251
|
Kim H, Choi J, Ryu J, Park SG, Cho S, Park BC, Lee DH. Activation of autophagy during glutamate-induced HT22 cell death. Biochem Biophys Res Commun 2009; 388:339-44. [PMID: 19665009 DOI: 10.1016/j.bbrc.2009.08.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 08/02/2009] [Indexed: 12/19/2022]
Abstract
Recent evidence suggests that autophagy plays a role in oxidative injury-induced cell death. Here we examined whether glutamate-mediated oxidative toxicity induces autophagy in murine hippocampal HT22 cells and if autophagy induction affects the molecular events associated with cell death. Markers for autophagy induction including LC3 conversion, suppression of mTOR pathway, and GFP-LC3 dot formation were enhanced by glutamate treatment. By contrast, autophagy inhibition blocked glutamate-induced LC3 conversion and consequently reduced cell death. Activation of ERK1/2, a hallmark of glutamate-induced cytotoxicity, was also decreased by autophagy inhibition. Interestingly, autophagy inhibition also affected the expression of chaperones including Hsp60 and Hsp70, which are differentially regulated during HT22 cell death. Conversely, knock-down of Hsp60 greatly decreased LC3 conversion. Together these results suggest that glutamate-induced cytotoxicity involves autophagic cell death and chaperones may play a role in this process.
Collapse
Affiliation(s)
- Hansoo Kim
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
252
|
Role of protein phosphatases and mitochondria in the neuroprotective effects of estrogens. Front Neuroendocrinol 2009; 30:93-105. [PMID: 19410596 PMCID: PMC2835549 DOI: 10.1016/j.yfrne.2009.04.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/20/2009] [Accepted: 04/21/2009] [Indexed: 12/15/2022]
Abstract
In the present treatise, we provide evidence that the neuroprotective and mito-protective effects of estrogens are inexorably linked and involve the ability of estrogens to maintain mitochondrial function during neurotoxic stress. This is achieved by the induction of nuclear and mitochondrial gene expression, the maintenance of protein phosphatases levels in a manner that likely involves modulation of the phosphorylation state of signaling kinases and mitochondrial pro- and anti-apoptotic proteins, and the potent redox/antioxidant activity of estrogens. These estrogen actions are mediated through a combination of estrogens receptor (ER)-mediated effects on nuclear and mitochondrial transcription of protein vital to mitochondrial function, ER-mediated, non-genomic signaling and non-ER-mediated effects of estrogens on signaling and oxidative stress. Collectively, these multifaceted, coordinated action of estrogens leads to their potency in protecting neurons from a wide variety of acute insults as well as chronic neurodegenerative processes.
Collapse
|
253
|
Li B, Jeong GS, Kang DG, Lee HS, Kim YC. Cytoprotective effects of lindenenyl acetate isolated from Lindera strychnifolia on mouse hippocampal HT22 cells. Eur J Pharmacol 2009; 614:58-65. [DOI: 10.1016/j.ejphar.2009.04.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 04/24/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022]
|
254
|
Chen J, Rusnak M, Lombroso PJ, Sidhu A. Dopamine promotes striatal neuronal apoptotic death via ERK signaling cascades. Eur J Neurosci 2009; 29:287-306. [PMID: 19200235 DOI: 10.1111/j.1460-9568.2008.06590.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the mechanisms underlying striatal neurodegeneration are poorly understood, we have shown that striatal pathogenesis may be initiated by high synaptic levels of extracellular dopamine (DA). Here we investigated in rat striatal primary neurons the mobilization of the mitogen-activated protein kinase (MAPK) signaling pathways after treatment with DA. Instead of observing an elevation of the archetypical pro-cytotoxic MAPKs, p-JNK and p-p38 MAPK, we found that DA, acting through D1 DA receptors, induced a sustained stimulation of the phosphorylated form of extracellular signal-regulated kinase (p-ERK) via a cAMP/protein kinase A (PKA)/Rap1/B-Raf / MAPK/ERK kinase (MEK) pathway. Blockade of D2 DA receptors, beta-adrenergic receptors or N-methyl-D-aspartate receptors with receptor-specific antagonists had no significant effect on this process. Activation of D1 DA receptors and PKA by DA caused phosphorylation and inactivation of the striatal-enriched tyrosine phosphatase, an important phosphatase for the dephosphorylation and subsequent inactivation of p-ERK in the striatum. Interestingly, p-ERK was primarily retained in the cytoplasm, with only low amounts translocated to the nucleus. The scaffold protein beta-arrestin2 interacted with both p-ERK and D1 DA receptor, triggering the cytosolic retention of p-ERK and inducing striatal neuronal apoptotic death. These data provide unique insight into a novel role of p-ERK in striatal neurodegeneration.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pediatrics, Georgetown University, Washington DC 20007, USA
| | | | | | | |
Collapse
|
255
|
Poddar R, Paul S. Homocysteine-NMDA receptor-mediated activation of extracellular signal-regulated kinase leads to neuronal cell death. J Neurochem 2009; 110:1095-106. [PMID: 19508427 DOI: 10.1111/j.1471-4159.2009.06207.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Hyperhomocysteinemia is an independent risk factor for stroke and neurological abnormalities. However, the underlying cellular mechanisms by which elevated homocysteine can promote neuronal death is not clear. In the present study we have examined the role of NMDA receptor-mediated activation of the extracellular signal-regulated kinase-mitogen-activated protein (ERK-MAP) kinase pathway in homocysteine-dependent neurotoxicity. The study demonstrates that in neurons l-homocysteine-induced cell death was mediated through activation of NMDA receptors. The study also shows that homocysteine-dependent NMDA receptor stimulation and resultant Ca2+ influx leads to rapid and sustained phosphorylation of ERK-MAP kinase. Inhibition of ERK phosphorylation attenuates homocysteine-mediated neuronal cell death thereby demonstrating that activation of ERK-MAP kinase signaling pathway is an intermediate step that couples homocysteine-mediated NMDA receptor stimulation to neuronal death. The findings also show that cAMP response-element binding protein (CREB), a pro-survival transcription factor and a downstream target of ERK, is only transiently activated following homocysteine exposure. The sustained activation of ERK but a transient activation of CREB together suggest that exposure to homocysteine initiates a feedback loop that shuts off CREB signaling without affecting ERK phosphorylation and thereby facilitates homocysteine-mediated neurotoxicity.
Collapse
Affiliation(s)
- Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| | | |
Collapse
|
256
|
Shi C, Zhao L, Zhu B, Li Q, Yew DT, Yao Z, Xu J. Protective effects of Ginkgo biloba extract (EGb761) and its constituents quercetin and ginkgolide B against beta-amyloid peptide-induced toxicity in SH-SY5Y cells. Chem Biol Interact 2009; 181:115-23. [PMID: 19464278 DOI: 10.1016/j.cbi.2009.05.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/13/2009] [Accepted: 05/16/2009] [Indexed: 12/22/2022]
Abstract
Ginkgo biloba extract EGb761 has been shown to protect against beta-amyloid peptide (Abeta)-induced neurotoxicity but the specific mechanisms remain unclear. In the present study, effects of EGb761 and two of its constituents, quercetin and ginkgolide B, on the cytotoxic action of Abeta (1-42) were tested with human neuroblastoma SH-SY5Y cells. We found that EGb761 was able to block Abeta (1-42)-induced cell apoptosis, reactive oxygen species (ROS) accumulation, mitochondrial dysfunction and activation of c-jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt signaling pathways. Both quercetin and ginkgolide B may be involved in the inhibitory effects of EGb761 on JNK, ERK1/2 and Akt signaling pathways. Ginkgolide B also helped to improve mitochondrial functions but quercetin failed to show this effect. Additional experiments suggest that, protective effects of EGb761 against Abeta toxicity may be associated with its antioxidant and platelet activating factor (PAF) antagonist activities. Quercetin but not ginkgolide B is one of the constituents responsible for the antioxidant action of EGb761. Both quercetin and ginkgolide B may be involved in the PAF antagonist activity of EGb761. Overall, actions of individual EGb761 components provide further insights into direct mechanisms underlying the neuroprotective effects of EGb761.
Collapse
Affiliation(s)
- Chun Shi
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University Guangzhou, Guangdong, China
| | | | | | | | | | | | | |
Collapse
|
257
|
Narasimhan P, Liu J, Song YS, Massengale JL, Chan PH. VEGF Stimulates the ERK 1/2 signaling pathway and apoptosis in cerebral endothelial cells after ischemic conditions. Stroke 2009; 40:1467-73. [PMID: 19228841 DOI: 10.1161/strokeaha.108.534644] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Cerebral endothelial cells that line microvessels play an important role in maintaining blood flow homeostasis within the brain-forming part of the blood-brain barrier. These cells are injured by hypoxia-induced reperfusion, leading to blood-brain barrier breakdown and exacerbation of ischemic injury. We investigated the roles of vascular endothelial growth factor (VEGF) and the downstream extracellular signal-regulated kinase (ERK) protein after oxygen-glucose deprivation (OGD) in primary endothelial cells. METHODS Primary mouse endothelial cells were isolated and subjected to OGD. Western analysis of VEGF and ERK 1/2 protein levels was performed. Cells were transfected with VEGF small interference RNA. A terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling (TUNEL) assay and DNA fragmentation assay were used on mouse endothelial cells that overexpress copper/zinc-superoxide dismutase (SOD1). RESULTS VEGF protein expression was induced and its receptor, Flk-1, was stimulated by OGD. Phosphorylation of ERK 1/2 protein levels was upregulated. Inhibition of phosphorylated ERK (pERK) expression by U0126 reduced endothelial cell death by OGD. Transfection of small interfering RNA for VEGF also inhibited an increase in pERK, suggesting that VEGF acts via ERK. The TUNEL and DNA fragmentation assays showed a significant decrease in TUNEL-positivity in the SOD1-overexpressing endothelial cells compared with wild-type cells after OGD. CONCLUSIONS Our data suggest that OGD induces VEGF signaling via its receptor, Flk-1, and activates ERK via oxidative-stress-dependent mechanisms. Our study shows that in cerebral endothelial cells the ERK 1/2 signaling pathway plays a significant role in cell injury after OGD.
Collapse
Affiliation(s)
- Purnima Narasimhan
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, Calif 94305-5487, USA
| | | | | | | | | |
Collapse
|
258
|
Lee HP, Zhu X, Zhu X, Skidmore SC, Perry G, Sayre LM, Smith MA, Lee HG. The essential role of ERK in 4-oxo-2-nonenal-mediated cytotoxicity in SH-SY5Y human neuroblastoma cells. J Neurochem 2009; 108:1434-41. [PMID: 19183271 DOI: 10.1111/j.1471-4159.2009.05883.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipid peroxidation byproducts, such as 4-hydroxynonenal (HNE) and 4-oxo-2-nonenal (ONE), induce cell death in a wide variety of cell types, partly by modulating intracellular signaling pathways. However, the specific mechanisms involved, particularly for ONE, are unclear while c-Jun N-terminal kinase (JNK) has been shown to be essential in HNE-mediated cytotoxicity. In this study, we examined the role of mitogen-activated protein kinases signaling pathways in ONE-induced cytotoxicity in SH-SY5Y human neuroblastoma cells and found that ONE strongly induces the phosphorylation of extracellular signal-regulated kinase (ERK) and JNK, but not p38 MAPK. Interestingly, a transient exposure of the cells to ONE resulted in cell death, which contrasts with HNE-mediated toxicity. Importantly, blocking the ERK pathway, but not the JNK pathway, protected cells against ONE-induced cytotoxicity indicating a striking difference between the ONE- and HNE-mediated cytotoxicity mechanisms. Furthermore, inhibition of ERK reduced ONE-induced phosphorylation of p53, a key modulator of the cellular stress response, and the proteolytic cleavage of poly (ADP-ribose) polymerase (PARP), a hallmark of apoptosis. Overall, these data strongly suggest that ERK plays an essential role in ONE-mediated cytotoxicity and that ERK is an upstream component of p53-mediated apoptosis.
Collapse
Affiliation(s)
- Hyun-Pil Lee
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
259
|
Tan DH, Peng SQ, Wu YL, Wang YM, Lu CF, Ding W, Wang QX, Yan CH. Chlorpyrifos Induces Delayed Cytotoxicity after Withdrawal in Primary Hippocampal Neurons through Extracellular Signal-Regulated Kinase Inhibition. Biol Pharm Bull 2009; 32:1649-55. [DOI: 10.1248/bpb.32.1649] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- De-Hong Tan
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences
- Department of Pharmacology, College of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University
| | - Shuang-Qing Peng
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences
| | - Ying-Liang Wu
- Department of Pharmacology, College of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University
| | - Yi-Mei Wang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences
| | - Chun-Feng Lu
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences
- Department of Pharmacology, College of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University
| | - Wei Ding
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences
| | - Qiao-Xu Wang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences
| | - Chang-Hui Yan
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences
| |
Collapse
|
260
|
Mahajan SD, Aalinkeel R, Reynolds JL, Nair BB, Sykes DE, Hu Z, Bonoiu A, Ding H, Prasad PN, Schwartz SA. Therapeutic targeting of "DARPP-32": a key signaling molecule in the dopiminergic pathway for the treatment of opiate addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:199-222. [PMID: 19897079 DOI: 10.1016/s0074-7742(09)88008-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The 32-kDa dopamine- and adenosine 3',5'-monophosphate-regulated phosphoprotein (DARPP-32) is recognized to be critical to the pathogenesis of drug addiction. Opiates via the mu-receptor act on the dopaminergic system in the brain and modulates the expression of DARPP-32 phosphoprotein which is an important mediator of the activity of the extracellular signal-regulated kinase (ERK) signaling cascades, the activation of which represents an exciting nexus for drug-induced changes in neural long-term synaptic plasticity. Silencing of DARPP-32 using an siRNA against DARPP-32 may provide a novel gene therapy strategy to overcome drug addiction. In this study, we investigated the effect of the opiate (heroin) on D1 receptor (D1R) and DARPP-32 expression and additionally, evaluated the effects of DARPP-32-siRNA gene silencing on protein phosphatase-1 (PP-1), ERK, and cAMP response element-binding (CREB) gene expression in primary normal human astrocytes (NHA) cells in vitro. Our results indicate that heroin significantly upregulated both D1R and DARPP-32 gene expression, and that DARPP-32 silencing in the NHA cells resulted in the significant modulation of the activity of downstream effector molecules such as PP-1, ERK, and CREB which are known to play an important role in opiate abuse-induced changes in long-term neural plasticity. These findings have the potential to facilitate the development of DARPP32 siRNA-based therapeutics against drug addiction.
Collapse
Affiliation(s)
- Supriya D Mahajan
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Buffalo General Hospital, State University of New York, Buffalo, New York 14203, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Jia Y, Castellanos J, Wang C, Sinha-Hikim I, Lue Y, Swerdloff RS, Sinha-Hikim AP. Mitogen-activated protein kinase signaling in male germ cell apoptosis in the rat. Biol Reprod 2008; 80:771-80. [PMID: 19109224 DOI: 10.1095/biolreprod.108.072843] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Programmed germ cell death is critical for functional spermatogenesis. Increased germ cell apoptosis can be triggered by various regulatory stimuli, including testicular hyperthermia or deprivation of gonadotropins and intratesticular testosterone. We have previously shown the involvement of the mitogen-activated protein kinase (MAPK) 14 in apoptotic signaling of male germ cells across species after hormone deprivation. This study investigates the role of MAPK14 in germ cell apoptosis in rats triggered by testicular hyperthermia. The contributions of the MAPK1/3 and the MAPK8 to male germ cell death were also examined after this intervention. We show that 1) testicular hyperthermia results in induction of both MAPK1/3 and MAPK14 but not MAPK8; 2) inhibition of MAPK1/3 has no effect on the incidence of heat-induced germ cell apoptosis, suggesting that MAPK1/3 signaling may be dispensable for heat-induced male germ cell apoptosis; and 3) activation of MAPK14 and BCL2 phosphorylation are critical for heat-induced male germ cell apoptosis in rats. Thus, unlike the hormone deprivation model, heat stress through activation of the MAPK14 signaling promotes germ cell apoptosis by provoking BCL2 phosphorylation, leading to its inactivation and the subsequent activation of the mitochondria-dependent death pathway. These novel findings point to a critical role of MAPK14 in stage- and cell-specific activation of male germ cell apoptosis triggered by hormone deprivation or heat stress.
Collapse
Affiliation(s)
- Yue Jia
- Division of Endocrinology, Department of Medicine, Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA and Los Angeles Biomedical Research Institute, Torrance, California 90509, USA
| | | | | | | | | | | | | |
Collapse
|
262
|
Papadeas ST, Halloran C, McCown TJ, Breese GR, Blake BL. Changes in apical dendritic structure correlate with sustained ERK1/2 phosphorylation in medial prefrontal cortex of a rat model of dopamine D1 receptor agonist sensitization. J Comp Neurol 2008; 511:271-85. [PMID: 18785628 PMCID: PMC2587500 DOI: 10.1002/cne.21835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rats lesioned with 6-hydroxydopamine (6-OHDA) as neonates exhibit behavioral and neurochemical abnormalities in adulthood that mimic Lesch-Nyhan disease, schizophrenia, and other developmental disorders of frontostriatal circuit dysfunction. In these animals a latent sensitivity to D1 agonists is maximally exposed by repeated administration of dopamine agonists in the postpubertal period (D1 priming). In neonate-lesioned, adult rats primed with SKF-38393, we found selective, persistent alterations in the morphology of pyramidal neuron apical dendrites in the prelimbic area of the medial prefrontal cortex (mPFC). In these animals, dendrite bundling patterns and the typically straight trajectories of primary dendritic shafts were disrupted, whereas the diameter of higher-order oblique branches was increased. Although not present in neonate-lesioned rats treated with saline, these morphological changes persisted at least 21 days after repeated dosing with SKF-38393, and were not accompanied by markers of neurodegenerative change. A sustained increase in phospho-ERK immunoreactivity in wavy dendritic shafts over the same period suggested a relationship between prolonged ERK phosphorylation and dendritic remodeling in D1-primed rats. In support of this hypothesis, pretreatment with the MEK1/2-ERK1/2 pathway inhibitors PD98059 or SL327, prior to each priming dose of SKF-38393, prevented the morphological changes associated with D1 priming. Together, these findings demonstrate that repeated stimulation of D1 receptors in adulthood interacts with the developmental loss of dopamine to profoundly and persistently modify neuronal signaling and dendrite morphology in the mature prefrontal cortex. Furthermore, sustained elevation of ERK activity in mPFC pyramidal neurons may play a role in guiding these morphological changes in vivo.
Collapse
Affiliation(s)
- Sophia T. Papadeas
- GRADUATE PROGRAM IN NEUROBIOLOGY, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
- BOWLES CENTER FOR ALCOHOL STUDIES, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
| | - Christopher Halloran
- BOWLES CENTER FOR ALCOHOL STUDIES, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
| | - Thomas J. McCown
- BOWLES CENTER FOR ALCOHOL STUDIES, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
- GENE THERAPY CENTER, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
- DEPARTMENT OF PSYCHIATRY, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
| | - George R. Breese
- GRADUATE PROGRAM IN NEUROBIOLOGY, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
- BOWLES CENTER FOR ALCOHOL STUDIES, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
- DEPARTMENT OF PSYCHIATRY, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
- DEPARTMENT OF PHARMACOLOGY, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
| | - Bonita L. Blake
- BOWLES CENTER FOR ALCOHOL STUDIES, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
- DEPARTMENT OF PSYCHIATRY, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
- DEPARTMENT OF PHARMACOLOGY, SCHOOL OF MEDICINE, UNIVERSITY OF NORTH CAROLINA at CHAPEL HILL, CHAPEL HILL, NC 27599
| |
Collapse
|
263
|
|
264
|
Chiloeches A, Sánchez-Pacheco A, Gil-Araujo B, Aranda A, Lasa M. Thyroid hormone-mediated activation of the ERK/dual specificity phosphatase 1 pathway augments the apoptosis of GH4C1 cells by down-regulating nuclear factor-kappaB activity. Mol Endocrinol 2008; 22:2466-80. [PMID: 18755855 DOI: 10.1210/me.2008-0107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Thyroid hormone (T3) plays a crucial role in processes such as cell proliferation and differentiation, whereas its implication on cellular apoptosis has not been well documented. Here we examined the effect of T3 on the apoptosis of GH4C1 pituitary cells and the mechanisms underlying this effect. We show that T3 produced a significant increase in apoptosis in serum-depleted conditions. This effect was accompanied by a decrease in nuclear factor-kappaB (NF-kappaB)-dependent transcription, IkappaBalpha phosphorylation, translocation of p65/NF-kappaB to the nucleus, phosphorylation, and transactivation. Moreover, these effects were correlated with a T3-induced decrease in the expression of antiapoptotic gene products, such as members of the inhibitor of apoptosis protein and Bcl-2 families. On the other hand, ERK but not c-Jun N-terminal kinase or MAPK p38, was activated upon exposure to T3, and inhibition of ERK alone abrogated T3-mediated apoptosis. In addition, T3 increased the expression of the MAPK phosphatase, dual specificity phosphatase 1 (DUSP1), in an ERK-dependent manner. Interestingly, the suppression of DUSP1 expression abrogated T3-induced inhibition of NF-kappaB-dependent transcription and p65/NF-kappaB translocation to the nucleus, as well as T3-mediated apoptosis. Overall, our results indicate that T3 induces apoptosis in rat pituitary tumor cells by down-regulating NF-kappaB activity through a mechanism dependent on the ERK/DUSP1 pathway.
Collapse
Affiliation(s)
- Antonio Chiloeches
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | | | | | | | | |
Collapse
|
265
|
Abstract
Postburn alterations in the morphology and metabolism of brain tissue have been previously reported. It was demonstrated in our previous study that thermal injury decreased glucose usage in rat brain during the ebb phase. The cellular and molecular signaling events that trigger the pathophysiologic alterations, however, have not yet been characterized. In the present report, the authors have examined the effect of burn injury on mitogen-activated protein kinases (MAPKs) activities and insulin signaling in the brain tissue. Rats were subjected to 50% total body surface area full thickness scald injury. Brain samples were collected at 6 hours after injury. Tissue lysates were analyzed for MAPKs activities, insulin receptor substrate (IRS)-1 expression, and Akt activity which were determined by western blot and immunoprecipitation. Burn injury stimulated the stress-responsive components, SAPK/JNK, p38 MAP kinase and p44/42 MAP kinase, and increased IRS-1 expression and Akt activity. There was no change, however, on the phosphorylation of Ser307 of IRS-1 in brain tissue. The present data is consistent with the hypothesis that activation of the three major MAPKs pathways appears to be events involved in the mechanisms of burn injury induced insulin resistance and encephalopathy. Changes in signal transduction pathways in the brain after burn injury provide the underlying molecular mechanism of neurologic abnormalities (burn encephalopathy) that occur in burn patients.
Collapse
|
266
|
Rodriguez-Blanco J, Martín V, Herrera F, García-Santos G, Antolín I, Rodriguez C. Intracellular signaling pathways involved in post-mitotic dopaminergic PC12 cell death induced by 6-hydroxydopamine. J Neurochem 2008; 107:127-40. [PMID: 18665912 DOI: 10.1111/j.1471-4159.2008.05588.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Oxidative stress has been shown to mediate neuron damage in Parkinson's disease (PD). In the present report, we intend to clarify the intracellular pathways mediating dopaminergic neuron death after oxidative stress production using post-mitotic PC12 cells treated with the neurotoxin 6-hydroxydopamine (6-OHDA). The use of post-mitotic cells is crucial, because one of the suggested intracellular pathways implicated in neuron death relates to the re-entry of neurons (post-mitotic cells) in the cell cycle. We find that 6-OHDA sequentially increases intracellular oxidants, functional cell damage and caspase-3 activation, leading to cell death after 12 h of incubation. Prevention of cell damage by different antioxidants supports the implication of oxidative stress in the observed neurotoxicity. Oxidative stress-dependent phosphorylation of the MAPK JNK and oxidative stress-independent PKB/Akt dephosphorylation are involved in 6-OHDA neurotoxicity. Decrease in p21(WAF1/CIP1) and cyclin-D1 expression, disappearance of the non-phosphorylated band of retinoblastoma protein (pRb), and expression of proliferating cell nuclear antigen, not present in PC12 post-mitotic cells, suggest a re-entry of differentiated cells into cell cycle. Our results indicate that such a re-entry is mediated by oxidative stress and is involved in 6-OHDA-induced cell death. We conclude that at least three intracellular pathways are involved in 6-OHDA-induced cell death in differentiated PC12 cells: JNK activation, cell cycle progression (both oxidative stress-dependent), and Akt dephosphorylation (not related to the increase of oxidants); the three pathways are necessary for the cells to die, since blocking one of them is sufficient to keep the cells alive.
Collapse
Affiliation(s)
- Jezabel Rodriguez-Blanco
- Departamento de Morfología y Biología Celular, University of Oviedo. c/Julian Clavería, Oviedo, Spain
| | | | | | | | | | | |
Collapse
|
267
|
Figueiredo C, Pais TF, Gomes JR, Chatterjee S. Neuron-microglia crosstalk up-regulates neuronal FGF-2 expression which mediates neuroprotection against excitotoxicity via JNK1/2. J Neurochem 2008; 107:73-85. [PMID: 18643872 DOI: 10.1111/j.1471-4159.2008.05577.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glial cells and neurons are in constant reciprocal signalling both under physiological and neuropathological conditions. Microglial activation is often associated with neuronal death during inflammation of the CNS, although microglial cells are also known to exert a neuroprotective role. In this work, we investigated the interplay between cerebellar granule neurons (CGN) and microglia in the perspective of CGN survival to an excitotoxic stimulus, quinolinic acid (QA), a catabolite of the tryptophan degradation pathway. We observed that CGN succumb to QA challenge via extracellular signal regulated kinase 1 and 2 (ERK) activation. Our data with transgenic mice expressing the natural inhibitor of calpains, calpastatin, indicate that together with cathepsins they mediate QA-induced toxicity acting downstream of the mitogen-activated protein kinase kinase-ERK pathway. Microglial cells are not only resistant to QA but can rescue neurons from QA-mediated toxicity when they are mixed in culture with neurons or by using mixed culture-conditioned medium (MCCM). This effect is mediated via fibroblast growth factor-2 (FGF-2) present in MCCM. FGF-2 is transcriptionally up-regulated in neurons and secreted in the MCCM as a result of neuron-microglia crosstalk. The neuroprotection is associated with the retention of cathepsins in the lysosomes and with transactivation of inducible heat-shock protein 70 downstream of FGF-2. Furthermore, FGF-2 upon release by neurons activates c-jun N-terminal kinase 1 and 2 pathway which also contributes to neuronal survival. We suggest that FGF-2 plays a pivotal role in neuroprotection against QA as an outcome of neuron-microglia interaction.
Collapse
Affiliation(s)
- Catarina Figueiredo
- Centro Biologia Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | | |
Collapse
|
268
|
Prasad VVTS, Nithipatikom K, Harder DR. Ceramide elevates 12-hydroxyeicosatetraenoic acid levels and upregulates 12-lipoxygenase in rat primary hippocampal cell cultures containing predominantly astrocytes. Neurochem Int 2008; 53:220-9. [PMID: 18680775 DOI: 10.1016/j.neuint.2008.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/01/2008] [Accepted: 07/01/2008] [Indexed: 10/21/2022]
Abstract
We report, exogenous addition of ceramide significantly increases 12-hydroxyeicosatetraenoic acid [12-(S)-HETE] levels, in a dose-dependent manner. 12-(S)-HETE levels, in 20, 30 and 40microM ceramide exposed rat primary hippocampal cell cultures containing predominantly astrocytes and few neurons and other glial cells (the cultured hippocampal cells were predominantly astrocytes amounting to over 99% of total cells with few neurons and other glial cells) amounted to 207, 260 and 408% of the controls, respectively. However, dihydroceramide, an inactive analog of ceramide did not alter the levels of 12-(S)-HETE. Ceramide also increased the mRNA and protein expression, and activity of 12-lipoxygease (12-LOX) needed for the synthesis of 12(S)-HETE. These results indicate a possible link between ceramide and 12-LOX pathway. However, ceramide did not alter expression of 5-lipoxygenase (5-LOX), another member of the lipoxygenase family. However, ceramide upregulated expression of cytosolic phospholipase-A(2) (cPLA(2)) and cyclooxygenase-2 (COX-2). Further, ceramide caused a significant increase in the levels of reactive oxygen species (ROS). Ceramide-mediated generation of ROS was inhibited by baicalien but not by indomethacin. In addition, ceramide treated cells exhibited increased mRNA expression of DNA damage induced transcript3 (Ddit3). This report which demonstrate induction of pro-carcinogenic 12-LOX pathway by an anticancer ceramide, may be relevant to cancer biologists studying drug resistant tumors and devising potent anticancer therapeutic strategies to treat drug resistant tumors. These results indicate possibility of 12-LOX involvement in ceramide-mediated generation of ROS and cellular oxidative stress. Induction of 12-LOX pathway by ceramide may have implications in understanding pathophysiology of neurodegenerative diseases involving ROS generation and inflammation.
Collapse
|
269
|
Sun KH, de Pablo Y, Vincent F, Johnson EO, Chavers AK, Shah K. Novel genetic tools reveal Cdk5's major role in Golgi fragmentation in Alzheimer's disease. Mol Biol Cell 2008; 19:3052-69. [PMID: 18480410 PMCID: PMC2441653 DOI: 10.1091/mbc.e07-11-1106] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 04/15/2008] [Accepted: 05/05/2008] [Indexed: 12/17/2022] Open
Abstract
Golgi fragmentation is a common feature in multiple neurodegenerative diseases; however, the precise mechanism that causes fragmentation remains obscure. A potential link between Cdk5 and Golgi fragmentation in Alzheimer's disease (AD) was investigated in this study. Because Golgi is physiologically fragmented during mitosis by Cdc2 kinase and current Cdk5-specific chemical inhibitors target Cdc2 as well, development of novel tools to modulate Cdk5 activity was essential. These enzyme modulators, created by fusing TAT sequence to Cdk5 activators and an inhibitor peptide, enable specific activation and inhibition of Cdk5 activity with high temporal control. These genetic tools revealed a major role of Cdk5 in Golgi fragmentation upon beta-amyloid and glutamate stimulation in differentiated neuronal cells and primary neurons. A crucial role of Cdk5 was further confirmed when Cdk5 activation alone resulted in robust Golgi disassembly. The underlying mechanism was unraveled using a chemical genetic screen, which yielded cis-Golgi matrix protein GM130 as a novel substrate of Cdk5. Identification of the Cdk5 phosphorylation site on GM130 suggested a mechanism by which Cdk5 may cause Golgi fragmentation upon deregulation in AD. As Cdk5 is activated in several neurodegenerative diseases where Golgi disassembly also occurs, this may be a common mechanism among multiple disorders.
Collapse
Affiliation(s)
- Kai-Hui Sun
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| | - Yolanda de Pablo
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| | - Fabien Vincent
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| | - Emmanuel O. Johnson
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| | - Angela K. Chavers
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| | - Kavita Shah
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
270
|
Damage-induced activation of ERK1/2 in cochlear supporting cells is a hair cell death-promoting signal that depends on extracellular ATP and calcium. J Neurosci 2008; 28:4918-28. [PMID: 18463245 DOI: 10.1523/jneurosci.4914-07.2008] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acoustic overstimulation and ototoxic drugs can cause permanent hearing loss as a result of the damage and death of cochlear hair cells. Relatively little is known about the signaling pathways triggered by such trauma, although a significant role has been described for the c-Jun N-terminal kinase [one of the mitogen-activated protein kinases (MAPKs)] pathway. We investigated the role of another MAPK family, the extracellularly regulated kinases 1 and 2 (ERK1/2) during hair cell damage in neonatal cochlear explants. Within minutes of subjecting explants to mechanical damage, ERK1/2 were transiently activated in Deiters' and phalangeal cells but not in hair cells. The activation of ERK1/2 spread along the length of the cochlea, reaching its peak 5-10 min after damage onset. Release of extracellular ATP and the presence of functional connexin proteins were critical for the activation and spread of ERK1/2. Damage elicited an intercellular Ca(2+) wave in the hair cell region in the first seconds after damage. In the absence of Ca(2+) influx, the intercellular Ca(2+) wave and the magnitude and spread of ERK1/2 activation were reduced. Treatment with the aminoglycoside neomycin produced a similar pattern of ERK1/2 activation in supporting cells surrounding pyknotic hair cells. When ERK1/2 activation was prevented, there was a reduction in the number of pyknotic hair cells. Thus, activation of ERK1/2 in cochlear supporting cells in vitro is a common damage signaling mechanism that acts to promote hair cell death, indicating a direct role for supporting cells in regulating hair cell death.
Collapse
|
271
|
Lin E, Cavanaugh JE, Leak RK, Perez RG, Zigmond MJ. Rapid activation of ERK by 6-hydroxydopamine promotes survival of dopaminergic cells. J Neurosci Res 2008; 86:108-17. [PMID: 17847117 DOI: 10.1002/jnr.21478] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Isoforms of the mitogen-activated protein kinase ERK have been implicated in both cell survival and cell death. In the present study we explored their role in cell viability in response to oxidative stress. Using the dopaminergic MN9D cell line, we determined that cell death occurred in a concentration-dependent manner after exposure to 6-hydroxydopamine (6-OHDA). The toxicity of 6-OHDA was mediated through generation of reactive oxygen species and was accompanied by a large increase in phosphorylated ERK1/2 but no significant increase in phosphorylated ERK5. 6-OHDA produced a distinct temporal pattern of ERK1/2 activation, with phosphorylated ERK1/2 peaks occurring after 10-15 min (25-fold increase) and 6-24 hr (13-fold increase). Inhibition of the early phosphorylated ERK1/2 peak with U0126 increased the generation of reactive oxygen species by 6-OHDA as well as 6-OHDA-induced toxicity, whereas inhibition of the late peak did not affect 6-OHDA-induced cell death. The time course of phosphorylation of the prosurvival protein CREB mimicked the temporal profile of ERK1/2 activation after 6-OHDA, and blocking the early phospho-ERK1/2 peak also abolished CREB activation. In contrast, activation of caspase-3 by 6-OHDA was delayed, occurring after about 6 hr, and this activation was increased by inhibition of the first phosphorylated ERK1/2 peak. These results suggest that the rapid activation of ERK1/2 in dopaminergic cells by oxidative stress serves as a self-protective response, reducing the content of reactive oxygen species and caspase-3 activity and increasing downstream ERK1/2 substrates.
Collapse
Affiliation(s)
- Eva Lin
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
272
|
Quesada A, Lee BY, Micevych PE. PI3 kinase/Akt activation mediates estrogen and IGF-1 nigral DA neuronal neuroprotection against a unilateral rat model of Parkinson's disease. Dev Neurobiol 2008; 68:632-44. [PMID: 18278798 PMCID: PMC2667142 DOI: 10.1002/dneu.20609] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recently, using the medial forebrain bundle (MFB) 6-hydroxydopmaine (6-OHDA) lesion rat model of Parkinson's disease (PD), we have demonstrated that blockade of central IGF-1 receptors (IGF-1R) attenuated estrogen neuroprotection of substantia nigra pars compacta (SNpc) DA neurons, but exacerbated 6-OHDA lesions in IGF-1 only treated rats (Quesada and Micevych [2004]: J Neurosci Res 75:107-116). This suggested that the IGF-1 system is a central mechanism through which estrogen acts to protect the nigrostriatal DA system. Moreover, these results also suggest that IGF-1R-induced intracellular signaling pathways are involved in the estrogen mechanism that promotes neuronal survival. In vitro, two convergent intracellular signaling pathways used by estrogen and IGF-1, the mitogen-activated protein kinase (MAPK/ERK), and phosphatidyl-inositol-3-kinase/Akt (PI3K/Akt), have been demonstrated to be neuroprotective. Continuous central infusions of MAPK/ERK and PI3K/Akt inhibitors were used to test the hypothesis that one or both of these signal transduction pathways mediates estrogen and/or IGF-1 neuroprotection of SNpc DA neurons after a unilateral administration of 6-OHDA into the MFB of rats. Motor behavior tests and tyrosine hydroxylase immunoreactivity revealed that the inhibitor of the PI3K/Akt pathway (LY294002) blocked the survival effects of both estrogen and IGF-1, while an inhibitor of the MAPK/ERK signaling (PD98059) was ineffective. Western blot analyses showed that estrogen and IGF-1 treatments increased PI3K/Akt activation in the SN; however, MAPK/ERK activation was decreased in the SN. Indeed, continuous infusions of inhibitors blocked phosphorylation of PI3K/Akt and MAPK/ERK. These findings indicate that estrogen and IGF-1-mediated SNpc DA neuronal protection is dependent on PI3K/Akt signaling, but not on the MAPK/ERK pathway.
Collapse
Affiliation(s)
- Arnulfo Quesada
- Department of Neurobiology, Brain Research Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.
| | | | | |
Collapse
|
273
|
High intracellular Zn2+ ions modulate the VHR, ZAP-70 and ERK activities of LNCaP prostate cancer cells. Cell Mol Biol Lett 2008; 13:375-90. [PMID: 18311544 PMCID: PMC6276015 DOI: 10.2478/s11658-008-0009-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 01/11/2008] [Indexed: 11/20/2022] Open
Abstract
Malignant prostate tissues have markedly reduced zinc (Zn2+) contents in comparison to non-malignant tissues. In this study, we restored a high intracellular Zn2+ level to LNCaP prostate cancer cells by culturing the cells in a growth medium supplemented with a supraphysiological concentration of Zn2+ (10 μg/ml) over 5 weeks. The intracellular Zn2+ level increased in the Zn2+-treated cells, and there was a marked increase in the presence of zincosomes, a Zn2+-specific intracellular organelle. The proliferation rate of the Zn2+-treated cells was markedly reduced. There was also a significant increase (36.6% ± 6.4%) in the total tyrosine phosphorylated proteins. Vaccinia H1-related (VHR) phosphatase, zeta chain-associated protein-70 (ZAP-70) kinase and phosphorylated extracellular signal-regulated protein kinase 1 and 2 (p-ERK 1 and 2) were also present in higher abundance. Treatment with TPEN, which chelates Zn2+, reduced the abundance of VHR phosphatase and ZAP-70 kinase, but increased the abundance of p-ERK 1. However, the TPEN treatment restored the Zn2+-treated LNCaP cell proliferation to a rate comparable to that of the non Zn2+-treated cells. These results highlight the importance of a high intracellular Zn2+ content and the VHR/ZAP-70-associated pathways in the modulation of LNCaP prostate cancer cell growth.
Collapse
|
274
|
Yin Z, Aschner JL, dos Santos AP, Aschner M. Mitochondrial-dependent manganese neurotoxicity in rat primary astrocyte cultures. Brain Res 2008; 1203:1-11. [PMID: 18313649 DOI: 10.1016/j.brainres.2008.01.079] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 12/13/2007] [Accepted: 01/22/2008] [Indexed: 12/15/2022]
Abstract
Chronic exposure to excessive levels of Mn results in a movement disorder termed manganism, which resembles Parkinson's disease (PD). The pathogenic mechanisms underlying this disorder are not fully understood. Several lines of evidence implicate astrocytes as an early target of Mn neurotoxicity. In the present study, we investigated the effects of Mn on mitochondrial function. Primary astrocyte cultures were prepared from cerebral cortices of one-day-old Sprague-Dawley rats. We have examined the cellular toxicity of Mn and its effects on the phosphorylation of extracellular signal-regulated kinase (ERK) and activation of the precursor protein of caspase-3. The potentiometric dye, tetramethyl rhodamine ethyl ester (TMRE), was used to assess the effect of Mn on astrocytic mitochondrial inner membrane potential (DeltaPsi(m)). Our studies show that, in a concentration-dependent manner, Mn induces significant (p<0.05) activation of astrocyte caspase-3 and phosphorylated extracellular signal-regulated kinase (p-ERK). Mn treatment (1 and 6 h) also significantly (p<0.01) dissipates the DeltaPsi(m) in astrocytes as evidenced by a decrease in mitochondrial TMRE fluorescence. These results suggest that activations of astrocytic caspase-3 and ERK are involved in Mn-induced neurotoxicity via mitochondrial-dependent pathways.
Collapse
Affiliation(s)
- Zhaoobao Yin
- Department of Pediatrics, Vanderbilt University Medical Center, TN, USA
| | | | | | | |
Collapse
|
275
|
Pulse inhibition of histone deacetylases induces complete resistance to oxidative death in cortical neurons without toxicity and reveals a role for cytoplasmic p21(waf1/cip1) in cell cycle-independent neuroprotection. J Neurosci 2008; 28:163-76. [PMID: 18171934 DOI: 10.1523/jneurosci.3200-07.2008] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors are currently in human clinical trials as antitumor drugs because of their ability to induce cell dysfunction and death in cancer cells. The toxic effects of HDAC inhibitors are also apparent in cortical neurons in vitro, despite the ability of these agents to induce significant protection in the cells they do not kill. Here we demonstrate that pulse exposure of cortical neurons (2 h) in an in vitro model of oxidative stress results in durable neuroprotection without toxicity. Protection was associated with transcriptional upregulation of the cell cycle inhibitor, p21(waf1/cip1), both in this model and in an in vivo model of permanent ischemia. Transgenic overexpression of p21(waf1/cip1) in neurons can mimic the protective effect of HDAC inhibitors against oxidative stress-induced toxicity, including death induced by glutathione depletion or peroxide addition. The protective effect of p21(waf1/cip1) in the context of oxidative stress appears to be unrelated to its ability to act in the nucleus to inhibit cell cycle progression. However, although p21(waf1/cip1) is sufficient for neuroprotection, it is not necessary for HDAC inhibitor neuroprotection, because these agents can completely protect neurons cultured from p21(waf1/cip1)-null mice. Together these findings demonstrate (1) that pulse inhibition of HDACs in cortical neurons can induce neuroprotection without apparent toxicity; (2) that p21(waf1/cip1) is sufficient but not necessary to mimic the protective effects of HDAC inhibition; and (3) that oxidative stress in this model induces neuronal cell death via cell cycle-independent pathways that can be inhibited by a cytosolic, noncanonical action of p21(waf1/cip1).
Collapse
|
276
|
Timing differences of signaling response in neuron cultures activated by glutamate analogue or free radicals. Brain Res 2008; 1191:20-9. [DOI: 10.1016/j.brainres.2007.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/30/2007] [Accepted: 11/01/2007] [Indexed: 11/19/2022]
|
277
|
Sawe N, Steinberg G, Zhao H. Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. J Neurosci Res 2008; 86:1659-69. [DOI: 10.1002/jnr.21604] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
278
|
Yi KD, Cai ZY, Covey DF, Simpkins JW. Estrogen receptor-independent neuroprotection via protein phosphatase preservation and attenuation of persistent extracellular signal-regulated kinase 1/2 activation. J Pharmacol Exp Ther 2007; 324:1188-95. [PMID: 18089844 DOI: 10.1124/jpet.107.132308] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism of estrogen-mediated neuroprotection is not yet clear. Estrogens have a variety of modes of action, including transducing signaling events such as activation and/or suppression of the mitogen-activated protein kinase (MAPK) pathway. We have previously shown protein phosphatases to be involved in 17beta-estradiol-mediated neuroprotection. In the present study, we assessed the role of estrogen receptors (ERs) in estrogen-mediated neuroprotection from oxidative/excitotoxic stress and the consequential effects on MAPK signaling. Okadaic acid and calyculin A, nonspecific serine/threonine phosphatase inhibitors, were exposed to cells at various concentrations in the presence or absence of 17alpha-estradiol, the enantiomer of 17beta-estradiol, 2-(1-adamantyl)-3-hydroxyestra-1,3,5(10)-trien-17-one (ZYC3; non-ER-binding estrogen analog), and/or glutamate. All three compounds, which we have shown to have little or no binding to ERalpha and ERbeta, were protective against glutamate toxicity but not against okadaic acid and calyculin A toxicity. In addition, in the presence of effective concentrations of these inhibitors, the protective effects of these estrogen analogs were lost. Glutamate treatment caused a 50% decrease in levels of protein phosphatase 1 (PP1), protein phosphatase 2A (PP2A), and protein phosphatase 2B (calcineurin) (PP2B). Coadministration of ZYC3 with glutamate prevented the decreases in PP1, PP2A, and PP2B levels. Furthermore, glutamate treatment caused a persistent increase in phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 that corresponds with the decrease protein levels of serine/threonine phosphatases. ZYC3 blocked this persistent increase in ERK phosphorylation. These results suggest that estrogens protect cells against glutamate-induced oxidative stress through an ER-independent mediated mechanism that serves to preserve phosphatase activity in the face of oxidative insults, resulting in attenuation of the persistent phosphorylation of ERK associated with neuronal death.
Collapse
Affiliation(s)
- Kun Don Yi
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | | | | | | |
Collapse
|
279
|
Luo JM, Cen LP, Zhang XM, Chiang SWY, Huang Y, Lin D, Fan YM, van Rooijen N, Lam DSC, Pang CP, Cui Q. PI3K/akt, JAK/STAT and MEK/ERK pathway inhibition protects retinal ganglion cells via different mechanisms after optic nerve injury. Eur J Neurosci 2007; 26:828-42. [PMID: 17714182 DOI: 10.1111/j.1460-9568.2007.05718.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recently we unexpectedly found that PI3K/akt, JAK/STAT and MEK/ERK pathway inhibitors enhanced retinal ganglion cell (RGC) survival after optic nerve (ON) axotomy in adult rat, a phenomenon contradictory to conventional belief that these pathways are pro-survival. In this study we showed that: (i) the RGC protection was pathway inhibition-dependent; (ii) inhibition of PI3K/akt and JAK/STAT, but not MEK/ERK, activated macrophages in the eye, (iii) macrophage removal from the eye using clodronate liposomes significantly impeded PI3K/akt and JAK/STAT inhibition-induced RGC survival and axon regeneration whereas it only slightly affected MEK/ERK inhibition-dependent protection; (iv) in the absence of recruited macrophages in the eye, inhibition of PI3K/akt or JAK/STAT did not influence RGC survival; and (v) strong PI3K/akt, JAK/STAT and MEK/ERK pathway activities were located in RGCs but not macrophages after ON injury. In retinal explants, in which supply of blood-derived macrophages is absent, MEK/ERK inhibition promoted RGC survival whereas PI3K/akt or JAK/STAT inhibition had no effect on RGC viability. However, MEK/ERK inhibition exerted opposite effects on the viability of purified adult RGCs at different concentrations in vitro, suggesting that this pathway may be bifunctional depending on the level of pathway activity. Our data thus demonstrate that inhibition of the PI3K/akt or JAK/STAT pathway activated macrophages to facilitate RGC protection after ON injury whereas the two pathways per se did not modulate RGC viability under the injury conditions (in the absence of the pathway activators). In contrast, the MEK/ERK pathway inhibition protected RGCs via macrophage-independent mechanism(s).
Collapse
Affiliation(s)
- Jian-Min Luo
- Joint Shantou International Eye Center of Shantou University, Shantou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Zhang Y, Aizenman E, DeFranco DB, Rosenberg PA. Intracellular zinc release, 12-lipoxygenase activation and MAPK dependent neuronal and oligodendroglial death. Mol Med 2007. [PMID: 17622306 DOI: 10.2119/2007-00042.zhang] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zinc translocation from presynaptic nerve terminals to postsynaptic neurons has generally been considered the critical step leading to the accumulation of intracellular free zinc and subsequent neuronal injury. Recent evidence, however, strongly suggests that the liberation of zinc from intracellular stores upon oxidative and nitrative stimulation contributes significantly to the toxicity of this metal not only to neurons, but also to oligodendrocytes. The exact cell death signaling pathways triggered by zinc are beginning to be deciphered. In this review, we describe how the activation of 12-lipoxygenase and mitogen-activated protein kinase (MAPK) contribute to the toxicity of liberated zinc to neurons and oligodendrocytes.
Collapse
Affiliation(s)
- Yumin Zhang
- Department of Anatomy, Physiology and Genetics and Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA.
| | | | | | | |
Collapse
|
281
|
Byun YJ, Lee SB, Kim DJ, Lee HO, Son MJ, Yang CW, Sung KW, Kim HS, Kwon OJ, Kim IK, Jeong SW. Protective effects of vacuolar H+-ATPase c on hydrogen peroxide-induced cell death in C6 glioma cells. Neurosci Lett 2007; 425:183-7. [PMID: 17845832 DOI: 10.1016/j.neulet.2007.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/14/2007] [Accepted: 08/14/2007] [Indexed: 01/27/2023]
Abstract
We have isolated a gene, the c subunit (ATP6L) of vacuolar H(+)-ATPase, involved in oxidative stress response. In this study, we examined the role of ATP6L and its molecular mechanisms in glial cell death induced by H(2)O(2). Expression of the ATP6L gene was increased by H(2)O(2) treatment in C6 glial cells. ATP6L siRNA-transfected C6 cells treated with H(2)O(2) showed a significant decrease in viability. ATP6L siRNA-transfected cells that were pretreated with MEK1/2 inhibitor completely recovered cell viability. Pretreatment of the transfected cells with zVAD-fmk, a pan-specific caspase inhibitor, did not result in the recovery of cell viability, as determined by a H(2)O(2)-induced cytotoxicity assay. The ultrastructural morphology of the transfected cells as seen by the use of transmission electron microscopy showed numerous cytoplasmic autophagic vacuoles with double membrane. These results suggest that ATP6L has a protective role against H(2)O(2)-induced cytotoxicity via an inhibition of the Erk1/2 signaling pathway, leading to inhibition of autophagic cell death.
Collapse
Affiliation(s)
- Yu Jeong Byun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul 137-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Lu Y, Cederbaum A. The mode of cisplatin-induced cell death in CYP2E1-overexpressing HepG2 cells: modulation by ERK, ROS, glutathione, and thioredoxin. Free Radic Biol Med 2007; 43:1061-75. [PMID: 17761302 PMCID: PMC1995748 DOI: 10.1016/j.freeradbiomed.2007.06.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 05/31/2007] [Accepted: 06/15/2007] [Indexed: 11/17/2022]
Abstract
In a previous study, E47 HepG2 cells that overexpress human CYP2E1 were shown to be more sensitive to cisplatin than C34 cells that do not express CYP2E1. In this study, we found that this sensitivity was due to an earlier activation of ERK in the E47 cells compared to the C34 cells. Glutathione depletion by L-buthionine sulfoximine (BSO) enhanced cisplatin cytotoxicity via increasing production of reactive oxygen species (ROS) and activation of ERK. In contrast, elevation of glutathione by glutathione ethyl ester (GSHE) decreased cisplatin/BSO cytotoxicity by decreasing ROS production and ERK activation. Inhibition of ERK activation by U0126 protected against cisplatin/BSO cytotoxicity via inhibiting ROS production but not restoring intracellular glutathione content. Examination of the mode of cell death showed that U0126 inhibited cisplatin-induced necrosis but not apoptosis. Cisplatin-induced apoptosis was caspases-dependent; BSO switched cisplatin-induced apoptosis to necrosis via decreasing activity of caspases, and GSHE switched cisplatin/BSO-induced necrosis back to apoptosis through maintaining activity of caspases. Similar to GSHE, U0126 partially switched cisplatin/BSO induced necrosis to apoptosis via restoring activity of caspases. Cisplatin lowered levels of thioredoxin, especially in the presence of BSO. Although U0126 failed in restoring intracellular glutathione levels, it restored thioredoxin levels, which maintain the activity of the caspases. These results suggest that thioredoxin can replace glutathione to promote the active thiol redox state necessary for caspase activity, and thus glutathione and thioredoxin regulate the mode of cisplatin toxicity in E47 cells via redox regulation of caspase activity.
Collapse
Affiliation(s)
- Yongke Lu
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
283
|
Musiek ES, McLaughlin B, Morrow JD. Electrophilic cyclopentenone isoprostanes in neurodegeneration. J Mol Neurosci 2007; 33:80-6. [PMID: 17901550 PMCID: PMC2881560 DOI: 10.1007/s12031-007-0042-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 02/02/2023]
Abstract
Although oxidative stress has been implicated in the pathogenesis of numerous neurodegenerative conditions, the precise mechanisms by which reactive oxygen species (ROS) induce neuronal death are still being explored. The generation of reactive lipid peroxidation products is thought to contribute to ROS neurotoxicity. Isoprostanes (IsoPs), prostaglandin-like molecules formed in vivo via the ROS-mediated oxidation of arachidonic acid, have been previously demonstrated to be formed in increased amounts in the brains of patients with various neurodegenerative diseases. Recently, we have identified a new class of IsoPs, known as A(2)- and J(2)-IsoPs or cyclopentenone IsoPs, which are highly reactive electrophiles and form adducts with thiol-containing molecules, including cysteine residues in proteins and glutathione. Cyclopentenone IsoPs are favored products of the IsoP pathway in the brain and are formed abundantly after oxidant injury. These compounds also potently induce neuronal apoptosis by a mechanism which involves glutathione depletion, ROS generation, and activation of several redox-sensitive pathways that overlap with those involved in other forms of oxidative neurodegeneration. Cyclopentenone IsoPs also enhance neurodegeneration caused by other insults at biologically relevant concentrations. These data are reviewed, whereas new data demonstrating the neurotoxicity of J-ring IsoPs and a discussion of the possible role of cyclopentenone IsoPs as contributors to neurodegeneration are presented.
Collapse
Affiliation(s)
- Erik S. Musiek
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, 526 RRB, 23rd and Pierce Aves, Nashville, TN 37232-6602, USA
| | - BethAnn McLaughlin
- Departments of Neurology and Pharmacology, Vanderbilt University School of Medicine, MRB III Room 8110, 465 21st Avenue South, Nashville, TN 37232-8548, USA
| | - Jason D. Morrow
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, 526 RRB, 23rd and Pierce Aves, Nashville, TN 37232-6602, USA
| |
Collapse
|
284
|
Cagnon L, Braissant O. Hyperammonemia-induced toxicity for the developing central nervous system. ACTA ACUST UNITED AC 2007; 56:183-97. [PMID: 17881060 DOI: 10.1016/j.brainresrev.2007.06.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/15/2007] [Accepted: 06/15/2007] [Indexed: 12/12/2022]
Abstract
In pediatric patients, hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle deficiencies or organic acidemias. The brain is much more susceptible to the deleterious effects of ammonium during development than in adulthood. Hyperammonemia can provoke irreversible damages to the developing central nervous system that lead to cortical atrophy, ventricular enlargement and demyelination, responsible for cognitive impairment, seizures and cerebral palsy. Until recently, the mechanisms leading to these irreversible cerebral damages were poorly understood. Using experimental models allowing the analysis of the neurotoxic effects of ammonium on the developing brain, these last years have seen the emergence of new clues showing that ammonium exposure alters several amino acid pathways and neurotransmitter systems, as well as cerebral energy metabolism, nitric oxide synthesis, oxidative stress, mitochondrial permeability transition and signal transduction pathways. Those alterations may explain neuronal loss and impairment of axonal and dendritic growth observed in the different models of congenital hyperammonemia. Some neuroprotective strategies such as the potential use of NMDA receptor antagonists, nitric oxide inhibitors, creatine and acetyl-l-carnitine have been suggested to counteract these toxic effects. Unraveling the molecular mechanisms involved in the chain of events leading to neuronal dysfunction under hyperammonemia may be useful to develop new potential strategies for neuroprotection.
Collapse
Affiliation(s)
- Laurène Cagnon
- Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CI 02/33, Avenue Pierre-Decker 2, CH-1011 Lausanne, Switzerland
| | | |
Collapse
|
285
|
Kang TH, Bae KH, Yu MJ, Kim WK, Hwang HR, Jung H, Lee PY, Kang S, Yoon TS, Park SG, Ryu SE, Lee SC. Phosphoproteomic analysis of neuronal cell death by glutamate-induced oxidative stress. Proteomics 2007; 7:2624-35. [PMID: 17610204 DOI: 10.1002/pmic.200601028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oxidative stress is one of the major causes of neuronal cell death in disorders such as perinatal hypoxia and ischemia. Protein phosphorylation is the most significant PTM of proteins and plays an important role in stress-induced signal transduction. Thus, the analysis of alternative protein phosphorylation states which occur during oxidative stress-induced cell death could provide valuable information regarding cell death. In this study, a reference phosphoproteome map of the mouse hippocampal cell line HT22 was constructed based on 125 spots that were identified by MALDI-TOF or LC-ESI-Q-TOF-MS analysis. In addition, proteins of HT22 cells at various stages of oxidative stress-induced cell death were separated by 2-DE and alterations in phosphoproteins were detected by Pro-Q Diamond staining. A total of 17 spots showing significant quantitative changes and seven newly appearing spots were identified after glutamate treatment. Splicing factor 2, peroxiredoxin 2, S100 calcium binding protein A11, and purine nucleoside phosphorylase were identified as up- or down-regulated proteins. CDC25A, caspase-8, and cyp51 protein appeared during oxidative stress-induced cell death. The data in this study from phosphoproteomic analysis provide a valuable resource for the understanding of HT22 cell death mechanisms mediated by oxidative stress.
Collapse
Affiliation(s)
- Tae Hyuk Kang
- Translational Research Center, KRIBB, Daejeon, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Atkins CM, Oliva AA, Alonso OF, Chen S, Bramlett HM, Hu BR, Dietrich WD. Hypothermia treatment potentiates ERK1/2 activation after traumatic brain injury. Eur J Neurosci 2007; 26:810-9. [PMID: 17666079 DOI: 10.1111/j.1460-9568.2007.05720.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury (TBI) results in significant hippocampal pathology and hippocampal-dependent memory loss, both of which are alleviated by hypothermia treatment. To elucidate the molecular mechanisms regulated by hypothermia after TBI, rats underwent moderate parasagittal fluid-percussion brain injury. Brain temperature was maintained at normothermic or hypothermic temperatures for 30 min prior and up to 4 h after TBI. The ipsilateral hippocampus was assayed with Western blotting. We found that hypothermia potentiated extracellular signal-regulated kinase 1/2 (ERK1/2) activation and its downstream effectors, p90 ribosomal S6 kinase (p90RSK) and the transcription factor cAMP response element-binding protein. Phosphorylation of another p90RSK substrate, Bad, also increased with hypothermia after TBI. ERK1/2 regulates mRNA translation through phosphorylation of mitogen-activated protein kinase-interacting kinase 1 (Mnk1) and the translation factor eukaryotic initiation factor 4E (eIF4E). Hypothermia also potentiated the phosphorylation of both Mnk1 and eIF4E. Augmentation of ERK1/2 activation and its downstream signalling components may be one molecular mechanism that hypothermia treatment elicits to improve functional outcome after TBI.
Collapse
Affiliation(s)
- Coleen M Atkins
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | |
Collapse
|
287
|
Zhang Y, Aizenman E, DeFranco DB, Rosenberg PA. Intracellular zinc release, 12-lipoxygenase activation and MAPK dependent neuronal and oligodendroglial death. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2007; 13:350-5. [PMID: 17622306 PMCID: PMC1952666 DOI: 10.2119/2007–00042.zhang] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 06/12/2007] [Indexed: 11/06/2022]
Abstract
Zinc translocation from presynaptic nerve terminals to postsynaptic neurons has generally been considered the critical step leading to the accumulation of intracellular free zinc and subsequent neuronal injury. Recent evidence, however, strongly suggests that the liberation of zinc from intracellular stores upon oxidative and nitrative stimulation contributes significantly to the toxicity of this metal not only to neurons, but also to oligodendrocytes. The exact cell death signaling pathways triggered by zinc are beginning to be deciphered. In this review, we describe how the activation of 12-lipoxygenase and mitogen-activated protein kinase (MAPK) contribute to the toxicity of liberated zinc to neurons and oligodendrocytes.
Collapse
Affiliation(s)
- Yumin Zhang
- Department of Anatomy, Physiology and Genetics and Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA.
| | | | | | | |
Collapse
|
288
|
Antonelli T, Fuxe K, Tomasini MC, Mazzoni E, Agnati LF, Tanganelli S, Ferraro L. Neurotensin receptor mechanisms and its modulation of glutamate transmission in the brain: relevance for neurodegenerative diseases and their treatment. Prog Neurobiol 2007; 83:92-109. [PMID: 17673354 DOI: 10.1016/j.pneurobio.2007.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 05/18/2007] [Accepted: 06/19/2007] [Indexed: 11/30/2022]
Abstract
The extracellular accumulation of glutamate and the excessive activation of glutamate receptors, in particular N-methyl-D-aspartate (NMDA) receptors, have been postulated to contribute to the neuronal cell death associated with chronic neurodegenerative disorders such as Parkinson's disease. Findings are reviewed indicating that the tridecaptide neurotensin (NT) via activation of NT receptor subtype 1 (NTS1) promotes and reinforces endogenous glutamate signalling in discrete brain regions. The increase of striatal, nigral and cortical glutamate outflow by NT and the enhancement of NMDA receptor function by a NTS1/NMDA interaction that involves the activation of protein kinase C may favour the depolarization of NTS1 containing neurons and the entry of calcium. These results strengthen the hypothesis that NT may be involved in the amplification of glutamate-induced neurotoxicity in mesencephalic dopamine and cortical neurons. The mechanisms involved may include also antagonistic NTS1/D2 interactions in the cortico-striatal glutamate terminals and in the nigral DA cell bodies and dendrites as well as in the nigro-striatal DA terminals. The possible increase in NT levels in the basal ganglia under pathological conditions leading to the NTS1 enhancement of glutamate signalling may contribute to the neurodegeneration of the nigro-striatal dopaminergic neurons found in Parkinson's disease, especially in view of the high density of NTS1 receptors in these neurons. The use of selective NTS1 antagonists together with conventional drug treatments could provide a novel therapeutic approach for treatment of Parkinson's disease.
Collapse
Affiliation(s)
- T Antonelli
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
289
|
Lee JS, Ellis BE. Arabidopsis MAPK phosphatase 2 (MKP2) positively regulates oxidative stress tolerance and inactivates the MPK3 and MPK6 MAPKs. J Biol Chem 2007; 282:25020-9. [PMID: 17586809 DOI: 10.1074/jbc.m701888200] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two closely related Arabidopsis mitogen-activated protein kinases (MAPKs), MPK3 and MPK6, are rapidly but transiently activated in plants exposed to ozone. Although the contribution of these MAPKs to control of redox stress has been examined extensively, it remains unclear whether the dual-specificity MKPs play an essential role in the regulation of these processes. To explore this question, specific knockdown of each of the five putative MKPs in Arabidopsis was performed, and the ozone sensitivity phenotype of each MKP-suppressed line was assessed. Silencing of only one previously uncharacterized MKP, designated AtMKP2, rendered the plants hypersensitive to oxidative stress. AtMKP2-suppressed plants displayed significantly prolonged MPK3 and MPK6 activation during ozone treatment, and recombinant AtMKP2 was able to dephosphorylate both phospho-MPK3 and phospho-MPK6 in vitro, providing direct evidence that AtMKP2 may target these oxidant-activated MAPKs. In addition, the in vitro phosphatase activity of AtMKP2 was enhanced by co-incubation with either recombinant MPK3 or MPK6. In AtMKP2:YFP-expressing plants, the fusion protein was localized predominantly in the nucleus, the same compartment into which ozone-activated MPK3 and MPK6 have previously been shown to be translocated. Taken together, these data suggest that AtMKP2, a novel MKP protein in Arabidopsis, acts upon MPK3 and -6, and serves as a positive regulator of the cellular response to oxidant challenge.
Collapse
Affiliation(s)
- Jin Suk Lee
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | |
Collapse
|
290
|
Crambescidin 800, a pentacyclic guanidine alkaloid, protects a mouse hippocampal cell line against glutamate-induced oxidative stress. J Nat Med 2007. [DOI: 10.1007/s11418-007-0148-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
291
|
Moon DO, Lee KJ, Choi YH, Kim GY. Beta-sitosterol-induced-apoptosis is mediated by the activation of ERK and the downregulation of Akt in MCA-102 murine fibrosarcoma cells. Int Immunopharmacol 2007; 7:1044-53. [PMID: 17570321 DOI: 10.1016/j.intimp.2007.03.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 03/30/2007] [Accepted: 03/30/2007] [Indexed: 01/11/2023]
Abstract
Beta-sitosterol (SITO) is a potential candidate for cancer chemotherapy, however, little is known about the cellular and molecular mechanisms in cancer cells. We herein identified how SITO induces anti-proliferation and cell death in MCA-102 fibrosarcoma cells. SITO exposure induced-apoptosis and the cell death resulted from a significant loss of the Bcl-2 and the inhibitor of apoptosis protein (IAP) family (XIAP, cIAP-1 and cIAP-2), and increased Bax with an alteration of p53 and p21. SITO-induced cell death significantly also increased caspase activity and poly(ADP-ribose) polymerase (PARP) cleavage, and caspase-3 inhibitor z-DEVD-fmk significantly inhibited SITO-induced cell death. These data suggest that the activation of caspase-3 is associated with SITO-induced-apoptosis. Treatment with SITO also induced phosphorylation of extracellular-signal regulating kinase (ERK) and p38 mitogen-activated protein kinase (MARK), but not c-Jun N-terminal kinase (JNK). A specific ERK inhibitor PD98059 significantly blocks SITO-induced-apoptosis, whereas a JNK inhibitor SP600125 has no affect. A p38 MAPK inhibitor SB203580 very slightly suppressed cell death. The induction of apoptosis was also accompanied by an inactivation of phosphatidylinositol 3-kinase (PI3K)/Akt, and PI3K inhibitor LY29004 significantly increases SITO-induced cell death. These findings provide evidence demonstrating that the proapoptotic effect of SITO is mediated through the activation of ERK and the block of the PI3K/Akt signal pathway in MCA-102 cells. Therefore, SITO has a strong potential as a therapeutic agent for preventing cancers such as fibrosarcoma.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Faculty of Applied Marine Science, Cheju National University, Jeju-si, Jeju Special Self-Governing Province 690-756, South Korea
| | | | | | | |
Collapse
|
292
|
Lu K, Cho CL, Liang CL, Chen SD, Liliang PC, Wang SY, Chen HJ. Inhibition of the MEK/ERK pathway reduces microglial activation and interleukin-1-beta expression in spinal cord ischemia/reperfusion injury in rats. J Thorac Cardiovasc Surg 2007; 133:934-41. [PMID: 17382630 DOI: 10.1016/j.jtcvs.2006.11.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 10/12/2006] [Accepted: 11/03/2006] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Ischemic spinal cord injury is a serious complication of aortic surgery. Although the extracellular signal-regulated kinases 1 and 2 are generally regarded as related to cell proliferation and survival, increasing evidence suggests that the role of the extracellular signal-regulated kinase pathway in ischemia/reperfusion injury is much more sophisticated. METHODS Spinal cord ischemia in rats was induced by occluding the thoracic descending aorta with a balloon catheter introduced through a femoral artery, accompanied by concomitant exsanguination. Rats in the control group were given dimethyl sulfoxide (vehicle) before undergoing spinal cord ischemia/reperfusion injury. In the U0126-treated group, rats were pretreated with a specific inhibitor of the mitogen-activated protein kinase/extracellular signal-regulated kinases 1 and 2, U0126, to inhibit extracellular signal-regulated kinases 1 and 2 phosphorylation. The sham-operated rats underwent aortic catheterization without occlusion. Parameters, including neurologic performance, neuronal survival, inflammatory cell infiltration, and interleukin-1beta production in the spinal cords, were compared between groups. RESULTS Early extracellular signal-regulated kinases 1 and 2 phosphorylation was observed after injury in the control group, followed by abundant microglial accumulation in the infarct area and increased interleukin-1beta expression. In the U0126 group, U0126 treatment completely blocked extracellular signal-regulated kinases 1 and 2 phosphorylation. Microglial activation and spinal cord interleukin-1beta levels were significantly reduced. Neuronal survival and functional performance were improved. CONCLUSIONS The mitogen-activated protein kinase/extracellular signal-regulated kinase pathway may play a noxious role in spinal cord ischemia/reperfusion injury by participating in inflammatory reactions and cytokine production. Targeting this pathway may be of potential value in terms of therapeutic intervention.
Collapse
Affiliation(s)
- Kang Lu
- Department of Neurosurgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
293
|
Shin JH, Choi GS, Kang WH, Myung KB. Sphingosine 1-phosphate triggers apoptotic signal for B16 melanoma cells via ERK and caspase activation. J Korean Med Sci 2007; 22:298-304. [PMID: 17449940 PMCID: PMC2693598 DOI: 10.3346/jkms.2007.22.2.298] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 09/13/2006] [Indexed: 12/18/2022] Open
Abstract
The bioactive sphingolipid metabolite sphingosine 1-phosphate (S1P), recently was reported to induce apoptosis of some cancer cells and neurons, although it generally known to exert mitogenic and antiapoptotic effects. In this study, we investigated the effects of S1P on the cell growth, melanogenesis, and apoptosis of cultured B16 mouse melanoma cells. In results, S1P was found to induce apoptosis in B16 melanoma cells in a dose- and time-dependent manner, but exerted minimal effects on melanogenesis. Although receptors of sphingosine 1-phosphate (endothelial differentiation gene 1 [Edg]/S1P(1), Edg5/S1P(2), Edg3/S1P(3)) were expressed in B16 melanoma cells, they were shown not to be associated with S1P-induced apoptosis. In addition, pertussis toxin did not block the apoptotic effects of S1P on B16 melanoma cells. S1P induced caspase-3 activation and the extracellular signal-regulated kinase (ERK) activation. Interestingly, the ERK pathway inhibitor, UO126, reversed the apoptotic effects of S1P on B16 melanoma cells. These results suggest that S1P induced apoptosis of B16 melanoma cells via an Edg receptor-independent, pertussis toxin-insensitive pathway, and appears to be associated with the ERK and caspase-3 activation.
Collapse
Affiliation(s)
- Jeong-Hyun Shin
- Department of Dermatology, School of Medicine, Inha University, Incheon, Korea
| | - Gwang-Seong Choi
- Department of Dermatology, School of Medicine, Inha University, Incheon, Korea
| | - Won-Hyung Kang
- Department of Dermatology, School of Medicine, Ajou University, Suwon, Korea
| | - Ki-Bum Myung
- Department of Dermatology, School of Medicine, Ewha Womans University, Seoul, Korea
| |
Collapse
|
294
|
Lee JH, Kim KT. Regulation of cyclin-dependent kinase 5 and p53 by ERK1/2 pathway in the DNA damage-induced neuronal death. J Cell Physiol 2007; 210:784-97. [PMID: 17117479 DOI: 10.1002/jcp.20899] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
DNA damage is known to be an initiator of neuronal death in neurodegenerative conditions such as Parkinson's and Alzheimer's diseases. The mechanism linking DNA damage and neuronal death is not completely understood. Here, we delineate the mechanism by which neuronal death evoked by DNA damage is controlled. Using mouse cortical neurons and SH-SY5Y human neuroblastoma cells, we identify a critical role of ERK signaling in neuronal death induced by DNA damage upon mitomycin C treatment. In addition, we provide evidence that the ERK signaling regulates Cyclin-dependent kinase 5 (Cdk5) activity and stability of tumor suppressor p53. Mitomycin C increased expression of p35, a specific activator of neuronal Cdk5 in an ERK1/2-dependent manner. Moreover, stability of p53 was increased by its phosphorylation on Ser33 and Ser46 by Cdk5, leading to neuronal death. Finally, we show that activated ERK induced increased expression of the Egr-1 transcription factor, which then bound to the promoter region of p35. We suggest subsequent increase of p35 expression and Cdk5 activity contribute to p53-dependent neuronal death. Thus, the present finding provides a new insight into a molecular mechanism underlying DNA damage-induced neuronal death.
Collapse
Affiliation(s)
- Jong-Hee Lee
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | | |
Collapse
|
295
|
Sahin M, Saxena A, Joost P, Lewerenz J, Methner A. Induction of Bcl-2 by functional regulation of G-protein coupled receptors protects from oxidative glutamate toxicity by increasing glutathione. Free Radic Res 2007; 40:1113-23. [PMID: 17050165 DOI: 10.1080/10715760600838191] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glutamate treatment depletes hippocampal HT22 cells of glutathione, which renders the cells incapable to reduce reactive oxygen species and ultimately cumulates in cell death by oxidative stress. HT22 cells resistant to glutamate displayed increased phosphorylation of cAMP-response-element binding (CREB) and decreased ERK1/2 suggestive of differences in signal transmission. We investigated the amount of candidate G-protein-coupled receptors involved in this resistance and found an increase in mRNA for receptors activated by the vasoactive intestinal peptide VIP (VPAC2, 12.6-fold) and glutamate like the metabotropic glutamate receptor mGlu1 (5.3-fold). Treating cells with VIP and glutamate led to the same changes in protein phosphorylation observed in resistant cells and induced the proto-oncogene Bcl-2. Bcl-2 overexpression protected by increasing the amount of intracellular glutathione and Bcl-2 knockdown by small interfering RNAs (siRNA) increased glutamate susceptibility of resistant cells. Other receptors upregulated in this paradigm might represent useful targets in the treatment of neurological diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Mert Sahin
- Department of Neurology, Heinrich Heine Universität Düsseldorf, Moorenstreet 5, 40225, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
296
|
Abstract
ERK1/2 is an important subfamily of mitogen-activated protein kinases that control a broad range of cellular activities and physiological processes. ERK1/2 can be activated transiently or persistently by MEK1/2 and upstream MAP3Ks in conjunction with regulation and involvement of scaffolding proteins and phosphatases. Activation of ERK1/2 generally promotes cell survival; but under certain conditions, ERK1/2 can have pro-apoptotic functions.
Collapse
Affiliation(s)
- Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA.
| | | |
Collapse
|
297
|
Abdul HM, Butterfield DA. Involvement of PI3K/PKG/ERK1/2 signaling pathways in cortical neurons to trigger protection by cotreatment of acetyl-L-carnitine and alpha-lipoic acid against HNE-mediated oxidative stress and neurotoxicity: implications for Alzheimer's disease. Free Radic Biol Med 2007; 42:371-84. [PMID: 17210450 PMCID: PMC1808543 DOI: 10.1016/j.freeradbiomed.2006.11.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Revised: 10/24/2006] [Accepted: 11/05/2006] [Indexed: 12/30/2022]
Abstract
Oxidative stress has been shown to underlie neuropathological aspects of Alzheimer's disease (AD). 4-Hydroxy-2-nonenal (HNE) is a highly reactive product of lipid peroxidation of unsaturated lipids. HNE-induced oxidative toxicity is a well-described model of oxidative stress-induced neurodegeneration. GSH plays a key role in antioxidant defense, and HNE exposure causes an initial depletion of GSH that leads to gradual toxic accumulation of reactive oxygen species. In the current study, we investigated whether pretreatment of cortical neurons with acetyl-L-carnitine (ALCAR) and alpha-lipoic acid (LA) plays a protective role in cortical neuronal cells against HNE-mediated oxidative stress and neurotoxicity. Decreased cell survival of neurons treated with HNE correlated with increased protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (HNE) accumulation. Pretreatment of primary cortical neuronal cultures with ALCAR and LA significantly attenuated HNE-induced cytotoxicity, protein oxidation, lipid peroxidation, and apoptosis in a dose-dependent manner. Additionally, pretreatment of ALCAR and LA also led to elevated cellular GSH and heat shock protein (HSP) levels compared to untreated control cells. We have also determined that pretreatment of neurons with ALCAR and LA leads to the activation of phosphoinositol-3 kinase (PI3K), PKG, and ERK1/2 pathways, which play essential roles in neuronal cell survival. Thus, this study demonstrates a cross talk among the PI3K, PKG, and ERK1/2 pathways in cortical neuronal cultures that contributes to ALCAR and LA-mediated prosurvival signaling mechanisms. This evidence supports the pharmacological potential of cotreatment of ALCAR and LA in the management of neurodegenerative disorders associated with HNE-induced oxidative stress and neurotoxicity, including AD.
Collapse
Affiliation(s)
- Hafiz Mohmmad Abdul
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506-0055, USA
| | | |
Collapse
|
298
|
Kim JM, Lee JC, Chang N, Chun HS, Kim WK. S-Allyl-L-cysteine attenuates cerebral ischemic injury by scavenging peroxynitrite and inhibiting the activity of extracellular signal-regulated kinase. Free Radic Res 2007; 40:827-35. [PMID: 17015261 DOI: 10.1080/10715760600719540] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
S-Allyl-L-cysteine (SAC) has been shown to reduce ischemic injury due to its antioxidant activity. However, the antioxidant property of SAC has been controversial. The present study investigated the neuroprotective mechanism of SAC in cerebral ischemic insults. SAC decreased the size of infarction after transient or global ischemic insults. While it did not alter the N-methyl-D-aspartate excitotoxicity, SAC significantly scavenged the endogenously or exogenously produced ONOO- and reduced ONOO- cytotoxicity. In contrast, SAC has much lower scavenging activity against H2O2, O2*(-) or NO. Further, SAC inhibited the activity of extracellular signal-regulated kinase (ERK) increased in cultured neurons exposed to oxygen-glucose deprivation or in rat brain tissue after transient middle cerebral artery occlusion. The neuroprotective effect of SAC was mimicked by the ERK inhibitor U0125. The present results indicate that SAC exert its neuroprotective effect by scavenging ONOO- and inhibiting the ERK signaling pathway activated during initial hypoxic/ischemic insults.
Collapse
Affiliation(s)
- Ji-Myung Kim
- Food Function Research Division, Korea Food Research Institute, Sungnam, South Korea
| | | | | | | | | |
Collapse
|
299
|
Ho Y, Logue E, Callaway CW, DeFranco DB. Different mechanisms account for extracellular-signal regulated kinase activation in distinct brain regions following global ischemia and reperfusion. Neuroscience 2007; 145:248-55. [PMID: 17207579 PMCID: PMC1859863 DOI: 10.1016/j.neuroscience.2006.11.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 11/17/2006] [Accepted: 11/21/2006] [Indexed: 01/19/2023]
Abstract
Oxidative stress after cerebral ischemia and reperfusion activates extracellular signal-regulated kinases (ERK) in brain. However, the mechanism of this activation has not been elucidated. We have previously reported that in an in vitro model of oxidative stress in immature cortical neuronal cultures, the inhibition of ERK phosphatase activity contributes to ERK1/2 activation and subsequent neuronal toxicity. This study examined whether ERK activation was associated with altered activity of ERK phosphatases in a rat cardiac arrest model. Rats in experimental groups were subjected to asphyxial cardiac arrest for 8 min and then resuscitated for 30 min. Significant ERK activation was detected in both cortex and hippocampus following ischemia/reperfusion by immunoblotting. ERK phosphatase activity was reversibly inhibited in cerebral cortex but not affected in hippocampus following ischemia/reperfusion. MEK1/2 was activated in both cerebral cortex and hippocampus following ischemia/reperfusion. Using a specific inhibitor of protein phosphatase 2A (PP2A), okadaic acid (OA), we have identified PP2A to be the major ERK phosphatase that is responsible for regulating ERK activation in ischemic brain tissues. Orthovanadate inhibited ERK phosphatase activity in brain tissues, suggesting that tyrosine phosphatases and dual specificity phosphatases may also contribute to the ERK phosphatase activity in brain tissues. Together, these data implicate ERK phosphatase in the regulation of ERK activation in distinct brain regions following global ischemia.
Collapse
Affiliation(s)
- Yeung Ho
- Center for Neuroscience, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Eric Logue
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Clifton W Callaway
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| | - Donald B DeFranco
- Center for Neuroscience, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
- Department of Pharmacology, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, Pennsylvania 15261
| |
Collapse
|
300
|
Jeon ES, Lee MJ, Sung SM, Kim JH. Sphingosylphosphorylcholine induces apoptosis of endothelial cells through reactive oxygen species-mediated activation of ERK. J Cell Biochem 2007; 100:1536-47. [PMID: 17131361 DOI: 10.1002/jcb.21141] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sphingosylphosphorylcholine (SPC) produces reactive oxygen species (ROS) in MS1 pancreatic islet endothelial cells. In the present study, we explored the physiological significance of the SPC-induced ROS generation in endothelial cells. SPC induced cell death of MS1 cells at higher than 10 microM concentration through a caspase-3-dependent pathway. SPC treatment induced sustained activation of an extracellular signal-regulated kinase (ERK), in contrast to transient activation of ERK in response to platelet-derived growth factor (PDGF)-BB, which stimulated proliferation of MS1 cells. Both the SPC-induced cell death and ERK activation were abolished by pretreatment of the cells with the MEK inhibitor U0126 or by overexpression of a dominant negative mutant of MEK1 (DN-MEK1). Pretreatment of the cells with N-acetylcysteine, an antioxidant, completely prevented the SPC-induced ROS generation, apoptosis, and ERK activation, whereas the ROS generation was not abrogated by treatment with U0126. Consistent with these results, SPC induced cell death of human umbilical vein endothelial cells (HUVECs) through ROS-mediated activation of ERK. These results suggest that the SPC-induced generation of ROS plays a crucial role in the cell death of endothelial cells through ERK-dependent pathway.
Collapse
Affiliation(s)
- Eun Su Jeon
- Medical Research Center for Ischemic Tissue Regeneration and Medical Research Institute, College of Medicine, Pusan National University, Busan 602-739, Republic of Korea
| | | | | | | |
Collapse
|