251
|
Zhao LR, Willing A. Enhancing endogenous capacity to repair a stroke-damaged brain: An evolving field for stroke research. Prog Neurobiol 2018; 163-164:5-26. [PMID: 29476785 PMCID: PMC6075953 DOI: 10.1016/j.pneurobio.2018.01.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/11/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023]
Abstract
Stroke represents a severe medical condition that causes stroke survivors to suffer from long-term and even lifelong disability. Over the past several decades, a vast majority of stroke research targets neuroprotection in the acute phase, while little work has been done to enhance stroke recovery at the later stage. Through reviewing current understanding of brain plasticity, stroke pathology, and emerging preclinical and clinical restorative approaches, this review aims to provide new insights to advance the research field for stroke recovery. Lifelong brain plasticity offers the long-lasting possibility to repair a stroke-damaged brain. Stroke impairs the structural and functional integrity of entire brain networks; the restorative approaches containing multi-components have great potential to maximize stroke recovery by rebuilding and normalizing the stroke-disrupted entire brain networks and brain functioning. The restorative window for stroke recovery is much longer than previously thought. The optimal time for brain repair appears to be at later stage of stroke rather than the earlier stage. It is expected that these new insights will advance our understanding of stroke recovery and assist in developing the next generation of restorative approaches for enhancing brain repair after stroke.
Collapse
Affiliation(s)
- Li-Ru Zhao
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Alison Willing
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|
252
|
Modulating Brain Connectivity by Simultaneous Dual-Mode Stimulation over Bilateral Primary Motor Cortices in Subacute Stroke Patients. Neural Plast 2018; 2018:1458061. [PMID: 29666636 PMCID: PMC5831930 DOI: 10.1155/2018/1458061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/21/2017] [Accepted: 12/17/2017] [Indexed: 02/05/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) has been used for the modulation of stroke patients' motor function. Recently, more challenging approaches have been studied. In this study, simultaneous stimulation using both rTMS and tDCS (dual-mode stimulation) over bilateral primary motor cortices (M1s) was investigated to compare its modulatory effects with single rTMS stimulation over the ipsilesional M1 in subacute stroke patients. Twenty-four patients participated; 12 participants were assigned to the dual-mode stimulation group while the other 12 participants were assigned to the rTMS-only group. We assessed each patient's motor function using the Fugl-Meyer assessment score and acquired their resting-state fMRI data at two times: prior to stimulation and 2 months after stimulation. Twelve healthy subjects were also recruited as the control group. The interhemispheric connectivity of the contralesional M1, interhemispheric connectivity between bilateral hemispheres, and global efficiency of the motor network noticeably increased in the dual-mode stimulation group compared to the rTMS-only group. Contrary to the dual-mode stimulation group, there was no significant change in the rTMS-only group. These data suggested that simultaneous dual-mode stimulation contributed to the recovery of interhemispheric interaction than rTMS only in subacute stroke patients. This trial is registered with NCT03279640.
Collapse
|
253
|
Stefano Filho CA, Attux R, Castellano G. Can graph metrics be used for EEG-BCIs based on hand motor imagery? Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2017.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
254
|
Zhang H, Chen X, Shi F, Li G, Kim M, Giannakopoulos P, Haller S, Shen D. Topographical Information-Based High-Order Functional Connectivity and Its Application in Abnormality Detection for Mild Cognitive Impairment. J Alzheimers Dis 2018; 54:1095-1112. [PMID: 27567817 DOI: 10.3233/jad-160092] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Temporal synchronization-based functional connectivity (FC) has long been used by the neuroscience community. However, topographical FC information may provide additional information to characterize the advanced relationship between two brain regions. Accordingly, we proposed a novel method, namely high-order functional connectivity (HOFC), to capture this second-level relationship using inter-regional resemblance of the FC topographical profiles. Specifically, HOFC first calculates an FC profile for each brain region, notably between the given brain region and other brain regions. Based on these FC profiles, a second layer of correlations is computed between all pairs of brain regions (i.e., correlation's correlation). On this basis, we generated an HOFC network, where "high-order" network properties were computed. We found that HOFC was discordant with the traditional FC in several links, indicating additional information being revealed by the new metrics. We applied HOFC to identify biomarkers for early detection of Alzheimer's disease by comparing 77 mild cognitive impairment patients with 89 healthy individuals (control group). Sensitivity in detection of group difference was consistently improved by ∼25% using HOFC compared to using FC. An HOFC network analysis also provided complementary information to an FC network analysis. For example, HOFC between olfactory and orbitofrontal cortices was found significantly reduced in patients, besides extensive alterations in HOFC network properties. In conclusion, our results showed promise in using HOFC to comprehensively map the human brain connectome.
Collapse
Affiliation(s)
- Han Zhang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xiaobo Chen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Feng Shi
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Minjeong Kim
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Sven Haller
- Affidea Centre de Diagnostique Radiologique de Carouge CDRC, Switzerland.,Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden.,Department of Neuroradiology, University Hospital Freiburg, Germany.,Faculty of Medicine of the University of Geneva, Switzerland
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
255
|
Karnath HO, Sperber C, Rorden C. Mapping human brain lesions and their functional consequences. Neuroimage 2018; 165:180-189. [PMID: 29042216 PMCID: PMC5777219 DOI: 10.1016/j.neuroimage.2017.10.028] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 11/24/2022] Open
Abstract
Neuroscience has a long history of inferring brain function by examining the relationship between brain injury and subsequent behavioral impairments. The primary advantage of this method over correlative methods is that it can tell us if a certain brain region is necessary for a given cognitive function. In addition, lesion-based analyses provide unique insights into clinical deficits. In the last decade, statistical voxel-based lesion behavior mapping (VLBM) emerged as a powerful method for understanding the architecture of the human brain. This review illustrates how VLBM improves our knowledge of functional brain architecture, as well as how it is inherently limited by its mass-univariate approach. A wide array of recently developed methods appear to supplement traditional VLBM. This paper provides an overview of these new methods, including the use of specialized imaging modalities, the combination of structural imaging with normative connectome data, as well as multivariate analyses of structural imaging data. We see these new methods as complementing rather than replacing traditional VLBM, providing synergistic tools to answer related questions. Finally, we discuss the potential for these methods to become established in cognitive neuroscience and in clinical applications.
Collapse
Affiliation(s)
- Hans-Otto Karnath
- Centre of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Psychology, University of South Carolina, Columbia, SC 29208, USA.
| | - Christoph Sperber
- Centre of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Christopher Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
256
|
Zheng X, Dai W, Alsop DC, Schlaug G. Modulating transcallosal and intra-hemispheric brain connectivity with tDCS: Implications for interventions in Aphasia. Restor Neurol Neurosci 2018; 34:519-30. [PMID: 27472845 DOI: 10.3233/rnn-150625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND/OBJECTIVE Transcranial direct current stimulation (tDCS) can enhance or diminish cortical excitability levels depending on the polarity of the stimulation. One application of non-invasive brain-stimulation has been to modulate a possible inter-hemispheric disinhibition after a stroke. This disinhibition model has been developed mainly for the upper extremity motor system, but it is not known whether the language/speech-motor system shows a similar inter-hemispheric interaction. We aimed to examine physiological evidence of inter- and intra-hemispheric connectivity changes induced by tDCS of the right inferior frontal gyrus (IFG) using arterial-spin labeling (ASL) MRI. METHODS Using an MR-compatible DC-Stimulator, we applied anodal stimulation to the right IFG region of nine healthy adults while undergoing non-invasive cerebral blood flow imaging with arterial-spin labeling (ASL) before, during, and after the stimulation. All ASL images were then normalized and timecourses were extracted in regions of interest (ROIs), which were the left and right IFG regions, and the right supramarginal gyrus (SMG) in the inferior parietal lobule. Two additional ROIs (the right occipital lobe and the left fronto-orbital region) were taken as control regions. RESULTS Using regional correlation coefficients as a surrogate marker of connectivity, we could show that inter-hemispheric connectivity (right IFG with left IFG) decreased significantly (p < 0.05; r-scores from 0.67 to 0.53) between baseline and post-stimulation, while the intra-hemispheric connectivity (right IFG with right SMG) increased significantly (p < 0.05;r-scores from 0.74 to 0.81). A 2 × 2 ANOVA found a significant main effect of HEMISPHERE (F(8) = 6.83, p < 0.01) and a significant HEMISPHERE-by-TIME interaction (F(8) = 4.24, p < 0.05) in connectivity changes. The correlation scores did not change significantly in the control region pairs (right IFG with right occipital and right IFG with left fronto-orbital) over time. CONCLUSION Using an MR-compatible DC stimulator we showed that ASL-MRI can detect tDCS-induced modulation of brain connectivity within and between hemispheres. These findings might affect trial designs focusing on modulating the non-dominant hemisphere to enhance language/speech-motor functions.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Neurology, Neuroimaging and Stroke Recovery Laboratory, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Weiying Dai
- Division of MR Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - David C Alsop
- Division of MR Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Gottfried Schlaug
- Department of Neurology, Neuroimaging and Stroke Recovery Laboratory, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
257
|
Chen J, Liu M, Sun D, Jin Y, Wang T, Ren C. Effectiveness and neural mechanisms of home-based telerehabilitation in patients with stroke based on fMRI and DTI: A study protocol for a randomized controlled trial. Medicine (Baltimore) 2018; 97:e9605. [PMID: 29504985 PMCID: PMC5779754 DOI: 10.1097/md.0000000000009605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Stroke is one of leading diseases causing adult death and disability worldwide. Home-based telerehabilitation has become a novel approach for stroke patients as effective as conventional rehabilitation, and more convenient and economical than conventional rehabilitation. However, there is no study assessing the mechanism of home-based telerehabilitation in promoting motor recovery among stroke patients with hemiplegic. AIMS This study is designed to determine the efficacy and explore the mechanism of motor recovery after home-based telerehabilitation in stroke patients with motor deficits. METHODS/DESIGN In a single-blinded randomized controlled pilot study, patients with acute subcortical stroke (n = 40) are assigned to receive home-based telerehabilitation or conventional rehabilitation. Task-based or resting-state functional magnetic resonance imaging (rs-fMRI), diffusion tensor imaging (DTI), and Fugl-Meyer assessment (FMA) score will acquired before and after rehabilitation. Activation volume of bilateral primary motor (M1), supplementary motor area (SMA), premotor cortex (PMC); lateralization index (LI) of interhemispheric M1, SMA, and PMC; functional connectivity of bilateral M1, SMA, PMC; fractional anisotropy (FA) will be measured; correlation analyses will be performed between neuroimaging biomarkers and FMA score pre- and postrehabilitation. DISCUSSION We present a study design and rationale to explore the effectiveness and neural mechanism of home-based rehabilitation for stroke patients with motor deficits. The study limitations related to the small-amount sample. Moreover, home-based rehabilitation may provide an alternative means of recovery for stroke patients. Ultimately, results of this trial will help to understand the neural mechanism of home-based telerehabilitation among stroke patients with hand movement disorder.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District
| | - Mingli Liu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District
| | - Dalong Sun
- Division of Gastroenterology, Department of Internal Medicine, Zhongshan Hospital Affiliated to Fudan University, Xuhui District
| | - Yan Jin
- Department of Rehabilitation
| | - Tianrao Wang
- Department of Radiology, Shanghai Fifth People's Hospital, Fudan University, Minhang District
| | - Chuancheng Ren
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District
- Departments of Neurology, Shanghai East Hospital Affiliated to Tongji University, Pudong New Area, Shanghai, China
| |
Collapse
|
258
|
Sergeeva SP, Savin AA, Litvitsky PF, Lyundup AV, Kiseleva EV, Gorbacheva LR, Breslavich ID, Kucenko KI, Balyasin MV. [Apoptosis as a systemic adaptive mechanism in ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:38-45. [PMID: 30830115 DOI: 10.17116/jnevro201811812238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This paper presents a literature review considering the role and mechanism of apoptosis in the pathogenesis of ischemic stroke (IS). The authors introduce a new concept: the functional request of the patient as a set of external (the nature and intensity of rehabilitation measures, characteristics of everyday life, diet, etc.) and internal (genetic factors, internal picture of the disease, availability of rental and other psychological facilities and etc.) attributes. This concept allows a new angle in understanding the pathogenesis of IS and creates fundamental and clinical potential for more successful approaches to therapy and rehabilitation after IS.
Collapse
Affiliation(s)
- S P Sergeeva
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - A A Savin
- Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - P F Litvitsky
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - A V Lyundup
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - E V Kiseleva
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | | | - I D Breslavich
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - K I Kucenko
- Bureau of Forensic Medicine of Moscow Healthcare Department, Moscow, Russia
| | - M V Balyasin
- Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
259
|
Longitudinal Brain Functional Connectivity Changes of the Cortical Motor-Related Network in Subcortical Stroke Patients with Acupuncture Treatment. Neural Plast 2017; 2017:5816263. [PMID: 29375914 PMCID: PMC5742470 DOI: 10.1155/2017/5816263] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/06/2017] [Accepted: 10/17/2017] [Indexed: 01/11/2023] Open
Abstract
In clinical practice, the effectiveness of the rehabilitation therapy such as acupuncture combining conventional Western medicine (AG) on stroke people's motor-related brain network and their behaviors has not been systematically studied. In the present study, seventeen adult ischemic patients were collected and divided into two groups: the conventional Western medicine treatment group (CG) and the AG. The neurological deficit scores (NDS) and resting-state functional MRI data were collected before and after treatment. Compared with the CG patients, AG patients exhibited a significant enhancement of the percent changes of NDS from pre- to posttreatment intervention. All patients showed significant changes of functional connectivity (FC) between the pair of cortical motor-related regions. After treatment, both patient groups showed a recovery of brain connectivity to the nearly normal level compared with the controls in these pairs. Moreover, a significant correlation between the percent changes of NDS and the pretreatment FC values of bilateral primary motor cortex (M1) in all patients was found. In conclusion, our results showed that AG therapy can be an effective means for ischemic stroke patients to recover their motor function ability. The FC strengths between bilateral M1 of stroke patients can predict stroke patients' treatment outcome after rehabilitation therapy.
Collapse
|
260
|
Jin JN, Wang X, Li Y, Jin F, Liu ZP, Yin T. The Effects of rTMS Combined with Motor Training on Functional Connectivity in Alpha Frequency Band. Front Behav Neurosci 2017; 11:234. [PMID: 29238296 PMCID: PMC5712595 DOI: 10.3389/fnbeh.2017.00234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/13/2017] [Indexed: 02/02/2023] Open
Abstract
It has recently been reported that repetitive transcranial magnetic stimulation combined with motor training (rTMS-MT) could improve motor function in post-stroke patients. However, the effects of rTMS-MT on cortical function using functional connectivity and graph theoretical analysis remain unclear. Ten healthy subjects were recruited to receive rTMS immediately before application of MT. Low frequency rTMS was delivered to the dominant hemisphere and non-dominant hand performed MT over 14 days. The reaction time of Nine-Hole Peg Test and electroencephalography (EEG) in resting condition with eyes closed were recorded before and after rTMS-MT. Functional connectivity was assessed by phase synchronization index (PSI), and subsequently thresholded to construct undirected graphs in alpha frequency band (8–13 Hz). We found a significant decrease in reaction time after rTMS-MT. The functional connectivity between the parietal and frontal cortex, and the graph theory statistics of node degree and efficiency in the parietal cortex increased. Besides the functional connectivity between premotor and frontal cortex, the degree and efficiency of premotor cortex showed opposite results. In addition, the number of connections significantly increased within inter-hemispheres and inter-regions. In conclusion, this study could be helpful in our understanding of how rTMS-MT modulates brain activity. The methods and results in this study could be taken as reference in future studies of the effects of rTMS-MT in stroke patients.
Collapse
Affiliation(s)
- Jing-Na Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Fang Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhi-Peng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
261
|
Wei D, Xie D, Li H, Chen Y, Qi D, Wang Y, Zhang Y, Chen K, Li C, Zhang Z. The positive effects of Xueshuan Xinmai tablets on brain functional connectivity in acute ischemic stroke: a placebo controlled randomized trial. Sci Rep 2017; 7:15244. [PMID: 29127417 PMCID: PMC5681502 DOI: 10.1038/s41598-017-15456-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/25/2017] [Indexed: 11/09/2022] Open
Abstract
Through a placebo controlled randomized study, the purpose of this report was to investigate the effects of Xueshuan Xinmai tablets (XXMT) on neurologic deficits, quality of life and brain functional connectivity in acute ischemic stroke patients and to explore the mechanism of action of XXMT. In total, 44 acute ischemic stroke patients were randomly divided to the XXMT treatment group (n = 22) or the placebo group (n = 22) in a 2-week trial. Before and after the treatment, the neurological assessment and functional magnetic resonance imaging examinations were carried out. Compared to the placebo group, the scores of the National Institutes of Health Stroke Scale (NIHSS) and Stroke-Specific Quality of Life Scale (SSQOL) significantly improved in the treatment group. In addition, XXMT-treated patients demonstrated significantly enhanced functional connectivity within the default mode, frontal-parietal, and motor control networks. Furthermore, the changed connectivity in the left precuneus was positively correlated to the improvement of NIHSS and SSQOL scores. The present study indicated that XXMT treatment significantly improved the neurologic deficit and quality of life of acute ischemic stroke patients and that the therapeutic effect may be based on the modulation of XXMT on the functional connectivity of brain networks.
Collapse
Affiliation(s)
- Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, P.R. China.,BABRI Centre, Beijing Normal University, Beijing, 100875, P.R. China
| | - Daojun Xie
- The First Affiliated Hospital of Anhui University of traditional Chinese Medicine, Hefei, 230031, P.R. China
| | - He Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, P.R. China.,BABRI Centre, Beijing Normal University, Beijing, 100875, P.R. China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, P.R. China.,BABRI Centre, Beijing Normal University, Beijing, 100875, P.R. China
| | - Di Qi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, P.R. China.,BABRI Centre, Beijing Normal University, Beijing, 100875, P.R. China
| | - Yujiao Wang
- Graduate School of Anhui University of traditional Chinese Medicine, Hefei, 230038, P.R. China
| | - Yangjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, P.R. China.,BABRI Centre, Beijing Normal University, Beijing, 100875, P.R. China
| | - Kewei Chen
- BABRI Centre, Beijing Normal University, Beijing, 100875, P.R. China.,Banner Alzheimer's Institute, Phoenix, Arizona, 85006, USA
| | - Chuanfu Li
- The First Affiliated Hospital of Anhui University of traditional Chinese Medicine, Hefei, 230031, P.R. China.
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, P.R. China. .,BABRI Centre, Beijing Normal University, Beijing, 100875, P.R. China.
| |
Collapse
|
262
|
Serino A, Akselrod M, Salomon R, Martuzzi R, Blefari ML, Canzoneri E, Rognini G, van der Zwaag W, Iakova M, Luthi F, Amoresano A, Kuiken T, Blanke O. Upper limb cortical maps in amputees with targeted muscle and sensory reinnervation. Brain 2017; 140:2993-3011. [PMID: 29088353 DOI: 10.1093/brain/awx242] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/03/2017] [Indexed: 12/23/2022] Open
Abstract
Neuroprosthetics research in amputee patients aims at developing new prostheses that move and feel like real limbs. Targeted muscle and sensory reinnervation (TMSR) is such an approach and consists of rerouting motor and sensory nerves from the residual limb towards intact muscles and skin regions. Movement of the myoelectric prosthesis is enabled via decoded electromyography activity from reinnervated muscles and touch sensation on the missing limb is enabled by stimulation of the reinnervated skin areas. Here we ask whether and how motor control and redirected somatosensory stimulation provided via TMSR affected the maps of the upper limb in primary motor (M1) and primary somatosensory (S1) cortex, as well as their functional connections. To this aim, we tested three TMSR patients and investigated the extent, strength, and topographical organization of the missing limb and several control body regions in M1 and S1 at ultra high-field (7 T) functional magnetic resonance imaging. Additionally, we analysed the functional connectivity between M1 and S1 and of both these regions with fronto-parietal regions, known to be important for multisensory upper limb processing. These data were compared with those of control amputee patients (n = 6) and healthy controls (n = 12). We found that M1 maps of the amputated limb in TMSR patients were similar in terms of extent, strength, and topography to healthy controls and different from non-TMSR patients. S1 maps of TMSR patients were also more similar to normal conditions in terms of topographical organization and extent, as compared to non-targeted muscle and sensory reinnervation patients, but weaker in activation strength compared to healthy controls. Functional connectivity in TMSR patients between upper limb maps in M1 and S1 was comparable with healthy controls, while being reduced in non-TMSR patients. However, connectivity was reduced between S1 and fronto-parietal regions, in both the TMSR and non-TMSR patients with respect to healthy controls. This was associated with the absence of a well-established multisensory effect (visual enhancement of touch) in TMSR patients. Collectively, these results show how M1 and S1 process signals related to movement and touch are enabled by targeted muscle and sensory reinnervation. Moreover, they suggest that TMSR may counteract maladaptive cortical plasticity typically found after limb loss, in M1, partially in S1, and in their mutual connectivity. The lack of multisensory interaction in the present data suggests that further engineering advances are necessary (e.g. the integration of somatosensory feedback into current prostheses) to enable prostheses that move and feel as real limbs.
Collapse
Affiliation(s)
- Andrea Serino
- Center for Neuroprosthetics, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Laboratory of Cognitive Neuroscience, Faculty of Life Science, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Department of Clinical Neurosciences, University Hospital Lausanne (CHUV), Switzerland
| | - Michel Akselrod
- Center for Neuroprosthetics, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Laboratory of Cognitive Neuroscience, Faculty of Life Science, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Department of Clinical Neurosciences, University Hospital Lausanne (CHUV), Switzerland
| | - Roy Salomon
- Center for Neuroprosthetics, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Laboratory of Cognitive Neuroscience, Faculty of Life Science, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Roberto Martuzzi
- Center for Neuroprosthetics, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Laboratory of Cognitive Neuroscience, Faculty of Life Science, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Campus Biotech Geneva, Geneva, Switzerland
| | - Maria Laura Blefari
- Center for Neuroprosthetics, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Laboratory of Cognitive Neuroscience, Faculty of Life Science, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland
| | - Elisa Canzoneri
- Center for Neuroprosthetics, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Laboratory of Cognitive Neuroscience, Faculty of Life Science, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland
| | - Giulio Rognini
- Center for Neuroprosthetics, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Laboratory of Cognitive Neuroscience, Faculty of Life Science, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland
| | - Wietske van der Zwaag
- Biomedical Imaging Research Center, Swiss Federal Institute of Technology of Lausanne (EPFL), Lausanne, Switzerland.,Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| | - Maria Iakova
- Département de l'appareil locomoteur, Clinique Romande de Réadaptation SUVA Care, Sion, Switzerland
| | - François Luthi
- Département de l'appareil locomoteur, Clinique Romande de Réadaptation SUVA Care, Sion, Switzerland
| | | | - Todd Kuiken
- Center for Bionic Medicine, Rehabilitation Institute of Chicago, Chicago, IL, USA
| | - Olaf Blanke
- Center for Neuroprosthetics, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Laboratory of Cognitive Neuroscience, Faculty of Life Science, Swiss Federal Institute of Technology of Lausanne (EPFL), chemin des mines 9, 1202 Geneva, Switzerland.,Department of Neurology, University Hospital, Geneva, Switzerland
| |
Collapse
|
263
|
Fu CH, Li KS, Ning YZ, Tan ZJ, Zhang Y, Liu HW, Han X, Zou YH. Altered effective connectivity of resting state networks by acupuncture stimulation in stroke patients with left hemiplegia: A multivariate granger analysis. Medicine (Baltimore) 2017; 96:e8897. [PMID: 29382021 PMCID: PMC5709020 DOI: 10.1097/md.0000000000008897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to explore the response feature of resting-state networks (RSNs) of stroke patients with left hemiplegia by acupuncture stimulation.Nineteen stroke patients with left hemiplegia and 17 controls were recruited in this study. Resting-state functional magnetic resonance imaging data before and after acupuncture were acquired using magnetic scanning. The independent component analysis (ICA) was employed to extract RSNs related to motion, sensation, cognition, and execution, including sensorimotor network (SMN), left and right frontoparietal network (LFPN and RFPN), anterior and posterior default mode network (aDMN, pDMN), visual network (VN), and salience network (SN). Granger causality method was used to explore how acupuncture stimulation affects the causality between intrinsic RSNs in stroke patients. Compared with healthy subjects, stroke patients presented the more complex effective connectivity. Before acupuncture stimulation, LFPN inputted most information from other networks while DMN outputted most information to other networks; however, the above results were reversal by acupuncture. In addition, we found aDMN reside in between SMN and LFPN after acupuncture.The finding suggested that acupuncture probably integrated the effective connectivity internetwork by modulating multiple networks and transferring information between LFPN and SMN by DMN as the relay station.
Collapse
Affiliation(s)
- Cai-Hong Fu
- Department of Neurology and Stroke Center, Dongzhimen Hospital, the First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- Shunyi Hospital Affiliated to Beijing Hospital of Traditional Chinese Medicine
| | - Kuang-Shi Li
- Department of Emergency, Beijing GuLou Hospital of Traditional Chinese Medicine
| | - Yan-Zhe Ning
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University
| | - Zhong-Jian Tan
- Department of Radiology, Dongzhimen Hospital, the First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yong Zhang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, the First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Hong-Wei Liu
- Department of Neurology and Stroke Center, Dongzhimen Hospital, the First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- Shunyi Hospital Affiliated to Beijing Hospital of Traditional Chinese Medicine
| | - Xiao Han
- Department of Neurology and Stroke Center, Dongzhimen Hospital, the First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yi-Huai Zou
- Department of Neurology and Stroke Center, Dongzhimen Hospital, the First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
264
|
Loubinoux I, Brihmat N, Castel-Lacanal E, Marque P. Cerebral imaging of post-stroke plasticity and tissue repair. Rev Neurol (Paris) 2017; 173:577-583. [DOI: 10.1016/j.neurol.2017.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 01/17/2023]
|
265
|
Functional Activation-Informed Structural Changes during Stroke Recovery: A Longitudinal MRI Study. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4345205. [PMID: 29204440 PMCID: PMC5674725 DOI: 10.1155/2017/4345205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/09/2017] [Accepted: 09/12/2017] [Indexed: 01/21/2023]
Abstract
Objective Neuroimaging studies revealed the functional reorganization or the structural changes during stroke recovery. However, previous studies did not combine the functional and structural information and the results might be affected by heterogeneous lesion. This study aimed to investigate functional activation-informed structural changes during stroke recovery. Methods MRI data of twelve stroke patients were collected at four consecutive time points during the first 3 months after stroke onset. Functional activation during finger-tapping task was used to inform the analysis of structural changes of activated brain regions. Correlation between structural changes in motor-related activated brain regions and motor function recovery was estimated. Results The averaged gray matter volume (aGMV) of contralesional activated brain regions and laterality index of gray matter volume (LIGMV) increased during stroke recovery, and LIGMV was positively correlated with Fugl-Meyer Index (FMI) at initial stage after stroke. The aGMV of bilateral activated brain regions was negatively correlated with FMI during the stroke recovery. Conclusion This study demonstrated that combining the stroke-induced functional reorganization and structural change provided new insights into the underlying innate plasticity process during stroke recovery. Significance This study proposed a new approach to integrate functional and structural information for investigating the innate plasticity after stroke.
Collapse
|
266
|
Park CH, Lee S, Kim T, Won WY, Lee KU. Different alterations in brain functional networks according to direct and indirect topological connections in patients with schizophrenia. Schizophr Res 2017; 188:82-88. [PMID: 28109669 DOI: 10.1016/j.schres.2017.01.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/11/2022]
Abstract
Schizophrenia displays connectivity deficits in the brain, but the literature has shown inconsistent findings about alterations in global efficiency of brain functional networks. We supposed that such inconsistency at the whole brain level may be due to a mixture of different portions of global efficiency at sub-brain levels. Accordingly, we considered measuring portions of global efficiency in two aspects: spatial portions by considering sub-brain networks and topological portions by considering contributions to global efficiency according to direct and indirect topological connections. We proposed adjacency and indirect adjacency as new network parameters attributable to direct and indirect topological connections, respectively, and applied them to graph-theoretical analysis of brain functional networks constructed from resting state fMRI data of 22 patients with schizophrenia and 22 healthy controls. Group differences in the network parameters were observed not for whole brain and hemispheric networks, but for regional networks. Alterations in adjacency and indirect adjacency were in opposite directions, such that adjacency increased, but indirect adjacency decreased in patients with schizophrenia. Furthermore, over connections in frontal and parietal regions, increased adjacency was associated with more severe negative symptoms, while decreased adjacency was associated with more severe positive symptoms of schizophrenia. This finding indicates that connectivity deficits associated with positive and negative symptoms of schizophrenia may involve topologically different paths in the brain. In patients with schizophrenia, although changes in global efficiency may not be clearly shown, different alterations in brain functional networks according to direct and indirect topological connections could be revealed at the regional level.
Collapse
Affiliation(s)
- Chang-Hyun Park
- Ewha Brain Institute, Ewha Womans University, Seoul, Republic of Korea
| | - Seungyup Lee
- Department of Psychiatry, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Taewon Kim
- Department of Psychiatry, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Wang Yeon Won
- Department of Psychiatry, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyoung-Uk Lee
- Department of Psychiatry, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
267
|
Effect of acupuncture plus conventional treatment on brain activity in ischemic stroke patients: a regional homogeneity analysis. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30319-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
268
|
Miao P, Wang C, Li P, Wei S, Deng C, Zheng D, Cheng J. Altered gray matter volume, cerebral blood flow and functional connectivity in chronic stroke patients. Neurosci Lett 2017; 662:331-338. [PMID: 28919535 DOI: 10.1016/j.neulet.2017.05.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 01/07/2023]
Abstract
It is entangled connections and intensive functional interactions between cortex and subcortical structures that enable our brain to perform delicate movement, and poses plasticity to recover from stroke. However, it is still unclear how cortical structures and functions change in well-recovered patients from subcortical infarctions in motor pathway. In order to reveal neuroplasticity underlying well-recovered stroke patients, both structural (gray matter volume, GMV) and functional reorganizations (cerebral blood flow, CBF and resting-state functional connectivity, rsFC) were investigated by using multi-modal MRI. Our results showed that well-recovered stroke patients exhibited significantly increased GMV in contralesional supplementary motor area (SMA), increased CBFs in contralesional superior frontal gyrus (SFG) and supramarginal gyrus (SMG) irrespective of GMV correction. Furthermore, our results showed increased rsFC between contralesional middle temporal gyrus (MTG) and SMG. Negative correlations between CBF increases and behavior test scores were also observed, suggesting neural mechanism underlying clinical improvement. Our results suggested that neuroplasticity after chronic stroke showed in both structural and functional levels, and correlation between CBF change and clinical test suggested possible biomarker for stroke recovery.
Collapse
Affiliation(s)
- Peifang Miao
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Caihong Wang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Peng Li
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Sen Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunshan Deng
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20192, USA
| | | | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
269
|
Zhang J, Zhang Y, Wang L, Sang L, Yang J, Yan R, Li P, Wang J, Qiu M. Disrupted structural and functional connectivity networks in ischemic stroke patients. Neuroscience 2017; 364:212-225. [PMID: 28918259 DOI: 10.1016/j.neuroscience.2017.09.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 01/10/2023]
Abstract
Local lesions caused by stroke may result in extensive structural and functional reorganization in the brain. Previous studies of this phenomenon have focused on specific brain networks. Here, we aimed to discover abnormalities in whole-brain networks and to explore the decoupling between structural and functional connectivity in patients with stroke. Fifteen ischemic stroke patients and 23 normal controls (NCs) were recruited in this study. A graph theoretical analysis was employed to investigate the abnormal topological properties of structural and functional brain networks in patients with stroke. Both patients with stroke and NCs exhibited small-world organization in brain networks. However, compared to NCs, patients with stroke exhibited abnormal global properties characterized by a higher characteristic path length and lower global efficiency. Furthermore, patients with stroke showed altered nodal characteristics, primarily in certain motor- and cognition-related regions. Positive correlations between the nodal degree of the inferior parietal lobule and the Fugl-Meyer Assessment (FMA) score and between the nodal betweenness centrality of the posterior cingulate gyrus (PCG) and immediate recall were observed in patients with stroke. Most importantly, the strength of the structural-functional connectivity network coupling was decreased, and the coupling degree was related to the FMA score of patients, suggesting that decoupling may provide a novel biomarker for the assessment of motor impairment in patients with stroke. Thus, the topological organization of brain networks is altered in patients with stroke, and our results provide insights into the structural and functional organization of the brain after stroke from the viewpoint of network topology.
Collapse
Affiliation(s)
- Jingna Zhang
- Department of Medical Imaging, College of Biomedical Engineering, Third Military Medical University, 30 Gaotanyan Road, Chongqing 40038, China
| | - Ye Zhang
- Department of Medical Imaging, College of Biomedical Engineering, Third Military Medical University, 30 Gaotanyan Road, Chongqing 40038, China
| | - Li Wang
- Department of Medical Imaging, College of Biomedical Engineering, Third Military Medical University, 30 Gaotanyan Road, Chongqing 40038, China
| | - Linqiong Sang
- Department of Medical Imaging, College of Biomedical Engineering, Third Military Medical University, 30 Gaotanyan Road, Chongqing 40038, China
| | - Jun Yang
- Department of Radiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Rubing Yan
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Pengyue Li
- Department of Medical Imaging, College of Biomedical Engineering, Third Military Medical University, 30 Gaotanyan Road, Chongqing 40038, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China.
| | - Mingguo Qiu
- Department of Medical Imaging, College of Biomedical Engineering, Third Military Medical University, 30 Gaotanyan Road, Chongqing 40038, China.
| |
Collapse
|
270
|
Schulz R, Park E, Lee J, Chang WH, Lee A, Kim YH, Hummel FC. Interactions Between the Corticospinal Tract and Premotor-Motor Pathways for Residual Motor Output After Stroke. Stroke 2017; 48:2805-2811. [PMID: 28904231 DOI: 10.1161/strokeaha.117.016834] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/07/2017] [Accepted: 07/06/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Brain imaging has continuously enhanced our understanding how different brain networks contribute to motor recovery after stroke. However, the present models are still incomplete and do not fit for every patient. The interaction between the degree of damage of the corticospinal tract (CST) and of corticocortical motor connections, that is, the influence of the microstructural state of one connection on the importance of another has been largely neglected. METHODS Applying diffusion-weighted imaging and probabilistic tractography, we investigated cross-network interactions between the integrity of ipsilesional CST and ipsilesional corticocortical motor pathways for variance in residual motor outcome in 53 patients with subacute stroke. RESULTS The main finding was a significant interaction between the CST and corticocortical connections between the primary motor and ventral premotor cortex in relation to residual motor output. More specifically, the data indicate that the microstructural state of the connection primary motor-ventral premotor cortex plays only a role in patients with significant damage to the CST. In patients with slightly affected CST, this connection did not explain a relevant amount of variance in motor outcome. CONCLUSIONS The present data show that patients with stroke with different degree of CST disruption differ in their dependency on structural premotor-motor connections for residual motor output. This finding might have important implications for future research on recovery prediction models and on responses to treatment strategies.
Collapse
Affiliation(s)
- Robert Schulz
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (R.S.); Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (J.L., W.H.C., Y.-H.K.); Department of Physical and Rehabilitation Medicine, Kyungpook National University Medical Center, Daegu, Republic of Korea (E.P.); Department of Health Sciences and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea (J.L., A.L., Y.-H.K.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland (F.C.H.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL Valais), CRR (Clinique Romande de Réadaptation), Sion, Switzerland (F.C.H.); and Department of Clinical Neurosciences, Geneva University Hospital, Switzerland (F.C.H.)
| | - Eunhee Park
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (R.S.); Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (J.L., W.H.C., Y.-H.K.); Department of Physical and Rehabilitation Medicine, Kyungpook National University Medical Center, Daegu, Republic of Korea (E.P.); Department of Health Sciences and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea (J.L., A.L., Y.-H.K.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland (F.C.H.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL Valais), CRR (Clinique Romande de Réadaptation), Sion, Switzerland (F.C.H.); and Department of Clinical Neurosciences, Geneva University Hospital, Switzerland (F.C.H.)
| | - Jungsoo Lee
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (R.S.); Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (J.L., W.H.C., Y.-H.K.); Department of Physical and Rehabilitation Medicine, Kyungpook National University Medical Center, Daegu, Republic of Korea (E.P.); Department of Health Sciences and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea (J.L., A.L., Y.-H.K.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland (F.C.H.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL Valais), CRR (Clinique Romande de Réadaptation), Sion, Switzerland (F.C.H.); and Department of Clinical Neurosciences, Geneva University Hospital, Switzerland (F.C.H.)
| | - Won Hyuk Chang
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (R.S.); Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (J.L., W.H.C., Y.-H.K.); Department of Physical and Rehabilitation Medicine, Kyungpook National University Medical Center, Daegu, Republic of Korea (E.P.); Department of Health Sciences and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea (J.L., A.L., Y.-H.K.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland (F.C.H.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL Valais), CRR (Clinique Romande de Réadaptation), Sion, Switzerland (F.C.H.); and Department of Clinical Neurosciences, Geneva University Hospital, Switzerland (F.C.H.)
| | - Ahee Lee
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (R.S.); Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (J.L., W.H.C., Y.-H.K.); Department of Physical and Rehabilitation Medicine, Kyungpook National University Medical Center, Daegu, Republic of Korea (E.P.); Department of Health Sciences and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea (J.L., A.L., Y.-H.K.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland (F.C.H.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL Valais), CRR (Clinique Romande de Réadaptation), Sion, Switzerland (F.C.H.); and Department of Clinical Neurosciences, Geneva University Hospital, Switzerland (F.C.H.)
| | - Yun-Hee Kim
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (R.S.); Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (J.L., W.H.C., Y.-H.K.); Department of Physical and Rehabilitation Medicine, Kyungpook National University Medical Center, Daegu, Republic of Korea (E.P.); Department of Health Sciences and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea (J.L., A.L., Y.-H.K.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland (F.C.H.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL Valais), CRR (Clinique Romande de Réadaptation), Sion, Switzerland (F.C.H.); and Department of Clinical Neurosciences, Geneva University Hospital, Switzerland (F.C.H.)
| | - Friedhelm C Hummel
- From the Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany (R.S.); Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (J.L., W.H.C., Y.-H.K.); Department of Physical and Rehabilitation Medicine, Kyungpook National University Medical Center, Daegu, Republic of Korea (E.P.); Department of Health Sciences and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea (J.L., A.L., Y.-H.K.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland (F.C.H.); Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Centre of Neuroprosthetics (CNP), Swiss Federal Institute of Technology (EPFL Valais), CRR (Clinique Romande de Réadaptation), Sion, Switzerland (F.C.H.); and Department of Clinical Neurosciences, Geneva University Hospital, Switzerland (F.C.H.).
| |
Collapse
|
271
|
Bharath RD, Panda R, Reddam VR, Bhaskar MV, Gohel S, Bhardwaj S, Prajapati A, Pal PK. A Single Session of rTMS Enhances Small-Worldness in Writer's Cramp: Evidence from Simultaneous EEG-fMRI Multi-Modal Brain Graph. Front Hum Neurosci 2017; 11:443. [PMID: 28928648 PMCID: PMC5591831 DOI: 10.3389/fnhum.2017.00443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 08/21/2017] [Indexed: 12/27/2022] Open
Abstract
Background and Purpose: Repetitive transcranial magnetic stimulation (rTMS) induces widespread changes in brain connectivity. As the network topology differences induced by a single session of rTMS are less known we undertook this study to ascertain whether the network alterations had a small-world morphology using multi-modal graph theory analysis of simultaneous EEG-fMRI. Method: Simultaneous EEG-fMRI was acquired in duplicate before (R1) and after (R2) a single session of rTMS in 14 patients with Writer’s Cramp (WC). Whole brain neuronal and hemodynamic network connectivity were explored using the graph theory measures and clustering coefficient, path length and small-world index were calculated for EEG and resting state fMRI (rsfMRI). Multi-modal graph theory analysis was used to evaluate the correlation of EEG and fMRI clustering coefficients. Result: A single session of rTMS was found to increase the clustering coefficient and small-worldness significantly in both EEG and fMRI (p < 0.05). Multi-modal graph theory analysis revealed significant modulations in the fronto-parietal regions immediately after rTMS. The rsfMRI revealed additional modulations in several deep brain regions including cerebellum, insula and medial frontal lobe. Conclusion: Multi-modal graph theory analysis of simultaneous EEG-fMRI can supplement motor physiology methods in understanding the neurobiology of rTMS in vivo. Coinciding evidence from EEG and rsfMRI reports small-world morphology for the acute phase network hyper-connectivity indicating changes ensuing low-frequency rTMS is probably not “noise”.
Collapse
Affiliation(s)
- Rose D Bharath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS)Bangalore, India.,Cognitive Neuroscience Centre, National Institute of Mental Health and Neurosciences (NIMHANS)Bangalore, India
| | - Rajanikant Panda
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS)Bangalore, India.,Cognitive Neuroscience Centre, National Institute of Mental Health and Neurosciences (NIMHANS)Bangalore, India
| | - Venkateswara Reddy Reddam
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS)Bangalore, India.,Cognitive Neuroscience Centre, National Institute of Mental Health and Neurosciences (NIMHANS)Bangalore, India
| | - M V Bhaskar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS)Bangalore, India
| | - Suril Gohel
- Department of Biomedical Engineering, New Jersey Institute of TechnologyNewark, NJ, United States
| | - Sujas Bhardwaj
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS)Bangalore, India.,Cognitive Neuroscience Centre, National Institute of Mental Health and Neurosciences (NIMHANS)Bangalore, India
| | - Arvind Prajapati
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS)Bangalore, India.,Cognitive Neuroscience Centre, National Institute of Mental Health and Neurosciences (NIMHANS)Bangalore, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS)Bangalore, India
| |
Collapse
|
272
|
Exploratory Study of the Influence of Posture and Hand Task on Corticomotor Excitability of Upper Extremity Muscles After Stroke. Arch Phys Med Rehabil 2017; 98:1771-1781. [DOI: 10.1016/j.apmr.2016.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 11/20/2022]
|
273
|
Lu YC, Zhang H, Zheng MX, Hua XY, Qiu YQ, Shen YD, Jiang S, Xu JG, Gu YD, Xu WD. Local and Extensive Neuroplasticity in Carpal Tunnel Syndrome: A Resting-State fMRI Study. Neurorehabil Neural Repair 2017; 31:898-909. [PMID: 28845734 DOI: 10.1177/1545968317723749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Carpal tunnel syndrome (CTS) is a most common peripheral nerve entrapment neuropathy characterized by sensorimotor deficits in median nerve innervated digits. Block-design task-related functional magnetic resonance imaging (fMRI) studies have been used to investigate CTS-related neuroplasticity in the primary somatosensory cortices. However, considering the persistence of digital paresthesia syndrome caused by median nerve entrapment, spontaneous neuronal activity might provide a better understanding of CTS-related neuroplasticity, which remains unexplored. The present study aimed to investigate both local and extensive spontaneous neuronal activities with resting-state fMRI. A total of 28 bilateral CTS patients and 24 normal controls were recruited, and metrics, including amplitude of low-frequency fluctuation (ALFF) and voxel-wise functional connectivity (FC), were used to explore synaptic activity at different spatial scales. Correlations with clinical measures were further investigated by linear regression. Decreased amplitudes of low-frequency fluctuation were observed in the bilateral primary sensory cortex (SI) and secondary sensory cortex (SII) in CTS patients (AlphaSim corrected P < .05). This was found to be negatively related to the sensory thresholds of corresponding median nerve innervated fingers. In the voxel-wise FC analysis, with predefined seed regions of interest in the bilateral SI and primary motor cortex, we observed decreased interhemispheric and increased intrahemispheric FC. Additionally, both interhemispheric and intrahemispheric FC were found to be significantly correlated with the mean ALFF.
Collapse
Affiliation(s)
- Ye-Chen Lu
- 1 Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,2 Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,3 Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Han Zhang
- 4 Hangzhou Normal University, Zhejiang Province, China
| | - Mou-Xiong Zheng
- 1 Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,2 Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,3 Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Xu-Yun Hua
- 1 Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,2 Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,3 Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Yan-Qun Qiu
- 1 Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,2 Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,3 Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China.,5 Jing'an District Central Hospital, Shanghai, China
| | - Yun-Dong Shen
- 1 Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,2 Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,3 Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Su Jiang
- 1 Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,2 Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,3 Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Jian-Guang Xu
- 1 Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,2 Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,3 Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Yu-Dong Gu
- 1 Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,2 Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,3 Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Wen-Dong Xu
- 1 Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,2 Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,3 Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China.,5 Jing'an District Central Hospital, Shanghai, China
| |
Collapse
|
274
|
Peters S, Wadden KP, Hayward KS, Neva JL, Auriat AM, Boyd LA. A structural motor network correlates with motor function and not impairment post stroke. Neurosci Lett 2017; 658:155-160. [PMID: 28830824 DOI: 10.1016/j.neulet.2017.08.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 01/14/2023]
Abstract
Combining structural and functional magnetic resonance imaging may provide insight into how residual motor networks contribute to motor outcomes post-stroke. The purpose of this study was to examine whether a structural motor network (SMN), generated with fMRI guided diffusion-based tractography, relates to motor function post-stroke. Twenty-seven individuals with mild to moderate upper limb impairment post stroke underwent diffusion magnetic resonance imaging. A bilateral motor network mask guided white matter tractography for each participant. Fractional anisotrophy (FA) was calculated for the SMN and corticospinal tracts (CST). The Wolf Motor Function Test (WMFT) rate and Fugl-Meyer Upper Limb (FM) tests characterized arm function and impairment respectively. The SMN and ipsilesional CST together explained approximately 35% of the variance in paretic arm function (WMFT-rate p=0.006). This study demonstrates that a broader motor network, like the SMN, is functionally meaningful. Given that the motor network is widely distributed, the proposed SMN warrants further investigation as a potential adjunct biomarker to characterize recovery potential after stroke.
Collapse
Affiliation(s)
- Sue Peters
- University of British Columbia, Faculty of Medicine, Department of Physical Therapy, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Katie P Wadden
- University of British Columbia, Faculty of Medicine, Department of Physical Therapy, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kathryn S Hayward
- University of British Columbia, Faculty of Medicine, Department of Physical Therapy, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada; Stroke Division, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, 245 Burgundy Road, Heidelberg, Victoria 3084, Australia; NHMRC Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Australia
| | - Jason L Neva
- University of British Columbia, Faculty of Medicine, Department of Physical Therapy, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Angela M Auriat
- University of British Columbia, Faculty of Medicine, Department of Physical Therapy, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Lara A Boyd
- University of British Columbia, Faculty of Medicine, Department of Physical Therapy, 212-2177 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
275
|
Lee J, Park E, Lee A, Chang WH, Kim D, Kim Y. Recovery‐related indicators of motor network plasticity according to impairment severity after stroke. Eur J Neurol 2017; 24:1290-1299. [DOI: 10.1111/ene.13377] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/27/2017] [Indexed: 01/05/2023]
Affiliation(s)
- J. Lee
- Department of Physical and Rehabilitation Medicine Center for Prevention and Rehabilitation Samsung Medical Center Heart Vascular Stroke Institute Sungkyunkwan University School of Medicine Seoul
- Department of Health Sciences and Technology Department of Medical Device Management & Research SAIHST Sungkyunkwan University Seoul
| | - E. Park
- Department of Physical and Rehabilitation Medicine Kyungpook National University Medical Center Daegu
| | - A. Lee
- Department of Health Sciences and Technology Department of Medical Device Management & Research SAIHST Sungkyunkwan University Seoul
| | - W. H. Chang
- Department of Physical and Rehabilitation Medicine Center for Prevention and Rehabilitation Samsung Medical Center Heart Vascular Stroke Institute Sungkyunkwan University School of Medicine Seoul
| | - D.‐S. Kim
- Korea Advanced Institute of Science and Technology School of Electrical Engineering Daejeon Korea
| | - Y.‐H. Kim
- Department of Physical and Rehabilitation Medicine Center for Prevention and Rehabilitation Samsung Medical Center Heart Vascular Stroke Institute Sungkyunkwan University School of Medicine Seoul
- Department of Health Sciences and Technology Department of Medical Device Management & Research SAIHST Sungkyunkwan University Seoul
| |
Collapse
|
276
|
Siegel JS, Shulman GL, Corbetta M. Measuring functional connectivity in stroke: Approaches and considerations. J Cereb Blood Flow Metab 2017; 37:2665-2678. [PMID: 28541130 PMCID: PMC5536814 DOI: 10.1177/0271678x17709198] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent research has demonstrated the importance of global changes to the functional organization of brain network following stroke. Resting functional magnetic resonance imaging (R-fMRI) is a non-invasive tool that enables the measurement of functional connectivity (FC) across the entire brain while placing minimal demands on the subject. For these reasons, it is a uniquely appealing tool for studying the distant effects of stroke. However, R-fMRI studies rely on a number of premises that cannot be assumed without careful validation in the context of stroke. Here, we describe strategies to identify and mitigate confounds specific to R-fMRI research in cerebrovascular disease. Five main topics are discussed: (a) achieving adequate co-registration of lesioned brains, (b) identifying and removing hemodynamic lags in resting BOLD, (c) identifying other vascular disruptions that affect the resting BOLD signal, (d) selecting an appropriate control cohort, and (e) acquiring sufficient fMRI data to reliably identify FC changes. For each topic, we provide guidelines for steps to improve the interpretability and reproducibility of FC-stroke research. We include a table of confounds and approaches to identify and mitigate each. Our recommendations extend to any research using R-fMRI to study diseases that might alter cerebrovascular flow and dynamics or brain anatomy.
Collapse
Affiliation(s)
- Joshua S Siegel
- 1 Department of Neurology, Washington University School of Medicine, St. Louis, USA
| | - Gordon L Shulman
- 1 Department of Neurology, Washington University School of Medicine, St. Louis, USA
| | - Maurizio Corbetta
- 1 Department of Neurology, Washington University School of Medicine, St. Louis, USA.,2 Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, USA.,3 Department of Psychology, Washington University School of Medicine, St. Louis, USA.,4 Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, USA.,5 Department of Neuroscience, University of Padua, Padua, Italy
| |
Collapse
|
277
|
Toward precision medicine: tailoring interventional strategies based on noninvasive brain stimulation for motor recovery after stroke. Curr Opin Neurol 2017; 30:388-397. [DOI: 10.1097/wco.0000000000000462] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
278
|
Kalinosky BT, Berrios Barillas R, Schmit BD. Structurofunctional resting-state networks correlate with motor function in chronic stroke. NEUROIMAGE-CLINICAL 2017; 16:610-623. [PMID: 28971011 PMCID: PMC5619927 DOI: 10.1016/j.nicl.2017.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/12/2017] [Accepted: 07/03/2017] [Indexed: 12/26/2022]
Abstract
Purpose Motor function and recovery after stroke likely rely directly on the residual anatomical connections in the brain and its resting-state functional connectivity. Both structural and functional properties of cortical networks after stroke are revealed using multimodal magnetic resonance imaging (MRI). Specifically, functional connectivity MRI (fcMRI) can extract functional networks of the brain at rest, while structural connectivity can be estimated from white matter fiber orientations measured with high angular-resolution diffusion imaging (HARDI). A model that marries these two techniques may be the key to understanding functional recovery after stroke. In this study, a novel set of voxel-level measures of structurofunctional correlations (SFC) was developed and tested in a group of chronic stroke subjects. Methods A fully automated method is presented for modeling the structure-function relationship of brain connectivity in individuals with stroke. Brains from ten chronic stroke subjects and nine age-matched controls were imaged with a structural T1-weighted scan, resting-state fMRI, and HARDI. Each subject's T1-weighted image was nonlinearly registered to a T1-weighted 152-brain MNI template using a local histogram-matching technique that alleviates distortions caused by brain lesions. Fractional anisotropy maps and mean BOLD images of each subject were separately registered to the individual's T1-weighted image using affine transformations. White matter fiber orientations within each voxel were estimated with the q-ball model, which approximates the orientation distribution function (ODF) from the diffusion-weighted measurements. Deterministic q-ball tractography was performed in order to obtain a set of fiber trajectories. The new structurofunctional correlation method assigns each voxel a new BOLD time course based on a summation of its structural connections with a common fiber length interval. Then, the voxel's original time-course was correlated with this fiber-distance BOLD signal to derive a novel structurofunctional correlation coefficient. These steps were repeated for eight fiber distance intervals, and the maximum of these correlations was used to define an intrinsic structurofunctional correlation (iSFC) index. A network-based SFC map (nSFC) was also developed in order to enhance resting-state functional networks derived from conventional functional connectivity analyses. iSFC and nSFC maps were individually compared between stroke subjects and controls using a voxel-based two-tailed Student's t-test (alpha = 0.01). A linear regression was also performed between the SFC metrics and the Box and Blocks Score, a clinical measure of arm motor function. Results Significant decreases (p < 0.01) in iSFC were found in stroke subjects within functional hubs of the brain, including the precuneus, prefrontal cortex, posterior parietal cortex, and cingulate gyrus. Many of these differences were significantly correlated with the Box and Blocks Score. The nSFC maps of prefrontal networks in control subjects revealed localized increases within the cerebellum, and these enhancements were diminished in stroke subjects. This finding was further supported by a reduction in functional connectivity between the prefrontal cortex and cerebellum. Default-mode network nSFC maps were higher in the contralesional hemisphere of lower-functioning stroke subjects. Conclusion The results demonstrate that changes after a stroke in both intrinsic and network-based structurofunctional correlations at rest are correlated with motor function, underscoring the importance of residual structural connectivity in cortical networks.
Collapse
Affiliation(s)
| | | | - Brian D. Schmit
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA
- Corresponding author at: Department of Biomedical Engineering, Marquette University, PO Box 1881, Milwaukee, WI 53201-1881, USA.
| |
Collapse
|
279
|
Fanciullacci C, Bertolucci F, Lamola G, Panarese A, Artoni F, Micera S, Rossi B, Chisari C. Delta Power Is Higher and More Symmetrical in Ischemic Stroke Patients with Cortical Involvement. Front Hum Neurosci 2017; 11:385. [PMID: 28804453 PMCID: PMC5532374 DOI: 10.3389/fnhum.2017.00385] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/10/2017] [Indexed: 01/21/2023] Open
Abstract
A brain injury resulting from unilateral stroke critically alters brain functionality and the complex balance within the cortical activity. Such modifications may critically depend on lesion location and cortical involvement. Indeed, recent findings pointed out the necessity of applying a stratification based on lesion location when investigating inter-hemispheric balance in stroke. Here, we tested whether cortical involvement could imply differences in band-specific activity and brain symmetry in post stroke patients with cortico-subcortical and subcortical strokes. We explored brain activity related to lesion location through EEG power analysis and quantitative Electroencephalography (qEEG) measures. Thirty stroke patients in the subacute phase and 10 neurologically intact age-matched right-handed subjects were enrolled. Stroke patients were equally subdivided in two groups based on lesion location: cortico-subcortical (CS, mean age ± SD: 72.21 ± 10.97 years; time since stroke ± SD: 31.14 ± 11.73 days) and subcortical (S, mean age ± SD: 68.92 ± 10.001 years; time since stroke ± SD: 26.93 ± 13.08 days) group. We assessed patients’ neurological status by means of National Institutes of Health Stroke Scale (NIHSS). High density EEG at rest was recorded and power spectral analysis in Delta (1–4 Hz) and Alpha (8–14 Hz) bands was performed. qEEG metrics as pairwise derived Brain Symmetry Index (pdBSI) and Delta/Alpha Ratio (DAR) were computed and correlated with NIHSS score. S showed a lower Delta power in the Unaffected Hemisphere (UH) compared to Affected Hemisphere (AH; z = −1.98, p < 0.05) and a higher Alpha power compared to CS (z = −2.18, p < 0.05). pdBSI was negatively correlated with NIHSS (R = −0.59, p < 0.05). CS showed a higher value and symmetrical distribution of Delta band activity (z = −2.37, p < 0.05), confirmed also by a higher DAR value compared to S (z = −2.48, p < 0.05). Patients with cortico-subcortical and subcortical lesions show different brain symmetry in the subacute phase. Interestingly, in subcortical stroke patient brain activity is related with the clinical function. qEEG measures can be explicative of brain activity related to lesion location and they could allow precise definition of diagnostic-therapeutic algorithms in stroke patients.
Collapse
Affiliation(s)
- Chiara Fanciullacci
- Neurorehabilitation Unit, University Hospital of PisaUniversity of Pisa, Pisa, Italy.,The BioRobotic Institute, Scuola Superiore Sant'AnnaPisa, Italy
| | - Federica Bertolucci
- Neurorehabilitation Unit, University Hospital of PisaUniversity of Pisa, Pisa, Italy
| | - Giuseppe Lamola
- Neurorehabilitation Unit, University Hospital of PisaUniversity of Pisa, Pisa, Italy
| | | | - Fiorenzo Artoni
- The BioRobotic Institute, Scuola Superiore Sant'AnnaPisa, Italy
| | - Silvestro Micera
- The BioRobotic Institute, Scuola Superiore Sant'AnnaPisa, Italy.,Translational Neuroengineering Lab, School of Engineering, École Polytechnique Fèdèrale de LausanneLausanne, Switzerland
| | - Bruno Rossi
- Neurorehabilitation Unit, University Hospital of PisaUniversity of Pisa, Pisa, Italy
| | - Carmelo Chisari
- Neurorehabilitation Unit, University Hospital of PisaUniversity of Pisa, Pisa, Italy
| |
Collapse
|
280
|
Non-invasive Brain Stimulation (NIBS) in Motor Recovery After Stroke: Concepts to Increase Efficacy. Curr Behav Neurosci Rep 2017. [DOI: 10.1007/s40473-017-0121-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
281
|
Hu J, Du J, Xu Q, Yang F, Zeng F, Dai XJ, Liu X, Lu G, Zhang Z. Altered Coupling between Motion-Related Activation and Resting-State Brain Activity in the Ipsilesional Sensorimotor Cortex after Cerebral Stroke. Front Neurol 2017; 8:339. [PMID: 28769870 PMCID: PMC5515815 DOI: 10.3389/fneur.2017.00339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/28/2017] [Indexed: 12/27/2022] Open
Abstract
Functional connectivity maps using resting-state functional magnetic resonance imaging (rs-fMRI) can closely resemble task fMRI activation patterns, suggesting that resting-state brain activity may predict task-evoked activation or behavioral performance. However, this conclusion was mostly drawn upon a healthy population. It remains unclear whether the predictive ability of resting-state brain activity for task-evoked activation would change under different pathological conditions. This study investigated dynamic changes of coupling between patterns of resting-state functional connectivity (RSFC) and motion-related activation in different stages of cerebral stroke. Twenty stroke patients with hand motor function impairment were involved. rs-fMRI and hand motion-related fMRI data were acquired in the acute, subacute, and early chronic stages of cerebral stroke on a 3-T magnetic resonance (MR) scanner. Sixteen healthy participants were enrolled as controls. For each subject, an activation map of the affected hand was first created using general linear model analysis on task fMRI data, and then an RSFC map was determined by seeding at the peak region of hand motion activation during the intact hand task. We then measured the extent of coupling between the RSFC maps and motion-related activation maps. Dynamic changes of the coupling between the two fMRI maps were estimated using one-way repeated measures analysis of variance across the three stages. Moreover, imaging parameters were correlated with motor performances. Data analysis showed that there were different coupling patterns between motion-related activation and RSFC maps associating with the affected motor regions during the acute, subacute, and early chronic stages of stroke. Coupling strengths increased as the recovery from stroke progressed. Coupling strengths were correlated with hand motion performance in the acute stage, while coupling recovery was negatively correlated with the recovery outcome of hand motion performance in the early chronic stages. Couplings between RSFC and motion-related activation were dynamically changed with stroke progression, which suggested changes in the prediction of resting-state brain activity for task-evoked brain activity in different pathological states. The changes in coupling strength between these two types of brain activity implicate a reparative mechanism of brain injury and may represent a biomarker for predicting motor recovery in cerebral stroke.
Collapse
Affiliation(s)
- Jianping Hu
- Department of Medical Imaging, Jinling Hospital, Nanjing Clinical School, Southern Medical University, Nanjing, China.,Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Juan Du
- Department of Neurology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Fang Yang
- Department of Neurology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Fanyong Zeng
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xi-Jian Dai
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xiaoxue Liu
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Nanjing Clinical School, Southern Medical University, Nanjing, China.,Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
282
|
Philips GR, Daly JJ, Príncipe JC. Topographical measures of functional connectivity as biomarkers for post-stroke motor recovery. J Neuroeng Rehabil 2017; 14:67. [PMID: 28683745 PMCID: PMC5501348 DOI: 10.1186/s12984-017-0277-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/20/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Biomarkers derived from neural activity of the brain present a vital tool for the prediction and evaluation of post-stroke motor recovery, as well as for real-time biofeedback opportunities. METHODS In order to encapsulate recovery-related reorganization of brain networks into such biomarkers, we have utilized the generalized measure of association (GMA) and graph analyses, which include global and local efficiency, as well as hemispheric interdensity and intradensity. These methods were applied to electroencephalogram (EEG) data recorded during a study of 30 stroke survivors (21 male, mean age 57.9 years, mean stroke duration 22.4 months) undergoing 12 weeks of intensive therapeutic intervention. RESULTS We observed that decreases of the intradensity of the unaffected hemisphere are correlated (r s =-0.46;p<0.05) with functional recovery, as measured by the upper-extremity portion of the Fugl-Meyer Assessment (FMUE). In addition, high initial values of local efficiency predict greater improvement in FMUE (R 2=0.16;p<0.05). In a subset of 17 subjects possessing lesions of the cerebral cortex, reductions of global and local efficiency, as well as the intradensity of the unaffected hemisphere are found to be associated with functional improvement (r s =-0.60,-0.66,-0.75;p<0.05). Within the same subgroup, high initial values of global and local efficiency, are predictive of improved recovery (R 2=0.24,0.25;p<0.05). All significant findings were specific to the 12.5-25 Hz band. CONCLUSIONS These topological measures show promise for prognosis and evaluation of therapeutic outcomes, as well as potential application to BCI-enabled biofeedback.
Collapse
Affiliation(s)
- Gavin R. Philips
- Computational NeuroEngineering Laboratory, Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, USA
| | - Janis J. Daly
- Department of Neurology, University of Florida, Gainesville, Florida, USA
- Malcolm Randall VA Medical Center, Gainesville, Florida, USA
| | - José C. Príncipe
- Computational NeuroEngineering Laboratory, Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
283
|
Nijboer TCW, Buma FE, Winters C, Vansteensel MJ, Kwakkel G, Ramsey NF, Raemaekers M. No changes in functional connectivity during motor recovery beyond 5 weeks after stroke; A longitudinal resting-state fMRI study. PLoS One 2017; 12:e0178017. [PMID: 28594850 PMCID: PMC5464555 DOI: 10.1371/journal.pone.0178017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/25/2017] [Indexed: 11/19/2022] Open
Abstract
Spontaneous motor recovery after stroke appears to be associated with structural and functional changes in the motor network. The aim of the current study was to explore time-dependent changes in resting-state (rs) functional connectivity in motor-impaired stroke patients, using rs-functional MRI at 5 weeks and 26 weeks post-stroke onset. For this aim, 13 stroke patients from the EXPLICIT-stroke Trial and age and gender-matched healthy control subjects were included. Patients' synergistic motor control of the paretic upper-limb was assessed with the upper extremity section of the Fugl-Meyer Assessment (FMA-UE) within 2 weeks, and at 5 and 26 weeks post-stroke onset. Results showed that the ipsilesional rs-functional connectivity between motor areas was lower compared to the contralesional rs-functional connectivity, but this difference did not change significantly over time. No relations were observed between changes in rs-functional connectivity and upper-limb motor recovery, despite changes in upper-limb function as measured with the FMA-UE. Last, overall rs-functional connectivity was comparable for patients and healthy control subjects. To conclude, the current findings did not provide evidence that in moderately impaired stroke patients the lower rs-functional connectivity of the ipsilesional hemisphere changed over time.
Collapse
Affiliation(s)
- Tanja C. W. Nijboer
- Utrecht University, Department of Experimental Psychology, Helmholtz Institute, Utrecht, The Netherlands
- Center of Excellence for Rehabilitation Medicine, University Medical Center Utrecht and De Hoogstraat Rehabilitation, Utrecht, The Netherlands
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| | - Floor E. Buma
- Center of Excellence for Rehabilitation Medicine, University Medical Center Utrecht and De Hoogstraat Rehabilitation, Utrecht, The Netherlands
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Amsterdam Rehabilitation Research Center, Reade, Amsterdam, The Netherlands
| | - Caroline Winters
- Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Rehabilitation Medicine, VU University Medical Center, Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | | | - Gert Kwakkel
- Amsterdam Rehabilitation Research Center, Reade, Amsterdam, The Netherlands
- Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Rehabilitation Medicine, VU University Medical Center, Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, United States of America
| | - Nick F. Ramsey
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mathijs Raemaekers
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
284
|
Adhikari MH, Hacker CD, Siegel JS, Griffa A, Hagmann P, Deco G, Corbetta M. Decreased integration and information capacity in stroke measured by whole brain models of resting state activity. Brain 2017; 140:1068-1085. [PMID: 28334882 DOI: 10.1093/brain/awx021] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 12/21/2016] [Indexed: 11/14/2022] Open
Abstract
While several studies have shown that focal lesions affect the communication between structurally normal regions of the brain, and that these changes may correlate with behavioural deficits, their impact on brain's information processing capacity is currently unknown. Here we test the hypothesis that focal lesions decrease the brain's information processing capacity, of which changes in functional connectivity may be a measurable correlate. To measure processing capacity, we turned to whole brain computational modelling to estimate the integration and segregation of information in brain networks. First, we measured functional connectivity between different brain areas with resting state functional magnetic resonance imaging in healthy subjects (n = 26), and subjects who had suffered a cortical stroke (n = 36). We then used a whole-brain network model that coupled average excitatory activities of local regions via anatomical connectivity. Model parameters were optimized in each healthy or stroke participant to maximize correlation between model and empirical functional connectivity, so that the model's effective connectivity was a veridical representation of healthy or lesioned brain networks. Subsequently, we calculated two model-based measures: 'integration', a graph theoretical measure obtained from functional connectivity, which measures the connectedness of brain networks, and 'information capacity', an information theoretical measure that cannot be obtained empirically, representative of the segregative ability of brain networks to encode distinct stimuli. We found that both measures were decreased in stroke patients, as compared to healthy controls, particularly at the level of resting-state networks. Furthermore, we found that these measures, especially information capacity, correlate with measures of behavioural impairment and the segregation of resting-state networks empirically measured. This study shows that focal lesions affect the brain's ability to represent stimuli and task states, and that information capacity measured through whole brain models is a theory-driven measure of processing capacity that could be used as a biomarker of injury for outcome prediction or target for rehabilitation intervention.
Collapse
Affiliation(s)
- Mohit H Adhikari
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Ramon Trias Fargas, 25-27, Barcelona, 08005, Spain
| | - Carl D Hacker
- Department of Bioengineering, Washington University Saint Louis, USA
| | - Josh S Siegel
- Department of Neurology, Washington University School of Medicine Saint Louis, USA
| | - Alessandra Griffa
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), 1011 Lausanne, Switzerland.,Signal Processing Lab 5, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), 1011 Lausanne, Switzerland.,Signal Processing Lab 5, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Ramon Trias Fargas, 25-27, Barcelona, 08005, Spain.,Institucio Catalana de la Recerca I Estudis Avancats (ICREA), University of Pompeu Fabra, Passeig Lluis Companys 23, Barcelona, 08010, Spain
| | - Maurizio Corbetta
- Department of Bioengineering, Washington University Saint Louis, USA.,Department of Neurology, Washington University School of Medicine Saint Louis, USA.,Departments of Radiology and Neuroscience, Washington University School of Medicine Saint Louis, USA.,Department of Neuroscience, University of Padua, Italy
| |
Collapse
|
285
|
Hylin MJ, Kerr AL, Holden R. Understanding the Mechanisms of Recovery and/or Compensation following Injury. Neural Plast 2017; 2017:7125057. [PMID: 28512585 PMCID: PMC5415868 DOI: 10.1155/2017/7125057] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/24/2017] [Accepted: 03/26/2017] [Indexed: 11/30/2022] Open
Abstract
Injury due to stroke and traumatic brain injury result in significant long-term effects upon behavioral functioning. One central question to rehabilitation research is whether the nature of behavioral improvement observed is due to recovery or the development of compensatory mechanisms. The nature of functional improvement can be viewed from the perspective of behavioral changes or changes in neuroanatomical plasticity that follows. Research suggests that these changes correspond to each other in a bidirectional manner. Mechanisms surrounding phenomena like neural plasticity may offer an opportunity to explain how variables such as experience can impact improvement and influence the definition of recovery. What is more, the intensity of the rehabilitative experiences may influence the ability to recover function and support functional improvement of behavior. All of this impacts how researchers, clinicians, and medical professionals utilize rehabilitation.
Collapse
Affiliation(s)
- Michael J. Hylin
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| | - Abigail L. Kerr
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Ryan Holden
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
286
|
Ning Y, Li K, Fu C, Ren Y, Zhang Y, Liu H, Cui F, Zou Y. Enhanced Functional Connectivity between the Bilateral Primary Motor Cortices after Acupuncture at Yanglingquan (GB34) in Right-Hemispheric Subcortical Stroke Patients: A Resting-State fMRI Study. Front Hum Neurosci 2017; 11:178. [PMID: 28443010 PMCID: PMC5385857 DOI: 10.3389/fnhum.2017.00178] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/27/2017] [Indexed: 01/09/2023] Open
Abstract
Increasing neuroimaging researches in stroke rehabilitation had revealed the neural mechanisms of rehabilitation therapy. However, little was known about the neural mechanisms of acupuncture therapy in subcortical stroke patients. The aim of this study was to investigate the changes of functional connectivity (FC) between the bilateral primary motor cortices (M1s) after acupuncture intervention in right subcortical stroke patients. Twenty right-hemispheric subcortical stroke patients and 20 healthy subjects were recruited to undergo one functional magnetic resonance imaging (fMRI) scanning. The scanning consisted of resting-state fMRI before and after needling at Yanglinquan (GB34), and task-evoked fMRI. The most significant active point during the left passive thumb-to-index task was chosen as the seed point. The seed-based FC analysis of the bilateral M1s was performed. Stroke patients revealed decreased FC between the bilateral M1s compared with healthy subjects, and the decreased FC was significantly enhanced after acupuncture at GB34. Acupuncture could increase the intrinsically decreased FC between the bilateral M1s which provided further insight into the neural mechanisms of acupuncture for motor function recovery in stroke patients.
Collapse
Affiliation(s)
- Yanzhe Ning
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese MedicineBeijing, China
| | - Kuangshi Li
- Department of Internal Medicine, Gulou Hospital of Traditional Chinese Medicine of BeijingBeijing, China
| | - Caihong Fu
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese MedicineBeijing, China
| | - Yi Ren
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese MedicineBeijing, China
| | - Yong Zhang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese MedicineBeijing, China
| | - Hongwei Liu
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese MedicineBeijing, China
| | - Fangyuan Cui
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese MedicineBeijing, China
| | - Yihuai Zou
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese MedicineBeijing, China.,The Key Laboratory of Internal Medicine of TCM, Ministry of Education, Beijing University of Chinese MedicineBeijing, China
| |
Collapse
|
287
|
Kawano T, Hattori N, Uno Y, Kitajo K, Hatakenaka M, Yagura H, Fujimoto H, Yoshioka T, Nagasako M, Otomune H, Miyai I. Large-Scale Phase Synchrony Reflects Clinical Status After Stroke: An EEG Study. Neurorehabil Neural Repair 2017; 31:561-570. [DOI: 10.1177/1545968317697031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background and Purpose. Stroke-induced focal brain lesions often exert remote effects via residual neural network activity. Electroencephalographic (EEG) techniques can assess neural network modifications after brain damage. Recently, EEG phase synchrony analyses have shown associations between the level of large-scale phase synchrony of brain activity and clinical symptoms; however, few reports have assessed such associations in stroke patients. Objective. The aim of this study was to investigate the clinical relevance of hemispheric phase synchrony in stroke patients by calculating its correlation with clinical status. Methods. This cross-sectional study included 19 patients with post-acute ischemic stroke admitted for inpatient rehabilitation. Interhemispheric phase synchrony indices (IH-PSIs) were computed in 2 frequency bands (alpha [α], and beta [β]), and associations between indices and scores of the Functional Independence Measure (FIM), the National Institutes of Health Stroke Scale (NIHSS), and the Fugl−Meyer Motor Assessment (FMA) were analyzed. For further assessments of IH-PSIs, ipsilesional intrahemispheric PSIs (IntraH-PSIs) as well as IH- and IntraH-phase lag indices (PLIs) were also evaluated. Results. IH-PSIs correlated significantly with FIM scores and NIHSS scores. In contrast, IH-PSIs did not correlate with FMA scores. IntraH-PSIs correlate with FIM scores after removal of the outlier. The results of analysis with PLIs were consistent with IH-PSIs. Conclusions. The PSIs correlated with performance on the activities of daily living scale but not with scores on a pure motor impairment scale. These results suggest that large-scale phase synchrony represented by IH-PSIs provides a novel surrogate marker for clinical status after stroke.
Collapse
Affiliation(s)
- Teiji Kawano
- Neurorehabilitation Research Institute, Morinomiya Hospital, Osaka, Japan
| | - Noriaki Hattori
- Neurorehabilitation Research Institute, Morinomiya Hospital, Osaka, Japan
- RIKEN BSI-Toyota Collaboration Center, RIKEN Brain Science Institute, Saitama, Japan
| | - Yutaka Uno
- RIKEN BSI-Toyota Collaboration Center, RIKEN Brain Science Institute, Saitama, Japan
| | - Keiichi Kitajo
- RIKEN BSI-Toyota Collaboration Center, RIKEN Brain Science Institute, Saitama, Japan
| | - Megumi Hatakenaka
- Neurorehabilitation Research Institute, Morinomiya Hospital, Osaka, Japan
| | - Hajime Yagura
- Neurorehabilitation Research Institute, Morinomiya Hospital, Osaka, Japan
| | | | - Tomomi Yoshioka
- Neurorehabilitation Research Institute, Morinomiya Hospital, Osaka, Japan
| | - Michiko Nagasako
- Neurorehabilitation Research Institute, Morinomiya Hospital, Osaka, Japan
| | - Hironori Otomune
- Neurorehabilitation Research Institute, Morinomiya Hospital, Osaka, Japan
| | - Ichiro Miyai
- Neurorehabilitation Research Institute, Morinomiya Hospital, Osaka, Japan
| |
Collapse
|
288
|
Abstract
Stroke is the leading cause of complex adult disability in the world. Recovery from stroke is often incomplete, which leaves many people dependent on others for their care. The improvement of long-term outcomes should, therefore, be a clinical and research priority. As a result of advances in our understanding of the biological mechanisms involved in recovery and repair after stroke, therapeutic opportunities to promote recovery through manipulation of poststroke plasticity have never been greater. This work has almost exclusively been carried out in preclinical animal models of stroke with little translation into human studies. The challenge ahead is to develop a mechanistic understanding of recovery from stroke in humans. Advances in neuroimaging techniques now enable us to reconcile behavioural accounts of recovery with molecular and cellular changes. Consequently, clinical trials can be designed in a stratified manner that takes into account when an intervention should be delivered and who is most likely to benefit. This approach is expected to lead to a substantial change in how restorative therapeutic strategies are delivered in patients after stroke.
Collapse
|
289
|
Abstract
We examined the patterns and variability of recovery post-stroke in
multiple behavioral domains. A large cohort of first time stroke patients with
heterogeneous lesions was studied prospectively and longitudinally at 1-2 weeks,
3 months and one year post-injury with structural MRI to measure lesion anatomy
and in-depth neuropsychological assessment. Impairment was described at all
timepoints by a few clusters of correlated deficits. The time course and
magnitude of recovery was similar across domains, with change scores largely
proportional to the initial deficit and most recovery occurring within the first
three months. Damage to specific white matter tracts produced poorer recovery
over several domains: attention and superior longitudinal fasciculus II/III,
language and posterior arcuate fasciculus, motor and corticospinal tract.
Finally, after accounting for the severity of the initial deficit, language and
visual memory recovery/outcome was worse with lower education, while the
occurrence of multiple deficits negatively impacted attention recovery.
Collapse
|
290
|
Zhang Y, Wang L, Yang J, Yan R, Zhang J, Sang L, Li P, Liu H, Qiu M. Abnormal functional networks in resting-state of the sub-cortical chronic stroke patients with hemiplegia. Brain Res 2017; 1663:51-58. [PMID: 28214523 DOI: 10.1016/j.brainres.2017.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/31/2016] [Accepted: 02/12/2017] [Indexed: 10/20/2022]
Abstract
The aim of this study is to identify the properties of the motor network and the default-mode network (DMN) of the sub-cortical chronic stroke patients, and to study the relationship between the network connectivity and the neurological scales of the stroke patients. Twenty-eight chronic stroke patients (28-77days post-stroke) and twenty-eight healthy control subjects (HCs) were recruited. Independent component analysis (ICA) was performed to obtain the motor network and the DMN. Two sample t-tests was used to compare the differences of the motor network and the DMN between the patients and HCs. Additionally, correlations between the network connectivity and the behavioral scores of the stroke patients were studied. Compared with the HCs, the motor network connectivity of the stroke patients was significantly increased in the contralesional superior parietal lobule, but decreased in ipsilesional M1. The DMN connectivity of the stroke patients was significantly increased in the contralesional middle frontal gyrus, but decreased in bilateral precuneus, ipsilesional supramarginal and angular gyrus. Moreover, the motor network connectivity of the contralesional superior parietal lobule was positively correlated with the Fugl-Meyer assessment (FMA) score of the stroke patients. Our results showed abnormal motor network and DMN during the resting-state of the stroke patients, suggesting that resting-state network connectivity could serve as biomarkers for future stroke studies. Brain-behavior relationships could be taken into account while evaluating stroke patients.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Medical Image, College of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Li Wang
- Department of Medical Image, College of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Jun Yang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Rubing Yan
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jingna Zhang
- Department of Medical Image, College of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Linqiong Sang
- Department of Medical Image, College of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Pengyue Li
- Department of Medical Image, College of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Hongliang Liu
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Mingguo Qiu
- Department of Medical Image, College of Biomedical Engineering, Third Military Medical University, Chongqing, China.
| |
Collapse
|
291
|
Diao Q, Liu J, Wang C, Cao C, Guo J, Han T, Cheng J, Zhang X, Yu C. Gray matter volume changes in chronic subcortical stroke: A cross-sectional study. NEUROIMAGE-CLINICAL 2017; 14:679-684. [PMID: 28377881 PMCID: PMC5369868 DOI: 10.1016/j.nicl.2017.01.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/22/2017] [Accepted: 01/29/2017] [Indexed: 11/24/2022]
Abstract
This study aimed to investigate the effects of lesion side and degree of motor recovery on gray matter volume (GMV) difference relative to healthy controls in right-handed subcortical stroke. Structural MRI data were collected in 97 patients with chronic subcortical ischemic stroke and 79 healthy controls. Voxel-wise GMV analysis was used to investigate the effects of lesion side and degree of motor recovery on GMV difference in right-handed chronic subcortical stroke patients. Compared with healthy controls, right-lesion patients demonstrated GMV increase (P < 0.05, voxel-wise false discovery rate correction) in the bilateral paracentral lobule (PCL) and supplementary motor area (SMA) and the right middle occipital gyrus (MOG); while left-lesion patients did not exhibit GMV difference under the same threshold. Patients with complete and partial motor recovery showed similar degree of GMV increase in right-lesion patients. However, the motor recovery was correlated with the GMV increase in the bilateral SMA in right-lesion patients. These findings suggest that there exists a lesion-side effect on GMV difference relative to healthy controls in right-handed patients with chronic subcortical stroke. The GMV increase in the SMA may facilitate motor recovery in subcortical stroke patients. There is a lesion-side effect on gray matter volume in subcortical stroke patients. Right-sided stroke patients show more extensive GMV changes than left-sided ones. GMV increase in the SMA may facilitate to motor recovery after stroke.
Collapse
Affiliation(s)
- Qingqing Diao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jingchun Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Caihong Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chen Cao
- Department of Radiology, Tianjin Huanhu Hospital, ,Tianjin 300350,China
| | - Jun Guo
- Department of Radiology, Tianjin Huanhu Hospital, ,Tianjin 300350,China
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, ,Tianjin 300350,China
| | - Jingliang Cheng
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xuejun Zhang
- School of Medical Imaging, ,Tianjin Medical University, Tianjin 300070, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
292
|
Ghinda CD, Duffau H. Network Plasticity and Intraoperative Mapping for Personalized Multimodal Management of Diffuse Low-Grade Gliomas. Front Surg 2017; 4:3. [PMID: 28197403 PMCID: PMC5281570 DOI: 10.3389/fsurg.2017.00003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/16/2017] [Indexed: 01/07/2023] Open
Abstract
Gliomas are the most frequent primary brain tumors and include a variety of different histological tumor types and malignancy grades. Recent achievements in terms of molecular and imaging fields have created an unprecedented opportunity to perform a comprehensive interdisciplinary assessment of the glioma pathophysiology, with direct implications in terms of the medical and surgical treatment strategies available for patients. The current paradigm shift considers glioma management in a comprehensive perspective that takes into account the intricate connectivity of the cerebral networks. This allowed significant improvement in the outcome of patients with lesions previously considered inoperable. The current review summarizes the current theoretical framework integrating the adult human brain plasticity and functional reorganization within a dynamic individualized treatment strategy for patients affected by diffuse low-grade gliomas. The concept of neuro-oncology as a brain network surgery has major implications in terms of the clinical management and ensuing outcomes, as indexed by the increased survival and quality of life of patients managed using such an approach.
Collapse
Affiliation(s)
- Cristina Diana Ghinda
- Department of Neurosurgery, The Ottawa Hospital, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Neuroscience Division, University of Ottawa, Ottawa, ON, Canada
| | - Hugues Duffau
- Department of Neurosurgery, Hôpital Gui de Chauliac, Montpellier University Medical Center, Montpellier, France; Brain Plasticity, Stem Cells and Glial Tumors Team, National Institute for Health and Medical Research (INSERM), Montpellier, France
| |
Collapse
|
293
|
Siegel JS, Snyder AZ, Ramsey L, Shulman GL, Corbetta M. The effects of hemodynamic lag on functional connectivity and behavior after stroke. J Cereb Blood Flow Metab 2016; 36:2162-2176. [PMID: 26661223 PMCID: PMC5363662 DOI: 10.1177/0271678x15614846] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/02/2015] [Accepted: 10/06/2015] [Indexed: 01/22/2023]
Abstract
Stroke disrupts the brain's vascular supply, not only within but also outside areas of infarction. We investigated temporal delays (lag) in resting state functional magnetic resonance imaging signals in 130 stroke patients scanned two weeks, three months and 12 months post stroke onset. Thirty controls were scanned twice at an interval of three months. Hemodynamic lag was determined using cross-correlation with the global gray matter signal. Behavioral performance in multiple domains was assessed in all patients. Regional cerebral blood flow and carotid patency were assessed in subsets of the cohort using arterial spin labeling and carotid Doppler ultrasonography. Significant hemodynamic lag was observed in 30% of stroke patients sub-acutely. Approximately 10% of patients showed lag at one-year post-stroke. Hemodynamic lag corresponded to gross aberrancy in functional connectivity measures, performance deficits in multiple domains and local and global perfusion deficits. Correcting for lag partially normalized abnormalities in measured functional connectivity. Yet post-stroke FC-behavior relationships in the motor and attention systems persisted even after hemodynamic delays were corrected. Resting state fMRI can reliably identify areas of hemodynamic delay following stroke. Our data reveal that hemodynamic delay is common sub-acutely, alters functional connectivity, and may be of clinical importance.
Collapse
Affiliation(s)
- Joshua S Siegel
- Departments of Neurology, Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | - Abraham Z Snyder
- Departments of Neurology, Washington University School of Medicine, Washington University, St. Louis, MO, USA.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | - Lenny Ramsey
- Departments of Neurology, Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | - Gordon L Shulman
- Departments of Neurology, Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | - Maurizio Corbetta
- Departments of Neurology, Washington University School of Medicine, Washington University, St. Louis, MO, USA.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, Washington University, St. Louis, MO, USA.,Anatomy & Neurobiology at Washington University School of Medicine, Washington University, St. Louis, MO, USA
| |
Collapse
|
294
|
Network interactions underlying mirror feedback in stroke: A dynamic causal modeling study. NEUROIMAGE-CLINICAL 2016; 13:46-54. [PMID: 27920978 PMCID: PMC5126151 DOI: 10.1016/j.nicl.2016.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/04/2016] [Accepted: 11/11/2016] [Indexed: 01/22/2023]
Abstract
Mirror visual feedback (MVF) is potentially a powerful tool to facilitate recovery of disordered movement and stimulate activation of under-active brain areas due to stroke. The neural mechanisms underlying MVF have therefore been a focus of recent inquiry. Although it is known that sensorimotor areas can be activated via mirror feedback, the network interactions driving this effect remain unknown. The aim of the current study was to fill this gap by using dynamic causal modeling to test the interactions between regions in the frontal and parietal lobes that may be important for modulating the activation of the ipsilesional motor cortex during mirror visual feedback of unaffected hand movement in stroke patients. Our intent was to distinguish between two theoretical neural mechanisms that might mediate ipsilateral activation in response to mirror-feedback: transfer of information between bilateral motor cortices versus recruitment of regions comprising an action observation network which in turn modulate the motor cortex. In an event-related fMRI design, fourteen chronic stroke subjects performed goal-directed finger flexion movements with their unaffected hand while observing real-time visual feedback of the corresponding (veridical) or opposite (mirror) hand in virtual reality. Among 30 plausible network models that were tested, the winning model revealed significant mirror feedback-based modulation of the ipsilesional motor cortex arising from the contralesional parietal cortex, in a region along the rostral extent of the intraparietal sulcus. No winning model was identified for the veridical feedback condition. We discuss our findings in the context of supporting the latter hypothesis, that mirror feedback-based activation of motor cortex may be attributed to engagement of a contralateral (contralesional) action observation network. These findings may have important implications for identifying putative cortical areas, which may be targeted with non-invasive brain stimulation as a means of potentiating the effects of mirror training.
Collapse
|
295
|
Zhao Z, Wang X, Fan M, Yin D, Sun L, Jia J, Tang C, Zheng X, Jiang Y, Wu J, Gong J. Altered Effective Connectivity of the Primary Motor Cortex in Stroke: A Resting-State fMRI Study with Granger Causality Analysis. PLoS One 2016; 11:e0166210. [PMID: 27846290 PMCID: PMC5112988 DOI: 10.1371/journal.pone.0166210] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022] Open
Abstract
The primary motor cortex (M1) is often abnormally recruited in stroke patients with motor disabilities. However, little is known about the alterations in the causal connectivity of M1 following stroke. The purpose of the present study was to investigate whether the effective connectivity of the ipsilesional M1 is disturbed in stroke patients who show different outcomes in hand motor function. 23 patients with left-hemisphere subcortical stroke were selected and divided into two subgroups: partially paralyzed hands (PPH) and completely paralyzed hands (CPH). Further, 24 matched healthy controls (HCs) were recruited. A voxel-wise Granger causality analysis (GCA) on the resting-state fMRI data between the ipsilesional M1 and the whole brain was performed to explore differences between the three groups. Our results showed that the influence from the frontoparietal cortices to ipsilesional M1 was diminished in both stroke subgroups and the influence from ipsilesional M1 to the sensorimotor cortices decreased greater in the CPH group than in the PPH group. Moreover, compared with the PPH group, the decreased influence from ipsilesional M1 to the contralesional cerebellum and from the contralesional superior parietal lobe to ipsilesional M1 were observed in the CPH group, and their GCA values were positively correlated with the FMA scores; Conversely, the increased influence from ipsilesional M1 to the ipsilesional middle frontal gyrus and middle temporal gyrus were observed, whose GCA values were negatively correlated with the FMA scores. This study suggests that the abnormalities of casual flow in the ipsilesional M1 are related to the severity of stroke-hand dysfunction, providing valuable information to understand the deficits in resting-state effective connectivity of motor execution and the frontoparietal motor control network during brain plasticity following stroke.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Xiangmin Wang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
- * E-mail: (MF); (JJ)
| | - Dazhi Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Limin Sun
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jie Jia
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, 200040, China
- * E-mail: (MF); (JJ)
| | - Chaozheng Tang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaohui Zheng
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Yuwei Jiang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Jie Wu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Jiayu Gong
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
296
|
MRI Biomarkers for Hand-Motor Outcome Prediction and Therapy Monitoring following Stroke. Neural Plast 2016; 2016:9265621. [PMID: 27747108 PMCID: PMC5056270 DOI: 10.1155/2016/9265621] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/23/2016] [Indexed: 01/01/2023] Open
Abstract
Several biomarkers have been identified which enable a considerable prediction of hand-motor outcome after cerebral damage already in the subacute stage after stroke. We here review the value of MRI biomarkers in the evaluation of corticospinal integrity and functional recruitment of motor resources. Many of the functional imaging parameters are not feasible early after stroke or for patients with high impairment and low compliance. Whereas functional connectivity parameters have demonstrated varying results on their predictive value for hand-motor outcome, corticospinal integrity evaluation using structural imaging showed robust and high predictive power for patients with different levels of impairment. Although this is indicative of an overall higher value of structural imaging for prediction, we suggest that this variation be explained by structure and function relationships. To gain more insight into the recovering brain, not only one biomarker is needed. We rather argue for a combination of different measures in an algorithm to classify fine-graded subgroups of patients. Approaches to determining biomarkers have to take into account the established markers to provide further information on certain subgroups. Assessing the best therapy approaches for individual patients will become more feasible as these subgroups become specified in more detail. This procedure will help to considerably save resources and optimize neurorehabilitative therapy.
Collapse
|
297
|
De Pasquale F, Caravasso CF, Péran P, Catani S, Tuovinen N, Sabatini U, Formisano R. Functional magnetic resonance imaging in disorders of consciousness: preliminary results of an innovative analysis of brain connectivity. FUNCTIONAL NEUROLOGY 2016; 30:193-201. [PMID: 26910178 DOI: 10.11138/fneur/2015.30.3.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of this preliminary study was to present a new approach for connectivity analysis in patients with severe acquired brain injury (ABI) that overcomes some of the difficulties created by anatomical abnormalities due to the brain injury. Using a data-driven approach, resting-state structural MRI (sMRI) and functional MRI (fMRI) data from three severe ABI patients - two with disorders of consciousness (DOC) and one who had recovered consciousness (non-DOC) - were integrated and analyzed. Parameters extracted from the distribution of the connectivity values, such as mean, standard deviation and skeweness, were considered. The distribution parameters estimated seem to provide an accurate multivariate classification of the considered cases that can be summarized as follows: connectivity in the severe ABI patients with DOC was on average lower than in the severe ABI non-DOC patient and healthy subjects. The dispersion of connectivity values of the severe ABI patients, non-DOC and DOC, was comparable, however the shape of the distribution was different in the non-DOC patient. Eventually, seed-based connectivity maps of the default mode Functional magnetic resonance imaging in disorders of consciousness: preliminary results of an innovative analysis of brain connectivity network show a pattern of increasing disruption of this network from the healthy subjects to non-DOC and DOC patients. Consistent results are obtained using an ICA-based approach..
Collapse
|
298
|
Caliandro P, Vecchio F, Miraglia F, Reale G, Della Marca G, La Torre G, Lacidogna G, Iacovelli C, Padua L, Bramanti P, Rossini PM. Small-World Characteristics of Cortical Connectivity Changes in Acute Stroke. Neurorehabil Neural Repair 2016; 31:81-94. [PMID: 27511048 DOI: 10.1177/1545968316662525] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background After cerebral ischemia, disruption and subsequent reorganization of functional connections occur both locally and remote to the lesion. Recently, complexity of brain connectivity has been described using graph theory, a mathematical approach that depicts important properties of complex systems by quantifying topologies of network representations. Functional and dynamic changes of brain connectivity can be reliably analyzed via electroencephalography (EEG) recordings even when they are not yet reflected in structural changes of connections. Objective We tested whether and how ischemic stroke in the acute stage may determine changes in small-worldness of cortical networks as measured by cortical sources of EEG. Methods Graph characteristics of EEG of 30 consecutive stroke patients in acute stage (no more than 5 days after the event) were examined. Connectivity analysis was performed using eLORETA in both hemispheres. Results Network rearrangements were mainly detected in delta, theta, and alpha bands when patients were compared with healthy subjects. In delta and alpha bands similar findings were observed in both hemispheres regardless of the side of ischemic lesion: bilaterally decreased small-worldness in the delta band and bilaterally increased small-worldness in the alpha2 band. In the theta band, bilaterally decreased small-worldness was observed only in patients with stroke in the left hemisphere. Conclusions After an acute stroke, brain cortex rearranges its network connections diffusely, in a frequency-dependent modality probably in order to face the new anatomical and functional frame.
Collapse
Affiliation(s)
- Pietro Caliandro
- Catholic University, Rome, Italy .,Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | | | | | | | | | | | | | - Chiara Iacovelli
- Catholic University, Rome, Italy.,Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - Luca Padua
- Catholic University, Rome, Italy.,Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | | | | |
Collapse
|
299
|
Cui L, Wang D, McGillis S, Kyle M, Zhao LR. Repairing the Brain by SCF+G-CSF Treatment at 6 Months Postexperimental Stroke: Mechanistic Determination of the Causal Link Between Neurovascular Regeneration and Motor Functional Recovery. ASN Neuro 2016; 8:8/4/1759091416655010. [PMID: 27511907 PMCID: PMC4984318 DOI: 10.1177/1759091416655010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/19/2016] [Indexed: 02/05/2023] Open
Abstract
Stroke, a leading cause of adult disability in the world, is a severe medical condition with limited treatment. Physical therapy, the only treatment available for stroke rehabilitation, appears to be effective within 6 months post-stroke. Here, we have mechanistically determined the efficacy of combined two hematopoietic growth factors, stem cell factor (SCF) and granulocyte-colony stimulating factor (G-CSF; SCF + G-CSF), in brain repair 6 months after cortical infarct induction in the transgenic mice carrying yellow fluorescent protein in Layer V pyramidal neurons (Thy1-YFP-H). Using a combination of live brain imaging, whole brain imaging, molecular manipulation, synaptic and vascular assessments, and motor function examination, we found that SCF + G-CSF promoted mushroom spine formation, enlarged postsynaptic membrane size, and increased postsynaptic density-95 accumulation and blood vessel density in the peri-infarct cavity cortex; and that SCF + G-CSF treatment improved motor functional recovery. The SCF + G-CSF-enhanced motor functional recovery was dependent on the synaptic and vascular regeneration in the peri-infarct cavity cortex. These data suggest that a stroke-damaged brain is repairable by SCF + G-CSF even 6 months after the lesion occurs. This study provides novel insights into the development of new restorative strategies for stroke recovery.
Collapse
Affiliation(s)
- Lili Cui
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY, USA Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Dandan Wang
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Sandra McGillis
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Michele Kyle
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY, USA Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
300
|
Aerts H, Fias W, Caeyenberghs K, Marinazzo D. Brain networks under attack: robustness properties and the impact of lesions. Brain 2016; 139:3063-3083. [PMID: 27497487 DOI: 10.1093/brain/aww194] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/13/2016] [Accepted: 06/08/2016] [Indexed: 12/30/2022] Open
Abstract
A growing number of studies approach the brain as a complex network, the so-called 'connectome'. Adopting this framework, we examine what types or extent of damage the brain can withstand-referred to as network 'robustness'-and conversely, which kind of distortions can be expected after brain lesions. To this end, we review computational lesion studies and empirical studies investigating network alterations in brain tumour, stroke and traumatic brain injury patients. Common to these three types of focal injury is that there is no unequivocal relationship between the anatomical lesion site and its topological characteristics within the brain network. Furthermore, large-scale network effects of these focal lesions are compared to those of a widely studied multifocal neurodegenerative disorder, Alzheimer's disease, in which central parts of the connectome are preferentially affected. Results indicate that human brain networks are remarkably resilient to different types of lesions, compared to other types of complex networks such as random or scale-free networks. However, lesion effects have been found to depend critically on the topological position of the lesion. In particular, damage to network hub regions-and especially those connecting different subnetworks-was found to cause the largest disturbances in network organization. Regardless of lesion location, evidence from empirical and computational lesion studies shows that lesions cause significant alterations in global network topology. The direction of these changes though remains to be elucidated. Encouragingly, both empirical and modelling studies have indicated that after focal damage, the connectome carries the potential to recover at least to some extent, with normalization of graph metrics being related to improved behavioural and cognitive functioning. To conclude, we highlight possible clinical implications of these findings, point out several methodological limitations that pertain to the study of brain diseases adopting a network approach, and provide suggestions for future research.
Collapse
Affiliation(s)
- Hannelore Aerts
- 1 Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Belgium
| | - Wim Fias
- 2 Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Belgium
| | - Karen Caeyenberghs
- 3 School of Psychology, Faculty of Health Sciences, Australian Catholic University, Australia
| | - Daniele Marinazzo
- 1 Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Belgium
| |
Collapse
|