251
|
Trottein F, Triglia T, Cowman AF. Molecular cloning of a gene from Plasmodium falciparum that codes for a protein sharing motifs found in adhesive molecules from mammals and plasmodia. Mol Biochem Parasitol 1995; 74:129-41. [PMID: 8719155 DOI: 10.1016/0166-6851(95)02489-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adhesion of Plasmodium to host cells is an important phenomenon in parasite invasion and in malaria-associated pathology. We report here the molecular cloning of a putative adhesive molecule from P. falciparum that shares both sequence and structural similarities with a sporozoite surface molecule from Plasmodium termed the thrombospondin-related anonymous protein (TRAP) and, to a lesser extent, with the circumsporozoite (CS) protein. The gene, which is present on chromosome 3 as a single copy, was termed CTRP for CS protein-TRAP-related protein. The full-length CTRP encodes a protein containing a putative signal sequence followed by a long extracellular region of 1990 amino acids, a transmembrane domain, and a short cytoplasmic segment. The putative extracellular region of CTRP is defined by two separated adhesive domains. The first domain contains six 210-amino acid-long homologous repeats, the sequence of which is related to the A-type domain found in adhesive molecules including the alpha subunits of several integrins and a number of extracellular matrix glycoproteins. The second domain contains seven repeats of 87-60 amino acids in length, which share similarities with the thrombospondin type 1 domain found in a variety of adhesive molecules. Finally, CTRP also contains consensus motifs found in the superfamily of haematopoietin receptors. Interstrain analysis of eight different parasite isolates revealed that CTRP does not show size polymorphism except in repetitive regions flanking potential adhesive domains.
Collapse
Affiliation(s)
- F Trottein
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
252
|
|
253
|
Rogerson SJ, Chaiyaroj SC, Ng K, Reeder JC, Brown GV. Chondroitin sulfate A is a cell surface receptor for Plasmodium falciparum-infected erythrocytes. J Exp Med 1995; 182:15-20. [PMID: 7790815 PMCID: PMC2192085 DOI: 10.1084/jem.182.1.15] [Citation(s) in RCA: 265] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Adherence of Plasmodium falciparum-infected erythrocytes to cerebral postcapillary venular endothelium is believed to be a critical step in the development of cerebral malaria. Some of the possible receptors mediating adherence have been identified, but the process of adherence in vivo is poorly understood. We investigated the role of carbohydrate ligands in adherence, and we identified chondroitin sulfate (CS) as a specific receptor for P. falciparum-infected erythrocytes. Parasitized cells bound to Chinese hamster ovary (CHO) cells and C32 melanoma cells in a chondroitin sulfate-dependent manner, whereas glycosylation mutants lacking chondroitin sulfate A (CSA) supported little or no binding. Chondroitinase treatment of wild-type CHO cells reduced binding by up to 90%. Soluble CSA inhibited binding to CHO cells by 99.2 +/- 0.2% at 10 mg/ml and by 72.5 +/- 3.8% at 1 mg/ml, whereas a range of other glycosaminoglycans such as heparan sulfate had no effect. Parasite lines selected for increased binding to CHO cells and most patient isolates bound specifically to immobilized CSA. We conclude that P. falciparum can express or expose proteins at the surface of the infected erythrocyte that mediate specific binding to CSA. This mechanism of adherence may contribute to the pathogenesis of P. falciparum malaria, but has wider implications as an example of an infectious agent with the capacity to bind specifically to cell-associated or immobilized CS.
Collapse
Affiliation(s)
- S J Rogerson
- Walter and Eliza Hall Institute of Medical Research, Victoria, Australia
| | | | | | | | | |
Collapse
|
254
|
Moelans II, Cohen J, Marchand M, Molitor C, de Wilde P, van Pelt JF, Hollingdale MR, Roeffen WF, Eling WM, Atkinson CT. Induction of Plasmodium falciparum sporozoite-neutralizing antibodies upon vaccination with recombinant Pfs16 vaccinia virus and/or recombinant Pfs16 protein produced in yeast. Mol Biochem Parasitol 1995; 72:179-92. [PMID: 8538688 DOI: 10.1016/0166-6851(95)00072-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pfs16 is a sexual stage/sporozoite-specific antigen of Plasmodium falciparum and is a potential candidate for a sporozoite-neutralizing vaccine. To obtain more information on the function of Pfs16 and to investigate its role during transmission and hepatocyte invasion, immunization experiments were performed with both a Pfs16-specific recombinant vaccinia virus and virus-like particles produced in yeast composed of the hepatitis B surface antigen (HBsAg) and antigen Pfs16 fused to HBsAg. Upon transformation of yeast cells, harbouring a genomic copy of the HBsAg gene, with a plasmid carrying the fusion gene Pfs16-HBsAg (Pfs16-S) virus-like hybrid particles composed of HBsAg and Pfs16-S were formed of a size similar to those present in human sera after infection with the hepatitis B virus. Cells infected with recombinant Pfs16 vaccinia virus synthesized a polypeptide of approx. 16 kDa that reacted with a Pfs16-specific polyclonal antibody. Animals vaccinated with the yeast hybrid particles and/or recombinant vaccinia virus both produced Pfs16-specific antibodies. These antibodies showed no transmission-blocking activity, but they efficiently diminished or abolished in vitro invasion of sporozoites into human hepatoma cells (HepG2-A16) and primary human hepatocytes.
Collapse
Affiliation(s)
- I I Moelans
- Department of Molecular Biology, Faculty of Science, University of Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Ding ZM, Cristiano RJ, Roth JA, Takacs B, Kuo MT. Malarial circumsporozoite protein is a novel gene delivery vehicle to primary hepatocyte cultures and cultured cells. J Biol Chem 1995; 270:3667-76. [PMID: 7533154 DOI: 10.1074/jbc.270.8.3667] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In this report we describe a novel gene delivery system using malaria circumsporozoite (CS) protein as a specific ligand. The CS protein covers the entire surface of sporozoites of malaria parasites. Previous studies have demonstrated that intravenously injected CS protein binds specifically to the basolateral surface of hepatocytes within minutes, indicating the high hepatocyte specificity of CS protein. This characteristic of CS protein prompted us to explore the possibility of using this protein as a liver-specific ligand for hepatic gene delivery vehicle. As an initial step, we investigated the efficacy of CS protein-mediated gene transfer into primary hepatocytes as well as established cell lines. Recombinant CS proteins were chemically conjugated to poly(L-lysine). The CS conjugates were complexed with recombinant plasmid DNA carrying a reporter gene. When the DNA complex was used to transfect primary hepatocytes, a very low level of expression of the reporter gene was observed. The level of expression was greatly enhanced when the cells were cotransfected with adenovirus, which presumably releases the internalized DNA from endosomal entrapment. The CS-mediated gene transfer into the cells required region II+, an evolutionarily conserved amino acid sequence conferring the binding of CS protein to its receptor. CS protein also efficiently mediated gene transfer into a number of cell lines, i.e. HepG2, HeLa, NIH3T3, and K562, but not HL-60, which contains low levels of receptor. Thus, the CS conjugate can be used to deliver DNA into many different cultured cells. Most importantly, the CS conjugate has a potential to be further developed into a liver-specific gene delivery vehicle in vivo.
Collapse
Affiliation(s)
- Z M Ding
- Department of Molecular Pathology, University of Texas M. D. Anderson Cancer Center, Houston 77030
| | | | | | | | | |
Collapse
|
256
|
Jackson DG, Bell JI, Dickinson R, Timans J, Shields J, Whittle N. Proteoglycan forms of the lymphocyte homing receptor CD44 are alternatively spliced variants containing the v3 exon. J Cell Biol 1995; 128:673-85. [PMID: 7532175 PMCID: PMC2199896 DOI: 10.1083/jcb.128.4.673] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The CD44 cell surface glycoprotein is expressed on a broad range of different tissues as multiple isoforms containing from one to ten alternatively spliced exons v1-v10 inserted within the extracellular domain. Differential glycosylation generates still further variability, yielding both N- and O-glycan-modified forms of CD44 in addition to proteoglycan-like variants containing chondroitin sulphate and heparan sulphate. These high molecular mass proteoglycan-like variants, previously identified in lymphocytes, melanomas, and keratinocytes have been implicated in cell-matrix adhesion, cell motility, and invasiveness. More recently, monocyte CD44 molecules presumed to carry glycosaminoglycan chains were shown to bind the chemokine MIP-1 beta (Tanaka, Y.,D. H. Adams, S. Hubscher, H. Hirano, U. Siebenlist, and S. Shaw. 1993. Nature (Lond). 361:79-82.) raising the intriguing possibility that proteoglycan-like CD44 variants might play a role in regulating inflammatory responses. Here we have investigated the molecular identity of these proteoglycan-like CD44 variants by generating a panel of recombinant CD44 isoforms using a novel cassette cloning strategy. We show that both chondroitin and heparan sulphate modifications are associated specifically with isoforms (CD44v3-10 and CD44v3,8-10) containing the v3 alternative exon which encodes a consensus motif SGXG for GAG addition. Other isoforms (CD44v10, CD44v8-10, CD44v7-10, and CD44v6-10) are shown to lack these GAG chains but to carry extensive O-glycan modifications, most likely within the mucin-like alternative exon inserts. We also demonstrate that the majority of endogenous GAG-modified CD44 isoforms present in epithelial cells constitute v3 isoforms thus establishing that in these cells the majority of proteoglycan-like CD44 variants are generated by alternative splicing. Finally we present evidence using transfected B lymphoma cells that the GAG-modified CD44 isoforms CD44v3-10 and CD44v3,8-10, unlike CD44H, bind only weakly to hyaluronan. Together with the demonstration in the accompanying paper (Bennett, K., D. G. Jackson, J.C. Simon, E. Tanczos, R. Peach, B. Modrell, I. Stamenkovic, G. Plowman, and A. Aruffo. 1995. J. Cell Biol. 128:687-698.), that CD44 molecules containing the v3 exon bind growth factors, these results highlight a new and potentially important role for CD44 alternative splicing in the control of cell-surface proteoglycan expression.
Collapse
Affiliation(s)
- D G Jackson
- Molecular Immunology Group, John Radcliffe Hospital, University of Oxford
| | | | | | | | | | | |
Collapse
|
257
|
Hirmo S, Utt M, Ringner M, Wadström T. Inhibition of heparan sulphate and other glycosaminoglycans binding to Helicobacter pylori by various polysulphated carbohydrates. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1995; 10:301-6. [PMID: 7539671 DOI: 10.1111/j.1574-695x.1995.tb00048.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Heparan sulphate binding to Helicobacter pylori at pH 4 to 5 was inhibited with various sulphated polysaccharides (heparin and chondroitin sulphates, fucoidan, carrageenans and some others), but not by carboxylated or nonsulphated compounds. Heparin binding proteins are exposed on the cell surface.
Collapse
Affiliation(s)
- S Hirmo
- University of Lund, Institute of Medical Microbiology, Sweden
| | | | | | | |
Collapse
|
258
|
Abstract
Microorganisms express a family of cell-surface adhesins that specifically recognize and bind components of the extracellular matrix. Adhesion of microorganisms to host tissues represents a critical phase in the development of many types of infections. Recent studies have focused on the mechanisms of microbial attachment at a molecular level, including the identification of ligand-binding domains in several cell-surface adhesins from Gram-positive bacteria and the construction of adhesin-deficient isogenic mutants.
Collapse
Affiliation(s)
- J M Patti
- Institute of Biosciences and Technology, Texas A & M University, Houston 77030
| | | |
Collapse
|
259
|
Noel GJ, Love DC, Mosser DM. High-molecular-weight proteins of nontypeable Haemophilus influenzae mediate bacterial adhesion to cellular proteoglycans. Infect Immun 1994; 62:4028-33. [PMID: 8063423 PMCID: PMC303063 DOI: 10.1128/iai.62.9.4028-4033.1994] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A family of high-molecular-weight (HMW) surface-exposed proteins of nontypeable Haemophilus influenzae (NT H. influenzae) mediated adherence of these organisms to human epithelium. To better understand the molecular basis for this adherence, the role of glycosaminoglycans (GAGs), substances commonly expressed on cell surfaces, was examined. Bacterial adherence to cells with specific deficiencies in GAG biosynthesis was measured. HMW protein-dependent bacterial adherence to normal cells was significantly greater than adherence to cells deficient in sulfated GAGs or to cells deficient in heparan sulfate but overexpressing chondroitin sulfate. Cells expressing undersulfated heparan sulfate exhibited intermediate levels of bacterial adherence. The addition of exogenous dextran sulfate or heparin inhibited over 70% of the adherence of NT H. influenzae to normal cells, whereas hyaluronic acid and chondroitin sulfate tested at the same concentration (100 micrograms/ml) inhibited bacterial adherence by less than 11%. Treatment of cells with heparinase significantly reduced bacterial adherence. Following electrophoretic separation, HMW proteins were shown to bind directly to radiolabeled heparin. These results indicate that HMW protein-dependent adherence of NT H. influenzae is mediated by cellular sulfated GAGs and that heparan sulfate may be the predominant GAG involved in this process. However, the decreased adherence of bacteria to cells expressing undersulfated heparan sulfate and the inhibition of bacterial adherence by the addition of exogenous dextran sulfate suggest that bacterial adhesion to mammalian cells is likely to be influenced by a variety of factors, including the degree of sulfation and the specificity of the carbohydrate moieties contained in the cellular proteoglycans.
Collapse
Affiliation(s)
- G J Noel
- Department of Pediatrics, Cornell University Medical College, New York, New York 10021
| | | | | |
Collapse
|
260
|
Magnus JH, Stenstad T, Husby G. Proteoglycans, glycosaminoglycans and amyloid deposition. BAILLIERE'S CLINICAL RHEUMATOLOGY 1994; 8:575-97. [PMID: 7954863 DOI: 10.1016/s0950-3579(05)80116-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J H Magnus
- Department of Rheumatology, University Hospital, Tromsø, Norway
| | | | | |
Collapse
|
261
|
Sinnis P, Clavijo P, Fenyö D, Chait BT, Cerami C, Nussenzweig V. Structural and functional properties of region II-plus of the malaria circumsporozoite protein. J Exp Med 1994; 180:297-306. [PMID: 8006589 PMCID: PMC2191557 DOI: 10.1084/jem.180.1.297] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
During feeding, infected mosquitos inject malaria sporozoites into the host circulation. Within minutes, the parasites are found in the liver where they initiate the first stage of malaria infection. All species of malaria sporozoites are uniformly covered by the circumsporozoite protein (CS), which contains a conserved COOH-terminal sequence called region II-plus. We have previously shown that region II-plus is the parasite's hepatocyte-binding ligand and that this ligand binds to heparan sulfate proteoglycans (HSPGs) on the hepatocyte membrane. Using a series of substituted region II-plus peptides, we show here that the downstream basic amino acids as well as the interdispersed hydrophobic residues are required for binding of CS to hepatocyte HSPGs. We also show that this positively charged stretch of amino acids must be aggregated in order to bind to the receptor. On the basis of this information, we have synthesized a multiple antigen peptide that mimics the hepatocyte-binding ligand. This construct inhibits both CS binding to HepG2 cells in vitro as well as CS clearance in mice.
Collapse
Affiliation(s)
- P Sinnis
- Michael Heidelberger Division of Immunology, Department of Pathology, New York University Medical Center, New York 10016
| | | | | | | | | | | |
Collapse
|
262
|
Herrera EM, Ming M, Ortega-Barria E, Pereira ME. Mediation of Trypanosoma cruzi invasion by heparan sulfate receptors on host cells and penetrin counter-receptors on the trypanosomes. Mol Biochem Parasitol 1994; 65:73-83. [PMID: 7935630 DOI: 10.1016/0166-6851(94)90116-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Trypanosoma cruzi attaches and invades a large variety of mammalian cells by receptor-mediated interactions, one of them involving the binding of parasite trans-sialidase to host sialyl receptors. Three proteoglycan-deficient mutants of Chinese hamster ovary (CHO) cells were used to probe the role of host heparin and heparan sulfate glycosaminoglycans (GAG) in T. cruzi invasion. All three mutants supported adhesion and infection to a much lower extent than the parental CHO cells. One of the mutants, pgsD-677, did not express heparan sulfate while containing three- to four-fold excess chondroitin sulfate, yet the cell line was a poor substrate for T. cruzi adhesion. Proteoglycan-deficient cells obtained by inhibiting GAG synthesis in parental cells with p-nitrophenyl-beta-D-xyloside, were also poor hosts for T. cruzi invasion. Furthermore, digestion of parental cells with heparinase and heparitinase, two lyases that specifically depolymerize heparin and heparan sulfate, reduced the potential of the cells to support T. cruzi adhesion and growth. Lyases that digested chondroitin sulfate and other GAGs did not affect T. cruzi invasion. These results suggest that heparin/heparan sulfate epitopes are receptors for T. cruzi invasion. The corresponding counter-receptor on T. cruzi appears to be penetrin, a heparin-binding protein that promotes trypanosome penetration into cells. Purified penetrin caused agglutination of red blood cells, and the hemagglutination was exquisitely sensitive to heparin and heparan sulfate. However, sialic acid and sialyl compounds did not inhibit penetrin-induced hemagglutination. Recombinant penetrin competitively inhibited T. cruzi invasion of proteoglycan-containing parental cells, but not of proteoglycan-deficient mutants nor of heparitinase-treated cells. Furthermore, consistent with the sugar specificity of penetrin as a hemagglutinin, recombinant penetrin competed for trypanosome invasion of a CHO cell mutant (Lec2) that expresses heparan sulfate but not sialyl residues. Given that the release of sialic acid from the proteoglycan-deficient mutants further reduced T. cruzi invasion, as did the removal of heparan sulfate from the Lec2 mutant, and given that penetrin does not bind to sialic acid with high affinity, the results indicate that the penetrin-heparan sulfate pathway for T. cruzi invasion is distinct from the trans-sialidase-sialic acid route.
Collapse
Affiliation(s)
- E M Herrera
- Department of Medicine, Tufts-New England Medical Center Hospitals, Boston, MA 02111
| | | | | | | |
Collapse
|
263
|
Gluzman IY, Francis SE, Oksman A, Smith CE, Duffin KL, Goldberg DE. Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway. J Clin Invest 1994; 93:1602-8. [PMID: 8163662 PMCID: PMC294190 DOI: 10.1172/jci117140] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The human malaria parasite, Plasmodium falciparum, degrades nearly all its host cell hemoglobin during a short segment of its intraerythrocytic development. This massive catabolic process occurs in an acidic organelle, the digestive vacuole. Aspartic and cysteine proteases have been implicated in this pathway. We have isolated three vacuolar proteases that account for most of the globin-degrading activity of the digestive vacuole. One is the previously described aspartic hemoglobinase that initiates hemoglobin degradation. A second aspartic protease is capable of cleaving hemoglobin with an overlapping specificity, but seems to prefer acid-denatured globin. The third is a cysteine protease that does not recognize native hemoglobin but readily cleaves denatured globin. It is synergistic with the aspartic hemoglobinase, both by in vitro assay of hemoglobin degradation, and by isobologram analysis of protease inhibitor-treated parasites in culture. The cysteine protease is highly sensitive to chloroquine-heme complex, suggesting a possible mechanism of 4-aminoquinoline antimalarial action. The data suggest an ordered pathway of hemoglobin catabolism that presents an excellent target for chemotherapy.
Collapse
Affiliation(s)
- I Y Gluzman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | | | | | |
Collapse
|
264
|
Abstract
A new experimental model for microbe-host-cell interaction is proposed in which a molecular mimic of heparan sulfate is used by Chlamydia to attach to the mammalian cell surface. A heparan-sulfate-like ligand, bound to the surface of Chlamydia, mediates infectivity by bridging the microorganism and mammalian cell receptors.
Collapse
Affiliation(s)
- R S Stephens
- Program in Infectious Diseases, School of Public Health, University of California, Berkeley 94720
| |
Collapse
|
265
|
Abstract
The malaria parasite exists in an extracellular form at several stages in its life cycle. Within the vertebrate host, sporozoites and merozoites have to invade specific cell types. Proteins on the surface of the parasite or externalized from specialized organelles have been implicated as ligands for receptors on the host cell surface. Direct binding studies have identified parasite proteins that interact with the target cell surface. Examination of the deduced amino acid sequences has allowed the identification of primary structural motifs which may have roles in this process. On the sporozoite, the circumsporozoite protein and sporozoite surface protein-2, a protein initially located within micronemes, have been found to contain an amino acid sequence thought to be involved in mediating recognition of sulphated polysaccharides on the surface of a liver cell. On the merozoite, merozoite surface protein-1 may be involved in the initial recognition of red blood cells; this protein undergoes a complex series of modifications in the time between its synthesis as a precursor molecule and successful erythrocyte invasion. Other merozoite proteins located at the apical end of the parasite have been identified as erythrocyte or reticulocyte binding proteins.
Collapse
Affiliation(s)
- A A Holder
- Division of Parasitology, National Institute for Medical Research, London, UK
| |
Collapse
|
266
|
Cerami C, Frevert U, Sinnis P, Takacs B, Nussenzweig V. Rapid clearance of malaria circumsporozoite protein (CS) by hepatocytes. J Exp Med 1994; 179:695-701. [PMID: 8294876 PMCID: PMC2191367 DOI: 10.1084/jem.179.2.695] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The circumsporozoite protein (CS) covers uniformly the plasma membrane of malaria sporozoites. In vitro, CS multimers bind specifically to regions of the hepatocyte plasma membrane that are exposed to circulating blood in the Disse space. The ligand is in the region II-plus of CS, an evolutionarily conserved stretch of the protein that has amino acid sequence homology to a cell adhesive motif of thrombospondin. We have now found that intravenously injected CS constructs bind rapidly to the basolateral surface of hepatocytes, provided that the recombinant proteins contain region II-plus, and that they are aggregated. Significant amounts of CS were not retained in any other organ. The striking parallelism between these in vitro and in vivo findings with the target specificity of malaria sporozoites, reinforces the hypothesis that the attachment of the parasites to hepatocytes is via region II-plus of CS.
Collapse
Affiliation(s)
- C Cerami
- Department of Pathology, New York University Medical Center, New York 10016
| | | | | | | | | |
Collapse
|