251
|
Dodson M, Darley-Usmar V, Zhang J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med 2013; 63:207-21. [PMID: 23702245 PMCID: PMC3729625 DOI: 10.1016/j.freeradbiomed.2013.05.014] [Citation(s) in RCA: 441] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 11/16/2022]
Abstract
It has been established that the key metabolic pathways of glycolysis and oxidative phosphorylation are intimately related to redox biology through control of cell signaling. Under physiological conditions glucose metabolism is linked to control of the NADH/NAD redox couple, as well as providing the major reductant, NADPH, for thiol-dependent antioxidant defenses. Retrograde signaling from the mitochondrion to the nucleus or cytosol controls cell growth and differentiation. Under pathological conditions mitochondria are targets for reactive oxygen and nitrogen species and are critical in controlling apoptotic cell death. At the interface of these metabolic pathways, the autophagy-lysosomal pathway functions to maintain mitochondrial quality and generally serves an important cytoprotective function. In this review we will discuss the autophagic response to reactive oxygen and nitrogen species that are generated from perturbations of cellular glucose metabolism and bioenergetic function.
Collapse
Affiliation(s)
- Matthew Dodson
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
- Department of Veterans Affairs, Birmingham VA Medical Center
| |
Collapse
|
252
|
Abstract
SIGNIFICANCE Despite recent medical advances, cardiovascular disease and heart failure (HF) continue to be major health concerns, and related mortality remains high. As a result, investigation of the mechanisms involved in the development of HF continues to be an active field of study. RECENT ADVANCES The renin-angiotensin system (RAS) and its effector molecule, angiotensin (Ang) II, affect cardiac function through both systemic and local actions, and have been shown to play a major role in cardiac remodeling and dysfunction in the failing heart. Many of the downstream effects of AngII signaling are mediated by elevated levels of reactive oxygen species (ROS) and oxidative stress, which have also been implicated in the pathology of HF. CRITICAL ISSUES Inhibitors of the RAS have proven beneficial in the treatment of patients at risk for and suffering from HF, but remain only partially effective. ROS can be generated from several different sources, and the oxidative state is normally tightly regulated in the heart. How AngII increases ROS levels and causes dysregulation of the cardiac oxidative state has been the subject of considerable interest in recent years. FUTURE DIRECTIONS A better understanding of this process and the mechanisms involved should lead to the development of more effective HF therapies and improved outcomes.
Collapse
Affiliation(s)
- Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey , Newark, New Jersey
| | | |
Collapse
|
253
|
Yang K, Xu C, Li X, Jiang H. Combination of D942 With Curcumin Protects Cardiomyocytes From Ischemic Damage Through Promoting Autophagy. J Cardiovasc Pharmacol Ther 2013; 18:570-81. [PMID: 24057865 DOI: 10.1177/1074248413503495] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Myocardial ischemia is one of the main causes of sudden cardiac death. Autophagy has been demonstrated to protect cardiomyocytes from ischemia/reperfusion (I/R)-induced damage. A small molecule compound 5-(3-(4-(2-(4-fluorophenyl)ethoxy)phenyl)propyl)furan-2-carboxylic acid (D942) has been previously shown to specifically activate adenosine monophosphate-activated protein kinase (AMPK) in cancer cells. Another reagent, curcumin, has been shown to inhibit mammalian target of rapamycin (mTOR) signal pathway in tumor cells. Since AMPK signaling induces autophagy, while mTOR signaling inhibits autophagy, here we tested the potential protective efficacy of D942 with curcumin for cardiomyocytes under oxygen-glucose deprivation and reoxygenation (OGD/R). Mouse neonatal cardiomyocytes were treated with D942 and curcumin after being subjected to OGD/R. Cell survival and autophagy-related signal pathways were measured after treatment. Our data indicated both D942 and curcumin enhanced cell survival after OGD/R. The D942 and curcumin induced autophagy in cardiomyocytes through activating AMPK pathway or inhibiting mTOR signaling. Induction of autophagy by D942 and curcumin was the cause of cardioprotection, since inhibition of autophagy abolished the protective efficacy. Furthermore, combination treatment with D942 and curcumin profoundly upregulated autophagy after OGD/R and significantly promoted cell survival. Treatment with D942 and curcumin significantly upregulated autophagy in a murine myocardial I/R model. Taken together, our research suggests that D942 and curcumin could be promising therapeutic agents for myocardial I/R.
Collapse
Affiliation(s)
- Keping Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Cardiovascular Diseases, Wuhan, China
| | - Chenhong Xu
- Department of Cardiology, Jingzhou Central Hospital, Institute of Cardiovascular Diseases, Jingzhou, China
| | - Xin Li
- Department of Cardiology, Jingzhou Central Hospital, Institute of Cardiovascular Diseases, Jingzhou, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Institute of Cardiovascular Diseases, Wuhan, China
| |
Collapse
|
254
|
Pei H, Yu Q, Xue Q, Guo Y, Sun L, Hong Z, Han H, Gao E, Qu Y, Tao L. Notch1 cardioprotection in myocardial ischemia/reperfusion involves reduction of oxidative/nitrative stress. Basic Res Cardiol 2013; 108:373. [PMID: 23989801 DOI: 10.1007/s00395-013-0373-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 12/19/2022]
Abstract
Oxidative/nitrative stress plays an important role in myocardial ischemia/reperfusion (MI/R) injury. Notch1 participates in the regulation of cardiogenesis and cardiac response to hypertrophic stress, but the function of Notch1 signaling in MI/R has not been explored. This study aims to determine the role of Notch1 in MI/R, and investigate whether Notch1 confers cardioprotection. Notch1 specific small interfering RNA (siRNA, 20 μg) or Jagged1 (a Notch ligand, 12 μg) was delivered through intramyocardial injection. 48 h after injection, mice were subjected to 30 min of myocardial ischemia followed by 3 h (for cell apoptosis and oxidative/nitrative stress), 24 h (for infarct size and cardiac function), or 2 weeks (for cardiac fibrosis and function) of reperfusion. Cardiac-specific Notch1 knockdown resulted in significantly aggravated I/R injury, as evidenced by enlarged infarct size, depressed cardiac function, increased myocardial apoptosis and cardiac fibrosis. Downregulation of Notch1 increased expression of inducible NO synthase (iNOS) and gp(91phox), enhanced the production of NO metabolites and superoxide, as well as their cytotoxic reaction product peroxynitrite. Moreover, Notch1 blockade also reduced phosphorylation of endothelial NO synthase (eNOS) and Akt, and increased expression of PTEN, a key phosphatase involved in the regulation of Akt phosphorylation. In addition, activation of Notch1 by Jagged1 or administration of peroxynitrite scavenger reduced production of peroxynitrite and attenuated MI/R injury. These data indicate that Notch1 signaling protects against MI/R injury partly though PTEN/Akt mediated anti-oxidative and anti-nitrative effects.
Collapse
Affiliation(s)
- Haifeng Pei
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 15 Changlexi Road, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Essick EE, Wilson RM, Pimentel DR, Shimano M, Baid S, Ouchi N, Sam F. Adiponectin modulates oxidative stress-induced autophagy in cardiomyocytes. PLoS One 2013; 8:e68697. [PMID: 23894332 PMCID: PMC3716763 DOI: 10.1371/journal.pone.0068697] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/02/2013] [Indexed: 11/18/2022] Open
Abstract
Diastolic heart failure (HF) i.e., "HF with preserved ejection fraction" (HF-preserved EF) accounts for up to 50% of all HF presentations; however there have been no therapeutic advances. This stems in part from an incomplete understanding about HF-preserved EF. Hypertension is the major cause of HF-preserved EF whilst HF-preserved EF is also highly associated with obesity. Similarly, excessive reactive oxygen species (ROS), i.e., oxidative stress occurs in hypertension and obesity, sensitizing the heart to the renin-angiotensin-aldosterone system, inducing autophagic type-II programmed cell death and accelerating the propensity to adverse cardiac remodeling, diastolic dysfunction and HF. Adiponectin (APN), an adipokine, mediates cardioprotective actions but it is unknown if APN modulates cardiomyocyte autophagy. We tested the hypothesis that APN ameliorates oxidative stress-induced autophagy in cardiomyocytes. Isolated adult rat ventricular myocytes were pretreated with recombinant APN (30 µg/mL) followed by 1mM hydrogen peroxide (H2O2) exposure. Wild type (WT) and APN-deficient (APN-KO) mice were infused with angiotensin (Ang)-II (3.2 mg/kg/d) for 14 days to induced oxidative stress. Autophagy-related proteins, mTOR, AMPK and ERK expression were measured. H2O2 induced LC3I to LC3II conversion by a factor of 3.4±1.0 which was abrogated by pre-treatment with APN by 44.5±10%. However, neither H2O2 nor APN affected ATG5, ATG7, or Beclin-1 expression. H2O2 increased phospho-AMPK by 49±6.0%, whilst pretreatment with APN decreased phospho-AMPK by 26±4%. H2O2 decreased phospho-mTOR by 36±13%, which was restored by APN. ERK inhibition demonstrated that the ERK-mTOR pathway is involved in H2O2-induced autophagy. Chronic Ang-II infusion significantly increased myocardial LC3II/I protein expression ratio in APN-KO vs. WT mice. These data suggest that excessive ROS caused cardiomyocyte autophagy which was ameliorated by APN by inhibiting an H2O2-induced AMPK/mTOR/ERK-dependent mechanism. These findings demonstrate the anti-oxidant potential of APN in oxidative stress-associated cardiovascular diseases, such as hypertension-induced HF-preserved EF.
Collapse
Affiliation(s)
- Eric E. Essick
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Richard M. Wilson
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - David R. Pimentel
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Cardiovascular Section and Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Masayuki Shimano
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Simoni Baid
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Noriyuki Ouchi
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Cardiovascular Section and Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
256
|
Molecular basis of cardioprotective effect of antioxidant vitamins in myocardial infarction. BIOMED RESEARCH INTERNATIONAL 2013; 2013:437613. [PMID: 23936799 PMCID: PMC3726017 DOI: 10.1155/2013/437613] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/18/2013] [Indexed: 02/07/2023]
Abstract
Acute myocardial infarction (AMI) is the leading cause of mortality worldwide. Major advances in the treatment of acute coronary syndromes and myocardial infarction, using cardiologic interventions, such as thrombolysis or percutaneous coronary angioplasty (PCA) have improved the clinical outcome of patients. Nevertheless, as a consequence of these procedures, the ischemic zone is reperfused, giving rise to a lethal reperfusion event accompanied by increased production of reactive oxygen species (oxidative stress). These reactive species attack biomolecules such as lipids, DNA, and proteins enhancing the previously established tissue damage, as well as triggering cell death pathways. Studies on animal models of AMI suggest that lethal reperfusion accounts for up to 50% of the final size of a myocardial infarct, a part of the damage likely to be prevented. Although a number of strategies have been aimed at to ameliorate lethal reperfusion injury, up to date the beneficial effects in clinical settings have been disappointing. The use of antioxidant vitamins could be a suitable strategy with this purpose. In this review, we propose a systematic approach to the molecular basis of the cardioprotective effect of antioxidant vitamins in myocardial ischemia-reperfusion injury that could offer a novel therapeutic opportunity against this oxidative tissue damage.
Collapse
|
257
|
Abstract
Autophagy is an evolutionarily conserved intracellular mechanism for degradation of long-lived proteins and organelles. Accumulating lines of evidence indicate that autophagy is deeply involved in the development of cardiac disease. Autophagy is upregulated in almost all cardiac pathological states, exerting both protective and detrimental functions. Whether autophagy activation is an adaptive or maladaptive mechanism during cardiac stress seems to depend upon the pathological context in which it is upregulated, the extent of its activation, and the signaling mechanisms promoting its enhancement. Pharmacological modulation of autophagy may therefore represent a potential therapeutic strategy to limit myocardial damage during cardiac stress. Several pharmacological agents that are able to modulate autophagy have been identified, such as mammalian target of rapamycin inhibitors, adenosine monophosphate-dependent kinase modulators, sirtuin activators, myo-inositol-1,4,5-triphosphate and calcium-lowering agents, and lysosome inhibitors. Although few of these modulators of autophagy have been directly tested during cardiac stress, many of them seem to have high potential to be efficient in the treatment of cardiac disease. We will discuss the potential usefulness of different pharmacological activators and inhibitors of autophagy in the treatment of cardiac diseases.
Collapse
|
258
|
Zeng M, Wei X, Wu Z, Li W, Li B, Zhen Y, Chen J, Wang P, Fei Y. NF-κB-mediated induction of autophagy in cardiac ischemia/reperfusion injury. Biochem Biophys Res Commun 2013; 436:180-5. [PMID: 23727575 DOI: 10.1016/j.bbrc.2013.05.070] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 05/19/2013] [Indexed: 01/27/2023]
Abstract
Ischemia/reperfusion (I/R) injury severely attenuates the benefit of revascularization after acute myocardial infarction, in which transcription factor NF-κB plays an important role. Recently, there is increasing evidence to suggest that autophagy is involved in this process. We sought to define the role of NF-κB in the induction of autophagy during cardiac I/R injury. The left circumflex coronary arteries of New Zealand white rabbits were ligated for 1.5h, followed by reperfusion for 1h to induce I/R injury. Production of reactive oxygen species (ROS) was detected in myocardial injury area following I/R injury. Furthermore, the results indicated that the cardiac area at risk (AAR) for ischemia has the most abundant expression of Beclin 1 in parallel to p65 expression after cardiac I/R injury. Inhibition of NF-κB significantly attenuated Beclin 1 expression and autophagy in the AAR, which was associated with a marked reduction in the extent of the AAR. Our data thus suggests that I/R injury promotes NF-κB activity, in response to ROS, to aggravate myocardial injury through the activation of Beclin 1-mediated autophagy.
Collapse
Affiliation(s)
- Min Zeng
- The People's Hospital of Hainan Province, Haikou, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Mughal W, Dhingra R, Kirshenbaum LA. Striking a balance: autophagy, apoptosis, and necrosis in a normal and failing heart. Curr Hypertens Rep 2013; 14:540-7. [PMID: 23001875 DOI: 10.1007/s11906-012-0304-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite the progress that has been made over the past two decades in cardiovascular research, heart failure remains a major cause of morbidity and mortality worldwide. Insight into the cellular and molecular mechanisms that underlie the heart failure in individuals with ischemic heart disease have identified defects in cellular processes that govern autophagy, apoptosis and necrosis as a prevailing underlying cause. Indeed, programmed cell death of cardiac cells by apoptosis or necrosis is believed to involve the intrinsic mitochondrial pathway and/or extrinsic death receptor pathway by certain Bcl-2 family members as well as components of the TNFα signaling pathway. In this review, we discuss recent advances in the molecular signaling factors that govern cardiac cell fate under normal and disease conditions.
Collapse
Affiliation(s)
- Wajihah Mughal
- The Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
260
|
Zhou J, Freeman TA, Ahmad F, Shang X, Mangano E, Gao E, Farber J, Wang Y, Ma XL, Woodgett J, Vagnozzi RJ, Lal H, Force T. GSK-3α is a central regulator of age-related pathologies in mice. J Clin Invest 2013; 123:1821-32. [PMID: 23549082 DOI: 10.1172/jci64398] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 01/24/2013] [Indexed: 12/12/2022] Open
Abstract
Aging is regulated by conserved signaling pathways. The glycogen synthase kinase-3 (GSK-3) family of serine/threonine kinases regulates several of these pathways, but the role of GSK-3 in aging is unknown. Herein, we demonstrate premature death and acceleration of age-related pathologies in the Gsk3a global KO mouse. KO mice developed cardiac hypertrophy and contractile dysfunction as well as sarcomere disruption and striking sarcopenia in cardiac and skeletal muscle, a classical finding in aging. We also observed severe vacuolar degeneration of myofibers and large tubular aggregates in skeletal muscle, consistent with impaired clearance of insoluble cellular debris. Other organ systems, including gut, liver, and the skeletal system, also demonstrated age-related pathologies. Mechanistically, we found marked activation of mTORC1 and associated suppression of autophagy markers in KO mice. Loss of GSK-3α, either by pharmacologic inhibition or Gsk3a gene deletion, suppressed autophagy in fibroblasts. mTOR inhibition rescued this effect and reversed the established pathologies in the striated muscle of the KO mouse. Thus, GSK-3α is a critical regulator of mTORC1, autophagy, and aging. In its absence, aging/senescence is accelerated in multiple tissues. Strategies to maintain GSK-3α activity and/or inhibit mTOR in the elderly could retard the appearance of age-related pathologies.
Collapse
Affiliation(s)
- Jibin Zhou
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Lyon RC, Lange S, Sheikh F. Breaking down protein degradation mechanisms in cardiac muscle. Trends Mol Med 2013; 19:239-49. [PMID: 23453282 DOI: 10.1016/j.molmed.2013.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/08/2013] [Accepted: 01/31/2013] [Indexed: 12/22/2022]
Abstract
Regulated protein degradation through the ubiquitin-proteasome and lysosomal/autophagy systems is critical for homeostatic protein turnover in cardiac muscle and for proper cardiac function. The discovery of muscle-specific components in these systems has illuminated how aberrations in their levels are pivotal to the development of cardiac stress and disease. New evidence suggests that equal importance in disease development should be given to ubiquitously expressed degradation components. These are compartmentalized within cardiac muscles and, when mislocalized, can be critical in the development of specific cardiac diseases. Here, we discuss how alterations in the compartmentalization of degradation components affect disease states, the tools available to investigate these mechanisms, as well as recent discoveries that highlight the therapeutic value of targeting these pathways in disease.
Collapse
Affiliation(s)
- Robert C Lyon
- Department of Medicine (Cardiology Division), University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
262
|
Abstract
Mitochondria are primarily responsible for providing the contracting cardiac myocyte with a continuous supply of ATP. However, mitochondria can rapidly change into death-promoting organelles. In response to changes in the intracellular environment, mitochondria become producers of excessive reactive oxygen species and release prodeath proteins, resulting in disrupted ATP synthesis and activation of cell death pathways. Interestingly, cells have developed a defense mechanism against aberrant mitochondria that can cause harm to the cell. This mechanism involves selective sequestration and subsequent degradation of the dysfunctional mitochondrion before it causes activation of cell death. Induction of mitochondrial autophagy, or mitophagy, results in selective clearance of damaged mitochondria in cells. In response to stress such as ischemia/reperfusion, prosurvival and prodeath pathways are concomitantly activated in cardiac myocytes. Thus, there is a delicate balance between life and death in the myocytes during stress, and the final outcome depends on the complex cross-talk between these pathways. Mitophagy functions as an early cardioprotective response, favoring adaptation to stress by removing damaged mitochondria. In contrast, increased oxidative stress and apoptotic proteases can inactivate mitophagy, allowing for the execution of cell death. Herein, we discuss the importance of mitochondria and mitophagy in cardiovascular health and disease and provide a review of our current understanding of how these processes are regulated.
Collapse
Affiliation(s)
- Dieter A Kubli
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
263
|
Dai JP, Zhao XF, Zeng J, Wan QY, Yang JC, Li WZ, Chen XX, Wang GF, Li KS. Drug screening for autophagy inhibitors based on the dissociation of Beclin1-Bcl2 complex using BiFC technique and mechanism of eugenol on anti-influenza A virus activity. PLoS One 2013; 8:e61026. [PMID: 23613775 PMCID: PMC3628889 DOI: 10.1371/journal.pone.0061026] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 03/05/2013] [Indexed: 02/05/2023] Open
Abstract
Autophagy is involved in many human diseases, such as cancer, cardiovascular disease and virus infection, including human immunodeficiency virus (HIV), hepatitis C virus (HCV), influenza A virus (IAV) and coxsackievirus B3/B4 (CVB3/B4), so a drug screening model targeting autophagy may be very useful for the therapy of these diseases. In our study, we established a drug screening model based on the inhibition of the dissociation of Beclin1-Bcl2 heterodimer, an important negative regulator of autophagy, using bimolecular fluorescence complementation (BiFC) technique for developing novel autophagy inhibitors and anti-IAV agents. From 86 examples of traditional Chinese medicines, we found Syzygium aromaticum L. had the best activity. We then determined the anti-autophagy and anti-IAV activity of eugenol, the major active compound of Syzygium aromaticum L., and explored its mechanism of action. Eugenol could inhibit autophagy and IAV replication, inhibited the activation of ERK, p38MAPK and IKK/NF-κB signal pathways and antagonized the effects of the activators of these pathways. Eugenol also ameliorated the oxidative stress and inhibited the expressions of autophagic genes. We speculated that the mechanism underlying might be that eugenol inhibited the oxidative stress and the activation of ERK1/2, p38MAPK and IKK/NF-κB pathways, subsequently inhibited the dissociation of Beclin1-Bcl2 heterodimer and autophagy, and finally impaired IAV replication. These results might conversely display the reasonableness of the design of our screening model. In conclusion, we have established a drug screening model for developing novel autophagy inhibitor, and find eugenol as a promising inhibitor for autophagy and IAV infection.
Collapse
Affiliation(s)
- Jian-Ping Dai
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Xiang-Feng Zhao
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Jun Zeng
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Qian-Ying Wan
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Jia-Cai Yang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Wei-Zhong Li
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Xiao-Xuan Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Ge-Fei Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- * E-mail: (G-FW); (K-SL)
| | - Kang-Sheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- * E-mail: (G-FW); (K-SL)
| |
Collapse
|
264
|
Abstract
Autophagy is an essential process for the maintenance of cellular homeostasis in the heart under both normal and stress conditions. Autophagy is a key degradation pathway and acts as a quality control sensor. It protects myocytes from cytotoxic protein aggregates and dysfunctional organelles by quickly clearing them from the cell. It also responds to changes in energy demand and mechanical stressors to maintain contractile function. The autophagic-lysosomal pathway responds to serum starvation to ensure that the cell maintains its metabolism and energy levels when nutrients run low. In contrast, excessive activation of autophagy is detrimental to cells and contributes to the development of pathological conditions. A number of signaling pathways and proteins regulate autophagy. These include the 5'-AMP-activated protein kinase/mammalian target of rapamycin pathway, FoxO transcription factors, Sirtuin 1, oxidative stress, Bcl-2 family proteins, and the E3 ubiquitin ligase Parkin. In this review, we will discuss how this diverse cast of characters regulates the important autophagic process in the myocardium.
Collapse
|
265
|
Abstract
The ubiquitin proteasome system (UPS) has been the subject of intensive research over the past 20 years to define its role in normal physiology and in pathophysiology. Many of these studies have focused in on the cardiovascular system and have determined that the UPS becomes dysfunctional in several pathologies such as familial and idiopathic cardiomyopathies, atherosclerosis, and myocardial ischemia. This review presents a synopsis of the literature as it relates to the role of the UPS in myocardial ischemia. Studies have shown that the UPS is dysfunctional during myocardial ischemia, and recent studies have shed some light on possible mechanisms. Other studies have defined a role for the UPS in ischemic preconditioning which is best associated with myocardial ischemia and is thus presented here. Very recent studies have started to define roles for specific proteasome subunits and components of the ubiquitination machinery in various aspects of myocardial ischemia. Lastly, despite the evidence linking myocardial ischemia and proteasome dysfunction, there are continuing suggestions that proteasome inhibitors may be useful to mitigate ischemic injury. This review presents the rationale behind this and discusses both supportive and nonsupportive studies and presents possible future directions that may help in clarifying this controversy.
Collapse
Affiliation(s)
- Justine Calise
- Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York 11030, USA
| | | |
Collapse
|
266
|
Cardioprotection against ischaemia/reperfusion by vitamins C and E plus n-3 fatty acids: molecular mechanisms and potential clinical applications. Clin Sci (Lond) 2012; 124:1-15. [PMID: 22963444 DOI: 10.1042/cs20110663] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of oxidative stress in ischaemic heart disease has been thoroughly investigated in humans. Increased levels of ROS (reactive oxygen species) and RNS (reactive nitrogen species) have been demonstrated during ischaemia and post-ischaemic reperfusion in humans. Depending on their concentrations, these reactive species can act either as benevolent molecules that promote cell survival (at low-to-moderate concentrations) or can induce irreversible cellular damage and death (at high concentrations). Although high ROS levels can induce NF-κB (nuclear factor κB) activation, inflammation, apoptosis or necrosis, low-to-moderate levels can enhance the antioxidant response, via Nrf2 (nuclear factor-erythroid 2-related factor 2) activation. However, a clear definition of these concentration thresholds remains to be established. Although a number of experimental studies have demonstrated that oxidative stress plays a major role in heart ischaemia/reperfusion pathophysiology, controlled clinical trials have failed to prove the efficacy of antioxidants in acute or long-term treatments of ischaemic heart disease. Oral doses of vitamin C are not sufficient to promote ROS scavenging and only down-regulate their production via NADPH oxidase, a biological effect shared by vitamin E to abrogate oxidative stress. However, infusion of vitamin C at doses high enough to achieve plasma levels of 10 mmol/l should prevent superoxide production and the pathophysiological cascade of deleterious heart effects. In turn, n-3 PUFA (polyunsaturated fatty acid) exposure leads to enhanced activity of antioxidant enzymes. In the present review, we present evidence to support the molecular basis for a novel pharmacological strategy using these antioxidant vitamins plus n-3 PUFAs for cardioprotection in clinical settings, such as post-operative atrial fibrillation, percutaneous coronary intervention following acute myocardial infarction and other events that are associated with ischaemia/reperfusion.
Collapse
|
267
|
Zhao G, Wang S, Wang Z, Sun A, Yang X, Qiu Z, Wu C, Zhang W, Li H, Zhang Y, Zhao J, Zou Y, Ge J. CXCR6 deficiency ameliorated myocardial ischemia/reperfusion injury by inhibiting infiltration of monocytes and IFN-γ-dependent autophagy. Int J Cardiol 2012; 168:853-62. [PMID: 23158928 DOI: 10.1016/j.ijcard.2012.10.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 05/05/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Emerging evidence shows that the chemokine CXCL16 plays an important role in the pathogenesis of myocardial remodeling and development of heart failure following ischemia/reperfusion (I/R) injury. CXCR6, the receptor for CXCL16, is also critically involved. However, the underlying mechanism remained uncertain, and the aim of this research was to investigate this mechanism in CXCR6 knockout (KO) mice. METHODS AND RESULTS CXCR6 KO mice and wild type (WT) mice had no overt phenotype at baseline in the absence of injury, but difference was shown in response to I/R induction. Compared with WT mice, CXCR6 KO mice exhibited a lower infarction size (31.86 ± 1.808% vs. 43.09 ± 1.519%), and better cardiac function (measured by LVEF, LVFS, +dp/dt, LVEDP, and LVSP) following I/R. Moreover, cardiac levels of IFN-γ and IFN-γ-dependent autophagy were found to be significantly attenuated in CXCR6 KO mice. Further data showed that cardiac-enhanced IFN-γ secretion was not induced by cardiomyocytes, but by infiltrated monocytes in the myocardium in response to I/R injury. In vivo injection of IFN-γ and in vitro co-cultured cardiomyocytes with CD11b+ monocytes confirmed IFN-γ activated autophagic response, and induced cardiac dysfunction in a paracrine manner. CONCLUSIONS The study suggested that since disruption of the CXCL16/CXCR6 signaling cascade had a cardio-protective effect against I/R injury, the underlying mechanism might be that I/R triggered the infiltration of monocytes into the myocardium, and induced cardiac autophagy through CXCL16/CXCR6-dependent paracrine secretion of IFN-γ.
Collapse
Affiliation(s)
- Gang Zhao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, 180 Feng Lin Road, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Bullon P, Cordero MD, Quiles JL, Ramirez-Tortosa MDC, Gonzalez-Alonso A, Alfonsi S, García-Marín R, de Miguel M, Battino M. Autophagy in periodontitis patients and gingival fibroblasts: unraveling the link between chronic diseases and inflammation. BMC Med 2012; 10:122. [PMID: 23075094 PMCID: PMC3523085 DOI: 10.1186/1741-7015-10-122] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 10/17/2012] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Periodontitis, the most prevalent chronic inflammatory disease, has been related to cardiovascular diseases. Autophagy provides a mechanism for the turnover of cellular organelles and proteins through a lysosome-dependent degradation pathway. The aim of this research was to study the role of autophagy in peripheral blood mononuclear cells from patients with periodontitis and gingival fibroblasts treated with a lipopolysaccharide of Porphyromonas gingivalis. Autophagy-dependent mechanisms have been proposed in the pathogenesis of inflammatory disorders and in other diseases related to periodontitis, such as cardiovascular disease and diabetes. Thus it is important to study the role of autophagy in the pathophysiology of periodontitis. METHODS Peripheral blood mononuclear cells from patients with periodontitis (n = 38) and without periodontitis (n = 20) were used to study autophagy. To investigate the mechanism of autophagy, we evaluated the influence of a lipopolysaccharide from P. gingivalis in human gingival fibroblasts, and autophagy was monitored morphologically and biochemically. Autophagosomes were observed by immunofluorescence and electron microscopy. RESULTS We found increased levels of autophagy gene expression and high levels of mitochondrial reactive oxygen species production in peripheral blood mononuclear cells from patients with periodontitis compared with controls. A significantly positive correlation between both was observed. In human gingival fibroblasts treated with lipopolysaccharide from P. gingivalis, there was an increase of protein and transcript of autophagy-related protein 12 (ATG12) and microtubule-associated protein 1 light chain 3 alpha LC3. A reduction of mitochondrial reactive oxygen species induced a decrease in autophagy whereas inhibition of autophagy in infected cells increased apoptosis, showing the protective role of autophagy. CONCLUSION Results from the present study suggest that autophagy is an important and shared mechanism in other conditions related to inflammation or alterations of the immune system, such as periodontitis.
Collapse
Affiliation(s)
- Pedro Bullon
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche - Sezione Biochimica, Università Politecnica delle Marche, Via Ranieri, 65, Ancona, 60100, Italia
| | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Ubiquitin receptors and protein quality control. J Mol Cell Cardiol 2012; 55:73-84. [PMID: 23046644 DOI: 10.1016/j.yjmcc.2012.09.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/25/2012] [Accepted: 09/28/2012] [Indexed: 12/14/2022]
Abstract
Protein quality control (PQC) is essential to intracellular proteostasis and is carried out by sophisticated collaboration between molecular chaperones and targeted protein degradation. The latter is performed by proteasome-mediated degradation, chaperone-mediated autophagy (CMA), and selective macroautophagy, and collectively serves as the final line of defense of PQC. Ubiquitination and subsequently ubiquitin (Ub) receptor proteins (e.g., p62 and ubiquilins) are important common factors for targeting misfolded proteins to multiple quality control destinies, including the proteasome, lysosomes, and perhaps aggresomes, as well as for triggering mitophagy to remove defective mitochondria. PQC inadequacy, particularly proteasome functional insufficiency, has been shown to participate in cardiac pathogenesis. Tremendous advances have been made in unveiling the changes of PQC in cardiac diseases. However, the investigation into the molecular pathways regulating PQC in cardiac (patho)physiology, including the function of most ubiquitin receptor proteins in the heart, has only recently been initiated. A better understanding of molecular mechanisms governing PQC in cardiac physiology and pathology will undoubtedly provide new insights into cardiac pathogenesis and promote the search for novel therapeutic strategies to more effectively battle heart disease.This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
|
270
|
Wang M, Miller RA. Fibroblasts from long-lived mutant mice exhibit increased autophagy and lower TOR activity after nutrient deprivation or oxidative stress. Aging Cell 2012; 11:668-74. [PMID: 22577861 PMCID: PMC3399977 DOI: 10.1111/j.1474-9726.2012.00833.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previous work has shown that primary skin-derived fibroblasts from long-lived pituitary dwarf mutants resist the lethal effects of many forms of oxidative and nonoxidative stress. We hypothesized that increased autophagy may protect fibroblasts of Pit-1(dw/dw) (Snell dwarf) mice from multiple forms of stress. We found that dwarf-derived fibroblasts had higher levels of autophagy, using LC3 and p62 as markers, in response to amino acid deprivation, hydrogen peroxide, and paraquat. Fibroblasts from dwarf mice also showed diminished phosphorylation of mTOR, S6K, and 4EBP1, consistent with the higher levels of autophagy in these cells after stress. Similar results were also observed in fibroblasts from mutant mice lacking growth hormone receptor (GHRKO mice) after amino acid withdrawal. Our results suggested that increased autophagy, regulated by TOR-dependent processes, may contribute to stress resistance in fibroblasts from long-lived mutant mice.
Collapse
Affiliation(s)
- Min Wang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard A. Miller
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
271
|
de Vries DK, Schaapherder AFM, Reinders MEJ. Mesenchymal stromal cells in renal ischemia/reperfusion injury. Front Immunol 2012; 3:162. [PMID: 22783252 PMCID: PMC3387652 DOI: 10.3389/fimmu.2012.00162] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/30/2012] [Indexed: 12/15/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is an inevitable consequence of organ transplantation and a major determinant of patient and graft survival in kidney transplantation. Renal I/R injury can lead to fibrosis and graft failure. Although the exact sequence of events in the pathophysiology of I/R injury remains unknown, the role of inflammation has become increasingly clear. In this perspective, mesenchymal stromal cells (MSCs) are under extensive investigation as potential therapy for I/R injury, since MSCs are able to exert immune regulatory and reparative effects. Various preclinical studies indicate the beneficial effects of MSCs in ameliorating renal injury and accelerating tissue repair. These versatile cells have been shown to migrate to sites of injury and to enhance repair by paracrine mechanisms instead of by differentiating and replacing the injured cells. The first phase I studies of MSCs in human renal I/R injury and kidney transplantation have been started, and results are awaited soon. In this review, preliminary results and opportunities of MSCs in human renal I/R injury are summarized. We might be heading towards a cell-based paradigm shift in the treatment of renal I/R injury.
Collapse
Affiliation(s)
- Dorottya K de Vries
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | | | | |
Collapse
|
272
|
Garcia AG, Wilson RM, Heo J, Murthy NR, Baid S, Ouchi N, Sam F. Interferon-γ ablation exacerbates myocardial hypertrophy in diastolic heart failure. Am J Physiol Heart Circ Physiol 2012; 303:H587-96. [PMID: 22730392 DOI: 10.1152/ajpheart.00298.2012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Diastolic heart failure (HF) accounts for up to 50% of all HF admissions, with hypertension being the major cause of diastolic HF. Hypertension is characterized by left ventricular (LV) hypertrophy (LVH). Proinflammatory cytokines are increased in LVH and hypertension, but it is unknown if they mediate the progression of hypertension-induced diastolic HF. We sought to determine if interferon-γ (IFNγ) plays a role in mediating the transition from hypertension-induced LVH to diastolic HF. Twelve-week old BALB/c (WT) and IFNγ-deficient (IFNγKO) mice underwent either saline (n = 12) or aldosterone (n = 16) infusion, uninephrectomy, and fed 1% salt water for 4 wk. Tail-cuff blood pressure, echocardiography, and gene/protein analyses were performed. Isolated adult rat ventricular myocytes were treated with IFNγ (250 U/ml) and/or aldosterone (1 μM). Hypertension was less marked in IFNγKO-aldosterone mice than in WT-aldosterone mice (127 ± 5 vs. 136 ± 4 mmHg; P < 0.01), despite more LVH (LV/body wt ratio: 4.9 ± 0.1 vs. 4.3 ± 0.1 mg/g) and worse diastolic dysfunction (peak early-to-late mitral inflow velocity ratio: 3.1 ± 0.1 vs. 2.8 ± 0.1). LV ejection fraction was no different between IFNγKO-aldosterone vs. WT-aldosterone mice. LV end systolic dimensions were decreased significantly in IFNγKO-aldosterone vs. WT-aldosterone hearts (1.12 ± 0.1 vs. 2.1 ± 0.3 mm). Myocardial fibrosis and collagen expression were increased in both IFNγKO-aldosterone and WT-aldosterone hearts. Myocardial autophagy was greater in IFNγKO-aldosterone than WT-aldosterone mice. Conversely, tumor necrosis factor-α and interleukin-10 expressions were increased only in WT-aldosterone hearts. Recombinant IFNγ attenuated cardiac hypertrophy in vivo and modulated aldosterone-induced hypertrophy and autophagy in cultured cardiomyocytes. Thus IFNγ is a regulator of cardiac hypertrophy in diastolic HF and modulates cardiomyocyte size possibly by regulating autophagy. These findings suggest that IFNγ may mediate adaptive downstream responses and challenge the concept that inflammatory cytokines mediate only adverse effects.
Collapse
Affiliation(s)
- Anthony G Garcia
- Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
273
|
Ma X, Liu H, Foyil SR, Godar RJ, Weinheimer CJ, Hill JA, Diwan A. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation 2012; 125:3170-81. [PMID: 22592897 DOI: 10.1161/circulationaha.111.041814] [Citation(s) in RCA: 386] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND In myocardial ischemia, induction of autophagy via the AMP-induced protein kinase pathway is protective, whereas reperfusion stimulates autophagy with BECLIN-1 upregulation and is implicated in causing cell death. We examined flux through the macroautophagy pathway as a determinant of the discrepant outcomes in cardiomyocyte cell death in this setting. METHODS AND RESULTS Reversible left anterior descending coronary artery ligation was performed in mice with cardiomyocyte-restricted expression of green fluorescent protein-tagged microtubule-associated protein light chain-3 to induce ischemia (120 minutes) or ischemia/reperfusion (30-90 minutes) with saline or chloroquine pretreatment (n=4 per group). Autophagosome clearance, assessed as the ratio of punctate light chain-3 abundance in saline to chloroquine-treated samples, was markedly impaired with ischemia/reperfusion compared with sham controls. Reoxygenation increased cell death in neonatal rat cardiomyocytes compared with hypoxia alone, markedly increased autophagosomes but not autolysosomes (assessed as punctate dual fluorescent mCherry-green fluorescent protein tandem-tagged light chain-3 expression), and impaired clearance of polyglutamine aggregates, indicating impaired autophagic flux. The resultant autophagosome accumulation was associated with increased reactive oxygen species and mitochondrial permeabilization, leading to cell death, which was attenuated by cyclosporine A pretreatment. Hypoxia-reoxygenation injury was accompanied by reactive oxygen species-mediated BECLIN-1 upregulation and a reduction in lysosome-associated membrane protein-2, a critical determinant of autophagosome-lysosome fusion. Restoration of lysosome-associated membrane protein-2 levels synergizes with partial BECLIN-1 knockdown to restore autophagosome processing and to attenuate cell death after hypoxia-reoxygenation. CONCLUSION Ischemia/reperfusion injury impairs autophagosome clearance mediated in part by reactive oxygen species-induced decline in lysosome-associated membrane protein-2 and upregulation of BECLIN-1, contributing to increased cardiomyocyte death.
Collapse
Affiliation(s)
- Xiucui Ma
- Division of Cardiology, Washington University School of Medicine, 4940 Parkview, CSRB 827 NTA, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
274
|
Rodrigo R. Prevention of postoperative atrial fibrillation: novel and safe strategy based on the modulation of the antioxidant system. Front Physiol 2012; 3:93. [PMID: 22518106 PMCID: PMC3325031 DOI: 10.3389/fphys.2012.00093] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 03/26/2012] [Indexed: 01/15/2023] Open
Abstract
Postoperative atrial fibrillation (AF) is the most common arrhythmia following cardiac surgery with extracorporeal circulation. The pathogenesis of postoperative AF is multifactorial. Oxidative stress, caused by the unavoidable ischemia-reperfusion event occurring in this setting, is a major contributory factor. Reactive oxygen species (ROS)-derived effects could result in lipid peroxidation, protein carbonylation, or DNA oxidation of cardiac tissue, thus leading to functional and structural myocardial remodeling. The vulnerability of myocardial tissue to the oxidative challenge is also dependent on the activity of the antioxidant system. High ROS levels, overwhelming this system, should result in deleterious cellular effects, such as the induction of necrosis, apoptosis, or autophagy. Nevertheless, tissue exposure to low to moderate ROS levels could trigger a survival response with a trend to reinforce the antioxidant defense system. Administration of n-3 polyunsaturated fatty acids (PUFA), known to involve a moderate ROS production, is consistent with a diminished vulnerability to the development of postoperative AF. Accordingly, supplementation of n-3 PUFA successfully reduced the incidence of postoperative AF after coronary bypass grafting. This response is due to an up-regulation of antioxidant enzymes, as shown in experimental models. In turn, non-enzymatic antioxidant reinforcement through vitamin C administration prior to cardiac surgery has also reduced the postoperative AF incidence. Therefore, it should be expected that a mixed therapy result in an improvement of the cardioprotective effect by modulating both components of the antioxidant system. We present novel available evidence supporting the hypothesis of an effective prevention of postoperative AF including a two-step therapeutic strategy: n-3 PUFA followed by vitamin C supplementation to patients scheduled for cardiac surgery with extracorporeal circulation. The present study should encourage the design of clinical trials aimed to test the efficacy of this strategy to offer new therapeutic opportunities to patients challenged by ischemia-reperfusion events not solely in heart, but also in other organs such as kidney or liver in transplantation surgeries.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of ChileSantiago, Chile
| |
Collapse
|
275
|
Abstract
Reactive oxygen and nitrogen species change cellular responses through diverse mechanisms that are now being defined. At low levels, they are signalling molecules, and at high levels, they damage organelles, particularly the mitochondria. Oxidative damage and the associated mitochondrial dysfunction may result in energy depletion, accumulation of cytotoxic mediators and cell death. Understanding the interface between stress adaptation and cell death then is important for understanding redox biology and disease pathogenesis. Recent studies have found that one major sensor of redox signalling at this switch in cellular responses is autophagy. Autophagic activities are mediated by a complex molecular machinery including more than 30 Atg (AuTophaGy-related) proteins and 50 lysosomal hydrolases. Autophagosomes form membrane structures, sequester damaged, oxidized or dysfunctional intracellular components and organelles, and direct them to the lysosomes for degradation. This autophagic process is the sole known mechanism for mitochondrial turnover. It has been speculated that dysfunction of autophagy may result in abnormal mitochondrial function and oxidative or nitrative stress. Emerging investigations have provided new understanding of how autophagy of mitochondria (also known as mitophagy) is controlled, and the impact of autophagic dysfunction on cellular oxidative stress. The present review highlights recent studies on redox signalling in the regulation of autophagy, in the context of the basic mechanisms of mitophagy. Furthermore, we discuss the impact of autophagy on mitochondrial function and accumulation of reactive species. This is particularly relevant to degenerative diseases in which oxidative stress occurs over time, and dysfunction in both the mitochondrial and autophagic pathways play a role.
Collapse
|
276
|
Baines CP. How and when do myocytes die during ischemia and reperfusion: the late phase. J Cardiovasc Pharmacol Ther 2012; 16:239-43. [PMID: 21821522 DOI: 10.1177/1074248411407769] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
While the majority of the cardiac myocyte death that makes up the final infarct occurs during ischemia and the first few minutes of reperfusion, cell death does not stop there. In fact necrosis and apoptosis, and potentially autophagy, can continue in the previously ischemic area for up to 3 days post-reperfusion. Several mechanisms can potentially contribute to this death continuum: (1) myocytes that have already passed the point of no return despite reperfusion; (2) continued dysfunction of the coronary microvasculature; and (3) infiltration of inflammatory cells. The latter in particular leads to elevated myocardial concentrations of reactive oxygen species (ROS), inflammatory cytokines, activation of toll-like receptors, secretion of toxic enzymes, and activation of the complement cascade--all of which can lead to myocyte death. However, there is a considerable lack of studies that comprehensively examine the time course, nature, and mechanisms of post-reperfusion myocyte death. Moreover, cell death types (apoptosis, necrosis, and autophagy) are inextricably linked to one another. Therefore, we do not know whether specific blockade of necrosis during the acute phase of myocyte death will instead enhance apoptosis during the late phase, that is, will we be simply delaying the inevitable? Consequently, the purpose of this article is to briefly review what we do, and more importantly what we do not, know about cardiac cell death in the reperfused heart and what is needed to advance our understanding of this phenomenon.
Collapse
Affiliation(s)
- Christopher P Baines
- Department of Biomedical Sciences, and Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA.
| |
Collapse
|
277
|
Dołęgowska B, Błogowski W, Domański L. Association between the perioperative antioxidative ability of platelets and early post-transplant function of kidney allografts: a pilot study. PLoS One 2012; 7:e29779. [PMID: 22279544 PMCID: PMC3261166 DOI: 10.1371/journal.pone.0029779] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/04/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Recent studies have demonstrated that the actions of platelets may unfavorably influence post-transplant function of organ allografts. In this study, the association between post-transplant graft function and the perioperative activity of platelet antioxidants was examined among kidney recipients divided into early (EGF), slow (SGF), and delayed graft function (DGF) groups. METHODOLOGY/PRINCIPAL FINDINGS Activities of superoxide dismutase, catalase, glutathione transferase (GST), glutathione peroxidase, and glucose-6-phosphate dehydrogenase (G6P) were determined and levels of glutathione, oxidized glutathione, and isoprostane were measured in blood samples collected immediately before and during the first and fifth minutes of renal allograft reperfusion. Our results demonstrated a significant increase in isoprostane levels in all groups. Interestingly, in DGF patients, significantly lower levels of perioperative activity of catalase (p<0.02) and GST (p<0.02) were observed. Moreover, in our study, the activity of platelet antioxidants was associated with intensity of perioperative oxidative stress. For discriminating SGF/DGF from EGF, sensitivity, specificity, and positive and negative predictive values of platelet antioxidants were 81-91%, 50-58%, 32-37%, and 90-90.5%, respectively. CONCLUSIONS During renal transplantation, significant changes occur in the activity of platelet antioxidants. These changes seem to be associated with post-transplant graft function and can be potentially used to differentiate between EGF and SGF/DGF. To the best of our knowledge, this is the first study to reveal the potential protective role of platelets in the human transplantation setting.
Collapse
Affiliation(s)
- Barbara Dołęgowska
- Department of Laboratory Diagnostics and Molecular Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Wojciech Błogowski
- Department of Laboratory Diagnostics and Molecular Medicine, Pomeranian Medical University, Szczecin, Poland
- * E-mail:
| | - Leszek Domański
- Department of Nephrology, Transplantation and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
278
|
Przyklenk K, Dong Y, Undyala VV, Whittaker P. Autophagy as a therapeutic target for ischaemia /reperfusion injury? Concepts, controversies, and challenges. Cardiovasc Res 2012; 94:197-205. [PMID: 22215722 DOI: 10.1093/cvr/cvr358] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is the tightly orchestrated cellular 'housekeeping' process responsible for the degradation and disposal of damaged and dysfunctional organelles and protein aggregates. In addition to its established basal role in the maintenance of normal cellular phenotype and function, there is growing interest in the concept that targeted modulation of autophagy under conditions of stress (most notably, ischaemia/reperfusion) may represent an adaptive mechanism and render the myocardium resistant to ischaemia/reperfusion injury. Our aims in this review are to: (i) provide a balanced overview of the emerging hypothesis that perturbation of autophagy may serve as a novel, intriguing, and powerful cardioprotective treatment strategy and (ii) summarize the controversies and challenges in exploiting autophagy as a therapeutic target for ischaemia/reperfusion injury.
Collapse
Affiliation(s)
- Karin Przyklenk
- Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
279
|
Abstract
PURPOSE OF REVIEW Despite maximum medical and mechanical support therapy, heart failure remains a relentlessly progressive disorder with substantial morbidity and mortality. Autophagy, an evolutionarily conserved process of cellular cannibalization, has been implicated in virtually all forms of cardiovascular disease. Indeed, its role is context dependent, antagonizing or promoting disease depending on the circumstance. Here, we review current understanding of the role of autophagy in the pathogenesis of heart failure and explore this pathway as a target of therapeutic intervention. RECENT FINDINGS In preclinical models of heart disease, cardiomyocyte autophagic flux is activated; indeed, its role in disease pathogenesis is the subject of intense investigation to define mechanism. Similarly, in failing human heart of a variety of etiologies, cardiomyocyte autophagic activity is upregulated, and therapy, such as with mechanical support systems, elicits declines in autophagy activity. However, when suppression of autophagy is complete, rapid and catastrophic cell death occurs, consistent with a model in which basal autophagic flux is required for proteostasis. Thus, a narrow zone of 'optimal' autophagy seems to exist. The challenge moving forward is to tune the stress-triggered autophagic response within that 'sweet spot' range for therapeutic benefit. SUMMARY Whereas we have known for some years of the participation of lysosomal mechanisms in heart disease, it is only recently that upstream mechanisms (autophagy) are being explored. The challenge for the future is to dissect the underlying circuitry and titrate the response into an optimal, proteostasis-promoting range in hopes of mitigating the ever-expanding epidemic of heart failure.
Collapse
|
280
|
Affiliation(s)
- Dipak K. Das
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, Connecticut
| |
Collapse
|
281
|
Sciarretta S, Hariharan N, Monden Y, Zablocki D, Sadoshima J. Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart? Pediatr Cardiol 2011; 32:275-81. [PMID: 21170742 PMCID: PMC3261079 DOI: 10.1007/s00246-010-9855-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 12/03/2010] [Indexed: 12/23/2022]
Abstract
Autophagy is a catabolic process that degrades long-lived proteins and damaged organelles by sequestering them into double membrane structures termed "autophagosomes" and fusing them with lysosomes. Autophagy is active in the heart at baseline and further stimulated under stress conditions including starvation, ischemia/reperfusion, and heart failure. It plays an adaptive role in the heart at baseline, thereby maintaining cardiac structure and function and inhibiting age-related cardiac abnormalities. Autophagy is activated by ischemia and nutrient starvation in the heart through Sirt1-FoxO- and adenosine monophosphate (AMP)-activated protein kinase (AMPK)-dependent mechanisms, respectively. Activation of autophagy during ischemia is essential for cell survival and maintenance of cardiac function. Autophagy is strongly activated in the heart during reperfusion after ischemia. Activation of autophagy during reperfusion could be either protective or detrimental, depending on the experimental model. However, strong induction of autophagy accompanied by robust upregulation of Beclin1 could cause autophagic cell death, thereby proving to be detrimental. This review provides an overview regarding both protective and detrimental functions of autophagy in the heart and discusses possible applications of current knowledge to the treatment of heart disease.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Nirmala Hariharan
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Yoshiya Monden
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Daniela Zablocki
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Junichi Sadoshima
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA,Address correspondence to: Junichi Sadoshima, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Medical Science Building G-609, Newark, New Jersey 07103, USA. Phone: (973) 972-8619; Fax: (973) 972-8919;
| |
Collapse
|
282
|
Mughal W, Kirshenbaum LA. Cell death signalling mechanisms in heart failure. Exp Clin Cardiol 2011; 16:102-8. [PMID: 22131851 PMCID: PMC3206101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 05/31/2023]
Abstract
Cardiac disease is a global epidemic that is on the rise, despite the recent advances in cardiovascular research. Once the myocardium is injured, it has a limited capacity to activate reparative mechanisms to restore proper cardiac function, leading to the development of systemic heart failure. Autophagy, under certain conditions, may result in cell death, further emphasizing the controversial issues regarding the autophagic process as an adaptive or maladaptive biological response. Although significant progress in understanding the signalling mechanisms of cell death in myocytes has been made, the role of apoptotic cell death and programmed necrosis during heart failure is not completely understood. Insight to how myocytes determine whether to activate apoptotic or programmed necrosis signalling machinery remains under current investigation because it is a major problem for both scientists and clinicians in treating heart failure patients. Herein, the different modes of cell death implicated in heart failure are highlighted, as well as the role of B-cell lymphoma-2 family members and how mitochondria act as central organelles in directing such cell death mechanisms.
Collapse
Affiliation(s)
- Wajihah Mughal
- The Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| | - Lorrie A Kirshenbaum
- The Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| |
Collapse
|
283
|
Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J. Deacetylation of FoxO by Sirt1 Plays an Essential Role in Mediating Starvation-Induced Autophagy in Cardiac Myocytes. Circ Res 2010; 107:1470-82. [PMID: 20947830 DOI: 10.1161/circresaha.110.227371] [Citation(s) in RCA: 550] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE autophagy, a bulk degradation process of cytosolic proteins and organelles, is protective during nutrient starvation in cardiomyocytes (CMs). However, the underlying signaling mechanism mediating autophagy is not well understood. OBJECTIVE we investigated the role of FoxOs and its posttranslational modification in mediating starvation-induced autophagy. METHODS AND RESULTS glucose deprivation (GD) increased autophagic flux in cultured CMs, as evidenced by increased mRFP-GFP-LC3 puncta and decreases in p62, which was accompanied by upregulation of Sirt1 and FoxO1. Overexpression of either Sirt1 or FoxO1 was sufficient for inducing autophagic flux, whereas both Sirt1 and FoxO1 were required for GD-induced autophagy. GD increased deacetylation of FoxO1, and Sirt1 was required for GD-induced deacetylation of FoxO1. Overexpression of FoxO1(3A/LXXAA), which cannot interact with Sirt1, or p300, a histone acetylase, increased acetylation of FoxO1 and inhibited GD-induced autophagy. FoxO1 increased expression of Rab7, a small GTP-binding protein that mediates late autophagosome-lysosome fusion, which was both necessary and sufficient for mediating FoxO1-induced increases in autophagic flux. Although cardiac function was maintained in control mice after 48 hours of food starvation, it was significantly deteriorated in mice with cardiac-specific overexpression of FoxO1(3A/LXXAA), those with cardiac-specific homozygous deletion of FoxO1 (c-FoxO1(-/-)), and beclin1(+/-) mice, in which autophagy is significantly inhibited. CONCLUSIONS these results suggest that Sirt1-mediated deacetylation of FoxO1 and upregulation of Rab7 play an important role in mediating starvation-induced increases in autophagic flux, which in turn plays an essential role in maintaining left ventricular function during starvation.
Collapse
Affiliation(s)
- Nirmala Hariharan
- University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Department of Cell Biology and Molecular Medicine, Newark, USA
| | | | | | | | | | | |
Collapse
|