251
|
Leonard MO, Howell K, Madden SF, Costello CM, Higgins DG, Taylor CT, McLoughlin P. Hypoxia selectively activates the CREB family of transcription factors in the in vivo lung. Am J Respir Crit Care Med 2008; 178:977-83. [PMID: 18689465 DOI: 10.1164/rccm.200712-1890oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Pulmonary hypertension is a common complication of chronic hypoxic lung diseases and is associated with increased morbidity and reduced survival. The pulmonary vascular changes in response to hypoxia, both structural and functional, are unique to this circulation. OBJECTIVES To identify transcription factor pathways uniquely activated in the lung in response to hypoxia. METHODS After exposure to environmental hypoxia (10% O(2)) for varying periods (3 h to 2 wk), lungs and systemic organs were isolated from groups of adult male mice. Bioinformatic examination of genes the expression of which changed in the hypoxic lung (assessed using microarray analysis) identified potential lung-selective transcription factors controlling these changes in gene expression. In separate further experiments, lung-selective activation of these candidate transcription factors was tested in hypoxic mice and by comparing hypoxic responses of primary human pulmonary and cardiac microvascular endothelial cells in vitro. MEASUREMENTS AND MAIN RESULTS Bioinformatic analysis identified cAMP response element binding (CREB) family members as candidate lung-selective hypoxia-responsive transcription factors. Further in vivo experiments demonstrated activation of CREB and activating transcription factor (ATF)1 and up-regulation of CREB family-responsive genes in the hypoxic lung, but not in other organs. Hypoxia-dependent CREB activation and CREB-responsive gene expression was observed in human primary lung, but not cardiac microvascular endothelial cells. CONCLUSIONS These findings suggest that activation of CREB and AFT1 plays a key role in the lung-specific responses to hypoxia, and that lung microvascular endothelial cells are important, proximal effector cells in the specific responses of the pulmonary circulation to hypoxia.
Collapse
Affiliation(s)
- Martin O Leonard
- University College Dublin, School of Medicine and Medical Science, and Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
252
|
Findley CM, Mitchell RG, Duscha BD, Annex BH, Kontos CD. Plasma levels of soluble Tie2 and vascular endothelial growth factor distinguish critical limb ischemia from intermittent claudication in patients with peripheral arterial disease. J Am Coll Cardiol 2008; 52:387-93. [PMID: 18652948 PMCID: PMC2643047 DOI: 10.1016/j.jacc.2008.02.045] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 12/28/2007] [Accepted: 02/07/2008] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Our purpose was to determine whether factors that regulate angiogenesis are altered in peripheral arterial disease (PAD) and whether these factors are associated with the severity of PAD. BACKGROUND Alterations in angiogenic growth factors occur in cardiovascular disease (CVD), but whether these factors are altered in PAD or correlate with disease severity is unknown. METHODS Plasma was collected from patients with PAD (n = 46) and healthy control subjects (n = 23). Peripheral arterial disease patients included those with intermittent claudication (IC) (n = 23) and critical limb ischemia (CLI) (n = 23). Plasma angiopoietin-2 (Ang2), soluble Tie2 (sTie2), vascular endothelial growth factor (VEGF), soluble VEGF receptor 1 (sVEGFR-1), and placenta growth factor (PlGF) were measured by enzyme-linked immunoadsorbent assay. In vitro, endothelial cells (ECs) were treated with recombinant VEGF to investigate effects on sTie2 production. RESULTS Plasma concentrations of sTie2 (p < 0.01), Ang2 (p < 0.001), and VEGF (p < 0.01), but not PlGF or sVEGFR-1, were significantly greater in PAD patients compared with control subjects. Plasma Ang2 was significantly increased in both IC and CLI compared with control subjects (p < 0.0001), but there was no difference between IC and CLI. Plasma VEGF and sTie2 were similar in control subjects and IC but were significantly increased in CLI (p < 0.001 vs. control or IC). Increased sTie2 and VEGF were independent of CVD risk factors or the ankle-brachial index, and VEGF treatment of ECs in vitro significantly increased sTie2 shedding. CONCLUSIONS Levels of VEGF and sTie2 are significantly increased in CLI, and sTie2 production is induced by VEGF. These proteins may provide novel biomarkers for CLI, and sTie2 may be both a marker and a cause of CLI.
Collapse
Affiliation(s)
- Clarence M. Findley
- Department of Medicine, Division of Cardiovascular Medicine, Duke University Medical Center, Durham, NC
- School of Medicine, Duke University Medical Center, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| | - Robert G. Mitchell
- Department of Medicine, Division of Cardiovascular Medicine, Duke University Medical Center, Durham, NC
| | | | - Brian H. Annex
- Department of Medicine, Division of Cardiovascular Medicine, Duke University Medical Center, Durham, NC
- Department of Medicine, Division of Cardiology, Durham Veterans Affairs Medical Center, Durham, NC
| | - Christopher D. Kontos
- Department of Medicine, Division of Cardiovascular Medicine, Duke University Medical Center, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| |
Collapse
|
253
|
Kusmartsev S, Eruslanov E, Kübler H, Tseng T, Sakai Y, Su Z, Kaliberov S, Heiser A, Rosser C, Dahm P, Siemann D, Vieweg J. Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. THE JOURNAL OF IMMUNOLOGY 2008; 181:346-53. [PMID: 18566400 DOI: 10.4049/jimmunol.181.1.346] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metastatic renal cell carcinoma (RCC) associates with overproduction of vascular endothelial growth factor (VEGF) due to the mutation/inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene. Herein we demonstrate that implantation of human RCC tumor cells into athymic nude mice promotes the appearance of VEGF receptor 1 (VEGFR1)/CD11b double-positive myeloid cells in peripheral blood. Avastin-mediated VEGF neutralization was capable of significantly reducing the numbers of circulating VEGFR1+ myeloid cells. Conversely, up-regulation of VEGFR1 by myeloid cells could also be achieved in vitro by coculturing bone marrow cells with RCC-conditioned medium or by short-term exposure of naive myeloid cells to oxidative stress. Treatment of myeloid cells with H2O2, lipid peroxidation product 4-hydroxy-2(E)-nonenal, or an inhibitor of thioredoxin reductase all resulted in increased expression of VEGFR1. Furthermore, after exposure to oxidative stress, myeloid cells acquire immunosuppressive features and become capable of inhibiting T cell proliferation. Data suggest that tumor-induced oxidative stress may promote both VEGFR1 up-regulation and immunosuppressive function in bone marrow-derived myeloid cells. Analysis of tumor tissue and peripheral blood from patients with metastatic RCC revealed that VEGFR1+ cells can be also found in cancer patients. Restoration of immunocompetence in metastatic RCC patients by pharmacological elimination of VEGFR1+ cells may have a significant impact on the therapeutic efficacy of cancer vaccines or other immune-based therapies.
Collapse
Affiliation(s)
- Sergei Kusmartsev
- Department of Urology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Bellik L, Musilli C, Vinci MC, Ledda F, Parenti A. Human mature endothelial cells modulate peripheral blood mononuclear cell differentiation toward an endothelial phenotype. Exp Cell Res 2008; 314:2965-74. [PMID: 18692498 DOI: 10.1016/j.yexcr.2008.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 07/17/2008] [Accepted: 07/19/2008] [Indexed: 11/15/2022]
Abstract
Circulating endothelial progenitor cells (EPCs) can contribute to neovascularization, even if the mechanisms by which they interact with mature endothelial cells remain unclear. The interactions between human coronary artery endothelial cells (HCAECs) and peripheral blood mononuclear cells (PBMCs) during their early differentiation towards an EPC phenotype were investigated. A co-culture model, in which the two cell types share the same culture medium in the absence of any exogenous angiogenic stimulus, was used. The role of hypoxia was assessed by pretreating HCAECs with 3% O(2) before co-culture setting. Since we have previously shown that both adherent and suspended PBMCs display a significant increase in endothelial marker expression within the 2nd day of culture in an angiogenic environment, the role of HCAECs on early PBMC differentiation was evaluated in both adherent and suspended cell fractions. A 3-day co-culture period increased the expression of VEGF-R2, VE-cadherin, alpha(v)beta(3)- and alpha(5)-integrin in both the adherent and suspended PBMCs, assessed by cytofluorimetric analysis, and up-regulated VEGF-R1 mRNA assessed by real-time RT-PCR. HCAECs influenced PBMC adhesion, transendothelial migration and cell organization on Matrigel. Hypoxia modulated either PBMC differentiation or their functional properties. These data strongly suggest that endothelium may support the differentiation of PBMCs into EPCs.
Collapse
Affiliation(s)
- Lydia Bellik
- Department of Preclinical and Clinical Pharmacology, University of Florence, Vaile G. Pieraccini, 650139 Florence, Italy
| | | | | | | | | |
Collapse
|
255
|
Dutta D, Ray S, Vivian JL, Paul S. Activation of the VEGFR1 chromatin domain: an angiogenic signal-ETS1/HIF-2alpha regulatory axis. J Biol Chem 2008; 283:25404-25413. [PMID: 18625704 DOI: 10.1074/jbc.m804349200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Angiogenesis is induced by multiple growth factors including vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2). In vascular endothelium VEGF signals through two receptor-tyrosine kinases, VEGFR1 and VEGFR2. The VEGFR1 gene encodes both a receptor-tyrosine kinase and a secreted splice variant, soluble VEGFR1. Whereas VEGFR1 is essential for vascular development, mechanisms that regulate VEGFR1 expression in endothelial cells are poorly understood. We demonstrate here that in endothelial cells, FGF2 and epidermal growth factor (EGF) signaling induce VEGFR1 mRNA expression in a combinatorial fashion. EGF/FGF2-mediated VEGFR1 induction is mediated via functional interaction of transcription factors ETS1 and HIF-2alpha. Mechanistic analyses revealed that in endothelial cells EGF/FGF2 signaling induces ETS1 expression, increases HIF-2alpha protein level in absence of hypoxia, and recruits both ETS1 and HIF-2alpha to the VEGFR1 chromatin domain. Knockdown of ETS1 and HIF-2alpha by RNA interference inhibits EGF/FGF2-induced VEGFR1 expression, and loss of expression is associated with impaired RNA-polymerase II recruitment and histone modifications at the VEGFR1 promoter region. In addition, using a mouse embryonic stem cell in vitro differentiation system, we found that induction of VEGFR1 in embryoid bodies is also associated with ETS1 and HIF-2alpha recruitment to the VEGFR1 locus. These results establish an angiogenic signal-ETS1/HIF-2alpha axis that regulates the VEGFR1 chromatin domain to induce VEGFR1 transcription in endothelial cells and in differentiating embryonic stem cells.
Collapse
Affiliation(s)
- Debasree Dutta
- Institute of Maternal-Fetal Biology and the Division of Cancer and Developmental Biology, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Soma Ray
- Institute of Maternal-Fetal Biology and the Division of Cancer and Developmental Biology, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Jay L Vivian
- Institute of Maternal-Fetal Biology and the Division of Cancer and Developmental Biology, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Soumen Paul
- Institute of Maternal-Fetal Biology and the Division of Cancer and Developmental Biology, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160.
| |
Collapse
|
256
|
HIF-1alpha subunit and vasoactive HIF-1-dependent genes are involved in carbon monoxide-induced cerebral hypoxic stress response. Eur J Appl Physiol 2008; 104:95-102. [PMID: 18560881 DOI: 10.1007/s00421-008-0776-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2008] [Indexed: 01/02/2023]
Abstract
Hypoxia-inducible transcription factor-1 (HIF-1) is the most important component of cellular and molecular adaptive responses to hypoxia. We aimed to analyze effects of systemic hypoxia and CO exposure on the oxygen-regulated alpha-subunit of HIF-1 and HIF-1-dependent vasoactive target genes in rat brain. Brains of adult Sprague-Dawley rats were investigated after incubation for 3 and 12 h under normoxia, hypoxia (8% O(2)) and CO 0.1% (n = 10 per group). Upon 3 h of exposure, hypoxia and CO-induced accumulation of HIF-1alpha protein in brain homogenates assessed by Western blot analysis. In contrast to hypoxia HIF-1alpha signals decreased markedly during 12 h-exposure to CO. By immunohistochemistry, intensive HIF-1alpha-positive staining was found in neurons of the cortex and hippocampus. Cerebral expression of vasoactive target genes adrenomedullin (ADM) and vascular endothelial growth factor (VEGF) showed up-regulation during both hypoxia and CO exposure indicating functional activation of HIF-1. Hypoxia increased ADM (P < 0.05) and VEGF mRNA levels within 3 h (P < 0.01) which persisted up to 12 h of exposure (ADM, P < 0.05; VEGF, P < 0.001). Similarly, CO inhalation led to early up-regulation of VEGF (3 h: P < 0.05; 12 h: P < 0.01), but a more delayed increase of ADM mRNA levels (3 h: n.s., 12 h: P < 0.01). We suggest that CO-induced oxygen deprivation is a potent stimulus to cerebral HIF-1-regulated hypoxic stress responses even though its effects are more transient than exposure to hypoxia.
Collapse
|
257
|
Ardura JA, Berruguete R, Rámila D, Alvarez-Arroyo MV, Esbrit P. Parathyroid hormone-related protein interacts with vascular endothelial growth factor to promote fibrogenesis in the obstructed mouse kidney. Am J Physiol Renal Physiol 2008; 295:F415-25. [PMID: 18550647 DOI: 10.1152/ajprenal.00018.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Parathyroid hormone-related protein (PTHrP) interacts with vascular endothelial growth factor (VEGF) in osteoblasts. Since both PTHrP and VEGF have both proinflammatory and profibrogenic features, we assessed here whether these factors might act in concert to promote fibrogenesis in the obstructed kidney. VEGF receptor (VEGFR)-1 was upregulated, while VEGFR-2 was downregulated (at both mRNA and protein levels) in the mouse kidney within 2-6 days after ureteral obstruction. VEGF protein levels also increased in the obstructed kidney at the latter time. Moreover, this VEGF and VEGFR-1 upregulation was higher in mice overexpressing PTHrP in the proximal tubule than in control littermates. These changes were associated with higher fibronectin mRNA expression and alpha-smooth muscle actin (alpha-SMA) and integrin-linked kinase (ILK) immunostaining and lower apoptotic tubulointerstitial cells in the mouse obstructed kidney than in control littermates. Pretreatment with a neutralizing anti-VEGF antibody reversed these responses in the obstructed kidney of both types of mice. In vitro, PTHrP-(1-36) increased (maximal 2-fold vs. basal, at 100 nM) alpha-SMA and ILK protein expression and decreased E-cadherin protein levels in renal tubuloepithelial mouse cortical tubule and normal rat kidney (NRK) 52E cells. PTHrP-(1-36) also decreased cyclosporine A- and/or osmotic stress-induced apoptosis in these cells and in renal fibroblastic NRK 49F cells. These effects elicited by PTHrP-(1-36) were associated with both VEGF and VEGFR-1 upregulation, and abolished by the anti-VEGF antibody. Collectively, these findings strongly suggest that VEGF acts as an important mediator of PTHrP to promote fibrogenesis in the obstructed kidney.
Collapse
Affiliation(s)
- Juan A Ardura
- Bone and Mineral Metabolism Laboratory, Fundación Jiménez Díaz, Madrid, Spain
| | | | | | | | | |
Collapse
|
258
|
García-Manero M, Santana GT, Alcázar JL. Relationship between Microvascular Density and Expression of Vascular Endothelial Growth Factor in Patients with Ovarian Endometriosis. J Womens Health (Larchmt) 2008; 17:777-82. [DOI: 10.1089/jwh.2007.0695] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Manuel García-Manero
- Department of Obstetrics and Gynecology, Clínica Universitaria de Navarra, University of Navarra, Pamplona, Spain
| | - Gemma Toledo Santana
- Department of Pathology, Clínica Universitaria de Navarra, University of Navarra, Pamplona, Spain
| | - Juan Luis Alcázar
- Department of Obstetrics and Gynecology, Clínica Universitaria de Navarra, University of Navarra, Pamplona, Spain
| |
Collapse
|
259
|
Cellular oxygen sensing in health and disease. Pediatr Nephrol 2008; 23:681-94. [PMID: 17955264 DOI: 10.1007/s00467-007-0632-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/26/2007] [Accepted: 08/10/2007] [Indexed: 02/02/2023]
Abstract
To avoid localised problems resulting from excess or inadequate oxygen, all cells and tissues have the ability to sense and respond to changes in oxygen levels. Despite their rich blood supply, the kidneys have unique properties with respect to oxygen that enable them to act as specialised organs, sensing oxygen delivery as well as rendering them prone to hypoxic injury. Essential to normal growth and development, as well as the control of energy metabolism, angiogenesis and erythropoiesis, cellular oxygen homoeostasis is central to the pathophysiology of anaemia, ischaemia, inflammation and cancer, both within the kidney and more generally. A major transcriptional pathway, predominantly regulated by hypoxia-inducible factor (HIF), controls many hundreds of genes, either directly or indirectly, that serve to modulate both the supply and consumption of oxygen. Recent advances have illuminated the mechanisms underlying the regulation of HIF by oxygen and have defined novel therapeutic targets. The challenge now is for us to understand the complexities generated by multiple isoforms of the various components of oxygen sensing, the identification of additional levels of control, and the tissue specific responses to activation of the HIF pathway.
Collapse
|
260
|
Zhou CC, Ahmad S, Mi T, Abbasi S, Xia L, Day MC, Ramin SM, Ahmed A, Kellems RE, Xia Y. Autoantibody from women with preeclampsia induces soluble Fms-like tyrosine kinase-1 production via angiotensin type 1 receptor and calcineurin/nuclear factor of activated T-cells signaling. Hypertension 2008; 51:1010-9. [PMID: 18259044 PMCID: PMC3261612 DOI: 10.1161/hypertensionaha.107.097790] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 12/04/2007] [Indexed: 12/14/2022]
Abstract
Preeclampsia is a pregnancy-specific hypertensive syndrome that causes substantial maternal and fetal morbidity and mortality. Recent evidence indicates that maternal endothelial dysfunction in preeclampsia results from increased soluble Fms-like tyrosine kinase-1 (sFlt-1), a circulating antiangiogenic protein. Factors responsible for excessive production of sFlt-1 in preeclampsia have not been identified. We tested the hypothesis that angiotensin II type 1 (AT(1)) receptor activating autoantibodies, which occur in women with preeclampsia, contribute to increased production of sFlt-1. IgG from women with preeclampsia stimulates the synthesis and secretion of sFlt-1 via AT(1) receptor activation in pregnant mice, human placental villous explants, and human trophoblast cells. Using FK506 or short-interfering RNA targeted to the calcineurin catalytic subunit mRNA, we determined that calcineurin/nuclear factor of activated T-cells signaling functions downstream of the AT(1) receptor to induce sFlt-1 synthesis and secretion by AT(1)-receptor activating autoantibodies. AT(1)-receptor activating autoantibody-induced sFlt-1 secretion resulted in inhibition of endothelial cell migration and capillary tube formation in vitro. Overall, our studies demonstrate that an autoantibody from women with preeclampsia induces sFlt-1 production via angiotensin receptor activation and downstream calcineurin/nuclear factor of activated T-cells signaling. These autoantibodies represent potentially important targets for diagnosis and therapeutic intervention.
Collapse
Affiliation(s)
- Cissy Chenyi Zhou
- Department of Biochemistry and Molecular Biology, Medical School, University of Birmingham, Edgbaston, Birmingham, West Midlands, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Xie B, Shen J, Dong A, Swaim M, Hackett SF, Wyder L, Worpenberg S, Barbieri S, Campochiaro PA. An Adam15 amplification loop promotes vascular endothelial growth factor-induced ocular neovascularization. FASEB J 2008; 22:2775-83. [PMID: 18381816 DOI: 10.1096/fj.07-099283] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteins with a disintegrin and a metalloproteinase domain (ADAMs) are a family of membrane-bound proteinases that bind integrins through their disintegrin domain. In this study, we have found modest expression of ADAM15 in pericytes in normal retina and strong up-regulation of ADAM15 in retinal vascular endothelial cells in ischemic retina. Increased expression of vascular endothelial growth factor (VEGF) in the retina in the absence of ischemia also increased ADAM15 levels, and knockdown of Vegf mRNA in ischemic retina reduced Adam15 mRNA. Mice deficient in ADAM15 showed a significant reduction in ischemia-induced retinal neovascularization, choroidal neovascularization at rupture sites in Bruch's membrane, and VEGF-induced subretinal neovascularization. ADAM15-deficient mice also showed reduced levels of VEGF(164), VEGF receptor 1, and VEGF receptor 2 in ischemic retina. These data suggest that ADAM15 and VEGF participate in an amplification loop; VEGF increases expression of ADAM15, which in turn increases expression of VEGF and its receptors. Perturbation of the loop by elimination of ADAM15 suppresses ocular neovascularization in 3 different model systems, and thus ADAM15 provides a new therapeutic target for diseases complicated by neovascularization.
Collapse
Affiliation(s)
- Bing Xie
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
262
|
Centanin L, Dekanty A, Romero N, Irisarri M, Gorr TA, Wappner P. Cell Autonomy of HIF Effects in Drosophila: Tracheal Cells Sense Hypoxia and Induce Terminal Branch Sprouting. Dev Cell 2008; 14:547-58. [DOI: 10.1016/j.devcel.2008.01.020] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 11/06/2007] [Accepted: 01/10/2008] [Indexed: 01/23/2023]
|
263
|
Bauditz J, Lochs H. Angiogenesis and vascular malformations: antiangiogenic drugs for treatment of gastrointestinal bleeding. World J Gastroenterol 2008. [PMID: 18023086 DOI: 10.3748/wjg.13.5979] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Treatment of gastrointestinal bleeding in patients with angiodysplasias and Osler's disease (hereditary hemorrhagic teleangiectasia) is clinically challenging. Frequently, vascular malformations occur as multiple disseminated lesions, making local treatment an unfavorable choice or impossible. After local therapy, lesions often recur at other sites of the intestine. However, as there are few therapeutic alternatives, repeated endoscopic coagulations or surgical resections are still performed to prevent recurrent bleeding. Hormonal therapy has been employed for more than 50 years but has recently been shown to be ineffective. Therefore, new therapeutic strategies are required. Understanding of the pathophysiology of angiogenesis and vascular malformations has recently substantially increased. Currently, multiple inhibitors of angiogenesis are under development for treatment of malignant diseases. Experimental and clinical data suggest that antiangiogenic substances, which were originally developed for treatment of malignant diseases, may also represent long-awaited specific drugs for the treatment of vascular malformations. However, antiangiogenics display significantly different actions and side-effects. Although antiangiogenics like thalidomide seem to inhibit gastrointestinal bleeding, other substances like bevacizumab can cause mucosal bleeding. Therefore differential and cautious evaluation of this therapeutic strategy is necessary.
Collapse
Affiliation(s)
- Juergen Bauditz
- Universitatsklinikum Charite, IV. Medizinische Klinik und Poliklinik, Chariteplatz 1, Berlin 10117, Germany.
| | | |
Collapse
|
264
|
Bauditz J, Lochs H. Angiogenesis and vascular malformations: antiangiogenic drugs for treatment of gastrointestinal bleeding. World J Gastroenterol 2008; 13:5979-84. [PMID: 18023086 PMCID: PMC4250877 DOI: 10.3748/wjg.v13.45.5979] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Treatment of gastrointestinal bleeding in patients with angiodysplasias and Osler's disease (hereditary hemorrhagic teleangiectasia) is clinically challenging. Frequently, vascular malformations occur as multiple disseminated lesions, making local treatment an unfavorable choice or impossible. After local therapy, lesions often recur at other sites of the intestine. However, as there are few therapeutic alternatives, repeated endoscopic coagulations or surgical resections are still performed to prevent recurrent bleeding. Hormonal therapy has been employed for more than 50 years but has recently been shown to be ineffective. Therefore, new therapeutic strategies are required. Understanding of the pathophysiology of angiogenesis and vascular malformations has recently substantially increased. Currently, multiple inhibitors of angiogenesis are under development for treatment of malignant diseases. Experimental and clinical data suggest that antiangiogenic substances, which were originally developed for treatment of malignant diseases, may also represent long-awaited specific drugs for the treatment of vascular malformations. However, antiangiogenics display significantly different actions and side-effects. Although antiangiogenics like thalidomide seem to inhibit gastrointestinal bleeding, other substances like bevacizumab can cause mucosal bleeding. Therefore differential and cautious evaluation of this therapeutic strategy is necessary.
Collapse
Affiliation(s)
- Juergen Bauditz
- Universitatsklinikum Charite, IV. Medizinische Klinik und Poliklinik, Chariteplatz 1, Berlin 10117, Germany.
| | | |
Collapse
|
265
|
Fong GH. Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis 2008; 11:121-40. [PMID: 18327686 DOI: 10.1007/s10456-008-9107-3] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Accepted: 02/25/2008] [Indexed: 12/18/2022]
Abstract
Angiogenesis is mostly an adaptive response to tissue hypoxia, which occurs under a wide variety of situations ranging from embryonic development to tumor growth. In general, angiogenesis is dependent on the accumulation of hypoxia inducible factors (HIFs), which are heterodimeric transcription factors of alpha and beta subunits. Under normoxia, HIF heterodimers are not abundantly present due to oxygen dependent hydroxylation, polyubiquitination, and proteasomal degradation of alpha subunits. Under hypoxia, however, alpha subunits are stabilized and form heterodimers with HIF-1beta which is not subject to oxygen dependent regulation. The accumulation of HIFs under hypoxia allows them to activate the expression of many angiogenic genes and therefore initiates the angiogenic process. In recent years, however, it has become clear that various other mechanisms also participate in fine tuning angiogenesis. In this review, I discuss the relationship between hypoxia and angiogenesis under five topics: (1) regulation of HIF-alpha abundance and activity by oxygen tension and other conditions including oxygen independent mechanisms; (2) hypoxia-regulated expression of angiogenic molecules by HIFs and other transcription factors; (3) responses of vascular cells to hypoxia; (4) angiogenic phenotypes due to altered HIF signaling in mice; and (5) role of the HIF pathway in pathological angiogenesis. Studies discussed under these topics clearly indicate that while mechanisms of oxygen-regulated HIF-alpha stability provide exciting opportunities for the development of angiogenesis or anti-angiogenesis therapies, it is also highly important to consider various other mechanisms for the optimization of these procedures.
Collapse
Affiliation(s)
- Guo-Hua Fong
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3501, USA.
| |
Collapse
|
266
|
Azuma M, Shi M, Danenberg KD, Gardner H, Barrett C, Jacques CJ, Sherod A, Iqbal S, El-Khoueiry A, Yang D, Zhang W, Danenberg PV, Lenz HJ. Serum lactate dehydrogenase levels and glycolysis significantly correlate with tumor VEGFA and VEGFR expression in metastatic CRC patients. Pharmacogenomics 2008; 8:1705-13. [PMID: 18086000 DOI: 10.2217/14622416.8.12.1705] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES In an attempt to elucidate the relationship between biomarkers of tumor hypoxia, glycolysis and angiogenesis, we tested the hypothesis that intratumoral gene expression of the hypoxia response (hypoxia inducible factor [HIF1 alpha and 2 alpha]), glycolysis (lactate dehydrogenase A [LDHA]), glucose metabolism (glucose transporter-1 [Glut-1]) and genes involved in angiogenesis (i.e., VEGFA, VEGFR1-3, and neuropilin [NRP]1) are upregulated in metastatic colorectal cancer (mCRC) patients with high serum lactate dehydrogenase (LDH). PATIENTS AND METHODS 78 formalin-fixed, paraffin-embedded (FFPE) tumor samples were collected from 36 patients with mCRC. Tumor gene expression was correlated with serum LDH levels from the same group of patients. FFPE tissues were dissected using laser-captured microdissection and analyzed for gene expression using a quantitative real-time RT-PCR method. RESULTS Intratumoral gene expression of VEGFA and VEGFR1 showed a statistically significant correlation with serum LDH levels (p = 0.006, r = 0.45 and p = 0.004, r = 0.50, respectively). Intratumoral expression of LDHA gene showed a significant correlation with Glut-1, VEGF, HIF1 alpha, HIF2 alpha and VEGFR1 (p = 0.007, r = 0.44; p < 0.001, r = 0.57; p = 0.013, r = 0.41; p = 0.044, r = 0.34; p = 0.026, r = 0.40). Serum LDH levels also correlated with microvessel density analyzed by immunohistochemical analysis. CONCLUSION The results demonstrated a significant correlation between the intratumoral gene expression of LDHA, HIF1 alpha, HIF2 alpha, Glut-1, NRP1, VEGFA and VEGFR1. Patients with high serum LDH have increased intratumoral gene expression of VEGFA and VEGFR1. The results also support the hypothesis that serum LDH levels may serve as a surrogate marker for activation of the HIF-related genes in the tumor.
Collapse
Affiliation(s)
- Mizutomo Azuma
- University of Southern California/Norris Comprehensive Cancer Center, Division of Medical Oncology, The Sharon Carpenter Laboratory, Keck School of Medicine, 1441 Eastlake Avenue, Suite 3456, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Abstract
The increase in body size of humans and other vertebrates requires a physiological infrastructure to provide adequate delivery of oxygen to tissues and cells to maintain oxygen homeostasis. The heart, lungs and the vasculature are all part of a highly regulated system that ensures the distribution of the precise amount of oxygen needed throughout the mammalian organism. Given its fundamental impact on physiology and pathology, it is no surprise that the response of cells to a lack of oxygen, termed hypoxia, has been the focus of many research groups worldwide for many decades now. The transcriptional complex hypoxia-inducible factor has emerged as a key regulator of the molecular hypoxic response, mediating a wide range of physiological and cellular mechanisms necessary to adapt to reduced oxygen.
Collapse
|
268
|
Ernesto Valdivia-Silva J, González-Altamirano J, López-Molina K, Lazo-Velásquez J, García-Zepeda E. Relación de la expresión del factor inducido por hipoxia-2α (HIF-2α) y sVEGF-R1/sFlt-1: implicación en la fisiopatología de preeclampsia. CLINICA E INVESTIGACION EN GINECOLOGIA Y OBSTETRICIA 2008. [DOI: 10.1016/s0210-573x(08)73033-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
269
|
Adamski JK, Estlin EJ, Makin GWJ. The cellular adaptations to hypoxia as novel therapeutic targets in childhood cancer. Cancer Treat Rev 2008; 34:231-46. [PMID: 18207646 DOI: 10.1016/j.ctrv.2007.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 11/26/2007] [Accepted: 11/27/2007] [Indexed: 01/19/2023]
Abstract
Exposure of tumour cells to reduced levels of oxygen (hypoxia) is a common finding in adult tumours. Hypoxia induces a myriad of adaptive changes within tumour cells which result in increased anaerobic glycolysis, new blood vessel formation, genetic instability and a decreased responsiveness to both radio and chemotherapy. Hypoxia correlates with disease stage and outcome in adult epithelial tumours and increasingly it is becoming apparent that hypoxia is also important in paediatric tumours. Despite its adverse effects upon tumour response to treatment hypoxia offers several avenues for new drug development. Bioreductive agents already exist, which are preferentially activated in areas of hypoxia, and thus have less toxicity for normal tissue. Additionally the adaptive cellular response to hypoxia offers several novel targets, including vascular endothelial growth factor (VEGF), carbonic anhydrase, and the central regulator of the cellular response to hypoxia, hypoxia inducible factor-1 (HIF-1). Novel agents have emerged against all of these targets and are at various stages of clinical and pre-clinical development. Hypoxia offers an exciting opportunity for new drug development that can include paediatric tumours at an early stage.
Collapse
Affiliation(s)
- J K Adamski
- School of Cancer and Imaging Studies, Faculty of Medical and Human Studies, University of Manchester, United Kingdom.
| | | | | |
Collapse
|
270
|
|
271
|
Larsen AE, Cameron-Smith D, Crowe TC. Conjugated linoleic acid suppresses myogenic gene expression in a model of human muscle cell inflammation. J Nutr 2008; 138:12-6. [PMID: 18156397 DOI: 10.1093/jn/138.1.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proinflammatory cytokines, such as tumor necrosis factor (TNF)-alpha, contribute to muscle wasting in inflammatory disorders, where TNFalpha acts to regulate myogenic genes. Conjugated linoleic acid (CLA) has shown promise as an antiproliferative and antiinflammatory agent, leading to its potential as a therapeutic agent in muscle-wasting disorders. To evaluate the effect of CLA on myogenesis during inflammation, human primary muscle cells were grown in culture and exposed to varying concentrations of TNFalpha and the cis-9, trans-11 and trans-10, cis-12 CLA isomers. Expression of myogenic genes (Myf5, MyoD, myogenin, and myostatin) and the functional genes creatine kinase (CK) and myosin heavy chain (MHC IIx) were measured by real-time PCR. TNFalpha significantly downregulated MyoD and myogenin expression, whereas it increased Myf5 expression. These changes corresponded with a decrease in both CK and MHC IIx expression. Both isomers of CLA mimicked the inhibitory effect of TNFalpha treatment on MyoD and myogenin expression, whereas myostatin expression was diminished in the presence of both isomers of CLA either alone or in combination with TNFalpha. Both isomers of CLA decreased CK and MHC IIx expression. These findings demonstrate that TNFalpha can have specific regulatory effects on myogenic genes in primary human muscle cells. A postulated antiinflammatory role of CLA in myogenesis appears more complex, with an indication that CLA may have a negative effect on this process.
Collapse
Affiliation(s)
- Amy E Larsen
- School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | | | | |
Collapse
|
272
|
Chaiworapongsa T, Romero R, Gotsch F, Espinoza J, Nien JK, Goncalves L, Edwin S, Kim YM, Erez O, Kusanovic JP, Pineles BL, Papp Z, Hassan S. Low maternal concentrations of soluble vascular endothelial growth factor receptor-2 in preeclampsia and small for gestational age. J Matern Fetal Neonatal Med 2008; 21:41-52. [PMID: 18175243 PMCID: PMC7062305 DOI: 10.1080/14767050701831397] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Preeclampsia is considered an anti-angiogenic state. A role for the anti-angiogenic factors soluble vascular endothelial growth factor receptor-1 (sVEGFR-1) and soluble endoglin in preeclampsia has been proposed. Soluble vascular endothelial growth factor receptor-2 (sVEGFR-2) has been detected in human plasma, and the recombinant form of this protein has anti-angiogenic activity. There is a paucity of information about maternal plasma sVEGFR-2 concentrations in patients with preeclampsia and those without preeclampsia with small for gestational age (SGA) fetuses. This study was conducted to determine whether: (1) plasma sVEGFR-2 concentration changes throughout pregnancy; and (2) preeclampsia and SGA are associated with abnormalities in the maternal plasma concentration of sVEGFR-2. STUDY DESIGN This cross-sectional study included non-pregnant women (n = 40), women with normal pregnancies (n = 135), women with an SGA fetus (n = 53), and women with preeclampsia (n = 112). SGA was defined as an ultrasound-estimated fetal weight below the 10(th) percentile for gestational age that was confirmed by neonatal birth weight. Plasma concentrations of sVEGFR-2 were determined by ELISA. RESULTS (1) There was no significant difference in the mean plasma concentration of sVEGFR-2 between non-pregnant women and those with normal pregnancies (p = 0.8); (2) patients with preeclampsia and those without preeclampsia with SGA fetuses had a lower mean plasma concentration of sVEGFR-2 than that of women with normal pregnancies (p < 0.001 for both); and (3) there was no significant difference in the mean plasma concentration of sVEGFR-2 between patients with preeclampsia and those without preeclampsia with SGA (p = 0.9). CONCLUSIONS Preeclampsia and SGA are associated with low plasma concentrations of sVEGFR-2. One interpretation of the findings is that plasma sVEGFR-2 concentration could reflect endothelial cell function.
Collapse
Affiliation(s)
- Tinnakorn Chaiworapongsa
- Perinatology Research Branch, National Institute of Child Health and Human Development, NIH/DHHS, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Charlesworth PJS, Harris AL. Hypoxic Regulation of Angiogenesis by HIF-1. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
274
|
Abstract
Preeclampsia is a major cause of maternal, fetal and neonatal mortality worldwide. The mechanisms that initiate preeclampsia in humans have been elusive, but some parts of the puzzle have begun to come together. A key discovery in the field was the realization that its major phenotypes, such as hypertension and proteinuria, are due to excess circulating soluble fms-like tyrosine kinase-1 (sFlt-1, also referred to as sVEGFR-1). sFlt-1 is an endogenous anti-angiogenic protein that is made by the placenta and acts by neutralizing the pro-angiogenic proteins vascular endothelial growth factor (VEGF) and placental growth factor (PlGF). More recently, soluble endoglin, another circulating anti-angiogenic protein was found to synergize with sFlt-1 and contribute to the pathogenesis of preeclampsia. Abnormalities in these circulating angiogenic proteins are not only present during clinical preeclampsia, but also antedate clinical symptoms by several weeks. This review will summarize our current understanding of the molecular mechanism of preeclampsia, with an emphasis on the recently characterized circulating anti-angiogenic proteins.
Collapse
Affiliation(s)
- Walter P. Mutter
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - S. Ananth Karumanchi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
275
|
Pinto MDL, Rodrigues P, Coelho AC, Pires MDA, dos Santos DL, Gonçalves C, Bairos VA. Prenatal administration of vitamin A alters pulmonary and plasma levels of vascular endothelial growth factor in the developing mouse. Int J Exp Pathol 2007; 88:393-401. [PMID: 18039276 DOI: 10.1111/j.1365-2613.2007.00565.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Vitamin A and the retinoids play a unique role in mammalian embryonic and foetal development and are essential for both cellular differentiation and the establishment of normal morphogenesis. Vascular endothelial growth factor (VEGF) is a known potent mitogenic factor that plays a key role in lung development and function maintenance. In order to contribute to a better knowledge of the modulating effects of vitamin A in lung development, we investigated the effects of the antenatal administration of vitamin A on VEGF expression in lungs and plasma from foetuses and neonates. Pregnant mice were subjected to subcutaneous administration of vitamin A on the 12th gestational day. The lungs and plasma from foetuses and neonates were collected daily from the 15th gestational day till the day of birth. Our results show that vitamin A modulates VEGF concentrations both in lungs and plasma. Statistically significant differences were observed at gestational days 15 (P = 0.004 for lungs; P < 0.0001 for plasma), 16 (P < 0.0001 for lungs and plasma) and 18 (P < 0.0001 for lungs; P < 0.05 for plasma). Vitamin A tends to increase the expression of this factor in the lung, particularly during the critical period of perinatal adaptation to postnatal life. These effects seem to be spatial and temporally regulated, and point out to the important role of vitamin A during lung development.
Collapse
Affiliation(s)
- Maria de Lurdes Pinto
- Department of Veterinary Sciences and Centre for Studies on Agricultural and Veterinary Sciences, University of Trás-os-Montes w Alto Douro, Vila Real, Portugal.
| | | | | | | | | | | | | |
Collapse
|
276
|
Angiogenesis and vascular malformations: Antiangiogenic drugs for treatment of gastrointestinal bleeding. World J Gastroenterol 2007; 13:5979-5984. [DOI: 10.3748/wjg.v13.i45.5979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Treatment of gastrointestinal bleeding in patients with angiodysplasias and Osler’s disease (hereditary hemorrhagic telangiectasia) is clinically challenging. Frequently, vascular malformations occur as multiple disseminated lesions, making local treatment an unfavorable choice or impossible. After local therapy, lesions often recur at other sites of the intestine. However, as there are few therapeutic alternatives, repeated endoscopic coagulations or surgical resections are still performed to prevent recurrent bleeding. Hormonal therapy has been employed for more than 50 years but has recently been shown to be ineffective. Therefore, new therapeutic strategies are required. Understanding of the pathophysiology of angiogenesis and vascular malformations has recently substantially increased. Currently, multiple inhibitors of angiogenesis are under development for treatment of malignant diseases. Experimental and clinical data suggest that antiangiogenic substances, which were originally developed for treatment of malignant diseases, may also represent long-awaited specific drugs for the treatment of vascular malformations. However, antiangiogenics display significantly different actions and side-effects. Although antiangiogenics like thalidomide seem to inhibit gastrointestinal bleeding, other substances like bevacizumab can cause mucosal bleeding. Therefore differential and cautious evaluation of this therapeutic strategy is necessary.
Collapse
|
277
|
Engebretsen BJ, Irwin D, Valdez ME, O'Donovan MK, Tucker A, van Patot MT. Acute Hypobaric Hypoxia (5486 m) Induces Greater Pulmonary HIF-1 Activation in Hilltop Compared to Madison Rats. High Alt Med Biol 2007; 8:312-21. [DOI: 10.1089/ham.2007.1031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Barbara J. Engebretsen
- Departments of Biology and Health, Human Performance and Sport, Wayne State College, 68787
- Department of Biomedical Sciences, Colorado State University, 80525
| | - David Irwin
- Department of Anesthesiology, Cardiovascular Pulmonary Research, University of Colorado Health Sciences Center, 80206
| | - Maria E. Valdez
- Department of Biomedical Sciences, Colorado State University, 80525
| | | | - Alan Tucker
- Department of Biomedical Sciences, Colorado State University, 80525
| | - Martha Tissot van Patot
- Department of Anesthesiology, Cardiovascular Pulmonary Research, University of Colorado Health Sciences Center, 80206
- Department of Biomedical Sciences, Colorado State University, 80525
| |
Collapse
|
278
|
The Role of Vascular Endothelial Growth Factor in Lung Injury and Repair. Intensive Care Med 2007. [DOI: 10.1007/978-0-387-49518-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
279
|
Abstract
Decreased oxygen availability is a common feature during embryonic development as well of malignant tumours. Hypoxia regulates many transcription factors, and one of the most studied is the hypoxia-inducible factor (HIF). As a consequence of HIF stabilisation, the cell constitutively upregulates the hypoxic programme resulting in the expression of genes responsible for global changes in cell proliferation, angiogenesis, metastasis, invasion, de-differentiation and energy metabolism. Of the three known alpha subunits of HIF transcription factors, HIF-1alpha and HIF-2alpha have been the most studied. Their differential expression and function have been widely discussed, however no clear picture has been drawn on how these two transcription factors differently regulate common and unique target genes. Their role as oncogenes has also been suggested in several studies. In this review we provide an overview of the current knowledge on some of the most important aspects of HIFalpha regulation, its role in tumour angiogenesis and energetic metabolism. We also give an overview of how the modulation of HIF regulating pathways is a potential therapeutic target that may have benefits in the treatment of cancer.
Collapse
Affiliation(s)
- M J Calzada
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| | | |
Collapse
|
280
|
Gavin TP, Drew JL, Kubik CJ, Pofahl WE, Hickner RC. Acute resistance exercise increases skeletal muscle angiogenic growth factor expression. Acta Physiol (Oxf) 2007; 191:139-46. [PMID: 17565567 DOI: 10.1111/j.1748-1716.2007.01723.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Both aerobic and resistance exercise training promote skeletal muscle angiogenesis. Acute aerobic exercise increases several pro-angiogenic pathways, the best characterized being increases in vascular endothelial growth factor (VEGF). We hypothesized that acute resistance exercise also increases skeletal muscle angiogenic growth factor [VEGF and angiopoietin (Ang)] expression. METHODS Seven young, sedentary individuals had vastus lateralis muscle biopsies and blood drawn prior to and at 0, 2 and 4 h post-resistance exercise for the measurement of VEGF; VEGF receptor [KDR, Flt-1 and neuropilin 1 (Nrp1)]; Ang1 and Ang2; and the angiopoietin receptor--Tie2 expression. Resistance exercise consisted of progressive knee extensor (KE) exercise to determine one repetition maximum (1-RM) followed by three sets of 10 repetitions (3 x 10) of KE exercise at 60-80% of 1-RM. RESULTS Resistance exercise significantly increased skeletal muscle VEGF mRNA and protein and plasma VEGF protein at 2 and 4 h. Resistance exercise increased KDR mRNA and Tie2 mRNA at 4 h and Nrp1 mRNA at 2 and 4 h. Skeletal muscle Flt-1, Ang1, Ang2 and Ang2/Ang1 ratio mRNA were not altered by resistance exercise. CONCLUSIONS These findings suggest that acute resistance exercise increases skeletal muscle VEGF, VEGF receptor and angiopoietin receptor expression. The increases in muscle angiogenic growth factor expression in response to acute resistance exercise are similar in timing and magnitude with responses to acute aerobic exercise and are consistent with resistance exercise promoting muscle angiogenesis.
Collapse
MESH Headings
- Adult
- Analysis of Variance
- Angiopoietin-1/genetics
- Angiopoietin-1/metabolism
- Angiopoietin-2/genetics
- Angiopoietin-2/metabolism
- Capillaries
- Gene Expression
- Humans
- Leg/blood supply
- Male
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Neovascularization, Physiologic
- Neuropilin-1/genetics
- Neuropilin-1/metabolism
- Physical Exertion/physiology
- Receptor, TIE-2/analysis
- Receptor, TIE-2/genetics
- Receptor, TIE-2/metabolism
- Receptors, Vascular Endothelial Growth Factor/analysis
- Receptors, Vascular Endothelial Growth Factor/genetics
- Receptors, Vascular Endothelial Growth Factor/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Vascular Endothelial Growth Factor A/analysis
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor Receptor-1/genetics
- Vascular Endothelial Growth Factor Receptor-1/metabolism
Collapse
Affiliation(s)
- T P Gavin
- Department of Exercise and Sport Science, Department of Pysiology, and Human Performance Laboratory, East Carolina University, Greenville, NC 27858, USA.
| | | | | | | | | |
Collapse
|
281
|
Brownbill P, McKeeman GC, Brockelsby JC, Crocker IP, Sibley CP. Vasoactive and permeability effects of vascular endothelial growth factor-165 in the term in vitro dually perfused human placental lobule. Endocrinology 2007; 148:4734-44. [PMID: 17640983 DOI: 10.1210/en.2007-0180] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vascular endothelial growth factor (VEGF) is an important vasodilator and effector of permeability in systemic blood vessels. Molecular and tissue culture techniques have provided evidence for its placental synthesis and release. Using an in vitro dual-perfusion model of the term placental lobule from normal pregnancy, we report here the relative secretion of total VEGF, soluble VEGF receptor (VEGFR)-1, and free VEGF into the maternal and fetoplacental circulations of the placenta. We tested the hypothesis that VEGF has vasomotor and permeability effects in the fetoplacental circulation of the human placenta, and we examined the broad intracellular pathways involved in the vasodilatory effect that we found. We show that total VEGF is released into the fetal and maternal circulations in a bipolar fashion, with a bias toward maternal side output. Soluble VEGFR-1 was also secreted into both circulations with bias toward the maternal side. Consequently, free VEGF (12.8 +/- 2.4 pg/ml, mean +/- se) was found only in the fetoplacental circulation. VEGF-165 was found to be a potent vasodilator of the fetoplacental circulation (maximum response: 77% of previous steady-state fetal-side inflow hydrostatic pressure after preconstriction with U46619; EC(50) = 71 pm). This vasodilatory effect was mediated by the VEGFR-2 receptor and nitric oxide in a manner-independent of the involvement of prostacyclin and the src-family tyrosine kinases. However, nitric oxide could explain only 50% of the vasodilatory effect. Finally, we measured the permeability of the perfused placenta to inert hydrophilic tracers and found no difference in the presence and absence of VEGF.
Collapse
Affiliation(s)
- P Brownbill
- University Research Floor, St. Mary's Hospital, Hathersage Road, Manchester, United Kingdom.
| | | | | | | | | |
Collapse
|
282
|
Cindrova-Davies T, Yung HW, Johns J, Spasic-Boskovic O, Korolchuk S, Jauniaux E, Burton GJ, Charnock-Jones DS. Oxidative stress, gene expression, and protein changes induced in the human placenta during labor. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1168-79. [PMID: 17823277 PMCID: PMC1988867 DOI: 10.2353/ajpath.2007.070528] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 07/17/2007] [Indexed: 11/20/2022]
Abstract
Malperfusion of the placenta has been implicated as a cause of oxidative stress in complications of human pregnancy, leading to release of proinflammatory cytokines and anti-angiogenic factors into the maternal circulation. Uterine contractions during labor are known to be associated with intermittent utero-placental perfusion. We therefore tested whether oxidative stress, proinflammatory cytokines, and angiogenic regulators were increased in placentas subjected to short (<5 hours) and long (>15 hours) labor compared with nonlabored controls delivered by cesarean section. In addition, broader changes in gene transcripts were assessed by microarray analysis. Oxidative stress, activation of the nuclear factor-kappaB pathway, tumor necrosis factor-alpha and interleukin 1beta all increased in placental tissues after labor. Stabilization of hypoxia-inducible factor-1alpha and increased vascular endothelial growth factor soluble receptor-1 were also observed. By contrast, tissue levels of placenta growth factor decreased. Apoptosis was also activated in labored placentas. The magnitude of these changes related to the duration of labor. After labor, 55 gene transcripts were up-regulated and 35 down-regulated, and many of these changes were reflected at the protein level. In conclusion, labor is a powerful inducer of placental oxidative stress, inflammatory cytokines, and angiogenic regulators. Our findings are consistent with intermittent perfusion being the initiating cause. Placentas subjected to labor do not reflect the normal in vivo state at the molecular level.
Collapse
Affiliation(s)
- Tereza Cindrova-Davies
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing St., Cambridge CB2 3DY, UK
| | | | | | | | | | | | | | | |
Collapse
|
283
|
Rosenberger C, Solovan C, Rosenberger AD, Jinping L, Treudler R, Frei U, Eckardt KU, Brown LF. Upregulation of Hypoxia-Inducible Factors in Normal and Psoriatic Skin. J Invest Dermatol 2007; 127:2445-52. [PMID: 17495954 DOI: 10.1038/sj.jid.5700874] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiogenesis induced by vascular endothelial growth factor (VEGF) plays an important role in psoriasis. Hypoxic adaptation is conferred through hypoxia-inducible transcription factors (HIFs). VEGF and its receptor Flt-1 are HIF target genes. Growth factors and inflammatory cytokines activate the phosphoinositol-3 kinase pathway, and via activated protein kinase B (phospho-Akt) augment HIF activity. Here, we demonstrate that the major oxygen-dependent HIF isoforms are strongly upregulated in psoriatic skin: HIF-1alpha mainly in the epidermis, in an expression pattern similar to VEGF mRNA; HIF-2alpha in both the epidermis and in capillary endothelial cells of the dermis. In contrast, normal human skin shows low expression of HIF-alpha proteins, with the exception of hair follicles, and glands, which strongly express HIF-1alpha. In normal human skin, phospho-Akt appeared in the basal epidermal layer, in hair follicles, and in dermal glands. In contrast, in psoriasis, phospho-Akt expression was low in the epidermis, but markedly enhanced in the dermal capillaries and in surrounding interstitial/inflammatory cells. Our data suggest that hypoxia initiates a potentially self-perpetuating cycle involving HIF, VEGF, and Akt activation, which could drive physiologic growth of hair follicles and skin glands. Furthermore, such a cycle may exist in psoriasis in dermal capillaries and contribute to disease progression.
Collapse
Affiliation(s)
- Christian Rosenberger
- Nephrology and Medical Intensive Care, Charité Universitätsmedizin, Virchow Campus, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
284
|
Tao Y, Kim J, Yin Y, Zafar I, Falk S, He Z, Faubel S, Schrier RW, Edelstein CL. VEGF receptor inhibition slows the progression of polycystic kidney disease. Kidney Int 2007; 72:1358-66. [PMID: 17882148 DOI: 10.1038/sj.ki.5002550] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although the receptors for vascular endothelial growth factor (VEGF) exert their effects on vasculogenesis and angiogenesis through receptors located on endothelial cells, recent studies have shown that these receptors are also present on renal tubular epithelial cells. We investigated the role of VEGF on increased tubule cell proliferation in the Han:SPRD heterozygous (Cy/+) rat model of polycystic kidney disease. The levels of VEGF in the kidneys and the serum, and the expression of the two receptors on tubules were increased in Cy/+ rats. These rats were given ribozymes that specifically inhibited VEGFR1 and VEGFR2 mRNA expression. Tubule cell proliferation within the cysts was significantly decreased in the ribozyme-treated animals leading to decreased cystogenesis, blunted renal enlargement, and prevented the loss of renal function. Our studies show that inhibition of VEGF function may be an important therapeutic option to delay the progression of polycystic kidney disease.
Collapse
Affiliation(s)
- Y Tao
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Gustafsson T, Rundqvist H, Norrbom J, Rullman E, Jansson E, Sundberg CJ. The influence of physical training on the angiopoietin and VEGF-A systems in human skeletal muscle. J Appl Physiol (1985) 2007; 103:1012-20. [PMID: 17569764 DOI: 10.1152/japplphysiol.01103.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eleven subjects performed one-legged exercise four times per week for 5 wk. The subjects exercised one leg for 45 min with restricted blood flow (R leg), followed by exercise with the other leg at the same absolute workload with unrestricted blood flow (UR leg). mRNA and protein expression were measured in biopsies from the vastus lateralis muscle obtained at rest before the training period, after 10 days, and after 5 wk of training, as well as 120 min after the first and last exercise bouts. Basal Ang-2 and Tie-1 mRNA levels increased in both legs with training. The Ang-2-to-Ang-1 ratio increased to a greater extent in the R leg. The changes in Ang-2 mRNA were followed by similar changes at the protein level. In the R leg, VEGF-A mRNA expression responded transiently after acute exercise both before and after the 5-wk training program. Over the course of the exercise program, there was a concurrent increase in basal VEGF-A protein and VEGFR-2 mRNA in the R leg. Ki-67 mRNA showed a greater increase in the R leg and the protein was localized to the endothelial cells. In summary, the increased translation of VEGF-A is suggested to be caused by the short mRNA burst induced by each exercise bout. The concurrent increase in the Ang-2-to-Ang-1 ratio and the VEGF-expression combined with the higher level of Ki-67 mRNA in the R leg indicate that changes in these systems are of importance also in nonpathological angiogenic condition such as voluntary exercise in humans. It further establish that hypoxia/ischemia-related metabolic perturbation is likely to be involved as stimuli in this process in human skeletal muscle.
Collapse
Affiliation(s)
- T Gustafsson
- Department of Laboratory Medicine, C1-88 Clinical Physiology, Karolinska University Hospital, Huddinge 14186, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
286
|
Maharaj AS, D’Amore PA. Roles for VEGF in the adult. Microvasc Res 2007; 74:100-13. [PMID: 17532010 PMCID: PMC2128714 DOI: 10.1016/j.mvr.2007.03.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 03/29/2007] [Accepted: 03/30/2007] [Indexed: 12/17/2022]
Abstract
The role of VEGF during development and in pathology is well known, but its function in normal adult tissues is poorly understood. Adverse effects associated with the use of anti-angiogenic therapies targeting VEGF in human pathologies have begun to reveal potential functions of VEGF in quiescent vasculature. Further clues from expression studies of VEGF and its receptors in the adult, from the disease preeclampsia, and from experimental neutralization studies, have suggested that VEGF is involved in endothelial cell survival and fenestration, as well as in the signaling and maintenance of non-endothelial cells. The various biochemical properties of VEGF, and its interaction with other growth factors, may be an important point in determining whether VEGF functions as a maintenance factor versus an angiogenic factor. A thorough understanding of the function of VEGF in the adult may lead to more efficacious pro- and anti-angiogenic therapies.
Collapse
Affiliation(s)
- Arindel S.R. Maharaj
- Schepens Eye Research Institute
- Program in Biological and Biomedical Sciences
- Harvard Medical School, Boston, MA 02114
| | - Patricia A. D’Amore
- Schepens Eye Research Institute
- Program in Biological and Biomedical Sciences
- Harvard Medical School, Boston, MA 02114
- Departments of Ophthalmology and Pathology
| |
Collapse
|
287
|
Band M, Shams I, Joel A, Avivi A. Cloning and in vivo expression of vascular endothelial growth factor receptor 2 (Flk1) in the naturally hypoxia-tolerant subterranean mole rat. FASEB J 2007; 22:105-12. [PMID: 17726089 DOI: 10.1096/fj.07-8892com] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vascular endothelial growth factor receptor (VEGF) plays a critical role in blood vessel formation and affects nerve growth and survival. VEGF receptor 2 (Flk1) functions as the major signal transducer of angiogenesis, mediating VEGF induction of endothelial tubulogenesis. We have cloned and analyzed expression of Flk1 in the blind subterranean mole rat Spalax ehrenbergi. Spalax experience abrupt and sharp changes in oxygen supply in their sealed underground niche and, hence, are genetically adapted to hypoxia and serve as a unique, natural mammalian model organism for hypoxia tolerance. Spalax Flk1 is relatively conserved at the nucleic acid and amino acid level compared to human, mouse, and rat orthologs. Reverse transcription-quantitative polymerase chain reaction was used to analyze Flk1 expression in muscle and brain of animals exposed to ambient or variant hypoxic oxygen levels at multiple stages of development. Transcript levels were compared with those obtained from Rattus, a primary model for human physiology. Our findings demonstrate that under normoxic conditions Flk1 patterns of expression correlate well with our previous investigations of VEGF expression. Exposure to hypoxic conditions resulted in divergent patterns of Flk1 expression between Spalax and Rattus and between muscle and brain. It appears that the regulatory mechanisms differentiating expression between the species and between tissues are most likely unique, suggesting that Flk1 expression may be regulated by multiple processes, including both angiogenesis and neurogenesis.
Collapse
Affiliation(s)
- Mark Band
- W. M. Keck Center for Comparative and Functional Genomics, University of Illinois, Urbana, Illinois, USA
| | | | | | | |
Collapse
|
288
|
Nickols NG, Jacobs CS, Farkas ME, Dervan PB. Modulating hypoxia-inducible transcription by disrupting the HIF-1-DNA interface. ACS Chem Biol 2007; 2:561-71. [PMID: 17708671 PMCID: PMC3060759 DOI: 10.1021/cb700110z] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Transcription mediated by hypoxia-inducible factor (HIF-1) contributes to tumor angiogenesis and metastasis but is also involved in activation of cell-death pathways and normal physiological processes. Given the complexity of HIF-1 signaling, it could be advantageous to target a subset of HIF-1 effectors rather than the entire pathway. We compare the genome-wide effects of three molecules that each interfere with the HIF-1-DNA interaction: a polyamide targeted to the hypoxia response element, small interfering RNA targeted to HIF-1alpha, and echinomycin, a DNA-binding natural product with a similar but less specific sequence preference than the polyamide. The polyamide affects a subset of hypoxia-induced genes consistent with its binding site preferences. For comparison, HIF-1alpha siRNA and echinomycin each affect the expression of nearly every gene induced by hypoxia. Remarkably, the total number of genes affected by either polyamide or HIF-1alpha siRNA over a range of thresholds is comparable. The data show that polyamides can be used to affect a subset of a pathway regulated by a transcription factor. In addition, this study offers a unique comparison of three complementary approaches towards exogenous control of endogenous gene expression.
Collapse
Affiliation(s)
- Nicholas G. Nickols
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Claire S. Jacobs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Michelle E. Farkas
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Peter B. Dervan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
289
|
Steenhard BM, Freeburg PB, Isom K, Stroganova L, Borza DB, Hudson BG, St John PL, Zelenchuk A, Abrahamson DR. Kidney development and gene expression in the HIF2alpha knockout mouse. Dev Dyn 2007; 236:1115-25. [PMID: 17342756 DOI: 10.1002/dvdy.21106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The hypoxia-inducible transcription factor-2 (HIF2), a heterodimer composed of HIF2alpha and HIF1beta subunits, drives expression of genes essential for vascularization, including vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR-2, Flk-1). Here, we used a HIF2alpha/LacZ transgenic mouse to define patterns of HIF2alpha transcription during kidney development and maturation. Our results from embryonic heterozygotes showed HIF2alpha/LacZ expression by apparently all renal endothelial cells. At 4 weeks of age, glomerular mesangial and vascular smooth muscle cells were also positive together with endothelial cells. These expression patterns were confirmed by electron microscopy using Bluo-gal as a beta-galactosidase substrate. Small numbers of glomerular and tubular epithelial cells were also positive at all stages examined. Light and electron microscopic examination of kidneys from HIF2alpha null embryos showed no defects in renal vascular development or nephrogenesis. Similarly, the same amounts of Flk-1 protein were seen on Western blots of kidney extracts from homozygous and heterozygous HIF2alpha mutants. To examine responsiveness of HIF2alpha null kidneys to hypoxia, embryonic day 13.5 metanephroi were cultured in room air or in mild (5% O(2)) hypoxia. For both heterozygous and null samples, VEGF mRNA levels doubled when metanephroi were cultured in mild hypoxia. Anterior chamber grafts of embryonic HIF2alpha knockouts were morphologically indistinguishable from heterozygous grafts. Endothelial markers, platelet endothelial cell adhesion molecule and BsLB4, as well as glomerular epithelial markers, GLEPP1 and WT-1, were all expressed appropriately. Finally, we undertook quantitative real-time polymerase chain reaction of kidneys from HIF2alpha null embryos and wild-type siblings and found no compensatory up-regulation of HIF1alpha or -3alpha. Our results show that, although HIF2alpha was widely transcribed by kidney endothelium and vascular smooth muscle, knockouts displayed no detectable deficits in vessel development or VEGF or Flk-1 expression.
Collapse
Affiliation(s)
- Brooke M Steenhard
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Vogel C, Bauer A, Wiesnet M, Preissner KT, Schaper W, Marti HH, Fischer S. Flt-1, but not Flk-1 mediates hyperpermeability through activation of the PI3-K/Akt pathway. J Cell Physiol 2007; 212:236-43. [PMID: 17311300 DOI: 10.1002/jcp.21022] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Vascular endothelial growth factor (VEGF), a potent mediator of endothelial proliferation and migration, has an important role also in brain edema formation during hypoxia and ischemia. VEGF binds to the tyrosine kinase receptors Flt-1 and Flk-1. Yet, their relative importance for hypoxia-induced hyperpermeability is not well understood. We used an in vitro blood-brain barrier (BBB) model consisting of porcine brain microvascular endothelial cells (BMEC) to determine the role of Flt-1 in VEGF-induced endothelial cell (EC) barrier dysfunction. Soluble Flt-1 abolished hypoxia/VEGF-induced hyperpermeability. Furthermore, selective antisense oligonucleotides to Flt-1, but not to Flk-1, inhibited hypoxia-induced permeability changes. Consistent with these data, addition of the receptor-specific homolog placenta-derived growth factor, which binds Flt-1 but not Flk-1, increased endothelial permeability to the same extent as VEGF, whereas adding VEGF-E, a viral VEGF molecule from the orf virus family activating Flk-1 and neuropilin-1, but not Flt-1, did not show any effect. Using the carcinoma submandibular gland cell line (CSG), only expressing Flt-1, it was demonstrated that activation of Flt-1 is sufficient to induce hyperpermeability by hypoxia and VEGF. Hyperpermeability, induced by hypoxia/VEGF, depends on activation of phosphatidylinositol 3-kinase/Akt (PI3-K/Akt), nitric oxide synthase (NOS) and protein kinase G (PKG). The activation of the PI3-K/Akt pathway by hypoxia was confirmed using an in vivo mice hypoxia model. These results demonstrate that hypoxia/VEGF-induced hyperpermeability can be mediated by activation of Flt-1 independently on the presence of Flk-1 and indicate a central role for activation of the PI3-K/Akt pathway, followed by induction of NOS and PKG activity.
Collapse
Affiliation(s)
- Carsten Vogel
- Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | | | | | | | | | | |
Collapse
|
291
|
Semenza GL. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 2007; 405:1-9. [PMID: 17555402 DOI: 10.1042/bj20070389] [Citation(s) in RCA: 405] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The survival of metazoan organisms is dependent upon the utilization of O2 as a substrate for COX (cytochrome c oxidase), which constitutes Complex IV of the mitochondrial respiratory chain. Premature transfer of electrons, either at Complex I or at Complex III, results in the increased generation of ROS (reactive oxygen species). Recent studies have identified two critical adaptations that may function to prevent excessive ROS production in hypoxic cells. First, expression of PDK1 [PDH (pyruvate dehydrogenase) kinase 1] is induced. PDK1 phosphorylates and inactivates PDH, the mitochondrial enzyme that converts pyruvate into acetyl-CoA. In combination with the hypoxia-induced expression of LDHA (lactate dehydrogenase A), which converts pyruvate into lactate, PDK1 reduces the delivery of acetyl-CoA to the tricarboxylic acid cycle, thus reducing the levels of NADH and FADH2 delivered to the electron-transport chain. Secondly, the subunit composition of COX is altered in hypoxic cells by increased expression of the COX4-2 subunit, which optimizes COX activity under hypoxic conditions, and increased degradation of the COX4-1 subunit, which optimizes COX activity under aerobic conditions. Hypoxia-inducible factor 1 controls the metabolic adaptation of mammalian cells to hypoxia by activating transcription of the genes encoding PDK1, LDHA, COX4-2 and LON, a mitochondrial protease that is required for the degradation of COX4-1. COX subunit switching occurs in yeast, but by a completely different regulatory mechanism, suggesting that selection for O2-dependent homoeostatic regulation of mitochondrial respiration is ancient and likely to be shared by all eukaryotic organisms.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
292
|
Podar K, Richardson PG, Chauhan D, Anderson KC. Targeting the vascular endothelial growth factor pathway in the treatment of multiple myeloma. Expert Rev Anticancer Ther 2007; 7:551-66. [PMID: 17428175 DOI: 10.1586/14737140.7.4.551] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiple myeloma is a clonal plasma cell malignancy within the bone marrow associated with bone loss, renal disease and immunodeficiency. Despite new insights into the pathogenesis of multiple myeloma and novel targeted therapies, the median survival remains 3-5 years. It is now well established that the intimate relation between the tumor cells and components of the microenvironment plays a key role in multiple myeloma pathogenesis. Specifically, tumor cells impact the bone marrow and thereby cause immune suppression and lytic bone lesions; conversely, components of the bone marrow provide signals that influence the behavior of multiple myeloma cells, including tumor cell growth, survival, migration and drug resistance. Important contributing effectors are tumor cell-stroma cell and cell-extracellular matrix contacts, the bone marrow vasculature, and a variety of cytokines and growth factors in the bone marrow milieu.
Collapse
Affiliation(s)
- Klaus Podar
- Dana-Farber Cancer Institute, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
293
|
Mathivadhani P, Shanthi P, Sachdanandam P. Hypoxia and its downstream targets in DMBA induced mammary carcinoma: Protective role of Semecarpus anacardium nut extract. Chem Biol Interact 2007; 167:31-40. [PMID: 17280655 DOI: 10.1016/j.cbi.2007.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 12/27/2006] [Accepted: 01/03/2007] [Indexed: 11/20/2022]
Abstract
Tumors are usually exposed to a hypoxic microenvironment due to their irregular growth and abnormal vascular supply. Under hypoxia, gene regulation (selective activation and inactivation of genes) plays an important role in maintenance of tumor. Multiple hypoxic and angiogenic growth factors are expressed for tumor cell survival. In search of novel anticancer drug, Semecarpus anacardium nut extract (SA) was tried against breast cancer. Mammary carcinoma was induced in vivo by 7,12-dimethyl benz(a) anthracene (DMBA) (25mg/kg b.w., p.o.). Tumor development and vascular structures were accelerated by DMBA. Hypoxia inducible factor-1 alpha (HIF-1) was coexpressed with its downstream genes in mammary tissue. Cancer rats were then treated with S. anacardium nut extract (SA) (250mg/kg b.w., p.o.). Delay in the tumor growth was paralleled with a drastic reduction in vascularization by SA treatment. Activities of glycolytic enzymes were normalized with decreased expression of glucose transporter-1 and carbonic anhydrase IX by drug treatment. Inhibition of HIF-1, vascular endothelial growth factor and inducible nitric oxide synthase by SA may in part explain its antiangiogenic action. SA also inhibits endothelial cell proliferation by blocking the overexpressed survival cytokines. In conclusion, our study demonstrates that at least some part of the antitumor activity of SA is due to the suppression of hypoxic and angiogenic factors. The mechanism of this inhibition seems to be through an action of SA on expression of HIF-1 and its downstream targets.
Collapse
Affiliation(s)
- Panneerselvam Mathivadhani
- Department of Medical Biochemistry, Dr. ALM P-G IBMS, University of Madras, Taramani Campus, Chennai 600 113, India
| | | | | |
Collapse
|
294
|
Abstract
Repair of a defect in the human skin is a highly orchestrated physiological process involving numerous factors that act in a temporally resolved synergistic manner to re-establish barrier function by regenerating new skin. The inducible expression and repression of genes represents a key component of this regenerative process. MicroRNAs (miRNAs) are approximately 22-nucleotide-long endogenously expressed non-coding RNAs that regulate the expression of gene products by inhibition of translation and/or transcription in animals. miRNAs play a key role in skin morphogenesis and in regulating angiogenesis. The vascular endothelial growth factor signaling path seems to be under repressor control by miRNAs. Mature miRNA-dependent mechanisms impair angiogenesis in vivo. It is critically important to recognize that the understanding of cutaneous wound healing is incomplete without appreciating the functional significance of wound-induced miRNA. Ongoing work in our laboratory has led to the observation that the cutaneous wound healing process involves changes in the expression of specific miRNA at specific phases of wound healing. We hypothesize that dysregulation of specific miRNA is critical in derailing the healing sequence in chronic problem wounds. If tested positive, this hypothesis is likely to lead to completely novel diagnostic and therapeutic strategies for the treatment of problem wounds.
Collapse
Affiliation(s)
- Shani Shilo
- Laboratory of Molecular Medicine, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
295
|
Otrock ZK, Makarem JA, Shamseddine AI. Vascular endothelial growth factor family of ligands and receptors: review. Blood Cells Mol Dis 2007; 38:258-68. [PMID: 17344076 DOI: 10.1016/j.bcmd.2006.12.003] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 12/08/2006] [Indexed: 12/30/2022]
Abstract
VEGF signaling often represents a critical rate-limiting step in physiological angiogenesis. The VEGF family comprises seven secreted glycoproteins that are designated VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, placental growth factor (PlGF) and VEGF-F. The VEGF family members bind their cognate receptors. The receptors identified so far are designated VEGFR-1, VEGFR-2, VEGFR-3 and the neuropilins (NP-1 and NP-2). We review in this article the biology of the VEGF ligands and the receptors.
Collapse
Affiliation(s)
- Zaher K Otrock
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut 1107 2802, Lebanon
| | | | | |
Collapse
|
296
|
Hardy B, Raiter A, Weiss C, Kaplan B, Tenenbaum A, Battler A. Angiogenesis induced by novel peptides selected from a phage display library by screening human vascular endothelial cells under different physiological conditions. Peptides 2007; 28:691-701. [PMID: 17187899 DOI: 10.1016/j.peptides.2006.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Revised: 11/12/2006] [Accepted: 11/13/2006] [Indexed: 02/07/2023]
Abstract
Angiogenesis is a process modulated by several endogenous vascular growth factors as well as by oxygen conditions. For example VEGF failed to induce useful therapeutic angiogenesis in clinical trials. We used a combinatory phage display peptide library screening on human umbilical endothelial cells under normoxia and hypoxia conditions in order to identify novel peptides that bind endothelial cells. The identified peptides induced angiogenesis as demonstrated by endothelial cell proliferation, migration and tube formation. Injection of peptides into the ears of mice resulted in increased numbers of blood vessels. Peptides did not induce VEGF receptor gene expression indicating a possible VEGF unrelated mechanism.
Collapse
Affiliation(s)
- Britta Hardy
- Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Campus, Petah-Tikva 49100, Israel.
| | | | | | | | | | | |
Collapse
|
297
|
Roskoski R. Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 2007; 62:179-213. [PMID: 17324579 DOI: 10.1016/j.critrevonc.2007.01.006] [Citation(s) in RCA: 439] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Revised: 01/01/2007] [Accepted: 01/29/2007] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial cells are ordinarily quiescent in adult humans and divide less than once per decade. When tumors reach a size of about 0.2-2.0mm in diameter, they become hypoxic and limited in size in the absence of angiogenesis. There are about 30 endogenous pro-angiogenic factors and about 30 endogenous anti-angiogenic factors. In order to increase in size, tumors undergo an angiogenic switch where the action of pro-angiogenic factors predominates, resulting in angiogenesis and tumor progression. One mechanism for driving angiogenesis results from the increased production of vascular endothelial growth factor (VEGF) following up-regulation of the hypoxia-inducible transcription factor. The human VEGF family consists of VEGF (VEGF-A), VEGF-B, VEGF-C, VEGF-D, and placental growth factor (PlGF). The VEGF family of receptors consists of three protein-tyrosine kinases and two non-protein kinase receptors (neuropilin-1 and -2). Owing to the importance of angiogenesis in tumor progression, inhibition of VEGF signaling represents an attractive cancer treatment.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116A, Box 19, Horse Shoe, NC 28742, USA.
| |
Collapse
|
298
|
Vascular endothelial growth factor (VEGF) and ovarian endometriosis: correlation between VEGF serum levels, VEGF cellular expression, and pelvic pain. Fertil Steril 2007; 88:513-5. [PMID: 17296185 DOI: 10.1016/j.fertnstert.2006.11.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 11/21/2006] [Accepted: 11/21/2006] [Indexed: 11/19/2022]
Abstract
Vascular endothelial growth factor (VEGF) serum levels and VEGF and cellular expression were prospectively analyzed in 60 patients (group A consisted of asymptomatic patients or patients presenting mild dysmenorrhea; 30 women comprised group B severe dysmenorrhea and/or chronic pelvic pain and/or dyspareunia) who underwent surgery for cystic ovarian endometriosis to asses whether a correlation exists among VEGF serum levels, VEGF cellular expression, and pelvic pain. No differences were found in VEGF serum levels and VEGF cellular expression between both groups. Therefore, we conclude that pain symptoms in ovarian endometriosis are not correlated with VEGF serum levels and VEGF cellular expression.
Collapse
|
299
|
Kim WU, Kang SS, Yoo SA, Hong KH, Bae DG, Lee MS, Hong SW, Chae CB, Cho CS. Interaction of vascular endothelial growth factor 165 with neuropilin-1 protects rheumatoid synoviocytes from apoptotic death by regulating Bcl-2 expression and Bax translocation. THE JOURNAL OF IMMUNOLOGY 2007; 177:5727-35. [PMID: 17015762 DOI: 10.4049/jimmunol.177.8.5727] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rheumatoid arthritis (RA) synoviocytes are resistant to apoptosis and exhibit a transformed phenotype, which might be caused by chronic exposure to genotoxic stimuli including reactive oxygen species and growth factors. In this study, we investigated the role of vascular endothelial growth factor165 (VEGF165), a potent angiogenic factor, and its receptor in the apoptosis of synoviocytes. We demonstrated here that neuropilin-1, rather than fms-like tyrosine kinase-1 and kinase insert domain-containing receptor, is the major VEGF165 receptor in the fibroblast-like synoviocytes. Neuropilin-1 was highly expressed in the lining layer, infiltrating leukocytes, and endothelial cells of rheumatoid synovium. The production of VEGF165, a ligand for neuropilin, was significantly higher in the RA synoviocytes than in the osteoarthritis synoviocytes. The ligation of recombinant VEGF165 to its receptor prevented the apoptosis of synoviocytes induced by serum starvation or sodium nitroprusside (SNP). VEGF165 rapidly triggered phospho-Akt and phospho-ERK activity and then induced Bcl-2 expression in the rheumatoid synoviocytes. The Akt or ERK inhibitor cancelled the protective effect of VEGF165 on SNP-induced synoviocyte apoptosis. Moreover, VEGF165 blocks SNP-induced Bcl-2 down-regulation as well as SNP-induced Bax translocation from the cytosol to the mitochondria. The down-regulation of the neuropilin-1 transcripts by short interfering RNA caused spontaneous synoviocyte apoptosis, which was associated with both the decrease in Bcl-2 expression and the increase in Bax translocation to mitochondria. Collectively, our data suggest that the interaction of VEGF165 with neuropilin-1 is crucial to the survival of rheumatoid synoviocytes and provide important implications for the abnormal growth of synoviocytes and therapeutic intervention in RA.
Collapse
Affiliation(s)
- Wan-Uk Kim
- Department of Internal Medicine, Division of Rheumatology, School of Medicine, Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
300
|
Takenaka K, Katakura H, Chen F, Ogawa E, Adachi M, Wada H, Tanaka F. The ratio of membrane-bound form Flt-1 mRNA to VEGF mRNA correlates with tumor angiogenesis and prognosis in non-small cell lung cancer. Cancer Lett 2007; 246:34-40. [PMID: 16530326 DOI: 10.1016/j.canlet.2006.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/17/2006] [Accepted: 01/24/2006] [Indexed: 11/26/2022]
Abstract
Fms-like tyrosine kinase 1 (Flt-1), a receptor for vascular endothelial growth factor (VEGF), have two isoforms: membrane-bound form (mFlt-1) and soluble form. In the present study, we quantitatively evaluated expression level of mFlt-1 mRNA and VEGF mRNA in non-small cell lung cancer, and demonstrated the clinical significance of the ratio of mFlt-1 mRNA to VEGF mRNA (mFlt-1/VEGF). High mFlt-1/VEGF tumor showed a significantly lower microvessel density (P=0.004), and patients with high mFlt-1/VEGF tumor had a significantly favorable survival (P=0.037). Thus, the ratio of mFlt-1 mRNA to VEGF mRNA was inversely correlated with tumor angiogenesis, and was a significant prognostic factor.
Collapse
MESH Headings
- Aged
- Antigens, CD/analysis
- Antigens, CD34/analysis
- Carcinoma, Non-Small-Cell Lung/blood supply
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/surgery
- Endoglin
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Lung Neoplasms/blood supply
- Lung Neoplasms/pathology
- Lung Neoplasms/surgery
- Male
- Membrane Proteins/genetics
- Middle Aged
- Multivariate Analysis
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cell Surface/analysis
- Survival Analysis
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor Receptor-1/genetics
Collapse
Affiliation(s)
- Kazumasa Takenaka
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|