251
|
Silkina A, Bazes A, Mouget JL, Bourgougnon N. Comparative efficiency of macroalgal extracts and booster biocides as antifouling agents to control growth of three diatom species. MARINE POLLUTION BULLETIN 2012; 64:2039-46. [PMID: 22853990 DOI: 10.1016/j.marpolbul.2012.06.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 06/18/2012] [Accepted: 06/27/2012] [Indexed: 06/01/2023]
Abstract
The application of 'booster biocides' Diuron, Tolylfluanid and Copper thiocyanate inbantifouling paints, used to prevent development of biofouling, needs to be monitored before assessing their impacts on the environment. An alternative approach aims to propose eco-friendly and effective antifoulants isolated from marine organisms such as seaweeds. In this study, the effects of 'booster biocides' and the ethanol and dichloromethane extracts from a brown (Sargassum muticum) and a red alga (Ceramium botryocarpum) have been compared by algal growth inhibition tests of marine diatoms. The most efficient extracts were ethanol fraction of S. muticum and C. botryocarpum extracts with growth EC(50)=4.74 and 5.3μg mL(-1) respectively, with reversible diatom growth effect. The booster biocides are more efficient EC(50)=0.52μg mL(-1), but are highly toxic. Results validate the use of macroalgal extracts as non toxic antifouling compounds, and they represent valuable environmentally friendly alternatives in comparison with currently used biocides.
Collapse
Affiliation(s)
- Alla Silkina
- Laboratoire de Biotechnologie et Chimie Marines, Université de Bretagne-Sud, Centre de Recherche Saint Maudé, 56321 Lorient Cedex, France.
| | | | | | | |
Collapse
|
252
|
Bondarenko O, Ivask A, Käkinen A, Kahru A. Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 169:81-9. [PMID: 22694973 DOI: 10.1016/j.envpol.2012.05.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/25/2012] [Accepted: 05/08/2012] [Indexed: 05/26/2023]
Abstract
The sub-toxic effects of CuO nanoparticles (nano-CuO) were evaluated using three recombinant luminescent Escherichia coli bacteria responding specifically to (i) reactive oxygen species (ROS), (ii) single-stranded DNA breaks and (iii) bioavailable Cu ions. Using these sensors we showed that nano-CuO induces the formation of superoxide anions, hydrogen peroxide and single-stranded DNA already at very low sub-toxic levels (0.1 mg Cu/L). The maximal sub-toxic response of all biosensors to nominal concentrations of nano-CuO, micro-CuO (size control) and CuSO(4) (solubility control) occurred at ~6, ~600 and ~0.6 mg Cu/L, respectively. According to the chemical analysis all the latter concentrations yielded ~0.6 mg of soluble Cu/L, indicating that dissolution of CuO particles was the key factor triggering the ROS and DNA damage responses in bacteria. Cu-ions chelation studies also showed that CuO particles were not involved in these stress responses. The solubilization results were confirmed by Pseudomonas fluorescens Cu-ion sensor.
Collapse
Affiliation(s)
- Olesja Bondarenko
- Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
| | | | | | | |
Collapse
|
253
|
Yang WJ, Pranantyo D, Neoh KG, Kang ET, Teo SLM, Rittschof D. Layer-by-Layer Click Deposition of Functional Polymer Coatings for Combating Marine Biofouling. Biomacromolecules 2012; 13:2769-80. [DOI: 10.1021/bm300757e] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Wen Jing Yang
- NUS Graduate
School for Integrative Science and Engineering, National University of Singapore, Kent Ridge, Singapore
117576
| | - Dicky Pranantyo
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore, 119260
| | - Koon-Gee Neoh
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore, 119260
| | - En-Tang Kang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore, 119260
| | - Serena Lay-Ming Teo
- Tropical Marine Science
Institute, National University of Singapore, Kent Ridge, Singapore, 119223
| | - Daniel Rittschof
- Nicholas School of
the Environment, Duke University Marine Laboratory, 135 Duke Marine Lab Road
Beaufort, North Carolina 28516-9721, United States
| |
Collapse
|
254
|
Abstract
AbstractBooster biocides are organic compounds that are added to antifouling copper-based paints to improve their efficacy. Due to their widespread use, they are common pollutants of marine ecosystems. Some of these compounds show acute and chronic toxic effects in non-targeted organisms at concentrations as low as ng L−1. The determination of these compounds is therefore important, and for some, which are prioritized in the EU water framework directive, a necessity. Because of their low concentrations and the matrix effect, these contaminants often require a suitable sample preparation step (extraction/pre-concentration) prior to chromatographic determination. The aim of the present article is to review extraction and chromatographic methodologies related to the determination of common booster biocides in marine samples published in the scientific literature. These methodologies include liquid-liquid extraction (LLE), solid phase extraction (SPE), solid phase microextraction (SPME), single drop microextraction (SDME), Soxhlet extraction, microwave-assisted extraction (MAE), supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE) as extraction methods, and both gas and liquid chromatography as determination techniques.
Collapse
|
255
|
Lejars M, Margaillan A, Bressy C. Fouling Release Coatings: A Nontoxic Alternative to Biocidal Antifouling Coatings. Chem Rev 2012; 112:4347-90. [DOI: 10.1021/cr200350v] [Citation(s) in RCA: 786] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marlène Lejars
- Laboratoire
MAtériaux Polymères Interfaces
Environnement Marin (MAPIEM, E.A. 4323), Université du Sud Toulon-Var, ISITV, Avenue Georges Pompidou, BP-56,
83162 La Valette-du-Var Cedex, France
| | - André Margaillan
- Laboratoire
MAtériaux Polymères Interfaces
Environnement Marin (MAPIEM, E.A. 4323), Université du Sud Toulon-Var, ISITV, Avenue Georges Pompidou, BP-56,
83162 La Valette-du-Var Cedex, France
| | - Christine Bressy
- Laboratoire
MAtériaux Polymères Interfaces
Environnement Marin (MAPIEM, E.A. 4323), Université du Sud Toulon-Var, ISITV, Avenue Georges Pompidou, BP-56,
83162 La Valette-du-Var Cedex, France
| |
Collapse
|
256
|
Cho Y, Sundaram HS, Finlay JA, Dimitriou MD, Callow ME, Callow JA, Kramer EJ, Ober CK. Reconstruction of Surfaces from Mixed Hydrocarbon and PEG Components in Water: Responsive Surfaces Aid Fouling Release. Biomacromolecules 2012; 13:1864-74. [DOI: 10.1021/bm300363g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Youngjin Cho
- Department of Materials Science
and Engineering, Cornell University, Ithaca,
New York 14853, United States
| | - Harihara S. Sundaram
- Department of Materials Science
and Engineering, Cornell University, Ithaca,
New York 14853, United States
| | - John A. Finlay
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, United
Kingdom
| | - Michael D. Dimitriou
- Department of Materials, University of California, Santa Barbara, California
93106, United States
| | - Maureen E. Callow
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, United
Kingdom
| | - James A. Callow
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, United
Kingdom
| | - Edward J. Kramer
- Department of Materials, University of California, Santa Barbara, California
93106, United States
- Department
of Chemical Engineering, University of California, Santa Barbara, California
93106, United States
| | - Christopher K. Ober
- Department of Materials Science
and Engineering, Cornell University, Ithaca,
New York 14853, United States
| |
Collapse
|
257
|
Ma CF, Yang HJ, Zhang GZ. Anti-biofouling by degradation of polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2012. [DOI: 10.1007/s10118-012-1158-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
258
|
Guardiola FA, Cuesta A, Meseguer J, Esteban MA. Risks of using antifouling biocides in aquaculture. Int J Mol Sci 2012; 13:1541-1560. [PMID: 22408407 PMCID: PMC3291976 DOI: 10.3390/ijms13021541] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/11/2012] [Accepted: 01/19/2012] [Indexed: 11/16/2022] Open
Abstract
Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT). The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211®), Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine), zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i) predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii) the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF) biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms.
Collapse
Affiliation(s)
| | | | | | - Maria Angeles Esteban
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-868887665; Fax: +34-868883963
| |
Collapse
|
259
|
Sokolova A, Bailey JJ, Waltz GT, Brewer LH, Finlay JA, Fornalik J, Wendt DE, Callow ME, Callow JA, Bright FV, Detty MR. Spontaneous multiscale phase separation within fluorinated xerogel coatings for fouling-release surfaces. BIOFOULING 2012; 28:143-157. [PMID: 22303880 DOI: 10.1080/08927014.2012.659244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Four-component xerogel films consisting of 1 mole-% n-octadecyltrimethoxysilane (C18) and 50 mole-% tetraethoxysilane (TEOS) in combination with 1-24 mole-% tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane (TDF) and 25-48 mole-% n-octyltriethoxysilane (C8) and a 1:49:50 mole-% C18/TDF/TEOS were prepared. Settlement of barnacle cyprids and removal of juvenile barnacles, settlement of zoospores of the alga Ulva linza, and strength of attachment of 7-day sporelings (young plants) of Ulva were compared amongst the xerogel formulations. Several of the xerogel formulations were comparable to poly(dimethylsiloxane) elastomer with respect to removal of juvenile barnacles and removal of sporeling biomass. The 1:4:45:50 and 1:14:35:50 C18/TDF/C8/TEOS xerogels displayed some phase segregation by atomic force microscopy (AFM) pre- and post-immersion in water. Imaging reflectance infrared microscopy showed the formation of islands of alkane-rich and perfluoroalkane-rich regions in these same xerogels both pre- and post-immersion in water. Surface energies were unchanged upon immersion in water for 48 h amongst the TDF-containing xerogel coatings. AFM measurements demonstrated that surface roughness on the 1:4:45:50 and 1:14:35:50 C18/TDF/C8/TEOS xerogel coatings decreased upon immersion in water.
Collapse
Affiliation(s)
- Anastasiya Sokolova
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Tang JYM, Glenn E, Thoen H, Escher BI. In vitro bioassay for reactive toxicity towards proteins implemented for water quality monitoring. ACTA ACUST UNITED AC 2012; 14:1073-81. [DOI: 10.1039/c2em10927a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
261
|
Vucko MJ, King PC, Poole AJ, Carl C, Jahedi MZ, de Nys R. Cold spray metal embedment: an innovative antifouling technology. BIOFOULING 2012; 28:239-248. [PMID: 22428957 DOI: 10.1080/08927014.2012.670849] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The study demonstrates that embedment of copper particles into thermoplastic polymers (polymers) using cold spray technology is an effective deterrent against fouling organisms. Two polymers, high-density polyethylene (HDPE) and nylon were metallised with copper powder using cold spray technology. After 250 days in the field, Cu-embedded HDPE and copper plate controls were completely free of hard foulers compared to Cu-embedded nylon and polymer controls which were heavily fouled with both soft and hard fouling. Antifouling (AF) success is related to the interaction between the properties of the polymers (elastic modulus and hardness) and the cold spray process which affect particle embedment depth, and subsequently, the release of copper ions as determined by analytical techniques. Embedding metal using cold spray equipment is shown to be an effective AF technology for polymers, in particular those that are difficult to treat with standard AF coatings, with efficacy being a function of the interaction between the cold spray metal and the polymer recipient.
Collapse
Affiliation(s)
- M J Vucko
- School of Marine & Tropical Biology, James Cook University, Townsville, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
262
|
Ohlauson C, Eriksson KM, Blanck H. Short-term effects of medetomidine on photosynthesis and protein synthesis in periphyton, epipsammon and plankton communities in relation to predicted environmental concentrations. BIOFOULING 2012; 28:491-499. [PMID: 22594396 DOI: 10.1080/08927014.2012.687048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Medetomidine is a new antifouling substance, highly effective against barnacles. As part of a thorough ecotoxicological evaluation of medetomidine, its short-term effects on algal and bacterial communities were investigated and environmental concentrations were predicted with the MAMPEC model. Photosynthesis and bacterial protein synthesis for three marine communities, viz. periphyton, epipsammon and plankton were used as effect indicators, and compared with the predicted environmental concentrations (PECs). The plankton community showed a significant decrease in photosynthetic activity of 16% at 2 mg l⁻¹ of medetomidine, which was the only significant effect observed. PECs were estimated for a harbor, shipping lane and marina environment using three different model scenarios (MAMPEC default, Baltic and OECD scenarios). The highest PEC of 57 ng l⁻¹, generated for a marina with the Baltic scenario, was at least 10,000-fold lower than the concentration that significantly decreased photosynthetic activity. It is concluded that medetomidine does not cause any acute toxic effects on bacterial protein synthesis and only small acute effects on photosynthesis at high concentrations in marine microbial communities. It is also concluded that the hazard from medetomidine on these processes is low since the effect levels are much lower than the highest PEC.
Collapse
Affiliation(s)
- Cecilia Ohlauson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Box 461, SE-405 30, Sweden.
| | | | | |
Collapse
|
263
|
Imbesi PM, Finlay JA, Aldred N, Eller MJ, Felder SE, Pollack KA, Lonnecker AT, Raymond JE, Mackay ME, Schweikert EA, Clare AS, Callow JA, Callow ME, Wooley KL. Targeted surface nanocomplexity: two-dimensional control over the composition, physical properties and anti-biofouling performance of hyperbranched fluoropolymer–poly(ethylene glycol) amphiphilic crosslinked networks. Polym Chem 2012. [DOI: 10.1039/c2py20317k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
264
|
Guo S, Lee HP, Teo SLM, Khoo BC. Inhibition of barnacle cyprid settlement using low frequency and intensity ultrasound. BIOFOULING 2012; 28:131-141. [PMID: 22296259 DOI: 10.1080/08927014.2012.658511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Low frequency, low intensity ultrasound was demonstrated as an effective inhibitor of barnacle cyprid settlement. When the same substratum vibration amplitude (10.05 nm) and acoustic pressure (5 kPa) were applied, ultrasound at a frequency of 23 kHz significantly reduced cyprid settlement. The mechanism appeared to differ from the ultrasonic cavitation induced inhibition previously reported as no increased mortality was observed, and no change in the exploratory behaviour of cyprids was observed when they were exposed to this continuous ultrasonic irradiation regime. The application of ultrasound treatment in an intermittent mode of '5 min on and 20 min off' at 20-25 kHz and at the low intensity of 5 kPa produced the same effect as the continuous application of 23 kHz. This energy efficient approach to the use of low frequency, low intensity ultrasound may present a promising and efficient strategy regarding irradiation treatment for antifouling applications.
Collapse
Affiliation(s)
- Shifeng Guo
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117576.
| | | | | | | |
Collapse
|
265
|
Fitridge I, Dempster T, Guenther J, de Nys R. The impact and control of biofouling in marine aquaculture: a review. BIOFOULING 2012; 28:649-69. [PMID: 22775076 DOI: 10.1080/08927014.2012.700478] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Biofouling in marine aquaculture is a specific problem where both the target culture species and/or infrastructure are exposed to a diverse array of fouling organisms, with significant production impacts. In shellfish aquaculture the key impact is the direct fouling of stock causing physical damage, mechanical interference, biological competition and environmental modification, while infrastructure is also impacted. In contrast, the key impact in finfish aquaculture is the fouling of infrastructure which restricts water exchange, increases disease risk and causes deformation of cages and structures. Consequently, the economic costs associated with biofouling control are substantial. Conservative estimates are consistently between 5-10% of production costs (equivalent to US$ 1.5 to 3 billion yr(-1)), illustrating the need for effective mitigation methods and technologies. The control of biofouling in aquaculture is achieved through the avoidance of natural recruitment, physical removal and the use of antifoulants. However, the continued rise and expansion of the aquaculture industry and the increasingly stringent legislation for biocides in food production necessitates the development of innovative antifouling strategies. These must meet environmental, societal, and economic benchmarks while effectively preventing the settlement and growth of resilient multi-species consortia of biofouling organisms.
Collapse
Affiliation(s)
- Isla Fitridge
- Sustainable Aquaculture Laboratory - Temperate and Tropical (SALTT), Department of Zoology, University of Melbourne, 3010 Victoria, Australia.
| | | | | | | |
Collapse
|
266
|
Li Y, Zhang F, Xu Y, Matsumura K, Han Z, Liu L, Lin W, Jia Y, Qian PY. Structural optimization and evaluation of butenolides as potent antifouling agents: modification of the side chain affects the biological activities of compounds. BIOFOULING 2012; 28:857-864. [PMID: 22920194 DOI: 10.1080/08927014.2012.717071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A recent global ban on the use of organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. In this study, a series of new butenolide derivatives with various amine side chains was synthesized and evaluated for their anti-larval settlement activities in the barnacle, Balanus amphitrite. Side chain modification of butenolide resulted in butenolides 3c-3d, which possessed desirable physico-chemical properties and demonstrated highly effective non-toxic anti-larval settlement efficacy. A structure-activity relationship analysis revealed that varying the alkyl side chain had a notable effect on anti-larval settlement activity and that seven to eight carbon alkyl side chains with a tert-butyloxycarbonyl (Boc) substituent on an amine terminal were optimal in terms of bioactivity. Analysis of the physico-chemical profile of butenolide analogues indicated that lipophilicity is a very important physico-chemical parameter contributing to bioactivity.
Collapse
Affiliation(s)
- Yongxin Li
- KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong , PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Martinelli E, Sarvothaman MK, Galli G, Pettitt ME, Callow ME, Callow JA, Conlan SL, Clare AS, Sugiharto AB, Davies C, Williams D. Poly(dimethyl siloxane) (PDMS) network blends of amphiphilic acrylic copolymers with poly(ethylene glycol)-fluoroalkyl side chains for fouling-release coatings. II. Laboratory assays and field immersion trials. BIOFOULING 2012; 28:571-582. [PMID: 22702904 DOI: 10.1080/08927014.2012.697897] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Amphiphilic copolymers containing different amounts of poly(ethylene glycol)-fluoroalkyl acrylate and polysiloxane methacrylate units were blended with a poly(dimethyl siloxane) (PDMS) matrix in different proportions to investigate the effect of both copolymer composition and loading on the biological performance of the coatings. Laboratory bioassays revealed optimal compositions for the release of sporelings of Ulva linza, and the settlement of cypris larvae of Balanus amphitrite. The best-performing coatings were subjected to field immersion tests. Experimental coatings containing copolymer showed significantly reduced levels of hard fouling compared to the control coatings (PDMS without copolymer), their performance being equivalent to a coating based on Intersleek 700™. XPS analysis showed that only small amounts of fluorine at the coating surface were sufficient for good antifouling/fouling-release properties. AFM analyses of coatings under immersion showed that the presence of a regular surface structure with nanosized domains correlated with biological performance.
Collapse
Affiliation(s)
- Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM, Università di Pisa, 56126, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Kaffashi A, Jannesari A, Ranjbar Z. Silicone fouling-release coatings: effects of the molecular weight of poly(dimethylsiloxane) and tetraethyl orthosilicate on the magnitude of pseudobarnacle adhesion strength. BIOFOULING 2012; 28:729-741. [PMID: 22793997 DOI: 10.1080/08927014.2012.702342] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A series of poly(dimethyl siloxane) (PDMS)/silica nanocomposites were synthesized utilizing a sol gel method. The samples were evaluated using pseudobarnacle adhesion and tensile strength tests. The effects of the molecular weight of the PDMS and the size and structure of the silica domains on biofouling release and the mechanical behavior of the PDMS/silica materials were investigated. Three different molecular weights (18,000, 49,000 and 79,000 g mol(-1)) of hydroxyl-terminated PDMS (HT-PDMS) were used to prepare the nanocomposites with three different weight ratios (1:1, 3:1 and 5:1) of HT-PDMS to tetraethyl orthosilicate (TEOS). TEOS served as a crosslinker to form PDMS networks and as a precursor to form silica domains. Two different variants of TEOS with regard to its degree of polymerization (n) (monomeric type: n ≈= 1 and oligomeric type: n ≈= 5) were used for in situ formation of silica particles via the sol-gel process. The mechanical properties of the composites were characterized using stress-strain isotherms. All the mechanical properties evaluated (Young's modulus, tensile strength, energy required for rupture, elongation at break) improved with increases in the molecular weight of the HT-PDMS and the silica content. The pseudobarnacle adhesion test was used to examine the fouling- release (FR) properties of coatings applied on aluminum plates. The rupture energy and tensile strength increased substantially when oligomeric TEOS was employed in the PDMS/silica composites. Scanning electron microscopy (SEM) was used to investigate the structure of the silica domains. It was found that the use of oligomeric TEOS in higher molecular weight PDMS samples with higher PDMS/TEOS weight ratios led to low pseudobarnacle adhesion strengths of ≈ 0.3 MPa, which is in the range of commercial FR coatings.
Collapse
Affiliation(s)
- Azadeh Kaffashi
- Institute for Color Science and Technology, Tehran, 16765-654, Iran
| | | | | |
Collapse
|
269
|
Evariste E, Gachon CMM, Callow ME, Callow JA. Development and characteristics of an adhesion bioassay for ectocarpoid algae. BIOFOULING 2012; 28:15-27. [PMID: 22146003 DOI: 10.1080/08927014.2011.643466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Species of filamentous brown algae in the family Ectocarpaceae are significant members of fouling communities. However, there are few systematic studies on the influence of surface physico-chemical properties on their adhesion. In the present paper the development of a novel, laboratory-based adhesion bioassay for ectocarpoid algae, at an appropriate scale for the screening of sets of experimental samples in well-replicated and controlled experiments is described. The assays are based on the colonization of surfaces from a starting inoculum consisting of multicellular filaments obtained by blending the cultured alga Ectocarpus crouaniorum. The adhesion strength of the biomass after 14 days growth was assessed by applying a hydrodynamic shear stress. Results from adhesion tests on a set of standard surfaces showed that E. crouaniorum adhered more weakly to the amphiphilic Intersleek® 900 than to the more hydrophobic Intersleek® 700 and Silastic® T2 coatings. Adhesion to hydrophilic glass was also weak. Similar results were obtained for other cultivated species of Ectocarpus but differed from those obtained with the related ectocarpoid species Hincksia secunda. The response of the ectocarpoid algae to the surfaces was also compared to that for the green alga, Ulva.
Collapse
|
270
|
Dimitriou MD, Zhou Z, Yoo HS, Killops KL, Finlay JA, Cone G, Sundaram HS, Lynd NA, Barteau KP, Campos LM, Fischer DA, Callow ME, Callow JA, Ober CK, Hawker CJ, Kramer EJ. A general approach to controlling the surface composition of poly(ethylene oxide)-based block copolymers for antifouling coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13762-13772. [PMID: 21888355 DOI: 10.1021/la202509m] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To control the surface properties of a polystyrene-block-poly(ethylene oxide) diblock copolymer, perfluorinated chemical moieties were specifically incorporated into the block copolymer backbone. A polystyrene-block-poly[(ethylene oxide)-stat-(allyl glycidyl ether)] [PS-b-P(EO-stat-AGE)] statistical diblock terpolymer was synthesized with varying incorporations of allyl glycidyl ether (AGE) in the poly(ethylene oxide) block from 0 to 17 mol %. The pendant alkenes of the AGE repeat units were subsequently functionalized by thiol-ene chemistry with 1H,1H,2H,2H-perfluorooctanethiol, yielding fluorocarbon-functionalized AGE (fAGE) repeat units. (1)H NMR spectroscopy and size-exclusion chromatography indicated well-defined structures with complete functionalization of the pendant alkenes. The surfaces of the polymer films were characterized after spray coating by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS), showing that the P(EO-stat-fAGE) block starts to compete with polystyrene to populate the surface after only 1 mol % incorporation of fAGE. Increasing the incorporation of fAGE led to an increased amount of perfluorocarbons on the surface and a decrease in the concentration of PS. At a fAGE incorporation of 8 mol %, PS was not detected at the surface, as measured by NEXAFS spectroscopy. Water contact angles measured by the captive-air-bubble technique showed the underwater surfaces to be dynamic, with advancing and receding contact angles varying by >20°. Protein adsorption studies demonstrated that the fluorinated surfaces effectively prevent nonspecific binding of proteins relative to an unmodified PS-b-PEO diblock copolymer. In biological systems, settlement of spores of the green macroalga Ulva was significantly lower for the fAGE-incorporated polymers compared to the unmodified diblock and a polydimethylsiloxane elastomer standard. Furthermore, the attachment strength of sporelings (young plants) of Ulva was also reduced for the fAGE-containing polymers, affirming their potential as fouling-release coatings.
Collapse
Affiliation(s)
- Michael D Dimitriou
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Zargiel KA, Coogan JS, Swain GW. Diatom community structure on commercially available ship hull coatings. BIOFOULING 2011; 27:955-65. [PMID: 21932984 DOI: 10.1080/08927014.2011.618268] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Diatoms are primary colonizers of both antifouling and fouling-release ship hull coatings. There are few published studies which report on diatom community development on modern ship hull coatings. This study reports diatom communities on eight commercial marine ship hull coatings exposed at three static immersion sites along the east coast of Florida, viz. Daytona, Sebastian, and Miami. The coatings tested were three ablative copper systems (Ameron ABC-3, International BRA-640, and Hempel Olympic 76600), two copper-free biocidal systems (E-Paint SN-1, Sherwin Williams HMF), and three fouling-release (FR) systems (International Intersleek 700, International Intersleek 900, and Hempel Hempasil). One hundred and twenty-seven species comprising 44 genera were identified, including some of the more commonly known foulers, viz. Achnanthes, Amphora, Cocconeis, Entomoneis, Licmophora, Melosira, Navicula, Nitzschia, Synedra, and Toxarium. A significant difference was seen among sites, with the more estuarine site, Sebastian, having lower overall diatom abundance and higher diversity than Daytona and Miami. Copper coatings were primarily fouled by Amphora delicatissima and Entomoneis pseudoduplex. Copper-free coatings were fouled by Cyclophora tenuis, A. delicatissima, Achnanthes manifera, and Amphora bigibba. FR surfaces were typified by C. tenuis, and several species of Amphora. The presence of C. tenuis is new to the biofouling literature, but as new coatings are developed, this diatom may be one of many that prove to be problematic for static immersion. Results show coatings can be significantly influenced by geographical area, highlighting the need to test ship hull coatings in locations similar to where they will be utilized.
Collapse
Affiliation(s)
- Kelli A Zargiel
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida, USA.
| | | | | |
Collapse
|
272
|
Pinori E, Berglin M, Brive LM, Hulander M, Dahlström M, Elwing H. Multi-seasonal barnacle (Balanus improvisus) protection achieved by trace amounts of a macrocyclic lactone (ivermectin) included in rosin-based coatings. BIOFOULING 2011; 27:941-953. [PMID: 21929470 DOI: 10.1080/08927014.2011.616636] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Rosin-based coatings loaded with 0.1% (w/v) ivermectin were found to be effective in preventing colonization by barnacles (Balanus improvisus) both on test panels as well as on yachts for at least two fouling seasons. The leaching rate of ivermectin was determined by mass-spectroscopy (LC/MS-MS) to be 0.7 ng cm(-2) day(-1). This low leaching rate, as deduced from the Higuchi model, is a result of the low loading, low water solubility, high affinity to the matrix and high molar volume of the model biocide. Comparison of ivermectin and control areas of panels immersed in the field showed undisturbed colonisation of barnacles after immersion for 35 days. After 73 days the mean barnacle base plate area on the controls was 13 mm(2), while on the ivermectin coating it was 3 mm(2). After 388 days, no barnacles were observed on the ivermectin coating while the barnacles on the control coating had reached a mean of 60 mm(2). In another series of coated panels, ivermectin was dissolved in a cosolvent mixture of propylene glycol and glycerol formal prior to the addition to the paint base. This method further improved the anti-barnacle performance of the coatings. An increased release rate (3 ng cm(-2) day(-1)) and dispersion of ivermectin, determined by fluorescence microscopy, and decreased hardness of the coatings were the consequences of the cosolvent mixture in the paint. The antifouling mechanism of macrocyclic lactones, such as avermectins, needs to be clarified in further studies. Beside chronic intoxication as ivermectin is slowly released from the paint film even contact intoxication occurring inside the coatings, triggered by penetration of the coating by barnacles, is a possible explanation for the mode of action and this is under investigation.
Collapse
Affiliation(s)
- Emiliano Pinori
- Department of Cell and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
273
|
Ellesat KS, Yazdani M, Holth TF, Hylland K. Species-dependent sensitivity to contaminants: an approach using primary hepatocyte cultures with three marine fish species. MARINE ENVIRONMENTAL RESEARCH 2011; 72:216-224. [PMID: 21963059 DOI: 10.1016/j.marenvres.2011.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 05/31/2023]
Abstract
There is limited knowledge about the sensitivity of different fish species to environmental pollutants. Such information is pivotal in risk assessment and to understand why some species appear to be more tolerant to contaminants than others. The aim of the current study was to evaluate whether primary hepatocyte cultures of three marine fish species could be established in the field and whether their sensitivity to selected contaminants would differ. Primary hepatocyte cultures of three marine fish species (plaice, long rough dab, Atlantic cod) were established and exposed for 24 h to copper (20-2500 mg L⁻¹) and statins (1-200 mg L⁻¹). Endpoints were esterase activity, metabolic activity and reduced glutathione (GSH) content, all using fluorescent probes. Flatfish hepatocytes were more susceptible to copper and statin exposure than hepatocytes from cod. This study has shown that species-dependent differences in contaminant sensitivity can be investigated using primary hepatocyte cultures.
Collapse
|
274
|
Wang Y, Finlay JA, Betts DE, Merkel TJ, Luft JC, Callow ME, Callow JA, DeSimone JM. Amphiphilic co-networks with moisture-induced surface segregation for high-performance nonfouling coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10365-10369. [PMID: 21827199 DOI: 10.1021/la202427z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Herein we report the design of a photocurable amphiphilic co-network consisting of perfluoropolyether and poly(ethylene glycol) segments that display outstanding nonfouling characteristics with respect to spores of green fouling alga Ulva when cured under high humidity conditions. The analysis of contact angle hysteresis revealed that the poly(ethylene glycol) density at the surface was enhanced when cured under high humidity. The nonfouling behavior of nonbiocidal surfaces against marine fouling is rare because such surfaces usually reduce the adhesion of organisms rather than inhibit colonization. We propose that the resultant surface segregation of these materials induced by high humidity may be a promising strategy for achieving nonfouling materials, and such an approach is more important than simply concentrating poly(ethylene glycol) moieties at an interface because the low surface energy has been maintained in our work.
Collapse
Affiliation(s)
- Yapei Wang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
275
|
Lennquist A, Asker N, Kristiansson E, Brenthel A, Björnsson BT, Kling P, Hultman M, Larsson DGJ, Förlin L. Physiology and mRNA expression in rainbow trout (Oncorhynchus mykiss) after long-term exposure to the new antifoulant medetomidine. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:234-41. [PMID: 21703361 DOI: 10.1016/j.cbpc.2011.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 02/04/2023]
Abstract
Medetomidine is under evaluation for use as an antifouling agent, and its effects on non-target aquatic organisms are therefore of interest. In this study, rainbow trout was exposed to low (0.5 and 5.0nM) concentrations of medetomidine for up to 54 days. Recently we have reported on effects on paleness and melanophore aggregation of medetomidine in these fish. Here, specific growth rates were investigated together with a broad set of physiological parameters including plasma levels of growth hormone (GH), insulin-like growth factor-I (IGF-I) and leptin, glucose and haemoglobin (Hb), hematocrit (Ht), condition factor, liver and heart somatic indexes (LSI, HSI). Hepatic enzyme activities of CYP1A (EROD activity), glutathione S-transferases (GST) and glutathione reductase (GR) were also measured. Additionally, hepatic mRNA expression was analysed through microarray and quantitative PCR in fish sampled after 31 days of exposure. Medetomidine at both concentrations significantly lowered blood glucose levels and the higher concentration significantly reduced the LSI. The mRNA expression analysis revealed few differentially expressed genes in the liver and the false discovery rate was high. Taken together, the results suggest that medetomidine at investigated concentrations could interfere with carbohydrate metabolism of exposed fish but without any clear consequences for growth.
Collapse
Affiliation(s)
- Anna Lennquist
- Department of Zoology/Zoophysiology, University of Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Cooper SP, Finlay JA, Cone G, Callow ME, Callow JA, Brennan AB. Engineered antifouling microtopographies: kinetic analysis of the attachment of zoospores of the green alga Ulva to silicone elastomers. BIOFOULING 2011; 27:881-891. [PMID: 21882899 DOI: 10.1080/08927014.2011.611305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Microtopography has been demonstrated as an effective deterrent to biofouling. The majority of published studies are fixed-time assays that raise questions regarding the kinetics of the attachment process. This study investigated the time-dependent attachment density of zoospores of Ulva, in a laboratory assay, on a micropatterned and smooth silicone elastomer. The attachment density of zoospores was reduced on average 70-80% by the microtopography relative to smooth surfaces over a 4 h exposure. Mapping the zoospore locations on the topography revealed that they settled preferentially in specific, recessed areas of the pattern. The kinetic data fit, with high correlation (r(2) > 0.9), models commonly used to describe the adhesion of bacteria to surfaces. The grouping of spores on the microtopography indicated that the pattern inhibited the ability of attached spores to recruit neighbors. This study demonstrates that the antifouling mechanism of topographies may involve disruption of the cooperative effects exhibited by fouling organisms such as Ulva.
Collapse
Affiliation(s)
- Scott P Cooper
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | |
Collapse
|
277
|
Sundaram HS, Cho Y, Dimitriou MD, Finlay JA, Cone G, Williams S, Handlin D, Gatto J, Callow ME, Callow JA, Kramer EJ, Ober CK. Fluorinated amphiphilic polymers and their blends for fouling-release applications: the benefits of a triblock copolymer surface. ACS APPLIED MATERIALS & INTERFACES 2011; 3:3366-3374. [PMID: 21830813 DOI: 10.1021/am200529u] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Surface active triblock copolymers (SABC) with mixed polyethylene glycol (PEG) and two different semifluorinated alcohol side chains, one longer than the other, were blended with a soft thermoplastic elastomer (TPE), polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS). The surface composition of these blends was probed by X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The surface reconstruction of the coatings in water was monitored qualitatively by dynamic water contact angles in air as well as air bubble contact angle measurements in water. By blending the SABC with SEBS, we minimize the amount of the SABC used while achieving a surface that is not greatly different in composition from the pure SABC. The 15 wt % blends of the SABC with long fluoroalkyl side chains showed a composition close to that of the pure SABC while the SABC with shorter perfluoroakyl side chains did not. These differences in surface composition were reflected in the fouling-release performance of the blends for the algae, Ulva and Navicula.
Collapse
Affiliation(s)
- Harihara S Sundaram
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Dobretsov S, Thomason JC. The development of marine biofilms on two commercial non-biocidal coatings: a comparison between silicone and fluoropolymer technologies. BIOFOULING 2011; 27:869-880. [PMID: 21864210 DOI: 10.1080/08927014.2011.607233] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The antimicrobial performance of two fouling-release coating systems, Intersleek 700® (IS700; silicone technology), Intersleek 900® (IS900; fluoropolymer technology) and a tie coat (TC, control surface) was investigated in a short term (10 days) field experiment conducted at a depth of ca 0.5 m in the Marina Bandar Rawdha (Muscat, Oman). Microfouling on coated glass slides was analyzed using epifluorescence microscopy and adenosine-5'-triphosphate (ATP) luminometry. All the coatings developed biofilms composed of heterotrophic bacteria, cyanobacteria, seven species of diatoms (2 species of Navicula, Cylindrotheca sp., Nitzschia sp., Amphora sp., Diploneis sp., and Bacillaria sp.) and algal spores (Ulva sp.). IS900 had significantly thinner biofilms with fewer diatom species, no algal spores and the least number of bacteria in comparison with IS700 and the TC. The ATP readings did not correspond to the numbers of bacteria and diatoms in the biofilms. The density of diatoms was negatively correlated with the density of the bacteria in biofilms on the IS900 coating, and, conversely, diatom density was positively correlated in biofilms on the TC. The higher antifouling efficacy of IS900 over IS700 may lead to lower roughness and thus lower fuel consumption for those vessels that utilise the IS900 fouling-release coating.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Marine Science and Fisheries Department, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123, PO Box 34, Oman.
| | | |
Collapse
|
279
|
Piazza V, Roussis V, Garaventa F, Greco G, Smyrniotopoulos V, Vagias C, Faimali M. Terpenes from the red alga Sphaerococcus coronopifolius inhibit the settlement of barnacles. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:764-772. [PMID: 21181424 DOI: 10.1007/s10126-010-9337-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 11/30/2010] [Indexed: 05/30/2023]
Abstract
In this study, we screened eight terpenes isolated from the organic extract of Sphaerococcus coronopifolius for their antifouling activity in order to find possible new sources of non-toxic or less toxic bioactive antifoulants. The anti-settlement activity (EC₅₀) and the degree of toxicity (LC₅₀) of S. coronopifolius metabolites was evaluated using larvae of the cirriped crustacean Amphibalanus (Balanus) amphitrite (cyprids and nauplii) as model organism. For five of eight tested metabolites EC₅₀ was lower than 5 mg/L. The most promising results were observed for bromosphaerol (3), which expressed an EC₅₀ value of 0.23 mg/L, in combination with low toxicity levels (LC₅₀ > 100 mg/L). The therapeutic ratio--an index used to estimate whether settlement inhibition is due to toxicity or other mechanisms--is also calculated and discussed.
Collapse
Affiliation(s)
- Veronica Piazza
- Institute of Marine Science (ISMAR) CNR, via De Marini 6, 16149 Genoa, Italy.
| | | | | | | | | | | | | |
Collapse
|
280
|
Mayer-Pinto M, Coleman RA, Underwood AJ, Tolhurst TJ. Effects of zinc on microalgal biofilms in intertidal and subtidal habitats. BIOFOULING 2011; 27:721-727. [PMID: 21756195 DOI: 10.1080/08927014.2011.600448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Microalgal biofilms are sensitive to environmental conditions. Impacts of contaminants on assemblages of marine biofilm are often investigated in laboratories or in mesocosms. Such experiments are rarely representative of the effects of contaminants on biofilms under natural conditions. Studies in field situations, with enough power to detect impacts, are necessary to develop a better understanding of the effects of contaminants on ecological processes. Metals are a common contaminant of marine systems and can cause disturbances to assemblages. Using a new technique to experimentally deliver contaminants to microalgal assemblages, hypotheses were tested regarding the effects of zinc on microalgal biofilms growing on settlement panels in subtidal and intertidal habitats. PAM fluorometry was used to assess the amount and physiological state of biofilms on panels. Control panels deployed for 1 month in each habitat had significantly greater amounts of biofilm than those exposed to zinc. After deployment for 3 months, the results varied with location. The observed effects on the biofilm did not, however, cause significant changes in the macro-invertebrate assemblages that developed on the panels.
Collapse
Affiliation(s)
- M Mayer-Pinto
- School of Biological Sciences, Marine Ecology Laboratories A11, University of Sydney, NSW, Australia.
| | | | | | | |
Collapse
|
281
|
Sundaram HS, Cho Y, Dimitriou MD, Weinman CJ, Finlay JA, Cone G, Callow ME, Callow JA, Kramer EJ, Ober CK. Fluorine-free mixed amphiphilic polymers based on PDMS and PEG side chains for fouling release applications. BIOFOULING 2011; 27:589-602. [PMID: 21985292 DOI: 10.1080/08927014.2011.587662] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fluorine-free mixed amphiphilic block copolymers with mixtures of short side groups of polydimethyl siloxane (PDMS) and polyethylene glycol (PEG) were synthesized and studied for their ability to influence the surface properties and control the adhesion of marine organisms to coated surfaces. The settlement (attachment) and strength of adhesion of two different marine algae, the green seaweed Ulva and the diatom Navicula, were evaluated against the surfaces. It is known that hydrophobic coatings based on polydimethyl siloxane elastomers (PDMSe) are prone to protein adsorption and accumulation of strongly adherent diatom slimes, in contrast to PEG-based hydrophilic surfaces that inhibit protein adsorption and moderate only weak adhesion of diatoms. By incorporating both PDMS and PEG side chains into the polymers, the effect of incorporating both polar and non-polar groups on fouling-release could be studied. The dry surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The ability of these mixed amphiphilic polymers to reconstruct in water was examined using underwater bubble contact angle and dynamic water contact angle experiments. To understand more about surface reconstruction behavior, protein adsorption experiments were carried out with fluorescein isothiocyanate-labeled bovine serum albumin (BSA-FITC) on both dry and pre-soaked surfaces.
Collapse
Affiliation(s)
- Harihara S Sundaram
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Cho Y, Sundaram HS, Weinman CJ, Paik MY, Dimitriou MD, Finlay JA, Callow ME, Callow JA, Kramer EJ, Ober CK. Triblock Copolymers with Grafted Fluorine-Free, Amphiphilic, Non-Ionic Side Chains for Antifouling and Fouling-Release Applications. Macromolecules 2011. [DOI: 10.1021/ma200269s] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Youngjin Cho
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Harihara S. Sundaram
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Marvin Y. Paik
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Michael D. Dimitriou
- Department of Materials, University of California, Santa Barbara, California 93106, United States
| | - John A. Finlay
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, U.K
| | - Maureen E. Callow
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, U.K
| | - James A. Callow
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, U.K
| | - Edward J. Kramer
- Department of Materials, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Christopher K. Ober
- Department of Materials Science & Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
283
|
Sánchez-Rodríguez A, Sosa-Ferrera Z, Santana-del Pino A, Santana-Rodríguez JJ. Probabilistic risk assessment of common booster biocides in surface waters of the harbours of Gran Canaria (Spain). MARINE POLLUTION BULLETIN 2011; 62:985-991. [PMID: 21396664 DOI: 10.1016/j.marpolbul.2011.02.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 02/12/2011] [Accepted: 02/18/2011] [Indexed: 05/30/2023]
Abstract
The presence of booster biocides in the aquatic environment has been associated with a risk to non-target species due to their proven toxicity. The aim of the present study was to determine the spatial and temporal distribution of common booster biocides in different harbours of the island of Gran Canaria (Spain) and evaluate, by means of a probabilistic risk assessment (PRA), the ecological risk posed by these compounds. With these objectives, a monitoring campaign was conducted between January 2008 and May 2009, collecting a total of 182 seawater samples. Four common booster biocides (TCMTB, diuron, Irgarol 1051 and dichlofluanid) were monitored. Diuron levels ranged between 2.3 and 203 ng/L and Irgarol 1051 between 2.4 and 146.5 ng/L. The ecological risk associated with these levels was always low, however, with probabilities of exceeding the 10th percentile of autotroph toxicity below 3.5%.
Collapse
Affiliation(s)
- Alvaro Sánchez-Rodríguez
- Departamento de Química, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | | | | | | |
Collapse
|
284
|
Martinelli E, Suffredini M, Galli G, Glisenti A, Pettitt ME, Callow ME, Callow JA, Williams D, Lyall G. Amphiphilic block copolymer/poly(dimethylsiloxane) (PDMS) blends and nanocomposites for improved fouling-release. BIOFOULING 2011; 27:529-541. [PMID: 21614701 DOI: 10.1080/08927014.2011.584972] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Amphiphilic diblock copolymers, Sz6 and Sz12, consisting of a poly(dimethylsiloxane) block (average degree of polymerisation = 132) and a PEGylated-fluoroalkyl modified polystyrene block (Sz, average degree of polymerisation = 6, 12) were prepared by atom transfer radical polymerization (ATRP). Coatings were obtained from blends of either block copolymer (1-10 wt%) with a poly(dimethylsiloxane) (PDMS) matrix. The coating surface presented a simultaneous hydrophobic and lipophobic character, owing to the strong surface segregation of the lowest surface energy fluoroalkyl chains of the block copolymer. Surface chemical composition and wettability of the films were affected by exposure to water. Block copolymer Sz6 was also blended with PDMS and a 0.1 wt% amount of multiwall carbon nanotubes (CNT). The excellent fouling-release (FR) properties of these new coatings against the macroalga Ulva linza essentially resulted from the inclusion of the amphiphilic block copolymer, while the addition of CNT did not appear to improve the FR properties.
Collapse
Affiliation(s)
- Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM, Universita di Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA, Santhoshkumar T, Kirthi AV, Jayaseelan C, Marimuthu S. Copper nanoparticles synthesized by polyol process used to control hematophagous parasites. Parasitol Res 2011; 109:1403-15. [PMID: 21526405 DOI: 10.1007/s00436-011-2387-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 04/06/2011] [Indexed: 11/26/2022]
Abstract
The present study was based on assessments of the anti-parasitic activities of the hematophagous (blood feeding) larvae of malaria vector, Anopheles subpictus Grassi, filariasis vector, Culex quinquefasciatus, Say (Diptera: Culicidae), and the larvae of cattle tick Rhipicephalus (Boophilus) microplus, Canestrini (Acari: Ixodidae). The metallic copper nanoparticles (Cu NPs) synthesized by polyol process from copper acetate as precursor and Tween 80 were used as both the medium and the stabilizing reagent. The efficacy of synthesized Cu NPs was tested against the larvae of blood-sucking parasites. UV-vis spectra characterization was performed, and peak was observed at 575 nm, which is the characteristic to the surface plasmon bond of Cu NPs. The strong surface plasmon absorption band observed at 575 nm may be due to the formation of non-oxidized Cu NPs. X-ray diffraction (XRD) spectral data showed concentric rings corresponding to the 26.79 (111), 34.52 (200), and 70.40 (220) reflections. XRD spectrum of the copper nanoparticles exhibited 2θ values corresponding to the copper nanocrystal. No peaks of impurities are observed in XRD data. The scanning electron micrograph (SEM) showed structures of irregular polygonal, cylindrical shape, and the size range was found to be 35-80 nm. The size of the Cu NPs was measured by atomic force microscope (AFM) in non-contact mode. For imaging by AFM, the sample was suspended in acetone and spins coated on a silicon wafer. The line profile image was drawn by the XEI software and the horizontal line at 6 μm on a 2D AFM image. Research has demonstrated that metallic nanoparticles produce toxicity in aquatic organisms that is due largely to effects of particulates as opposed to release of dissolved ions. Copper acetate solution tested against the parasite larvae exposed to varying concentrations and the larval mortality was observed for 24 h. The larval percent mortality observed in synthesized Cu NPs were 36, 49, 75, 93,100; 32, 53, 63, 73, and 100 and 36, 47, 69, 88, 100 at 0.5, 1.0, 2.0, 4.0, and 8.0 mg/L against A. subpictus, C. quinquefasciatus and R. microplus, respectively. The larval percent mortality shown in copper acetate solution were 16, 45, 57, 66 and 100, 37, 58, 83, 87, and 100 and 41, 59, 79, 100, and 100 at 10, 20, 30, 40, and 50 mg/L against A. subpictus, C. quinquefasciatus, and R. microplus, respectively. The maximum efficacy was observed in Cu NPs and copper acetate solution against the larvae of A. subpictus, C. quinquefasciatus, and R. microplus with LC(50) and r (2) values of 0.95 and 23.47, 1.01 and 15.24, and 1.06 and 14.14 mg/L with r (2) = 0.766; 0.957 and 0.908; 0.946; and 0.816 and 0.945, respectively. The control (distilled water) showed nil mortality in the concurrent assay. The chi-square value was significant at p ≤ 0.05 level. This is the first report on anti-parasitic activity of the synthesized Cu NPs and copper acetate solution.
Collapse
Affiliation(s)
- Jeyaraman Ramyadevi
- Nanoscience and Technology Laboratory, Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, 626 005, Tamil Nadu, India
| | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun 2011; 2:244. [DOI: 10.1038/ncomms1251] [Citation(s) in RCA: 830] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 02/23/2011] [Indexed: 12/14/2022] Open
|
287
|
Dafforn KA, Lewis JA, Johnston EL. Antifouling strategies: history and regulation, ecological impacts and mitigation. MARINE POLLUTION BULLETIN 2011; 62:453-65. [PMID: 21324495 DOI: 10.1016/j.marpolbul.2011.01.012] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 05/05/2023]
Abstract
Biofouling increases drag on marine vessels resulting in higher fuel consumption and can also facilitate the transport of harmful non-indigenous species (NIS). Antifouling technologies incorporating biocides (e.g., copper and tributyltin) have been developed to prevent settlement of organisms on vessels, but their widespread use has introduced high levels of contamination into the environment and raised concerns about their toxic effects on marine communities. The recent global ban on tributyltin (1 January 2008) and increasing regulation of copper have prompted research and development of non-toxic paints. This review synthesises existing information regarding the ecological impact of biocides in a wide range of organisms and highlights directions for the management of antifouling paints. We focus particularly on representatives of the recent past (copper and tributyltin) and present (copper and 'booster') biocides. We identify knowledge gaps in antifouling research and provide recommendations relating to the regulation and phasing-out of copper.
Collapse
MESH Headings
- Biofouling/prevention & control
- Biofouling/statistics & numerical data
- Copper/analysis
- Disinfectants/analysis
- Disinfection/history
- Disinfection/legislation & jurisprudence
- Disinfection/methods
- Environment
- Environmental Restoration and Remediation
- Government Regulation
- History, 16th Century
- History, 17th Century
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Paint
- Trialkyltin Compounds/analysis
- Water Pollutants, Chemical/analysis
- Water Pollution, Chemical/legislation & jurisprudence
- Water Pollution, Chemical/prevention & control
- Water Pollution, Chemical/statistics & numerical data
Collapse
Affiliation(s)
- Katherine A Dafforn
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
288
|
Yang JL, Li YF, Bao WY, Satuito CG, Kitamura H. Larval metamorphosis of the mussel Mytilus galloprovincialis Lamarck, 1819 in response to neurotransmitter blockers and tetraethylammonium. BIOFOULING 2011; 27:193-199. [PMID: 21271410 DOI: 10.1080/08927014.2011.553717] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The metamorphic response of pediveliger larvae of Mytilus galloprovincialis to the neurotransmitter blockers chlorpromazine, amitriptyline, rauwolscine, idazoxan, atenolol and butoxamine, and to tetraethylammonium chloride (TEA) was investigated through a series of bioassays. Chlorpromazine, amitriptyline and idazoxin inhibited larval metamorphosis induced by 10⁻⁴ M epinephrine. The concentration that inhibited metamorphosis by 50% (IC₅₀) for chlorpromazine and amitriptyline was 1.6 x 10⁻⁶ M and 6.6 x 10⁻⁵ M, respectively. Idazoxan was less effective with an IC₅₀ of 4.4 x 10¹³ M. Moreover, these three inhibitors showed no toxicity at any of the concentrations tested. The larval metamorphic response to K+ was not inhibited by 10⁻³ M tetraethylammonium chloride after 96 h. Thus, the neurotransmitter blockers chlorpromazine and amitriptyline are inhibitors of larval metamorphosis, and will be useful tools for antifouling studies.
Collapse
Affiliation(s)
- Jin-Long Yang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
| | | | | | | | | |
Collapse
|
289
|
Gunari N, Brewer LH, Bennett SM, Sokolova A, Kraut ND, Finlay JA, Meyer AE, Walker GC, Wendt DE, Callow ME, Callow JA, Bright FV, Detty MR. The control of marine biofouling on xerogel surfaces with nanometer-scale topography. BIOFOULING 2011; 27:137-149. [PMID: 21213155 DOI: 10.1080/08927014.2010.548599] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mixtures of n-octadecyltrimethoxysilane (C18, 1-5 mole-%), n-octyltriethoxysilane (C8) and tetraethoxysilane (TEOS) gave xerogel surfaces of varying topography. The 1:49:50 C18/C8/TEOS xerogel formed 100-400-nm-wide, 2-7-nm deep pores by AFM while coatings with ≥3% C18 were free of such features. Segregation of the coating into alkane-rich and alkane-deficient regions in the 1:49:50 C18/C8/TEOS xerogel was observed by IR microscopy. Immersion in ASW for 48 h gave no statistical difference in surface energy for the 1:49:50 C18/C8/TEOS xerogel and a significant increase for the 50:50 C8/TEOS xerogel. Settlement of barnacle cyprids and removal of juvenile barnacles, settlement of zoospores of the alga Ulva linza, and strength of attachment of 7-day sporelings were compared amongst the xerogel formulations. Settlement of barnacle cyprids was significantly lower in comparison to glass and polystyrene standards. The 1:49:50 and 3:47:50 C18/C8/TEOS xerogels were comparable to PDMSE with respect to removal of juvenile barnacles and sporeling biomass, respectively.
Collapse
Affiliation(s)
- Nikhil Gunari
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Kitano Y, Akima C, Yoshimura E, Nogata Y. Anti-barnacle activity of novel simple alkyl isocyanides derived from citronellol. BIOFOULING 2011; 27:201-205. [PMID: 21279869 DOI: 10.1080/08927014.2011.553282] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Twenty novel simple alkyl isocyanides derived from citronellol were synthesized and evaluated for their antifouling activity and toxicity against cypris larvae of the barnacle, Balanus amphitrite. The anti-barnacle activity of the synthesized isocyanides was in the EC(50) range of 0.08-1.49 μg ml(-1). Simple isocyanides containing a benzoate and chloro group showed the most potent anti-barnacle activity. In addition, none of the synthesized compounds showed significant toxicity and LC(50) values were <10 μg ml(-1). The LC(50)/EC(50) ratios of almost all of the synthesized compounds were >10(2). The results indicate that these simple isocyanides are promising low-toxicity antifouling agents.
Collapse
Affiliation(s)
- Yoshikazu Kitano
- Laboratory of Bio-organic Chemistry, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.
| | | | | | | |
Collapse
|
291
|
Wang Y, Betts DE, Finlay JA, Brewer L, Callow ME, Callow JA, Wendt DE, DeSimone JM. Photocurable Amphiphilic Perfluoropolyether/Poly(ethylene glycol) Networks for Fouling-Release Coatings. Macromolecules 2011. [DOI: 10.1021/ma102271t] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yapei Wang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Douglas E. Betts
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | - Lenora Brewer
- Cal Poly, San Luis Obispo, Biological Sciences Department, San Luis Obispo, California 93407, United States
| | | | | | - Dean E. Wendt
- Cal Poly, San Luis Obispo, Biological Sciences Department, San Luis Obispo, California 93407, United States
| | - Joseph M. DeSimone
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
292
|
|
293
|
Blihoghe D, Manzo E, Villela A, Cutignano A, Picariello G, Faimali M, Fontana A. Evaluation of the antifouling properties of 3-alyklpyridine compounds. BIOFOULING 2011; 27:99-109. [PMID: 21181570 DOI: 10.1080/08927014.2010.542587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
One of the most promising alternative technologies to antifouling (AF) biocides based on toxic heavy metals lies in the development of natural eco-friendly biocides. The present study evaluates the AF potential of structurally different compounds containing a 3-alkylpyridine moiety. The products, namely poly 3-alkylpyridinium salts, saraine, and haminols, were either extracted or derived from natural sources (the sponges Haliclona sp. and Reniera sarai and the mollusc Haminoea fusari), or obtained by chemical synthesis. All the molecules tested showed generally good anti-settlement activity against larvae of the barnacle Amphibalanus (=Balanus) amphitrite (EC(50) values between 0.19 and 3.61 μg ml(-1) and low toxicity (LC(50) values ranging from 2.04 to over 100 μg ml(-1)) with non-target organisms. For the first time, the AF potential of a synthetic monomeric 3-alkylpyridine was demonstrated, suggesting that chemical synthesis is as a realistic way to produce large amounts of these compounds for future research and development of environmentally-friendly AF biocides.
Collapse
|
294
|
Wang Y, Pitet LM, Finlay JA, Brewer LH, Cone G, Betts DE, Callow ME, Callow JA, Wendt DE, Hillmyer MA, DeSimonea JM. Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene glycol) networks: towards high-performance antifouling coatings. BIOFOULING 2011; 27:1139-1150. [PMID: 22087876 DOI: 10.1080/08927014.2011.629344] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M(w) = 1500 g mol(-1)) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M(w) = 300, 475, 1100 g mol(-1)), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.
Collapse
Affiliation(s)
- Yapei Wang
- Department of Chemistry, University of North Carolina at Chapel Hill, 27514, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Heinlaan M, Kahru A, Kasemets K, Arbeille B, Prensier G, Dubourguier HC. Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: a transmission electron microscopy study. WATER RESEARCH 2011; 45:179-190. [PMID: 20828783 DOI: 10.1016/j.watres.2010.08.026] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/30/2010] [Accepted: 08/14/2010] [Indexed: 05/29/2023]
Abstract
This work is a follow-up of our previous paper (Heinlaan et al., 2008. Chemosphere 71, 1308-1316) where we showed about 50-fold higher acute toxicity of CuO nanoparticles (NPs) compared to bulk CuO to water flea Daphnia magna. In the current work transmission electron microscopy (TEM) was used to determine potential time-dependent changes in D. magna midgut epithelium ultrastructure upon exposure to CuO NPs compared to bulk CuO at their 48 h EC(50) levels: 4.0 and 175 mg CuO/L, respectively. Special attention was on potential internalization of CuO NPs by midgut epithelial cells. Ingestion of both CuO formulations by daphnids was evident already after 10 min of exposure. In the midgut lumen CuO NPs were dispersed whereas bulk CuO was clumped. By the 48th hour of exposure to CuO NPs (but not to equitoxic concentrations of bulk CuO) the following ultrastructural changes in midgut epithelium of daphnids were observed: protrusion of epithelial cells into the midgut lumen, presence of CuO NPs in circular structures analogous to membrane vesicles from holocrine secretion in the midgut lumen. Implicit internalization of CuO NPs via D. magna midgut epithelial cells was not evident however CuO NPs were no longer contained within the peritrophic membrane but located between the midgut epithelium microvilli. Interestingly, upon exposure to CuO NPs bacterial colonization of the midgut occurred. Ultrastructural changes in the midgut of D. magna upon exposure to CuO NPs but not to bulk CuO refer to its nanosize-related adverse effects. Time-dependent solubilisation of CuO NPs and bulk CuO in the test medium was quantified by recombinant Cu-sensor bacteria: by the 48th hour of exposure to bulk CuO, the concentration of solubilised copper ions was 0.05 ± 0.01 mg Cu/L that was comparable to the acute EC(50) value of Cu-ions to D. magna (48 h CuSO(4) EC(50) = 0.07 ± 0.01 mg Cu/L). However, in case of CuO NPs, the solubilised Cu-ions 0.01 ± 0.001 mg Cu/L, explained only part of the toxicity.
Collapse
Affiliation(s)
- Margit Heinlaan
- Laboratory of Molecular Genetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | | | | | | | | | | |
Collapse
|
296
|
Sánchez-Rodríguez A, Sosa-Ferrera Z, Santana-Rodríguez JJ. Applicability of microwave-assisted extraction combined with LC-MS/MS in the evaluation of booster biocide levels in harbour sediments. CHEMOSPHERE 2011; 82:96-102. [PMID: 20947123 DOI: 10.1016/j.chemosphere.2010.09.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 05/30/2023]
Abstract
A new sample treatment method for the determination of four common booster biocides (Diuron, TCMTB, Irgarol 1051 and Dichlofluanid) in harbour sediment samples has been developed that uses liquid chromatography-tandem mass spectrometry (LC-MS/MS) after microwave-assisted extraction, followed by clean-up and a solid phase extraction preconcentration step (MAE-SPE). The effects of different variables on MAE-SPE were studied. The recoveries obtained were greater than 75%, and the relative standard deviation was less than 7%. The detection limits ranged between 0.1 and 0.3 ng g⁻¹. The developed methodology was successfully applied to the evaluation of the presence of booster biocides in sediment samples from different harbours and marinas of Gran Canaria Island (Canary Islands, Spain).
Collapse
|
297
|
Schultz MP, Bendick JA, Holm ER, Hertel WM. Economic impact of biofouling on a naval surface ship. BIOFOULING 2011; 27:87-98. [PMID: 21161774 DOI: 10.1080/08927014.2010.542809] [Citation(s) in RCA: 587] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In the present study, the overall economic impact of hull fouling on a mid-sized naval surface ship (Arleigh Burke-class destroyer DDG-51) has been analyzed. A range of costs associated with hull fouling was examined, including expenditures for fuel, hull coatings, hull coating application and removal, and hull cleaning. The results indicate that the primary cost associated with fouling is due to increased fuel consumption attributable to increased frictional drag. The costs related to hull cleaning and painting are much lower than the fuel costs. The overall cost associated with hull fouling for the Navy's present coating, cleaning, and fouling level is estimated to be $56M per year for the entire DDG-51 class or $1B over 15 years. The results of this study provide guidance as to the amount of money that can be reasonably spent for research, development, acquisition, and implementation of new technologies or management strategies to combat hull fouling.
Collapse
Affiliation(s)
- M P Schultz
- Department of Naval Architecture and Ocean Engineering, United States Naval Academy, Annapolis, MD, USA.
| | | | | | | |
Collapse
|
298
|
Faÿ F, Linossier I, Carteau D, Dheilly A, Silkina A, Vallée-Rééhel K. Booster biocides and microfouling. BIOFOULING 2010; 26:787-798. [PMID: 20824571 DOI: 10.1080/08927014.2010.518234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Antifouling (AF) paints are used to prevent the attachment of living organisms to the submerged surfaces of ships, boats and aquatic structures, usually by the release of biocides. Apart from copper, organic booster biocides are the main active components in AF paints, but their use can have a negative impact on the marine environment. The direct effects of biocides on marine bacteria are poorly known. This work investigates the impact of two biocides, viz. diuron and tolylfluanid, on the growth and the viability of marine microorganisms and on their ability to form biofilms. The biocides in solution were found to inhibit growth of two strains of marine bacteria, viz. Pseudoalteromonas and Vibrio vulnificus, at a high concentration (1000 microg ml(-1)), but only a small effect on viability was observed. Confocal laser scanning microscopy (CLSM) showed that the booster biocides decreased biofilm formation by both bacteria. At a concentration of 10 microg ml(-1), the biocides inhibited cell attachment and reduced biofilm thickness on glass surfaces. The percentage of live cells in the biofilms was also reduced. The effect of the biocides on two diatoms, Fragilaria pinnata and Cylindrotheca closterium, was also evaluated in terms of growth rate, biomass, chlorophyll a content and attachment to glass. The results demonstrate that diuron and tolylfluanid are more active against diatoms than bacteria.
Collapse
Affiliation(s)
- Fabienne Faÿ
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), UE3884, Université de Bretagne Sud (UBS), Lorient, France.
| | | | | | | | | | | |
Collapse
|
299
|
Bressy C, Hellio C, Marechal JP, Tanguy B, Margaillan A. Bioassays and field immersion tests: a comparison of the antifouling activity of copper-free poly(methacrylic)-based coatings containing tertiary amines and ammonium salt groups. BIOFOULING 2010; 26:769-777. [PMID: 20818516 DOI: 10.1080/08927014.2010.516392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This paper focuses on the activity spectrum of three dimethylalkyl tertiary amines as potential active molecules and the corresponding ammonium salt-based antifouling (AF) paints. Bioassays (using marine bacteria, microalgae and barnacles) and field tests were combined to assess the AF activity of coatings. Bioassay results demonstrated that the ammonium salt-based paints did not inhibit the growth of microorganisms (except the dimethyldodecylammonium-based coatings) and that the tertiary amines were potent towards bacteria, diatoms, and barnacle larvae at non-toxic concentrations (therapeutic ratio, LC50/EC50, <1). The results from field tests indicated that the ammonium salt-based coatings inhibited the settlement of macrofouling and the dimethylhexadecylammonium-based coatings provided protection against slime in comparison with PVC blank panels. Thus, results from laboratory assays did not fully concur with the AF activity of the paints in the field trial.
Collapse
Affiliation(s)
- C Bressy
- Laboratoire Matériaux Polymères-Interfaces-Environnement Marin, E.A. 4323. Université du Sud Toulon Var, La Valette du Var, France.
| | | | | | | | | |
Collapse
|
300
|
Lennquist A, Mårtensson Lindblad LGE, Hedberg D, Kristiansson E, Förlin L. Colour and melanophore function in rainbow trout after long term exposure to the new antifoulant medetomidine. CHEMOSPHERE 2010; 80:1050-1055. [PMID: 20538317 DOI: 10.1016/j.chemosphere.2010.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 05/04/2010] [Accepted: 05/10/2010] [Indexed: 05/29/2023]
Abstract
Medetomidine is a new antifouling agent, and its effects in non-target aquatic organisms have been investigated. Earlier short-term studies in fish have shown a skin lightening response to medetomidine, but effects after chronic exposure have not been studied. In fish, the dark pigment melanin is contained within specialized cells, melanophores. Medetomidine binds to the melanophore alpha2-adrenoceptor, which stimulates pigment aggregation resulting in the light appearance. In the present study, rainbow trout (Oncorhynchus mykiss) was long-term exposed to 0.5 and 5.0 nM of medetomidine via water for 54 d. The fish were then photographed for paleness quantification and the images were analyzed using ImageJ analysis software. Additionally, scales were removed and used for in vitro function studies of the melanophores, monitoring the response to melanophore stimulating hormone (MSH) and subsequent medetomidine addition. The number of melanophores was also investigated. As a result of the medetomidine exposure, fish from the 5 nM treatment were significantly paler than control fish and the melanophores from these fishes were also more aggregated. Melanophores from all the treatments were functional, responding to MSH by dispersion and to subsequent medetomidine by aggregation. However, the results indicate a difference in sensitivity among treatments. The number of melanophores in the scales did not change significantly after long term exposure to medetomidine. These results suggest that the observed paleness may be reversible, even after chronic exposure.
Collapse
Affiliation(s)
- Anna Lennquist
- Department of Zoology/Zoophysiology, University of Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|