251
|
Cuddy JS, Hailes WS, Ruby BC. A reduced core to skin temperature gradient, not a critical core temperature, affects aerobic capacity in the heat. J Therm Biol 2014; 43:7-12. [DOI: 10.1016/j.jtherbio.2014.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 11/25/2022]
|
252
|
Corbett J, Neal RA, Lunt HC, Tipton MJ. Adaptation to Heat and Exercise Performance Under Cooler Conditions: A New Hot Topic. Sports Med 2014; 44:1323-31. [DOI: 10.1007/s40279-014-0212-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
253
|
Gibson OR, Dennis A, Parfitt T, Taylor L, Watt PW, Maxwell NS. Extracellular Hsp72 concentration relates to a minimum endogenous criteria during acute exercise-heat exposure. Cell Stress Chaperones 2014; 19:389-400. [PMID: 24085588 PMCID: PMC3982022 DOI: 10.1007/s12192-013-0468-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/20/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022] Open
Abstract
Extracellular heat shock protein 72 (eHsp72) concentration increases during exercise-heat stress when conditions elicit physiological strain. Differences in severity of environmental and exercise stimuli have elicited varied response to stress. The present study aimed to quantify the extent of increased eHsp72 with increased exogenous heat stress, and determine related endogenous markers of strain in an exercise-heat model. Ten males cycled for 90 min at 50 % [Formula: see text] in three conditions (TEMP, 20 °C/63 % RH; HOT, 30.2 °C/51%RH; VHOT, 40.0 °C/37%RH). Plasma was analysed for eHsp72 pre, immediately post and 24-h post each trial utilising a commercially available ELISA. Increased eHsp72 concentration was observed post VHOT trial (+172.4 %) (p < 0.05), but not TEMP (-1.9 %) or HOT (+25.7 %) conditions. eHsp72 returned to baseline values within 24 h in all conditions. Changes were observed in rectal temperature (Trec), rate of Trec increase, area under the curve for Trec of 38.5 and 39.0 °C, duration Trec ≥38.5 and ≥39.0 °C, and change in muscle temperature, between VHOT, and TEMP and HOT, but not between TEMP and HOT. Each condition also elicited significantly increasing physiological strain, described by sweat rate, heart rate, physiological strain index, rating of perceived exertion and thermal sensation. Stepwise multiple regression reported rate of Trec increase and change in Trec to be predictors of increased eHsp72 concentration. Data suggests eHsp72 concentration increases once systemic temperature and sympathetic activity exceeds a minimum endogenous criteria elicited during VHOT conditions and is likely to be modulated by large, rapid changes in core temperature.
Collapse
Affiliation(s)
- Oliver R Gibson
- School of Sport and Service Management, Welkin Science Laboratories, University of Brighton, 30 Carlisle Road, Eastbourne, UK,
| | | | | | | | | | | |
Collapse
|
254
|
Girard O, Racinais S. Combining heat stress and moderate hypoxia reduces cycling time to exhaustion without modifying neuromuscular fatigue characteristics. Eur J Appl Physiol 2014; 114:1521-32. [PMID: 24748530 PMCID: PMC4048668 DOI: 10.1007/s00421-014-2883-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 04/01/2014] [Indexed: 11/27/2022]
Abstract
Purpose This study investigated the isolated and combined effects of heat [temperate (22 °C/30 % rH) vs. hot (35 °C/40 % rH)] and hypoxia [sea level (FiO2 0.21) vs. moderate altitude (FiO2 0.15)] on exercise capacity and neuromuscular fatigue characteristics. Methods Eleven physically active subjects cycled to exhaustion at constant workload (66 % of the power output associated with their maximal oxygen uptake in temperate conditions) in four different environmental conditions [temperate/sea level (control), hot/sea level (hot), temperate/moderate altitude (hypoxia) and hot/moderate altitude (hot + hypoxia)]. Torque and electromyography (EMG) responses following electrical stimulation of the tibial nerve (plantar-flexion; soleus) were recorded before and 5 min after exercise. Results Time to exhaustion was reduced (P < 0.05) in hot (−35 ± 15 %) or hypoxia (−36 ± 14 %) compared to control (61 ± 28 min), while hot + hypoxia (−51 ± 20 %) further compromised exercise capacity (P < 0.05). However, the effect of temperature or altitude on end-exercise core temperature (P = 0.089 and P = 0.070, respectively) and rating of perceived exertion (P > 0.05) did not reach significance. Maximal voluntary contraction torque, voluntary activation (twitch interpolation) and peak twitch torque decreased from pre- to post-exercise (−9 ± 1, −4 ± 1 and −6 ± 1 % all trials compounded, respectively; P < 0.05), with no effect of the temperature or altitude. M-wave amplitude and root mean square activity were reduced (P < 0.05) in hot compared to temperate conditions, while normalized maximal EMG activity did not change. Altitude had no effect on any measured parameters. Conclusion Moderate hypoxia in combination with heat stress reduces cycling time to exhaustion without modifying neuromuscular fatigue characteristics. Impaired oxygen delivery or increased cardiovascular strain, increasing relative exercise intensity, may have also contributed to earlier exercise cessation.
Collapse
Affiliation(s)
- Olivier Girard
- Athlete Health and Performance Research Centre, Aspetar, Qatar Orthopaedic and Sports Medicine Hospital, PO Box 29222, Doha, Qatar,
| | | |
Collapse
|
255
|
Roelands B, de Koning J, Foster C, Hettinga F, Meeusen R. Neurophysiological determinants of theoretical concepts and mechanisms involved in pacing. Sports Med 2013; 43:301-11. [PMID: 23456493 DOI: 10.1007/s40279-013-0030-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fatigue during prolonged exercise is often described as an acute impairment of exercise performance that leads to an inability to produce or maintain a desired power output. In the past few decades, interest in how athletes experience fatigue during competition has grown enormously. Research has evolved from a dominant focus on peripheral causes of fatigue towards a complex interplay between peripheral and central limitations of performance. Apparently, both feedforward and feedback mechanisms, based on the principle of teleoanticipation, regulate power output (e.g., speed) during a performance. This concept is called 'pacing' and represents the use of energetic resources during exercise, in a way such that all energy stores are used before finishing a race, but not so far from the end of a race that a meaningful slowdown can occur.It is believed that the pacing selected by athletes is largely dependent on the anticipated exercise duration and on the presence of an experientially developed performance template. Most studies investigating pacing during prolonged exercise in ambient temperatures, have observed a fast start, followed by an even pace strategy in the middle of the event with an end sprint in the final minutes of the race. A reduction in pace observed at commencement of the event is often more evident during exercise in hot environmental conditions. Further, reductions in power output and muscle activation occur before critical core temperatures are reached, indicating that subjects can anticipate the exercise intensity and heat stress they will be exposed to, resulting in a tactical adjustment of the power output. Recent research has shown that not only climatic stress but also pharmacological manipulation of the central nervous system has the ability to cause changes in endurance performance. Subjects seem to adapt their strategy specifically in the early phases of an exercise task. In high-ambient temperatures, dopaminergic manipulations clearly improve performance. The distribution of the power output reveals that after dopamine reuptake inhibition, subjects are able to maintain a higher power output compared with placebo. Manipulations of serotonin and, especially, noradrenaline, have the opposite effect and force subjects to decrease power output early in the time trial. Interestingly, after manipulation of brain serotonin, subjects are often unable to perform an end sprint, indicating an absence of a reserve capacity or motivation to increase power output. Taken together, it appears that many factors, such as ambient conditions and manipulation of brain neurotransmitters, have the potential to influence power output during exercise, and might thus be involved as regulatory mechanisms in the complex skill of pacing.
Collapse
Affiliation(s)
- Bart Roelands
- Department of Human Physiology, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | | | | | | | | |
Collapse
|
256
|
Environment and scheduling effects on sprint and middle distance running performances. PLoS One 2013; 8:e79548. [PMID: 24363791 PMCID: PMC3868388 DOI: 10.1371/journal.pone.0079548] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/23/2013] [Indexed: 11/25/2022] Open
Abstract
Purpose Achievement of athletes’ performances is related to several factors including physiological, environmental and institutional cycles where physical characteristics are involved. The objective of this study is to analyse the performance achieved in professional sprint and middle-distance running events (100 m to 1500 m) depending on the organization of the annual calendar of track events and their environmental conditions. Methods From 2002 to 2008, all performances of the Top 50 international athletes in the 100 m to 1500 m races (men and women) are collected. The historical series of world records and the 10 best annual performances in these events, amounted to a total of 26,544 performances, are also included in the study. Results Two periods with a higher frequency of peak performances are observed. The first peak occurs around the 27.15th ±0.21 week (first week of July) and the second peak around 34.75th ±0.14 week (fourth week of August). The second peak tends to be the time of major international competitions (Olympic Games, World Championships, and European Championships) and could be characterized as an institutional moment. The first one, however, corresponds to an environmental optimum as measured by the narrowing of the temperature range at the highest performance around 23.25±3.26°C. Conclusions This is the first study to demonstrate that there are two performance peaks at a specific time of year (27th and 34th weeks) in sprint and middle distance. Both institutional and ecophysiological aspects contribute to performance in the 100 m to 1500 m best performances and define the contours of human possibilities. Sport institutions may take this into account in order to provide ideal conditions to improve the next records.
Collapse
|
257
|
Marc A, Sedeaud A, Guillaume M, Rizk M, Schipman J, Antero-Jacquemin J, Haida A, Berthelot G, Toussaint JF. Marathon progress: demography, morphology and environment. J Sports Sci 2013; 32:524-32. [PMID: 24191965 DOI: 10.1080/02640414.2013.835436] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
As opposed to many other track-and-field events, marathon performances still improve. We choose to better describe the reasons for such a progression. The 100 best marathon runners archived from January 1990 to December 2011 for men and from January 1996 to December 2011 for women were analysed. We determined the impact of historical, demographic, physiological, seasonal and environmental factors. Performances in marathons improve at every level of performance (deciles). In 2011, 94% of the 100 best men athletes were African runners; among women athletes they were 52%. Morphological indicators (stature, body mass and Body Mass Index (BMI)) have decreased. We show a parabolic function between BMI and running speed. The seasonal distribution has two peaks, in spring (weeks 14 to 17) and autumn (weeks 41 to 44). During both periods, the average temperature of the host cities varies close to optimal value for long distance race. African men and women runners are increasingly dominating the marathon and pushing its record, through optimal eco-physiological conditions.
Collapse
Affiliation(s)
- Andy Marc
- a Irmes (Institut de Recherche bioMédicale et d'Epidémiologie du Sport), Insep (Institut National du Sport, de l'Expertise et de la Performance) , Paris , France
| | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Effect of new type of compression garments on sub-maximal and maximal cycling performance in the heat (32 °C). SPORT SCIENCES FOR HEALTH 2013. [DOI: 10.1007/s11332-013-0158-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
259
|
Evans H, Parfitt G, Eston R. Use of a perceptually-regulated test to measure maximal oxygen uptake is valid and feels better. Eur J Sport Sci 2013; 14:452-8. [PMID: 24053622 DOI: 10.1080/17461391.2013.832804] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A maximal, perceptually-regulated exercise test (PRETmax) whereby participants control the intensity according to preset ratings of perceived exertion (RPE) may induce more positive affective responses than a conventional 'experimenter controlled' incremental ramp test (Iramp). The authors aimed to assess (1) if a PRETmax could be used to measure VO(2max) and (2) if affective responses differed between the PRETmax and Iramp. Sixteen participants (age 20.5, s=1.2 y) completed a PRETmax which required them to adjust the resistance on a recumbent cycle ergometer to correspond to prescribed RPEs of 9, 11, 13, 15, 17 and 20 and an Iramp. Both tests ended with volitional exhaustion. Affect was recorded every minute throughout exercise using the Feeling Scale (FS). There was no difference (P>0.05) between VO(2max) measured by PRETmax (43.5, s=4.1 ml kg(-1) min(-1)) and Iramp (44.3, s=4.9 ml kg(-1) min(-1)). Participants reported feeling significantly less negative (P<0.001) throughout the PRETmax compared to Iramp (average mean difference FS = 1.4, s=0.1). The PRETmax has application in situations where the direct measurement of VO(2max) is required and the affective responses of the individual are considered to be important.
Collapse
Affiliation(s)
- Harrison Evans
- a Sansom Institute for Health Research, School of Health Sciences , University of South Australia , Adelaide , Australia
| | | | | |
Collapse
|
260
|
Eichner ER. Recent research in sports medicine: answers and questions. Curr Sports Med Rep 2013; 12:279-80. [PMID: 24030297 DOI: 10.1249/jsr.0b013e3182a52721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
261
|
Kaldur T, Kals J, Ööpik V, Burk A, Kampus P, Zagura M, Zilmer M, Unt E. Heat acclimation increases arterial elasticity in young men. Appl Physiol Nutr Metab 2013; 38:922-7. [DOI: 10.1139/apnm-2012-0389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The major physiological adaptations that occur during heat acclimation (HA) are well documented. However, no studies have provided compelling evidence about the effect of HA on arterial elastic properties. The aim of this study was to examine the changes in large artery elasticity (LAE) and small artery elasticity (SAE) concomitant with HA and to determine the potential relationships among changes in arterial elasticity, baseline aerobic fitness level, and improvement in endurance capacity (EC). During 10-day HA, the subjects (n = 21) exercised daily on a treadmill for 110 min at an intensity of 55%–60% of peak oxygen uptake in a climatic chamber preset to 42 °C and 18% relative humidity. EC was tested in the heat before and after HA. Arterial elasticity was assessed by diastolic pulse wave analysis (HDI/Pulse Wave CR-2000) at baseline and after HA. Blood samples were drawn at baseline. After HA, there was a 17% increase in LAE (from 21.19 ± 4.72 mL·mm Hg−1 × 10 to 24.77 ± 5.91 mL·mm Hg−1 × 10, p < 0.05) and an 18% increase in SAE (from 9.32 ± 1.76 mL·mm Hg−1 × 100 to 10.98 ± 1.75 mL·mm Hg−1 × 100, p < 0.01). EC increased by 86% (from 88.62 ± 27.51 min to 161.95 ± 47.80 min, p < 0.001) as a result of HA. No significant associations were revealed between changes in arterial elasticity parameters and improvement in EC or baseline aerobic fitness level. We demonstrated, for the first time, that HA has a positive impact on the parameters of arterial elasticity. Further investigations are needed to determine the mechanisms underlying these changes and the potential relationships among arterial elasticity, aerobic fitness level, and EC.
Collapse
Affiliation(s)
- Triin Kaldur
- Institute of Exercise Biology and Physiotherapy, University of Tartu, 18 Ülikooli Street, Tartu 50090, Estonia
- Sports Medicine and Rehabilitation Clinic, Tartu University Hospital, 1a Puusepa Street, Tartu 50406, Estonia
- Estonian Centre of Behavioral and Health Sciences, University of Tartu, 18 Ülikooli Street, Tartu 50090, Estonia
| | - Jaak Kals
- Department of Biochemistry, Centre of Excellence for Translational Medicine, University of Tartu, 19 Ravila Street, Tartu 50411, Estonia
- Department of Vascular Surgery, Tartu University Hospital, 8 Puusepa Street, Tartu 51014, Estonia
| | - Vahur Ööpik
- Institute of Exercise Biology and Physiotherapy, University of Tartu, 18 Ülikooli Street, Tartu 50090, Estonia
- Estonian Centre of Behavioral and Health Sciences, University of Tartu, 18 Ülikooli Street, Tartu 50090, Estonia
| | - Andres Burk
- Institute of Exercise Biology and Physiotherapy, University of Tartu, 18 Ülikooli Street, Tartu 50090, Estonia
- Estonian Centre of Behavioral and Health Sciences, University of Tartu, 18 Ülikooli Street, Tartu 50090, Estonia
| | - Priit Kampus
- Department of Biochemistry, Centre of Excellence for Translational Medicine, University of Tartu, 19 Ravila Street, Tartu 50411, Estonia
- Department of Cardiology, University of Tartu, 8 Puusepa Street, Tartu 51014, Estonia
| | - Maksim Zagura
- Department of Biochemistry, Centre of Excellence for Translational Medicine, University of Tartu, 19 Ravila Street, Tartu 50411, Estonia
| | - Mihkel Zilmer
- Department of Biochemistry, Centre of Excellence for Translational Medicine, University of Tartu, 19 Ravila Street, Tartu 50411, Estonia
| | - Eve Unt
- Institute of Exercise Biology and Physiotherapy, University of Tartu, 18 Ülikooli Street, Tartu 50090, Estonia
- Sports Medicine and Rehabilitation Clinic, Tartu University Hospital, 1a Puusepa Street, Tartu 50406, Estonia
- Estonian Centre of Behavioral and Health Sciences, University of Tartu, 18 Ülikooli Street, Tartu 50090, Estonia
- Department of Sports Medicine and Rehabilitation, University of Tartu, 18 Ülikooli Street, Tartu 50090, Estonia
| |
Collapse
|
262
|
Tyler CJ, Sunderland C, Cheung SS. The effect of cooling prior to and during exercise on exercise performance and capacity in the heat: a meta-analysis. Br J Sports Med 2013; 49:7-13. [PMID: 23945034 DOI: 10.1136/bjsports-2012-091739] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Exercise is impaired in hot, compared with moderate, conditions. The development of hyperthermia is strongly linked to the impairment and as a result various strategies have been investigated to combat this condition. This meta-analysis focused on the most popular strategy: cooling. Precooling has received the most attention but recently cooling applied during the bout of exercise has been investigated and both were reviewed. We conducted a literature search and retrieved 28 articles which investigated the effect of cooling administered either prior to (n=23) or during (n=5) an exercise test in hot (wet bulb globe temperature >26°C) conditions. Mean and weighted effect size (Cohen's d) were calculated. Overall, precooling has a moderate (d=0.73) effect on subsequent performance but the magnitude of the effect is dependent on the nature of the test. Sprint performance is impaired (d=-0.26) but intermittent performance and prolonged exercise are both improved following cooling (d=0.47 and d=1.91, respectively). Cooling during exercise has a positive effect on performance and capacity (d=0.76). Improvements were observed in studies with and without cooling-induced physiological alterations, and the literature supports the suggestion of a dose-response relationship among cooling, thermal strain and improvements in performance and capacity. In summary, precooling can improve subsequent intermittent and prolonged exercise performance and capacity in a hot environment but sprint performance is impaired. Cooling during exercise also has a positive effect on exercise performance and capacity in a hot environment.
Collapse
Affiliation(s)
| | - Caroline Sunderland
- School of Science and Technology, Nottingham Trent University, Nottingham, England, UK
| | - Stephen S Cheung
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
263
|
Pires W, Wanner SP, Lima MRM, Fonseca IAT, Fumega U, Haibara AS, Coimbra CC, Lima NRV. Physical exercise performance in temperate and warm environments is decreased by an impaired arterial baroreflex. PLoS One 2013; 8:e72005. [PMID: 23951278 PMCID: PMC3737155 DOI: 10.1371/journal.pone.0072005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/10/2013] [Indexed: 11/18/2022] Open
Abstract
The present study aimed to investigate whether running performance in different environments is dependent on intact arterial baroreceptor reflexes. We also assessed the exercise-induced cardiovascular and thermoregulatory responses in animals lacking arterial baroafferent signals. To accomplish these goals, male Wistar rats were subjected to sinoaortic denervation (SAD) or sham surgery (SHAM) and had a catheter implanted into the ascending aorta to record arterial pressure and a telemetry sensor implanted in the abdominal cavity to record core temperature. After recovering from these surgeries, the animals were subjected to constant- or incremental-speed exercises performed until the voluntary interruption of effort under temperate (25° C) and warm (35° C) conditions. During the constant-speed exercises, the running time until the rats were fatigued was shorter in SAD rats in both environments. Although the core temperature was not significantly different between the groups, tail skin temperature was higher in SAD rats under temperate conditions. The denervated rats also displayed exaggerated increases in blood pressure and double product compared with the SHAM rats; in particular, in the warm environment, these exaggerated cardiovascular responses in the SAD rats persisted until they were fatigued. These SAD-mediated changes occurred in parallel with increased variability in the very low and low components of the systolic arterial pressure power spectrum. The running performance was also affected by SAD during the incremental-speed exercises, with the maximal speed attained being decreased by approximately 20% in both environments. Furthermore, at the maximal power output tolerated during the incremental exercises, the mean arterial pressure, heart rate and double product were exaggerated in the SAD relative to SHAM rats. In conclusion, the chronic absence of the arterial baroafferents accelerates exercise fatigue in temperate and warm environments. Our findings also suggest that an augmented cardiovascular strain accounted for the early interruption of exercise in the SAD rats.
Collapse
Affiliation(s)
- Washington Pires
- Exercise Physiology Laboratory, Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
264
|
Gagnon DD, Rintamäki H, Gagnon SS, Cheung SS, Herzig KH, Porvari K, Kyröläinen H. Cold exposure enhances fat utilization but not non-esterified fatty acids, glycerol or catecholamines availability during submaximal walking and running. Front Physiol 2013; 4:99. [PMID: 23675353 PMCID: PMC3650516 DOI: 10.3389/fphys.2013.00099] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/22/2013] [Indexed: 11/25/2022] Open
Abstract
Cold exposure modulates the use of carbohydrates (CHOs) and fat during exercise. This phenomenon has mostly been observed in controlled cycling studies, but not during walking and running when core temperature and oxygen consumption are controlled, as both may alter energy metabolism. This study aimed at examining energy substrate availability and utilization during walking and running in the cold when core temperature and oxygen consumption are maintained. Ten lightly clothed male subjects walked or ran for 60-min, at 50% and 70% of maximal oxygen consumption, respectively, in a climatic chamber set at 0°C or 22°C. Thermal, cardiovascular, and oxidative responses were measured every 15-min during exercise. Blood samples for serum non-esterified fatty acids (NEFAs), glycerol, glucose, beta-hydroxybutyrate (BHB), plasma catecholamines, and serum lipids were collected immediately prior, and at 30- and 60-min of exercise. Skin temperature strongly decreased while core temperature did not change during cold trials. Heart rate (HR) was also lower in cold trials. A rise in fat utilization in the cold was seen through lower respiratory quotient (RQ) (-0.03 ± 0.02), greater fat oxidation (+0.14 ± 0.13 g · min(-1)) and contribution of fat to total energy expenditure (+1.62 ± 1.99 kcal · min(-1)). No differences from cold exposure were observed in blood parameters. During submaximal walking and running, a greater reliance on derived fat sources occurs in the cold, despite the absence of concurrent alterations in NEFAs, glycerol, or catecholamine concentrations. This disparity may suggest a greater reliance on intra-muscular energy sources such as triglycerides during both walking and running.
Collapse
Affiliation(s)
- Dominique D. Gagnon
- Department of Biology of Physical Activity, University of JyväskyläJyväskylä, Finland
| | - Hannu Rintamäki
- Department of Physiology, Institute of Biomedicine, University of OuluOulu, Finland
- Finnish Institute of Occupational HealthOulu, Finland
| | - Sheila S. Gagnon
- Department of Health and Rehabilitation Sciences, School of Physical Therapy, University of Western OntarioLondon, ON, Canada
| | - Stephen S. Cheung
- Department of Kinesiology, Brock UniversitySt. Catharines, ON, Canada
| | - Karl-Heinz Herzig
- Department of Physiology, Institute of Biomedicine, University of OuluOulu, Finland
- Department of Psychiatry, Kuopio University HospitalKuopio, Finland
| | - Katja Porvari
- Department of Forensic Medicine, University of OuluOulu, Finland
| | - Heikki Kyröläinen
- Department of Biology of Physical Activity, University of JyväskyläJyväskylä, Finland
| |
Collapse
|
265
|
Potkanowicz ES, Mendel RW. The Case for Driver Science in Motorsport: A Review and Recommendations. Sports Med 2013; 43:565-74. [DOI: 10.1007/s40279-013-0040-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
266
|
Mohr M, Krustrup P. Heat Stress Impairs Repeated Jump Ability After Competitive Elite Soccer Games. J Strength Cond Res 2013. [DOI: 10.1519/jsc.0b013e31825c3266] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
267
|
Physiological responses of medical team members to a simulated emergency in tropical field conditions. Prehosp Disaster Med 2013; 28:139-44. [PMID: 23340114 DOI: 10.1017/s1049023x12001847] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Responses to physical activity while wearing personal protective equipment in hot laboratory conditions are well documented. However less is known of medical professionals responding to an emergency in hot field conditions in standard attire. Therefore, the purpose of this study was to assess the physiological responses of medical responders to a simulated field emergency in tropical conditions. METHODS Ten subjects, all of whom were chronically heat-acclimatized health care workers, volunteered to participate in this investigation. Participants were the medical response team of a simulated field emergency conducted at the Northern Territory Emergency Services training grounds, Yarrawonga, NT, Australia. The exercise consisted of setting up a field hospital, transporting patients by stretcher to the hospital, triaging and treating the patients while dressed in standard medical response uniforms in field conditions (mean ambient temperature of 29.3°C and relative humidity of 50.3%, apparent temperature of 27.9°C) for a duration of 150 minutes. Gastrointestinal temperature was transmitted from an ingestible sensor and used as the index of core temperature. An integrated physiological monitoring device worn by each participant measured and logged heart rate, chest temperature and gastrointestinal temperature throughout the exercise. Hydration status was assessed by monitoring the change between pre- and post-exercise body mass and urine specific gravity (USG). RESULTS Mean core body temperature rose from 37.5°C at the commencement of the exercise to peak at 37.8°C after 75 minutes. The individual peak core body temperature was 38.5°C, with three subjects exceeding 38.0°C. Subjects sweated 0.54 L per hour and consumed 0.36 L of fluid per hour, resulting in overall dehydration of 0.7% of body mass at the cessation of exercise. Physiological strain index was indicative of little to low strain. CONCLUSIONS The combination of the unseasonably mild environmental conditions and moderate work rates resulted in minimal heat storage during the simulated exercise. As a result, low sweat rates manifested in minimal dehydration. When provided with access to fluids in mild environmental conditions, chronically heat-acclimatized medical responders can meet their hydration requirements through ad libitum fluid consumption. Whether such an observation is replicated under a harsher thermal load remains to be investigated.
Collapse
|
268
|
Acute oral administration of a tyrosine and phenylalanine-free amino acid mixture reduces exercise capacity in the heat. Eur J Appl Physiol 2013; 113:1511-22. [DOI: 10.1007/s00421-012-2577-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 12/21/2012] [Indexed: 01/09/2023]
|
269
|
Maughan RJ. Investigating the associations between hydration and exercise performance: methodology and limitations. Nutr Rev 2013; 70 Suppl 2:S128-31. [PMID: 23121347 DOI: 10.1111/j.1753-4887.2012.00536.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Loss of body water, if sufficiently severe, impairs most physiological functions, but the body water content fluctuates over the course of a normal day with no implications for physical or mental performance. The point at which an effect of dehydration becomes apparent has been the subject of much debate, in part, at least, because of the different tests that have been applied, differences in the methodologies used to induce dehydration and also because of differences in the fitness and other physiological characteristics of the subjects studied. The act of drinking itself and the conscious denial of access to water will also have implications for subjective responses to the exercise task. In many published studies, it is difficult to separate the effects of ingestion of water from those of carbohydrate, electrolytes, and other drink components. Nevertheless, there is good evidence that drinking appropriate amounts of water, especially cold water, can enhance exercise performance in many situations.
Collapse
Affiliation(s)
- Ronald J Maughan
- Loughborough University, School of Sport, Exercise and Health Sciences, Loughborough, UK.
| |
Collapse
|
270
|
Hasegawa H, Cheung SS. Hyperthermia effects on brain function and exercise capacity. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2013. [DOI: 10.7600/jpfsm.2.429] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
271
|
Jones PR, Barton C, Morrissey D, Maffulli N, Hemmings S. Pre-cooling for endurance exercise performance in the heat: a systematic review. BMC Med 2012; 10:166. [PMID: 23249542 PMCID: PMC3568721 DOI: 10.1186/1741-7015-10-166] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 12/18/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Endurance exercise capacity diminishes under hot environmental conditions. Time to exhaustion can be increased by lowering body temperature prior to exercise (pre-cooling). This systematic literature review synthesizes the current findings of the effects of pre-cooling on endurance exercise performance, providing guidance for clinical practice and further research. METHODS The MEDLINE, EMBASE, CINAHL, Web of Science and SPORTDiscus databases were searched in May 2012 for studies evaluating the effectiveness of pre-cooling to enhance endurance exercise performance in hot environmental conditions (≥ 28°C). Studies involving participants with increased susceptibility to heat strain, cooling during or between bouts of exercise, and protocols where aerobic endurance was not the principle performance outcome were excluded. Potential publications were assessed by two independent reviewers for inclusion and quality. Means and standard deviations of exercise performance variables were extracted or sought from original authors to enable effect size calculations. RESULTS In all, 13 studies were identified. The majority of studies contained low participant numbers and/or absence of sample size calculations. Six studies used cold water immersion, four crushed ice ingestion and three cooling garments. The remaining study utilized mixed methods. Large heterogeneity in methodological design and exercise protocols was identified. Effect size calculations indicated moderate evidence that cold water immersion effectively improved endurance performance, and limited evidence that ice slurry ingestion improved performance. Cooling garments were ineffective. Most studies failed to document or report adverse events. Low participant numbers in each study limited the statistical power of certain reported trends and lack of blinding could potentially have introduced either participant or researcher bias in some studies. CONCLUSIONS Current evidence indicates cold water immersion may be the most effective method of pre-cooling to improve endurance performance in hot conditions, although practicality must be considered. Ice slurry ingestion appears to be the most promising practical alternative. Interestingly, cooling garments appear of limited efficacy, despite their frequent use. Mechanisms behind effective pre-cooling remain uncertain, and optimal protocols have yet to be established. Future research should focus on standardizing exercise performance protocols, recruiting larger participant numbers to enable direct comparisons of effectiveness and practicality for each method, and ensuring potential adverse events are evaluated.
Collapse
Affiliation(s)
- Paul R Jones
- Centre for Sports and Exercise Medicine, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, Mile End Hospital, Bancroft Road, London E1 4DG, UK
| | | | | | | | | |
Collapse
|
272
|
Ross ML, Jeacocke NA, Laursen PB, Martin DT, Abbiss CR, Burke LM. Effects of lowering body temperature via hyperhydration, with and without glycerol ingestion and practical precooling on cycling time trial performance in hot and humid conditions. J Int Soc Sports Nutr 2012; 9:55. [PMID: 23245800 PMCID: PMC3549746 DOI: 10.1186/1550-2783-9-55] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 12/05/2012] [Indexed: 11/16/2022] Open
Abstract
Background Hypohydration and hyperthermia are factors that may contribute to fatigue and impairment of endurance performance. The purpose of this study was to investigate the effectiveness of combining glycerol hyperhydration and an established precooling technique on cycling time trial performance in hot environmental conditions. Methods Twelve well-trained male cyclists performed three 46.4-km laboratory-based cycling trials that included two climbs, under hot and humid environmental conditions (33.3 ± 1.1°C; 50 ± 6% r.h.). Subjects were required to hyperhydrate with 25 g.kg-1 body mass (BM) of a 4°C beverage containing 6% carbohydrate (CON) 2.5 h prior to the time trial. On two occasions, subjects were also exposed to an established precooling technique (PC) 60 min prior to the time trial, involving 14 g.kg-1 BM ice slurry ingestion and applied iced towels over 30 min. During one PC trial, 1.2 g.kg-1 BM glycerol was added to the hyperhydration beverage in a double-blind fashion (PC+G). Statistics used in this study involve the combination of traditional probability statistics and a magnitude-based inference approach. Results Hyperhydration resulted in large reductions (−0.6 to −0.7°C) in rectal temperature. The addition of glycerol to this solution also lowered urine output (330 ml, 10%). Precooling induced further small (−0.3°C) to moderate (−0.4°C) reductions in rectal temperature with PC and PC+G treatments, respectively, when compared with CON (0.0°C, P<0.05). Overall, PC+G failed to achieve a clear change in cycling performance over CON, but PC showed a possible 2% (30 s, P=0.02) improvement in performance time on climb 2 compared to CON. This improvement was attributed to subjects’ lower perception of effort reported over the first 10 km of the trial, despite no clear performance change during this time. No differences were detected in any other physiological measurements throughout the time trial. Conclusions Despite increasing fluid intake and reducing core temperature, performance and thermoregulatory benefits of a hyperhydration strategy with and without the addition of glycerol, plus practical precooling, were not superior to hyperhydration alone. Further research is warranted to further refine preparation strategies for athletes competing in thermally stressful events to optimize health and maximize performance outcomes.
Collapse
Affiliation(s)
- Megan Lr Ross
- Australian Institute of Sport, Belconnen, ACT, Australia.
| | | | | | | | | | | |
Collapse
|
273
|
Maughan RJ, Zerguini Y, Chalabi H, Dvorak J. Achieving optimum sports performance during Ramadan: some practical recommendations. J Sports Sci 2012; 30 Suppl 1:S109-17. [PMID: 22769241 DOI: 10.1080/02640414.2012.696205] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Muslim athletes should fast from sunrise to sunset each day throughout the 30 days of Ramadan. Most athletes will continue to train throughout Ramadan, and they may also be required to compete at this time, but they will also engage in the religious, cultural, and social activities that Ramadan represents. The available evidence indicates that high-level athletes can maintain performance during Ramadan if physical training, food and fluid intake, and sleep are appropriate and well controlled. Individualized monitoring of athletes may help to prevent fatigue and overtraining and to reduce the risk of consequent illness and injury. The timing and intensity of training may require adjustment to optimize the training response, and training close to or after sunset may have advantages, but this will vary between individual and team sports and between environments that are predominantly Muslim and those that are predominantly non-Muslim. Training late in the day allows nutrition interventions after training to promote adaptations to the training stimulus, to promote recovery, and might help to reduce muscle damage. Sleep deficits have a number of adverse effects on well-being and performance, and athletes should ensure adequate sleep throughout Ramadan. In non-Muslim majority environments, especially in team sports, coaches and athletes should be sensitive to the needs of their team-mates who may be fasting. Event organizers should take account of the needs of Muslim athletes when scheduling the dates and timings of sports competitions.
Collapse
Affiliation(s)
- Ronald J Maughan
- School of Sport and Exercise Sciences, Loughborough University, Loughborough, UK.
| | | | | | | |
Collapse
|
274
|
The perceptually regulated exercise test is sensitive to increases in maximal oxygen uptake. Eur J Appl Physiol 2012; 113:1233-9. [PMID: 23160654 DOI: 10.1007/s00421-012-2541-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
Abstract
The aim of this study was to assess the sensitivity of a perceptually regulated exercise test (PRET) to predict maximal oxygen uptake (VO₂max) following an aerobic exercise-training programme. Sedentary volunteers were assigned to either a training (TG n = 16) or control (CG n = 10) group. The TG performed 30 min of treadmill exercise, regulated at 13 on the Borg Rating of Perceived Exertion (RPE) Scale, 3× per week for 8 weeks. All participants completed a 12-min PRET to predict VO₂max followed by a graded exercise test (GXT) to measure VO₂max before and after training. The PRET required participants to control the speed and incline on the treadmill to correspond to RPE intensities of 9, 11, 13 and 15. Predictive accuracy of extrapolation end-points RPE19 and RPE20 from a submaximal RPE range of 9-15 was compared. Measured VO₂max increased by 17 % (p < 0.05) from baseline to post-intervention in TG. This was reflected by a similar change in [VO₂max predicted from PRET when extrapolated to RPE 19 (baseline VO₂max: 31.3 ± 5.5, 30.3 ± 9.5 mL kg(-1) min(-1); post-intervention VO₂max: 36.7 ± 6.4, 37.4 ± 7.9 mL kg(-1) min(-1), for measured and predicted values, respectively). There was no change in CG (measured vs. predicted VO₂max: 39.3 ± 6.5; 40.3 ± 8.2 and 39.2 ± 7.0; 37.7 ± 6.0 mL kg(-1) min(-1)) at baseline and post-intervention, respectively. The results confirm that PRET is sensitive to increases in VO₂max following aerobic training.
Collapse
|
275
|
JANSE DE JONGE XANNEAK, THOMPSON MARTINW, CHUTER VIVIENNEH, SILK LESLIEN, THOM JEANETTEM. Exercise Performance over the Menstrual Cycle in Temperate and Hot, Humid Conditions. Med Sci Sports Exerc 2012; 44:2190-8. [DOI: 10.1249/mss.0b013e3182656f13] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
276
|
Hausswirth C, Duffield R, Pournot H, Bieuzen F, Louis J, Brisswalter J, Castagna O. Postexercise cooling interventions and the effects on exercise-induced heat stress in a temperate environment. Appl Physiol Nutr Metab 2012; 37:965-75. [PMID: 22827512 DOI: 10.1139/h2012-077] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to examine the effects of cool water immersion (20 °C; CWI) while wearing a cooling jacket (Cryovest;V) and a passive control (PAS) as recovery methods on physiological and thermoregulatory responses between 2 exercise bouts in temperate conditions. Nine well-trained male cyclists performed 2 successive bouts of 45 min of endurance cycling exercise in a temperate environment (20 °C) separated by 25 min of the respective recovery interventions. Capillary blood samples were obtained to measure lactate (La⁻), sodium (Na⁺), bicarbonate (HCO₃⁻) concentrations and pH, whilst body mass loss (BML), core temperature (T(core)), skin temperature (T(skin)), heart rate (HR), oxygen uptake , and minute ventilation were measured before (Pre), immediately after the first exercise bout (Ex1), the recovery (R), and after the second exercise bout (Ex2). V and CWI both resulted in a reduction of T(skin) at R (-2.1 ± 0.01 °C and -11.6 ± 0.01 °C, respectively, p < 0.01). Despite no difference in final values post-Ex2 (p > 0.05), V attenuated the rise in HR, minute ventilation, and oxygen uptake from Ex1 to Ex2, while T(core) and T(skin) were significantly lower following the second session (p < 0.05). Further, CWI was also beneficial in lowering T(core), T(skin), and BML, while a rise in Na⁺ was observed following Ex2 (p < 0.05). Overall results indicate that cooling interventions (V and CWI) following exercise in a temperate environment provide a reduction in thermal strain during ensuing exercise bouts.
Collapse
Affiliation(s)
- Christophe Hausswirth
- National Institute of Sport, for Expertise and Performance, Research Department, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
277
|
Knechtle B, Knechtle P, Wirth A, Alexander Rüst C, Rosemann T. A faster running speed is associated with a greater body weight loss in 100-km ultra-marathoners. J Sports Sci 2012; 30:1131-40. [PMID: 22668199 DOI: 10.1080/02640414.2012.692479] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In 219 recreational male runners, we investigated changes in body mass, total body water, haematocrit, plasma sodium concentration ([Na(+)]), and urine specific gravity as well as fluid intake during a 100-km ultra-marathon. The athletes lost 1.9 kg (s = 1.4) of body mass, equal to 2.5% (s = 1.8) of body mass (P < 0.001), 0.7 kg (s = 1.0) of predicted skeletal muscle mass (P < 0.001), 0.2 kg (s = 1.3) of predicted fat mass (P < 0.05), and 0.9 L (s = 1.6) of predicted total body water (P < 0.001). Haematocrit decreased (P < 0.001), urine specific gravity (P < 0.001), plasma volume (P < 0.05), and plasma [Na(+)] (P < 0.05) all increased. Change in body mass was related to running speed (r = -0.16, P < 0.05), change in plasma volume was associated with change in plasma [Na(+)] (r = -0.28, P < 0.0001), and change in body mass was related to both change in plasma [Na(+)] (r = -0.36) and change in plasma volume (r = 0.31) (P < 0.0001). The athletes consumed 0.65 L (s = 0.27) fluid per hour. Fluid intake was related to both running speed (r = 0.42, P < 0.0001) and change in body mass (r = 0.23, P = 0.0006), but not post-race plasma [Na(+)] or change in plasma [Na(+)] (P > 0.05). In conclusion, faster runners lost more body mass, runners lost more body mass when they drank less fluid, and faster runners drank more fluid than slower runners.
Collapse
Affiliation(s)
- Beat Knechtle
- Facharzt FMH für Allgemeinmedizin, St. Gallen, Switzerland.
| | | | | | | | | |
Collapse
|
278
|
Hydration status, fluid intake, and electrolyte losses in youth soccer players. Int J Sports Physiol Perform 2012; 7:367-74. [PMID: 22645198 DOI: 10.1123/ijspp.7.4.367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purpose of the study was to determine the hydration status, fluid intake, and electrolyte losses of 21 male professional youth soccer players (age 17.1 ± 0.7 y) training in a cool environment. Pretraining and posttraining measurements of body mass, urine (freezing-point osmolality method), and sweat concentration (flame-emission spectroscopy) were collected. Fourteen players were found to be hypohydrated before training. The amount of fluid lost due to exercise equated to a 1.7% loss in body mass, which equated to a gross dehydration loss of 0.5%. Overall, the soccer players replaced 46% ± 88% of sweat loss during training, and only 4 remained hypohydrated after training. No significant correlations between sweat loss and sweat concentrations of Na+ (r = -.11, P = .67) or K+ (r = .14, P = .58) were found, but there was a significant correlation with Mg2+ (r = -.58, P < .009). This study found large variability in pretraining hydration status that the players were able to rehydrate during the training sessions. However, given the numbers starting training in a hypohydrated state, adequate hydration status before training should be considered by youth players, coaches, and sports-science support staff.
Collapse
|
279
|
El Helou N, Tafflet M, Berthelot G, Tolaini J, Marc A, Guillaume M, Hausswirth C, Toussaint JF. Impact of environmental parameters on marathon running performance. PLoS One 2012; 7:e37407. [PMID: 22649525 PMCID: PMC3359364 DOI: 10.1371/journal.pone.0037407] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/19/2012] [Indexed: 11/18/2022] Open
Abstract
Purpose The objectives of this study were to describe the distribution of all runners' performances in the largest marathons worldwide and to determine which environmental parameters have the maximal impact. Methods We analysed the results of six European (Paris, London, Berlin) and American (Boston, Chicago, New York) marathon races from 2001 to 2010 through 1,791,972 participants' performances (all finishers per year and race). Four environmental factors were gathered for each of the 60 races: temperature (°C), humidity (%), dew point (°C), and the atmospheric pressure at sea level (hPA); as well as the concentrations of four atmospheric pollutants: NO2 – SO2 – O3 and PM10 (μg.m−3). Results All performances per year and race are normally distributed with distribution parameters (mean and standard deviation) that differ according to environmental factors. Air temperature and performance are significantly correlated through a quadratic model. The optimal temperatures for maximal mean speed of all runners vary depending on the performance level. When temperature increases above these optima, running speed decreases and withdrawal rates increase. Ozone also impacts performance but its effect might be linked to temperature. The other environmental parameters do not have any significant impact. Conclusions The large amount of data analyzed and the model developed in this study highlight the major influence of air temperature above all other climatic parameter on human running capacity and adaptation to race conditions.
Collapse
Affiliation(s)
- Nour El Helou
- IRMES (bioMedical Research Institute of Sports Epidemiology), INSEP, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
280
|
Siegel R, Laursen PB. Keeping your cool: possible mechanisms for enhanced exercise performance in the heat with internal cooling methods. Sports Med 2012; 42:89-98. [PMID: 22175533 DOI: 10.2165/11596870-000000000-00000] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Exercising in hot environments results in a rise in core body temperature; an effect associated with impaired performance over a variety of exercise modes and durations. Precooling has become a popular strategy to combat this impairment, as evidence has shown it to be an effective method for lowering pre-exercise core temperature, increasing heat storage capacity and improving exercise performance in the heat. To date, the majority of precooling manoeuvres have been achieved via external means, such as cold water immersion and the application of cooling garments. However, these methods have been criticized for their lack of practicality for use in major sporting competitions. Recent evidence has shown that internal or endogenous cooling methods, such as drinking cold fluids or ice slurries, are able to lower core temperature and enhance endurance performance in the heat. These methods may be more advantageous than current forms of precooling, as ingesting cold fluids or ice slurries can be easily implemented in the field and provide the additional benefit of hydrating athletes. While the precise mechanisms responsible for these performance enhancements are yet to be fully explained, the effect of ice ingestion on brain temperature, internal thermoreception and sensory responses may be involved. This article addresses the evidence supporting the use of endogenous cooling methods for improving endurance performance in the heat, as well as discussing the potential mechanisms behind the improvements observed and providing practical recommendations to optimize their success.
Collapse
Affiliation(s)
- Rodney Siegel
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| | | |
Collapse
|
281
|
Abstract
OBJECTIVE To describe the drinking behaviors of elite male marathon runners during major city marathons. DESIGN Retrospective analysis of drinking behaviors. SETTING Institutional. PARTICIPANTS Ten (9 winners and 1 second position) male marathon runners during 13 major city marathons. MAIN OUTCOME MEASURES Total drinking durations and fluid intake rates during major city marathons. RESULTS The ambient conditions during the 13 studied marathon races were 15.3°C ± 8.6°C and 59% ± 17% relative humidity; average marathon competition time was 02:06:31 ± 00:01:08 (hours:minutes:seconds). Total drinking duration during these races was 25.5 ± 15.0 seconds (range, 1.6-50.7 seconds) equating to an extrapolated fluid intake rate of 0.55 ± 0.34 L/h (range, 0.03-1.09 L/h). No significant correlations were found between total drink duration, fluid intake (rate and total), running speed, and ambient temperature. Estimated body mass (BM) loss based on calculated sweat rates and rates of fluid ingestion was 8.8% ± 2.1% (range, 6.6%-11.7%). Measurements of the winner in the 2009 Dubai marathon revealed a BM loss of 9.8%. CONCLUSIONS The most successful runners, during major city marathons, drink fluids ad libitum for less than approximately 60 seconds at an extrapolated fluid ingestion rate of 0.55 ± 0.34 L/h and comparable to the current American College of Sports Medicine's recommendations of 0.4-0.8 L/h. Nevertheless, these elite runners do not seem to maintain their BM within current recommended ranges of 2%-3%.
Collapse
|
282
|
Sandsund M, Saursaunet V, Wiggen Ø, Renberg J, Færevik H, van Beekvelt MCP. Effect of ambient temperature on endurance performance while wearing cross-country skiing clothing. Eur J Appl Physiol 2012; 112:3939-47. [PMID: 22426577 DOI: 10.1007/s00421-012-2373-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 02/27/2012] [Indexed: 11/28/2022]
Abstract
This study assessed the effects of exposure to cold (-14 and -9 °C), cool (-4 and 1 °C) and moderate warm (10 and 20 °C) environments on aerobic endurance performance-related variables: maximal oxygen consumption (VO(2max)), running time to exhaustion (TTE), running economy and running speed at lactate threshold (LT). Nine male endurance athletes wearing cross-country ski racing suit performed a standard running test at six ambient temperatures in a climatic chamber with a wind speed of 5 m s(-1). The exercise protocol consisted of a 10-min warm-up period followed by four submaximal periods of 5 min at increasing intensities between 67 and 91 % of VO(2max) and finally a maximal test to exhaustion. During the time course mean skin temperature decreased significantly with reduced ambient temperatures whereas T (re) increased during all conditions. T (re) was lower at -14 °C than at -9 and 20 °C. Running economy was significantly reduced in warm compared to cool environments and was also reduced at 20 °C compared to -9 °C. Running speed at LT was significantly higher at -4 °C than at -9, 10 and 20 °C. TTE was significantly longer at -4 and 1 °C than at -14, 10 and 20 °C. No significant differences in VO(2max) were found between the various ambient conditions. The optimal aerobic endurance performance wearing a cross-country ski racing suit was found to be -4 and 1 °C, while performance was reduced under moderate warm (10 and 20 °C) and cold (-14 and -9 °C) ambient conditions.
Collapse
Affiliation(s)
- Mariann Sandsund
- Department of Health Research, SINTEF Technology and Society, Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
283
|
|
284
|
Hartley GL, Flouris AD, Plyley MJ, Cheung SS. The effect of a covert manipulation of ambient temperature on heat storage and voluntary exercise intensity. Physiol Behav 2012; 105:1194-201. [DOI: 10.1016/j.physbeh.2011.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 11/17/2022]
|
285
|
WATSON PHILLIP, SHIRREFFS SUSANM, MAUGHAN RONALDJ. Effect of Dilute CHO Beverages on Performance in Cool and Warm Environments. Med Sci Sports Exerc 2012; 44:336-43. [DOI: 10.1249/mss.0b013e31822dc5ed] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
286
|
A perceptually regulated, graded exercise test predicts peak oxygen uptake during treadmill exercise in active and sedentary participants. Eur J Appl Physiol 2012; 112:3459-68. [PMID: 22278392 DOI: 10.1007/s00421-012-2326-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
Abstract
The validity of predicting peak oxygen uptake ([Formula: see text]) in sedentary participants from a perceptually regulated exercise test (PRET) is limited to two cycle ergometry studies. We assessed the validity of a treadmill-based PRET. Active (n = 49; 40.7 ± 13.8 years) and sedentary (n = 26; 33.4 ± 13.2 y) participants completed two PRETS (PRET 1 and PRET2), requiring a change in speed or incline corresponding to ratings of perceived exertion (RPE) 9, 11, 13 and 15. Extrapolation of RPE: [Formula: see text] data to RPE 19 and 20 from the RPE 9-13 and 9-15 ranges were used to estimate [Formula: see text], and compared to [Formula: see text] from a graded exercise test (GXT). The [Formula: see text] :heart rate (HR) data (≥RPE 15) from the GXT were also extrapolated to age-predicted maximal HR (HRmax(pred)) to provide further estimation of [Formula: see text]. ANOVA revealed no significant differences between [Formula: see text] predictions from the RPE 9-15 range for PRET 1 and PRET 2 when extrapolated to RPE 19 in both active (54.3 ± 7.4; 52.9 ± 8.1 ml kg(-1) min(-1)) and sedentary participants (34.1 ± 10.2; 34.2 ± 9.6 ml kg(-1) min(-1)) and no difference between the HRmax(pred) method and measured [Formula: see text] from the GXT for active (53.3 ± 10.0; 53.9 ± 7.5 ml kg(-1) min(-1), respectively) and sedentary participants (33.6 ± 8.4, 34.4 ± 7.0 ml kg(-1) min(-1), respectively). A single treadmill-based PRET using RPE 9-15 range extrapolated to RPE 19 is a valid means of predicting [Formula: see text] in young and middle to older-aged individuals of varying activity and fitness levels.
Collapse
|
287
|
Kazama A, Takatsu S, Hasegawa H. Effect of increase in body temperature on cognitive function during prolonged exercise. ACTA ACUST UNITED AC 2012. [DOI: 10.7600/jspfsm.61.459] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
288
|
Luomala MJ, Oksa J, Salmi JA, Linnamo V, Holmér I, Smolander J, Dugué B. Adding a cooling vest during cycling improves performance in warm and humid conditions. J Therm Biol 2012. [DOI: 10.1016/j.jtherbio.2011.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
289
|
Shirreffs SM, Sawka MN. Fluid and electrolyte needs for training, competition, and recovery. J Sports Sci 2011; 29 Suppl 1:S39-46. [PMID: 22150427 DOI: 10.1080/02640414.2011.614269] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
290
|
LaVoy EC, McFarlin BK, Simpson RJ. Immune Responses to Exercising in a Cold Environment. Wilderness Environ Med 2011; 22:343-51. [DOI: 10.1016/j.wem.2011.08.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 07/26/2011] [Accepted: 08/12/2011] [Indexed: 11/28/2022]
|
291
|
Minniti A, Tyler CJ, Sunderland C. Effects of a cooling collar on affect, ratings of perceived exertion, and running performance in the heat. Eur J Sport Sci 2011. [DOI: 10.1080/17461391.2010.536577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
292
|
Influence of relative humidity on prolonged exercise capacity in a warm environment. Eur J Appl Physiol 2011; 112:2313-21. [DOI: 10.1007/s00421-011-2206-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 10/07/2011] [Indexed: 11/26/2022]
|
293
|
Abstract
Diet can significantly influence athletic performance, but recent research developments have substantially changed our understanding of sport and exercise nutrition. Athletes adopt various nutritional strategies in training and competition in the pursuit of success. The aim of training is to promote changes in the structure and function of muscle and other tissues by selective modulation of protein synthesis and breakdown in response to the training stimulus. This process is affected by the availability of essential amino acids in the post-exercise period. Athletes have been encouraged to eat diets high in carbohydrate, but low-carbohydrate diets up-regulate the capacity of muscle for fat oxidation, potentially sparing the limited carbohydrate stores. Such diets, however, do not enhance endurance performance. It is not yet known whether the increased capacity for fat oxidation that results from training in a carbohydrate-deficient state can promote loss of body fat. Preventing excessive fluid deficits will maintain exercise capacity, and ensuring adequate hydration status can also reduce subjective perception of effort. This latter effect may be important in encouraging exercise participation and promoting adherence to exercise programmes. Dietary supplement use is popular in sport, and a few supplements may improve performance in specific exercise tasks. Athletes must be cautious, however, not to contravene the doping regulations. There is an increasing recognition of the role of the brain in determining exercise performance: various nutritional strategies have been proposed, but with limited success. Nutrition strategies developed for use by athletes can also be used to achieve functional benefits in other populations.
Collapse
|
294
|
The effect of exercise induced hyperthermia on muscle fibre conduction velocity during sustained isometric contraction. J Electromyogr Kinesiol 2011; 21:834-40. [DOI: 10.1016/j.jelekin.2011.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 11/19/2022] Open
|
295
|
Sawka MN, Leon LR, Montain SJ, Sonna LA. Integrated Physiological Mechanisms of Exercise Performance, Adaptation, and Maladaptation to Heat Stress. Compr Physiol 2011; 1:1883-928. [DOI: 10.1002/cphy.c100082] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
296
|
Development of a perceptual hyperthermia index to evaluate heat strain during treadmill exercise. Eur J Appl Physiol 2011; 112:2025-34. [DOI: 10.1007/s00421-011-2173-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 09/08/2011] [Indexed: 11/27/2022]
|
297
|
Campi-Azevedo AC, Cleto LS, Silva RSD, Sousa-Franco JD, Magalhães JCD, Penaforte CL, Castro Pinto KMD, Rocha-Vieira E. Divergent cytokine response following maximum progressive swimming in hot water. Cell Biochem Funct 2011; 29:610-6. [PMID: 21887695 DOI: 10.1002/cbf.1795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/21/2011] [Accepted: 07/07/2011] [Indexed: 11/08/2022]
Abstract
Exercise promotes transitory alterations in cytokine secretion, and these changes are affected by exercise duration and intensity. Considering that exercise responses also are affected by environmental factors, the goal of the present study was to investigate the effect of water temperature on the cytokine response to maximum swimming. Swiss mice performed a maximum progressive swimming exercise at 31 or 38°C, and plasma cytokine levels were evaluated immediately or 1, 6 or 24 h after exercise. The cytokine profile after swimming at 31°C was characterized by increased interleukin (IL)-6 and monocyte chemotactic protein-1 (MCP-1) levels, which peaked 1 h after exercise, suggesting an adequate inflammatory milieu to induce muscle regeneration. Transitory reductions in IL-10 and IL-12 levels also were observed after swimming at 31°C. The cytokine response to swimming was modified when the water temperature was increased to 38°C. Although exercise at 38°C also led to IL-6 secretion, the peak in IL-6 production occurred 6 h after exercise, and IL-6 levels were significantly lower than those observed after maximum swimming at 31°C (p = 0·030). Furthermore, MCP-1 levels were lower and tumour necrosis factor-α levels were higher immediately after swimming at 38°C, suggesting a dysregulated pro-inflammatory milieu. These alterations in the cytokine profile can be attributed in part to reduced exercise total work because exhaustion occurred sooner in mice swimming at 38°C than in those swimming at 31°C.
Collapse
|
298
|
Influence of environmental temperature on 40 km cycling time-trial performance. Int J Sports Physiol Perform 2011; 6:208-20. [PMID: 21725106 DOI: 10.1123/ijspp.6.2.208] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to examine the effect of environmental temperature on variability in power output, self-selected pacing strategies, and performance during a prolonged cycling time trial. Nine trained male cyclists randomly completed four 40 km cycling time trials in an environmental chamber at 17°C, 22°C, 27°C, and 32°C (40% RH). During the time trials, heart rate, core body temperature, and power output were recorded. The variability in power output was assessed with the use of exposure variation analysis. Mean 40 km power output was significantly lower during 32°C (309 ± 35 W) compared with 17°C (329 ± 31 W), 22°C (324 ± 34 W), and 27°C (322 ± 32 W). In addition, greater variability in power production was observed at 32°C compared with 17°C, as evidenced by a lower (P = .03) standard deviation of the exposure variation matrix (2.9 ± 0.5 vs 3.5 ± 0.4 units, respectively). Core temperature was greater (P < .05) at 32°C compared with 17°C and 22°C from 30 to 40 km, and the rate of rise in core temperature throughout the 40 km time trial was greater (P < .05) at 32°C (0.06 ± 0.04°C·km-1) compared with 17°C (0.05 ± 0.05°C·km-1). This study showed that time-trial performance is reduced under hot environmental conditions, and is associated with a shift in the composition of power output. These finding provide insight into the control of pacing strategies during exercise in the heat.
Collapse
|
299
|
Lorenzo S, Minson CT, Babb TG, Halliwill JR. Lactate threshold predicting time-trial performance: impact of heat and acclimation. J Appl Physiol (1985) 2011; 111:221-7. [PMID: 21527667 PMCID: PMC3137529 DOI: 10.1152/japplphysiol.00334.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/25/2011] [Indexed: 11/22/2022] Open
Abstract
The relationship between exercise performance and lactate and ventilatory thresholds under two distinct environmental conditions is unknown. We examined the relationships between six lactate threshold methods (blood- and ventilation-based) and exercise performance in cyclists in hot and cool environments. Twelve cyclists performed a lactate threshold test, a maximal O(2) uptake (Vo(2max)) test, and a 1-h time trial in hot (38°C) and cool (13°C) conditions, before and after heat acclimation. Eight control subjects completed the same tests before and after 10 days of identical exercise in a cool environment. The highest correlations were observed with the blood-based lactate indexes; however, even the indirect ventilation-based indexes were well correlated with mean power during the time trial. Averaged bias was 15.4 ± 3.6 W higher for the ventilation- than the blood-based measures (P < 0.05). The bias of blood-based measures in the hot condition was increased: the time trial was overestimated by 37.7 ± 3.6 W compared with only 24.1 ± 3.2 W in the cool condition (P < 0.05). Acclimation had no effect on the bias of the blood-based indexes (P = 0.51) but exacerbated the overestimation by some ventilation-based indexes by an additional 34.5 ± 14.1 W (P < 0.05). Blood-based methods to determine lactate threshold show less bias and smaller variance than ventilation-based methods when predicting time-trial performance in cool environments. Of the blood-based methods, the inflection point between steady-state lactate and rising lactate (INFL) was the best method to predict time-trial performance. Lastly, in the hot condition, ventilation-based predictions are less accurate after heat acclimation, while blood-based predictions remain valid in both environments after heat acclimation.
Collapse
Affiliation(s)
- Santiago Lorenzo
- Department of Human Physiology, University of Oregon, Eugene, OR 97403-1240, USA
| | | | | | | |
Collapse
|
300
|
Abstract
INTRODUCTION Long-lasting alterations in hormones, neurotransmitters, and stress proteins after hyperthermia may be responsible for the impairment in motor performance during muscle fatigue. METHODS Subjects (n = 25) performed a maximal intermittent fatigue task of elbow flexion after sitting in either 73° or 26°C to examine the effects of prior heat stress on fatigue mechanisms. RESULTS The heat stress increased the tympanic and rectal temperatures by 2.3° and 0.82°C, respectively, but there was full recovery prior to the fatigue task. Although prior heat stress had no effects on fatigue-related changes in volitional torque, electromyographic (EMG) activity, torque relaxation rate, motor evoked potential (MEP) size, and silent period (SP) duration, prior heat stress acutely increased the pre-fatigue relaxation rate and chronically prevented long-duration fatigue (P < 0.05). CONCLUSIONS These findings indicate that prior passive heat stress alone does not alter voluntary activation during fatigue, but prior heat stress and exercise produce longer-term protection against long-duration fatigue.
Collapse
Affiliation(s)
- Masaki Iguchi
- Physical Therapy and Rehabilitation Science, Carver College of Medicine, 1-252 Medical Education Building, University of Iowa, Iowa City, Iowa 52242-1190, USA
| | | |
Collapse
|