2001; 98:14889-94. [PMID: 11742073 PMCID: PMC64954 DOI: 10.1073/pnas.211572798] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2001] [Indexed: 12/25/2022] Open
Abstract
One aspect of the function of the beta-arrestins is to serve as scaffold or adapter molecules coupling G-protein coupled receptors (GPCRs) to signal transduction pathways distinct from traditional second messenger pathways. Here we report the identification of Dishevelled 1 and Dishevelled 2 (Dvl1 and Dvl2) as beta-arrestin1 (betaarr1) interacting proteins. Dvl proteins participate as key intermediates in signal transmission from the seven membrane-spanning Frizzled receptors leading to inhibition of glycogen synthase kinase-3beta (GSK-3beta), stabilization of beta-catenin, and activation of the lymphoid enhancer factor (LEF) transcription factor. We find that phosphorylation of Dvl strongly enhances its interaction with betaarr1, suggesting that regulation of Dvl phosphorylation and subsequent interaction with betaarr1 may play a key role in the activation of the LEF transcription pathway. Because coexpression of the Dvl kinases, CK1epsilon and PAR-1, with Dvl synergistically activates LEF reporter gene activity, we reasoned that coexpression of betaarr1 with Dvl might also affect LEF-dependent gene activation. Interestingly, whereas betaarr1 or Dvl alone leads to low-level stimulation of LEF (2- to 5-fold), coexpression of betaarr1 with either Dvl1 or Dvl2 leads to a synergistic activation of LEF (up to 16-fold). Additional experiments with LiCl as an inhibitor of GSK-3beta kinase activity indicate that the step affected by betaarr1 is upstream of GSK-3beta and most likely at the level of Dvl. These results identify betaarr1 as a regulator of Dvl-dependent LEF transcription and suggest that betaarr1 might serve as an adapter molecule that can couple Frizzled receptors and perhaps other GPCRs to these important transcription pathways.
Collapse
Affiliation(s)
- W Chen
- Department of Medicine, Howard Hughes Medical Institute, Duke University Medical Center, Box 3821, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
291
|
Rubinfeld B, Tice DA, Polakis P. Axin-dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase 1epsilon. J Biol Chem 2001; 276:39037-45. [PMID: 11487578 DOI: 10.1074/jbc.m105148200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Axin and the adenomatous polyposis coli protein (APC) interact to down-regulate the proto-oncogene beta-catenin. We show that transposition of an axin-binding site can confer beta-catenin regulatory activity to a fragment of APC normally lacking this activity. The fragment containing the axin-binding site also underwent hyperphosphorylation when coexpressed with axin. The phosphorylation did not require glycogen synthase kinase 3beta but instead required casein kinase 1epsilon, which bound directly to axin. Mutation of conserved serine residues in the beta-catenin regulatory motifs of APC interfered with both axin-dependent phosphorylation and phosphorylation by CKIepsilon and impaired the ability of APC to regulate beta-catenin. These results suggest that the axin-dependent phosphorylation of APC is mediated in part by CKIepsilon and is involved in the regulation of APC function.
Collapse
Affiliation(s)
- B Rubinfeld
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | |
Collapse
|
292
|
Abstract
beta-Catenin is a cytoplasmic protein that participates in the assembly of cell-cell adherens junctions by binding cadherins to the actin cytoskeleton. In addition, it is a key component of the Wnt signaling pathway. Activation of this pathway triggers the accumulation of beta-catenin in the nucleus, where it activates the transcription of target genes. Abnormal accumulation of beta-catenin is characteristic of various types of cancer and is caused by mutations either in the adenomatous polyposis coli protein, which regulates beta-catenin degradation, or in the beta-catenin molecule itself. Aberrant accumulation of beta-catenin in tumors is often associated with mutational inactivation of the p53 tumor suppressor. Here we show that overexpression of wild-type p53, by either transfection or DNA damage, down-regulates beta-catenin in human and mouse cells. This effect was not obtained with transcriptionally inactive p53, including a common tumor-associated p53 mutant. The reduction in beta-catenin level was accompanied by inhibition of its transactivation potential. The inhibitory effect of p53 on beta-catenin is apparently mediated by the ubiquitin-proteasome system and requires an active glycogen synthase kinase 3beta (GSK3beta). Mutations in the N terminus of beta-catenin which compromise its degradation by the proteasomes, overexpression of dominant-negative DeltaF-beta-TrCP, or inhibition of GSKbeta activity all rendered beta-catenin resistant to down-regulation by p53. These findings support the notion that there will be a selective pressure for the loss of wild-type p53 expression in cancers that are driven by excessive accumulation of beta-catenin.
Collapse
Affiliation(s)
- E Sadot
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
293
|
Zhang Y, Qiu WJ, Liu DX, Neo SY, He X, Lin SC. Differential molecular assemblies underlie the dual function of Axin in modulating the WNT and JNK pathways. J Biol Chem 2001; 276:32152-9. [PMID: 11408485 DOI: 10.1074/jbc.m104451200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Axin is a multidomain scaffold protein that exerts a dual function in the Wnt signaling and MEKK1/JNK pathways. This raises a critical question as to whether Axin-based differential molecular assemblies exist and how these may act to coordinate the two separate pathways. Here we show that both wild-type glycogen synthase kinase-3 beta (GSK-3 beta) and kinase-dead GSK-3 beta-Y216F (capable of binding to Axin), but not GSK-3 beta-K85M (incapable of binding to Axin in mammalian cells), prevented MEKK1 binding to the Axin complex, thereby inhibiting JNK activation. We further show that casein kinase I epsilon also inhibited Axin-mediated JNK activation by competing against MEKK1 binding. In contrast, beta-catenin and adenomatous polyposis coli binding did not affect MEKK1 binding to the same Axin complex. This suggests that even when Axin is "switched" to activate the JNK pathway, it is still capable of sequestering free beta-catenin, which is a critical aspect for cellular homeostasis. Our results clearly demonstrate that differential molecular assemblies underlie the duality of Axin functions in the negative regulation of Wnt signaling and activation of the JNK MAPK pathway.
Collapse
Affiliation(s)
- Y Zhang
- Regulatory Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 117609, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
294
|
Affiliation(s)
- I Dominguez
- Department of Cancer Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
295
|
Abstract
Phosphorylation of proteins on serine and threonine residues has traditionally been viewed as a means to allosterically regulate catalytic activity. Research within the past five years, however, has revealed that serine/threonine phosphorylation can also directly result in the formation of multimolecular signaling complexes through specific interactions between phosphoserine/threonine (pSer/Thr)-binding modules and phosphorylated sequence motifs. pSer/Thr-binding proteins and domains currently include 14-3-3, WW domains, forkhead-associated domains, and, tentatively, WD40 repeats and leucine-rich regions. It seems likely that additional modules will be found in the future. The amino acid sequences recognized by these pSer/Thr-binding modules show partial overlap with the optimal phosphorylation motifs for different protein kinase subfamilies, allowing the formation of specific signaling complexes to be controlled through combinatorial interactions between particular upstream kinases and a particular binding module. The structural basis for pSer/Thr binding differs dramatically between 14-3-3 proteins, WW domains and forkhead-associated domains, suggesting that their pSer/Thr binding function was acquired through convergent evolution.
Collapse
Affiliation(s)
- M B Yaffe
- Center for Cancer Research E18-580, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
296
|
Blum CA, Xu M, Orner GA, Fong AT, Bailey GS, Stoner GD, Horio DT, Dashwood RH. beta-Catenin mutation in rat colon tumors initiated by 1,2-dimethylhydrazine and 2-amino-3-methylimidazo[4,5-f]quinoline, and the effect of post-initiation treatment with chlorophyllin and indole-3-carbinol. Carcinogenesis 2001; 22:315-20. [PMID: 11181454 DOI: 10.1093/carcin/22.2.315] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Carcinogens 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and 1,2-dimethylhydrazine (DMH) induce colon tumors in the rat that contain mutations in beta-catenin, but the pattern of mutation differs from that found in human colon cancers. In both species, mutations affect the glycogen synthase kinase-3beta consensus region of beta-catenin, but whereas they directly substitute critical Ser/Thr phosphorylation sites in human colon cancers, the majority of mutations cluster around Ser33 in the rat tumors. Two dietary phytochemicals, chlorophyllin and indole-3-carbinol, given post-initiation, shifted the pattern of beta-catenin mutations in rat colon tumors induced by IQ and DMH. Specifically, 17/39 (44%) of the beta-catenin mutations in groups given carcinogen plus modulator were in codons 37, 41 and 45, and substituted critical Ser/Thr residues directly, as seen in human colon cancers. None of the tumors from groups given carcinogen alone had mutations in these codons. Interestingly, many of the mutations that substituted critical Ser/Thr residues in beta-catenin were from a single group given DMH and 0.001% chlorophyllin, in which a statistically significant increase in colon tumor multiplicity was observed compared with the group given DMH only. These tumors had marked over-expression of cyclin D1, c-myc and c-jun mRNA and c-Myc and c-Jun proteins were strongly elevated compared with tumors containing wild-type beta-catenin. The results indicate that the pattern of beta-catenin mutations in rat colon tumors can be influenced by exposure to dietary phytochemicals administered post-initiation, and that the mechanism might involve the altered expression of beta-catenin/Tcf/Lef target genes.
Collapse
Affiliation(s)
- C A Blum
- Linus Pauling Institute and Department of Environment and Molecular Toxicology, Oregon State University, Corvallis, OR 97331-6512, USA
| | | | | | | | | | | | | | | |
Collapse
|
297
|
Chen S, Guttridge DC, You Z, Zhang Z, Fribley A, Mayo MW, Kitajewski J, Wang CY. Wnt-1 signaling inhibits apoptosis by activating beta-catenin/T cell factor-mediated transcription. J Cell Biol 2001; 152:87-96. [PMID: 11149923 PMCID: PMC2193656 DOI: 10.1083/jcb.152.1.87] [Citation(s) in RCA: 333] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2000] [Accepted: 12/01/2000] [Indexed: 12/23/2022] Open
Abstract
Wnt signaling plays a critical role in development and oncogenesis. Although significant progress has been made in understanding the downstream signaling cascade of Wnt signaling, little is known regarding Wnt signaling modification of the cell death machinery. Given that numerous oncogenes transform cells by providing cell survival function, we hypothesized that Wnt signaling may inhibit apoptosis. Here, we report that cells expressing Wnt-1 were resistant to cancer therapy-mediated apoptosis. Wnt-1 signaling inhibited the cytochrome c release and the subsequent caspase-9 activation induced by chemotherapeutic drugs, including both vincristine and vinblastine. Furthermore, we found that Wnt-1-mediated cell survival was dependent on the activation of beta-catenin/T cell factor (Tcf) transcription. Inhibition of beta-catenin/Tcf transcription by expression of the dominant-negative mutant of Tcf-4 blocked Wnt-1-mediated cell survival and rendered cells sensitive to apoptotic stimuli. These results provide the first demonstration that Wnt-1 inhibits cancer therapy-mediated apoptosis and suggests that Wnt-1 may exhibit its oncogenic potential through a mechanism of anti-apoptosis.
Collapse
Affiliation(s)
- Shaoqiong Chen
- Laboratory of Molecular Signaling and Apoptosis, Department of Biologic and Materials Sciences
| | - Denis C. Guttridge
- Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27519
| | - Zongbing You
- Laboratory of Molecular Signaling and Apoptosis, Department of Biologic and Materials Sciences
| | - Zhaochen Zhang
- Laboratory of Molecular Signaling and Apoptosis, Department of Biologic and Materials Sciences
| | - Andrew Fribley
- Laboratory of Molecular Signaling and Apoptosis, Department of Biologic and Materials Sciences
| | - Marty W. Mayo
- Department of Biochemistry and Medicine, Charlottesville, Virginia 22908-0733
| | - Jan Kitajewski
- Department of Pathology and Obstetrics and Gynecology, College of Physician and Surgeons, Columbia University, New York, New York 10032
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling and Apoptosis, Department of Biologic and Materials Sciences
- Program in Cellular and Molecular Biology and Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
298
|
Abstract
Wnt expression patterns during mammary development support a role for Wnts in breast development and in mammary epithelial responses to systemic hormones. The deregulation of Wnt signaling also plays a role in breast cancer. Activation of the Wnt signaling pathway is a major feature of several human neoplasias and appears to lead to the cytosolic stabilization of a transcriptional co-factor, beta-catenin. This co-activator can then regulate transcription from a number of target genes including the cellular oncogenes cyclin D1 and c-myc. This review will summarize the current state of knowledge of Wnt signal transduction in a range of model systems and will then address the role of Wnts and Wnt signaling in mammary development and cancer.
Collapse
Affiliation(s)
- M J Smalley
- CRC Centre for Cell and Molecular Biology, Institute of Cancer Research, London, United Kingdom
| | | |
Collapse
|
299
|
Williams BO, Barish GD, Klymkowsky MW, Varmus HE. A comparative evaluation of beta-catenin and plakoglobin signaling activity. Oncogene 2000; 19:5720-8. [PMID: 11126358 DOI: 10.1038/sj.onc.1203921] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vertebrates have two Armadillo-like proteins, beta-catenin and plakoglobin. Mutant forms of beta-catenin with oncogenic activity are found in many human tumors, but plakoglobin mutations are not commonly found. In fact, plakoglobin has been proposed to suppress tumorigenesis. To assess differences between beta-catenin and plakoglobin, we compared several of their biochemical properties. After transient transfection of 293T cells with an expression vector encoding either of the two proteins, soluble wild type beta-catenin does not significantly accumulate, whereas soluble wild type plakoglobin is readily detected. As anticipated, beta-catenin is stabilized by the oncogenic mutation S37A; however, the analogous mutation in plakoglobin (S28A) does not alter its half-life. S37A-beta-catenin activates a TCF/LEF-dependent reporter 20-fold more potently than wild type beta-catenin, and approximately 5-fold more potently than wild type or S28A plakoglobin. These differences may be attributable to an enhanced affinity of S37A beta-catenin for LEF1 and TCF4, as observed here by immunoprecipitation assays. We show that the carboxyl-terminal domain is largely responsible for the difference in signaling and that the Armadillo repeats account for the remainder of the difference. The relatively weak signaling by plakoglobin and the failure of the S28A mutation to enhance its stability, may explain why plakoglobin mutations are infrequent in malignancies.
Collapse
Affiliation(s)
- B O Williams
- National Cancer Institute, Division of Basic Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
300
|
Taylor MD, Mainprize TG, Rutka JT. Molecular insight into medulloblastoma and central nervous system primitive neuroectodermal tumor biology from hereditary syndromes: a review. Neurosurgery 2000; 47:888-901. [PMID: 11014429 DOI: 10.1097/00006123-200010000-00020] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Through the study of uncommon familial syndromes, physicians and scientists have been able to illuminate the underlying mechanisms of some of the more common sporadic diseases; this is illustrated best by studies of familial retinoblastoma. A number of rare familial syndromes have been described in which affected individuals are at increased risk of developing medulloblastoma and/or supratentorial primitive neuroectodermal tumors. The descriptions of many of these syndromes are based on patients observed by clinicians in their clinical practice. Determination of the underlying genetic defects in these patients with uncommon syndromes has led to identification of a number of genes subsequently found to be mutated in sporadic medulloblastomas (tumor suppressor genes). Associated genes in the same signaling pathways have also been found to be abnormal in sporadic medulloblastoma. Identification of patients with these rare syndromes is important, as they are often at increased risk for additional neoplasms, as are family members and future children. We review the published literature describing hereditary syndromes that have been associated with an increased incidence of medulloblastoma and/or central nervous system primitive neuroectodermal tumor. Review of the underlying molecular abnormalities in comparison to changes found in sporadic neoplasms suggests pathways important for tumorigenesis.
Collapse
Affiliation(s)
- M D Taylor
- Division of Neurosurgery, University of Toronto, and the Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Canada
| | | | | |
Collapse
|