251
|
Osaki LH, Gama P. MAPKs and signal transduction in the control of gastrointestinal epithelial cell proliferation and differentiation. Int J Mol Sci 2013; 14:10143-61. [PMID: 23670595 PMCID: PMC3676833 DOI: 10.3390/ijms140510143] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 02/06/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways are activated by several stimuli and transduce the signal inside cells, generating diverse responses including cell proliferation, differentiation, migration and apoptosis. Each MAPK cascade comprises a series of molecules, and regulation takes place at different levels. They communicate with each other and with additional pathways, creating a signaling network that is important for cell fate determination. In this review, we focus on ERK, JNK, p38 and ERK5, the major MAPKs, and their interactions with PI3K-Akt, TGFβ/Smad and Wnt/β-catenin pathways. More importantly, we describe how MAPKs regulate cell proliferation and differentiation in the rapidly renewing epithelia that lines the gastrointestinal tract and, finally, we highlight the recent findings on nutritional aspects that affect MAPK transduction cascades.
Collapse
Affiliation(s)
- Luciana H Osaki
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, SP 05508-000, Brazil.
| | | |
Collapse
|
252
|
Arancibia R, Oyarzún A, Silva D, Tobar N, Martínez J, Smith PC. Tumor Necrosis Factor-α Inhibits Transforming Growth Factor-β–Stimulated Myofibroblastic Differentiation and Extracellular Matrix Production in Human Gingival Fibroblasts. J Periodontol 2013; 84:683-93. [DOI: 10.1902/jop.2012.120225] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
253
|
Akel S, Bertolette D, Ruscetti FW. Crosstalk between the Smad and the Mitogen-Activated Protein Kinase Pathways is Essential for Erythroid Differentiation of Erythroleukemia Cells Induced by TGF-β, Activin, Hydroxyurea and Butyrate. JOURNAL OF LEUKEMIA (LOS ANGELES, CALIF.) 2013; 1:109. [PMID: 24533426 PMCID: PMC3923467 DOI: 10.4172/2329-6917.1000109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of crosstalk between the Smad and the MAPK signaling pathways in activin-, transforming growth factor-β (TGF-β)-, hydroxyurea (HU) - and butyrate-dependent erythroid differentiation of K562 leukemic cells was studied. Treatment with all four inducers caused transient phosphorylation of Smad2/3 and MAPK proteins including ERK, p38 and JNK. Use of specific inhibitors of p38, ERK and JNK MAPK proteins, and TGF-β type I receptor indicated that differentiation induced by each of these agents involves activation of Smad2/3 and p38 MAPK, and inhibition of ERK MAPK. Also, treatment of cells with an inhibitor of protein serine/threonine phosphatase, okadaic acid (OA), induced phosphorylation of Smad2/3, and p38 MAPK, coincident with its induction of erythroid differentiation. Specific inhibition of TGF-β type I receptor kinase activity not only abolished TGF-β/activin effects but also prevented Smad2/3 activation and erythroid differentiation induced by OA, HU and butyrate. The TGF-β type I receptor kinase inhibitor blocked OA-induced differentiation but not p38 MAPK phosphorylation demonstrating that signals from both pathways are needed. As previously observed, addition of ERK1/2 MAPK inhibitors upregulated Smad2/3 phosphorylation and enhanced differentiation, but these effects were dependent on signals from the TGF-β type I receptor. These data indicate that activation of both Smad2/3 and p38 MAPK signaling pathways is a prerequisite to induce erythroid differentiation of erythroleukemia cells by activin, TGF-β, HU, OA and butyrate.
Collapse
Affiliation(s)
- Salem Akel
- Leukocyte Biology Section, Laboratory of Experimental Immunology, Center for Cancer Research, NCI, Frederick, Maryland
- St. Louis Blood Bank and Cellular Therapy Laboratory, Cardinal Glennon Children’s Medical Center, St. Louis, MO
| | - Daniel Bertolette
- Leukocyte Biology Section, Laboratory of Experimental Immunology, Center for Cancer Research, NCI, Frederick, Maryland
| | - Francis W Ruscetti
- Leukocyte Biology Section, Laboratory of Experimental Immunology, Center for Cancer Research, NCI, Frederick, Maryland
| |
Collapse
|
254
|
Sengupta S, Kundu S, Bhattacharyya A. Attenuation of Smad2 activity shows resistance to TGF-β signalling in mammary adenocarcinoma (MCF-7) cells. Cell Biol Int 2013; 37:449-57. [DOI: 10.1002/cbin.10061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/16/2013] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Arindam Bhattacharyya
- Immunology Lab, Department of Zoology; University of Calcutta; Kolkata, West Bengal; 700019; India
| |
Collapse
|
255
|
Abstract
Underlying the dynamic regulation of tropoelastin expression and elastin formation in development and disease are transcriptional and post-transcriptional mechanisms that have been the focus of much research. Of particular importance is the cytokine-governed elastin regulatory axis in which the pro-elastogenic activities of transforming growth factor β-1 (TGFβ1) and insulin-like growth factor-I (IGF-I) are opposed by anti-elastogenic activities of basic fibroblast growth factor (bFGF/FGF-2), heparin-binding epidermal growth factor-like growth factor (HB-EGF), EGF, PDGF-BB, TGFα, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and noncanonical TGFβ1 signaling. A key mechanistic feature of the regulatory axis is that cytokines influence elastin formation through effects on the cell cycle involving control of cyclin-cyclin dependent kinase complexes and activation of the Ras/MEK/ERK signaling pathway. In this article we provide an overview of the major cytokines/growth factors that modulate elastogenesis and describe the underlying molecular mechanisms for their action on elastin production.
Collapse
Affiliation(s)
- Erin P Sproul
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
256
|
Kovacevic Z, Chikhani S, Lui GYL, Sivagurunathan S, Richardson DR. The iron-regulated metastasis suppressor NDRG1 targets NEDD4L, PTEN, and SMAD4 and inhibits the PI3K and Ras signaling pathways. Antioxid Redox Signal 2013; 18:874-87. [PMID: 22462691 DOI: 10.1089/ars.2011.4273] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS The metastasis suppressor gene, N-myc downstream regulated gene-1 (NDRG1), is negatively correlated with tumor progression in multiple neoplasms, including pancreatic cancer. Moreover, NDRG1 is an iron-regulated gene that is markedly upregulated by cellular iron-depletion using novel antitumor agents such as the chelator, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), in pancreatic cancer cells. However, the exact function(s) of NDRG1 remain to be established and are important to elucidate. RESULTS In the current study, using gene-array analysis along with NDRG1 overexpression and silencing, we identified the molecular targets of NDRG1 in three pancreatic cancer cell lines. We demonstrate that NDRG1 upregulates neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) and GLI-similar-3 (GLIS3). Further studies examining the downstream effects of NEDD4L led to the discovery that NDRG1 affects the transforming growth factor-β (TGF-β) pathway, leading to the upregulation of two key tumor suppressor proteins, namely phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and mothers against decapentaplegic homolog-4 (SMAD4). Moreover, NDRG1 inhibited the phosphatidylinositol 3-kinase (PI3K) and Ras oncogenic pathways. INNOVATION This study provides significant insights into the mechanisms underlying the antitumor activity of NDRG1. For the first time, a role for NDRG1 is established in regulating the key signaling pathways involved in oncogenesis (TGF-β, PI3K, and Ras pathways). CONCLUSION The identified target genes of NDRG1 and their effect on the TGF-β signaling pathway reveal its molecular function in pancreatic cancer and a novel therapeutic avenue.
Collapse
Affiliation(s)
- Zaklina Kovacevic
- Department of Pathology, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | |
Collapse
|
257
|
Sato M, Shames DS, Hasegawa Y. Emerging evidence of epithelial-to-mesenchymal transition in lung carcinogenesis. Respirology 2013; 17:1048-59. [PMID: 22452538 DOI: 10.1111/j.1440-1843.2012.02173.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) is a developmental programme that regulates embryonic morphogenesis and involves significant morphological and molecular changes in cells. Experimental models have revealed that EMT also contributes to various malignant features of cancer cells, including motile, invasive, anti-apoptotic and stem-like phenotypes. Clinically, correlative studies have indicated that mesenchymal-like features of tumour cells are associated with poor tumour differentiation as well as worse patient prognosis. Nevertheless, due to its transitory nature, demonstration of an actual occurrence of EMT during human carcinogenesis is challenging, and most of the evidence to date has been limited to breast and colorectal cancers. However, recent studies suggest that EMT may occur during lung cancer development, although such evidence is still limited. We propose three approaches for obtaining direct evidence of EMT in human cancers and use these criteria to review the available data. We suggest that multiple intrinsic and extrinsic factors cooperatively induce EMT in lung cancer. Intrinsic factors include oncogenic genetic changes such as mutant K-RAS. Extrinsic factors are associated with a tumour microenvironment that is inflammatory and hypoxic. The induction of EMT is primarily mediated by various EMT-inducing transcription factors that suppress E-cadherin expression, including SLUG and ZEB1. miR-200 family expression can reverse EMT by suppressing EMT- inducing transcription factors. Obviously, more data demonstrating the clinical relevance of EMT in lung cancer are required, and further elucidation of how EMT is regulated in lung cancer will enable us to develop novel therapeutics that specifically target molecules with critical roles in EMT.
Collapse
Affiliation(s)
- Mitsuo Sato
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.
| | | | | |
Collapse
|
258
|
HDAC6 deacetylase activity is required for hypoxia-induced invadopodia formation and cell invasion. PLoS One 2013; 8:e55529. [PMID: 23405166 PMCID: PMC3566011 DOI: 10.1371/journal.pone.0055529] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/27/2012] [Indexed: 02/06/2023] Open
Abstract
Despite significant progress in the cancer field, tumor cell invasion and metastasis remain a major clinical challenge. Cell invasion across tissue boundaries depends largely on extracellular matrix degradation, which can be initiated by formation of actin-rich cell structures specialized in matrix degradation called invadopodia. Although the hypoxic microenvironment within solid tumors has been increasingly recognized as an important driver of local invasion and metastasis, little is known about how hypoxia influences invadopodia biogenesis. Here, we show that histone deacetylase 6 (HDAC6), a cytoplasmic member of the histone deacetylase family, is a novel modulator of hypoxia-induced invadopodia formation. Hypoxia was found to enhance HDAC6 tubulin deacetylase activity through activation of the EGFR pathway. Activated HDAC6, in turn, triggered Smad3 phosphorylation resulting in nuclear accumulation. Inhibition of HDAC6 activity or knockdown of the protein inhibited both hypoxia-induced Smad3 activation and invadopodia formation. Our data provide evidence that hypoxia influences invadopodia formation in a biphasic manner, which involves the activation of HDAC6 deacetylase activity by EGFR, resulting in enhanced Smad phosphorylation and nuclear accumulation. The identification of HDAC6 as a key participant of hypoxia-induced cell invasion may have important therapeutic implications for the treatment of metastasis in cancer patients.
Collapse
|
259
|
A hybrid model of tumor-stromal interactions in breast cancer. Bull Math Biol 2013; 75:1304-50. [PMID: 23292359 DOI: 10.1007/s11538-012-9787-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 10/18/2012] [Indexed: 12/27/2022]
Abstract
Ductal carcinoma in situ (DCIS) is an early stage noninvasive breast cancer that originates in the epithelial lining of the milk ducts, but it can evolve into comedo DCIS and ultimately, into the most common type of breast cancer, invasive ductal carcinoma. Understanding the progression and how to effectively intervene in it presents a major scientific challenge. The extracellular matrix (ECM) surrounding a duct contains several types of cells and several types of growth factors that are known to individually affect tumor growth, but at present the complex biochemical and mechanical interactions of these stromal cells and growth factors with tumor cells is poorly understood. Here we develop a mathematical model that incorporates the cross-talk between stromal and tumor cells, which can predict how perturbations of the local biochemical and mechanical state influence tumor evolution. We focus on the EGF and TGF-β signaling pathways and show how up- or down-regulation of components in these pathways affects cell growth and proliferation. We then study a hybrid model for the interaction of cells with the tumor microenvironment (TME), in which epithelial cells (ECs) are modeled individually while the ECM is treated as a continuum, and show how these interactions affect the early development of tumors. Finally, we incorporate breakdown of the epithelium into the model and predict the early stages of tumor invasion into the stroma. Our results shed light on the interactions between growth factors, mechanical properties of the ECM, and feedback signaling loops between stromal and tumor cells, and suggest how epigenetic changes in transformed cells affect tumor progression.
Collapse
|
260
|
Dp44mT targets the AKT, TGF-β and ERK pathways via the metastasis suppressor NDRG1 in normal prostate epithelial cells and prostate cancer cells. Br J Cancer 2013; 108:409-19. [PMID: 23287991 PMCID: PMC3566801 DOI: 10.1038/bjc.2012.582] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Effective treatment of prostate cancer should be based on targeting interactions between tumour cell signalling pathways and key converging downstream effectors. Here, we determined how the tumourigenic phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), tumour-suppressive phosphatase and tensin homologue deleted on chromosome 10 (PTEN) and transforming growth factor-β (TGF-β) pathways are integrated via the metastasis suppressor, N-myc downstream-regulated gene-1 (NDRG1). Moreover, we assessed how the novel anti-tumour agent, Dp44mT, may target these integrated pathways by increasing NDRG1 expression. METHODS Protein expression in Dp44mT-treated normal human prostate epithelial cells and prostate cancer cells (PC-3, DU145) was assessed by western blotting. The role of NDRG1 was examined by transfection using an NDRG1 overexpression vector or shRNA. RESULTS Dp44mT increased levels of tumour-suppressive PTEN, and decreased phosphorylation of ERK1/2 and SMAD2L, which are regulated by oncogenic Ras/MAPK signalling. Importantly, the effects of Dp44mT on NDRG1 and p-SMAD2L expression were more marked in prostate cancer cells than normal prostate epithelial cells. This may partly explain the anti-tumour selectivity of these agents. Silencing NDRG1 expression increased phosphorylation of tumourigenic AKT, ERK1/2 and SMAD2L and decreased PTEN levels, whereas NDRG1 overexpression induced the opposite effect. Furthermore, NDRG1 silencing significantly reduced the ability of Dp44mT to suppress p-SMAD2L and p-ERK1/2 levels. CONCLUSION NDRG1 has an important role in mediating the tumour-suppressive effects of Dp44mT in prostate cancer via selective targeting of the PI3K/AKT, TGF-β and ERK pathways.
Collapse
|
261
|
Yang CH, Cho M. Hepatitis B virus X gene differentially modulates cell cycle progression and apoptotic protein expression in hepatocyte versus hepatoma cell lines. J Viral Hepat 2013; 20:50-8. [PMID: 23231084 DOI: 10.1111/j.1365-2893.2012.01625.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The hepatitis B virus (HBV) X gene, which encodes the hepatitis B virus x protein (HBx), is essential for viral infection and genome replication, virus-associated liver disease, and development of hepatocellular carcinoma. However, the exact role(s) of HBx remain controversial. In this study, we focus on studying the role of HBx in the regulation of cell cycle and apoptosis in normal liver and hepatoma cell lines. We established the Huh7-X and Chang-X cell lines that constitutively express HBx. There were differences between the two cell lines in terms of cell cycle regulation and expression of p27 and transforming growth factor-β. Expression of HBx proteins dramatically increases expression of Bcl-2 and reduces levels of cleaved PARP protein in Chang-X cells, and it inhibits apoptosis under unfavourable conditions, such as serum starvation, in both cell lines. Our findings provide clues about the intracellular roles of HBx and demonstrate that expression of this protein is important for multiple cellular processes, that is, cell cycle progression and apoptosis, in hepatoma cells and normal liver cell lines.
Collapse
Affiliation(s)
- C H Yang
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju, Korea
| | | |
Collapse
|
262
|
Ichise T, Yoshida N, Ichise H. FGF2-induced Ras/Erk MAPK signalling maintains lymphatic endothelial cell identity by up-regulating endothelial cell-specific gene expression and suppressing TGFβ signalling via Smad2. J Cell Sci 2013; 127:845-57. [DOI: 10.1242/jcs.137836] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The lymphatic endothelial cell (LEC) fate decision program during development has been revealed. However, the mechanism underlying the maintenance of differentiated LEC identity remains largely unknown. Here, we show that fibroblast growth factor 2 (FGF2) plays a fundamental role in maintaining a differentiated LEC trait. In addition to demonstrating the appearance of alpha-smooth muscle actin (αSMA) expressing LECs in mouse lymphedematous skin in vivo, we found that mouse-immortalized LECs lose their characteristics and undergo endothelial-to-mesenchymal transition (EndMT) when cultured in FGF2-depleted medium. FGF2 depletion acted synergistically with transforming growth factor (TGF) β to induce EndMT. We also found that H-Ras-overexpressing LECs were resistant to EndMT. Ras activation not only upregulated FGF2-induced Erk MAPK activation, but also suppressed TGFβ-induced activation of Smad2 by modulating Smad2 phosphorylation via Erk MAPKs. These results suggest that FGF2 may regulate LEC-specific gene expression and suppress TGFβ signalling in LECs via Smad2 in a Ras/Erk MAP kinase-dependent manner. Taken together, our findings provide a new insight into the FGF2/Ras/Erk MAPK-dependent mechanism that maintains and modulates the LEC trait.
Collapse
|
263
|
Maeda H, Wada N, Tomokiyo A, Monnouchi S, Akamine A. Prospective potency of TGF-β1 on maintenance and regeneration of periodontal tissue. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:283-367. [PMID: 23809439 DOI: 10.1016/b978-0-12-407696-9.00006-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Periodontal ligament (PDL) tissue, central in the periodontium, plays crucial roles in sustaining tooth in the bone socket. Irreparable damages of this tissue provoke tooth loss, causing a decreased quality of life. The question arises as to how PDL tissue is maintained or how the lost PDL tissue can be regenerated. Stem cells included in PDL tissue (PDLSCs) are widely accepted to have the potential to maintain or regenerate the periodontium, but PDLSCs are very few in number. In recent studies, undifferentiated clonal human PDL cell lines were developed to elucidate the applicable potentials of PDLSCs for the periodontal regenerative medicine based on cell-based tissue engineering. In addition, it has been suggested that transforming growth factor-beta 1 is an eligible factor for the maintenance and regeneration of PDL tissue.
Collapse
Affiliation(s)
- Hidefumi Maeda
- Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
264
|
The Role of Endocytic Pathways in TGF-β Signaling. Pathol Oncol Res 2012; 19:141-8. [DOI: 10.1007/s12253-012-9595-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 12/17/2012] [Indexed: 02/08/2023]
|
265
|
Lebrun JJ. The Dual Role of TGFβ in Human Cancer: From Tumor Suppression to Cancer Metastasis. ISRN MOLECULAR BIOLOGY 2012; 2012:381428. [PMID: 27340590 PMCID: PMC4899619 DOI: 10.5402/2012/381428] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/12/2012] [Indexed: 12/31/2022]
Abstract
The transforming growth factor-beta (TGFβ) superfamily encompasses widespread and evolutionarily conserved polypeptide growth factors that regulate and orchestrate growth and differentiation in all cell types and tissues. While they regulate asymmetric cell division and cell fate determination during early development and embryogenesis, TGFβ family members play a major regulatory role in hormonal and immune responses, cell growth, cell death and cell immortalization, bone formation, tissue remodeling and repair, and erythropoiesis throughout adult life. The biological and physiological functions of TGFβ, the founding member of this family, and its receptors are of central importance to human diseases, particularly cancer. By regulating cell growth, death, and immortalization, TGFβ signaling pathways exert tumor suppressor effects in normal cells and early carcinomas. Thus, it is not surprising that a high number of human tumors arise due to mutations or deletions in the genes coding for the various TGFβ signaling components. As tumors develop and progress, these protective and cytostatic effects of TGFβ are often lost. TGFβ signaling then switches to promote cancer progression, invasion, and tumor metastasis. The molecular mechanisms underlying this dual role of TGFβ in human cancer will be discussed in depth in this paper, and it will highlight the challenge and importance of developing novel therapeutic strategies specifically aimed at blocking the prometastatic arm of the TGFβ signaling pathway without affecting its tumor suppressive effects.
Collapse
Affiliation(s)
- Jean-Jacques Lebrun
- Division of Medical Oncology, Department of Medicine, Royal Victoria Hospital, McGill University Health Center, Montreal, QC, Canada H3A 1A1
| |
Collapse
|
266
|
Karathanasi V, Tosios KI, Nikitakis NG, Piperi E, Koutlas I, Trimis G, Sklavounou A. TGF-β1, Smad-2/-3, Smad-1/-5/-8, and Smad-4 signaling factors are expressed in ameloblastomas, adenomatoid odontogenic tumors, and calcifying cystic odontogenic tumors: an immunohistochemical study. J Oral Pathol Med 2012; 42:415-23. [PMID: 23157422 DOI: 10.1111/jop.12016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2012] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The TGF-β/Smad signaling pathway regulates diverse cellular functions, including tooth development, and is involved in numerous pathological processes such as tumorigenesis. The aim of this study was to investigate the immunoexpression of the TGF-β/Smad signaling pathway members in ameloblastoma (AM), calcifying cystic odontogenic tumor (CCOT), and adenomatoid odontogenic tumor (AOT). MATERIALS AND METHODS This retrospective cross-sectional study included 65 tissue specimens: 34 AMs, 13 CCOTs, and 18 AOTs. Serial sections were immunohistochemically stained with TGF-β1, Smad-4, Smad-1/-5/-8, and Smad-2/-3 antibodies, and a semiquantitative measurement of the positive cells was carried out by two oral pathologists using a 0-3 scale (0: no immunoreactivity, 1: <20% positive cells, 2: 20-50% positive cells, 3: >50% positive cells). RESULTS All biomarkers studied were found significantly decreased in AM compared to CCOT and AOT. AOT and CCOT expressed Smad-1/-5/-8 more strongly compared to AM (OR = 11.66, P < 0.001 and OR = 5.34, P = 0.013, respectively), and Smad-2/-3 immunostaining was found significantly increased in CCOT (OR = 10.42, P = 0.001) and AOT (OR = 5.16, P < 0.004) compared to AM. Similarly, Smad-4 was expressed more strongly in AOT and CCOT compared to AM (P = 0.001), while AOT demonstrated a fivefold higher chance to express TGF-β1 compared to AM (P = 0.011). CONCLUSION TGF-β/Smad signaling pathway is activated in AM, AOT, and CCOT. The statistically significant reduced TGF-β1/Smad immunoexpression in AM compared to AOT/CCOT could be associated with the more aggressive biological behavior of AM including increased cell proliferation and reduced apoptosis and differentiation. Thus, the biomarkers TGF-β, Smad-4, Smad-1/-5/-8, and Smad-2/-3 could serve as supplementary diagnostic indices between odontogenic tumors of high and low neoplastic dynamics.
Collapse
Affiliation(s)
- Vasiliki Karathanasi
- Department of Oral Pathology and Medicine, Dental School, University of Athens, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
267
|
Chromosomal instability in BRAF mutant, microsatellite stable colorectal cancers. PLoS One 2012; 7:e47483. [PMID: 23110075 PMCID: PMC3478278 DOI: 10.1371/journal.pone.0047483] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/12/2012] [Indexed: 01/05/2023] Open
Abstract
The BRAF oncogene is mutated in 15% of sporadic colorectal cancers. Approximately half of these BRAF mutant cancers demonstrate frequent frameshift mutations termed microsatellite instability (MSI), but are diploid and chromosomally stable. BRAF wild type cancers are typically microsatellite stable (MSS) and instead acquire chromosomal instability (CIN). In these cancers, CIN is associated with a poor outcome. BRAF mutant cancers that are MSS, typically present at an advanced stage and have a particularly poor prognosis. We have previously demonstrated clinical and molecular similarities between MSS cancers with or without a BRAF mutation, and therefore hypothesised that CIN may also be frequent in BRAF mutant/MSS cancers. BRAF mutant/MSS (n = 60), and BRAF wild type/MSS CRCs (n = 90) were investigated for CIN using loss of heterozygosity analysis over twelve loci encompassing chromosomal regions 5q, 8p, 17p and 18q. CIN was frequent in BRAF mutant/MSS cancers (41/57, 72%), which was comparable to the rate found in BRAF wild type/MSS cancers (74/90, 82%). The greatest loss in BRAF mutant/MSS cancers occurred at 8p (26/44, 59%), and the least at 5q (19/49, 39%). CIN in BRAF mutant/MSS cancers correlated with advanced stage (AJCC III/IV: 15/17, 88%; p = 0.02); showed high rates of co-occurrence with the CpG Island Methylator Phenotype (17/23, 74%); and CIN at 18q and 8p associated with worse survival (p = 0.02, p<0.05). This study demonstrates that CIN commonly occurs in advanced BRAF mutant/MSS colorectal cancers where it may contribute to poorer survival, and further highlights molecular similarities occurring between these and BRAF wild type cancers.
Collapse
|
268
|
Abushahba W, Olabisi OO, Jeong BS, Boregowda RK, Wen Y, Liu F, Goydos JS, Lasfar A, Cohen-Solal KA. Non-canonical Smads phosphorylation induced by the glutamate release inhibitor, riluzole, through GSK3 activation in melanoma. PLoS One 2012; 7:e47312. [PMID: 23077590 PMCID: PMC3470581 DOI: 10.1371/journal.pone.0047312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/11/2012] [Indexed: 12/25/2022] Open
Abstract
Riluzole, an inhibitor of glutamate release, has shown the ability to inhibit melanoma cell xenograft growth. A phase 0 clinical trial of riluzole as a single agent in patients with melanoma resulted in involution of tumors associated with inhibition of both the mitogen-activated protein kinase (MAPK) and phophoinositide-3-kinase/AKT (PI3K/AKT) pathways in 34% of patients. In the present study, we demonstrate that riluzole inhibits AKT-mediated glycogen synthase kinase 3 (GSK3) phosphorylation in melanoma cell lines. Because we have demonstrated that GSK3 is involved in the phosphorylation of two downstream effectors of transforming growth factor beta (TGFβ), Smad2 and Smad3, at their linker domain, our aim was to determine whether riluzole could induce GSK3β-mediated linker phosphorylation of Smad2 and Smad3. We present evidence that riluzole increases Smad2 and Smad3 linker phosphorylation at the cluster of serines 245/250/255 and serine 204 respectively. Using GSK3 inhibitors and siRNA knock-down, we demonstrate that the mechanism of riluzole-induced Smad phosphorylation involved GSK3β. In addition, GSK3β could phosphorylate the same linker sites in vitro. The riluzole-induced Smad linker phosphorylation is mechanistically different from the Smad linker phosphorylation induced by TGFβ. We also demonstrate that riluzole-induced Smad linker phosphorylation is independent of the expression of the metabotropic glutamate receptor 1 (GRM1), which is one of the glutamate receptors whose involvement in human melanoma has been documented. We further show that riluzole upregulates the expression of INHBB and PLAU, two genes associated with the TGFβ signaling pathway. The non-canonical increase in Smad linker phosphorylation induced by riluzole could contribute to the modulation of the pro-oncogenic functions of Smads in late stage melanomas.
Collapse
Affiliation(s)
- Walid Abushahba
- Department of Medicine, Division of Medical Oncology, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Oyenike O. Olabisi
- Department of Medicine, Division of Medical Oncology, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Byeong-Seon Jeong
- Department of Surgery, Division of Surgical Oncology, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Rajeev K. Boregowda
- Department of Medicine, Division of Medical Oncology, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Yu Wen
- Department of Surgery, Division of Surgical Oncology, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Fang Liu
- Center for Advanced Biotechnology and Medicine, Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - James S. Goydos
- Department of Surgery, Division of Surgical Oncology, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Karine A. Cohen-Solal
- Department of Medicine, Division of Medical Oncology, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
269
|
Robertson RD, Mukherjee A. Synexpression group analyses identify new functions of FSTL3, a TGFβ ligand inhibitor. Biochem Biophys Res Commun 2012; 427:568-73. [DOI: 10.1016/j.bbrc.2012.09.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/18/2012] [Indexed: 12/20/2022]
|
270
|
Sorrentino GM, Gillis WQ, Oomen-Hajagos J, Thomsen GH. Conservation and evolutionary divergence in the activity of receptor-regulated smads. EvoDevo 2012; 3:22. [PMID: 23020873 PMCID: PMC3500652 DOI: 10.1186/2041-9139-3-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/09/2012] [Indexed: 01/20/2023] Open
Abstract
Background Activity of the Transforming growth factor-β (TGFβ) pathway is essential to the establishment of body axes and tissue differentiation in bilaterians. Orthologs for core pathway members have been found in all metazoans, but uncertain homology of the body axes and tissues patterned by these signals raises questions about the activities of these molecules across the metazoan tree. We focus on the principal canonical transduction proteins (R-Smads) of the TGFβ pathway, which instruct both axial patterning and tissue differentiation in the developing embryo. We compare the activity of R-Smads from a cnidarian (Nematostella vectensis), an arthropod (Drosophila melanogaster), and a vertebrate (Xenopus laevis) in Xenopus embryonic assays. Results Overexpressing NvSmad1/5 ventralized Xenopus embryos when expressed in dorsal blastomeres, similar to the effects of Xenopus Smad1. However, NvSmad1/5 was less potent than XSmad1 in its ability to activate downstream target genes in Xenopus animal cap assays. NvSmad2/3 strongly induced general mesendodermal marker genes, but weakly induced ones involved in specifying the Spemann organizer. NvSmad2/3 was unable to induce a secondary trunk axis in Xenopus embryos, whereas the orthologs from Xenopus (XSmad2 and XSmad3) and Drosophila (dSmad2) were capable of doing so. Replacement of the NvSmad2/3 MH2 domain with the Xenopus XSmad2 MH2 slightly increased its inductive capability, but did not confer an ability to generate a secondary body axis. Conclusions Vertebrate and cnidarian Smad1/5 have similar axial patterning and induction activities, although NvSmad1/5 is less efficient than the vertebrate gene. We conclude that the activities of Smad1/5 orthologs have been largely conserved across Metazoa. NvSmad2/3 efficiently activates general mesendoderm markers, but is unable to induce vertebrate organizer-specific genes or to produce a secondary body axis in Xenopus. Orthologs dSmad2 and XSmad3 generate a secondary body axis, but activate only low expression of organizer-specific genes that are strongly induced by XSmad2. We suggest that in the vertebrate lineage, Smad2 has evolved a specialized role in the induction of the embryonic organizer. Given the high level of sequence identity between Smad orthologs, this work underscores the functional importance of the emergence and fixation of a few divergent amino acids among orthologs during evolution.
Collapse
Affiliation(s)
- Gina M Sorrentino
- Department of Biochemistry and Cell Biology, Stony Brook University, Life Sciences Building room 450, Stony Brook, NY, 11794-5215, USA.
| | | | | | | |
Collapse
|
271
|
Smad3 linker phosphorylation attenuates Smad3 transcriptional activity and TGF-β1/Smad3-induced epithelial-mesenchymal transition in renal epithelial cells. Biochem Biophys Res Commun 2012; 427:593-9. [PMID: 23022526 DOI: 10.1016/j.bbrc.2012.09.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 09/19/2012] [Indexed: 01/10/2023]
Abstract
Transforming growth factor-β1 (TGF-β1) has a distinct role in renal fibrosis associated with epithelial-mesenchymal transition (EMT) of the renal tubules and synthesis of extracellular matrix. Smad3 plays an essential role in fibrosis initiated by EMT. Phosphorylation of Smad3 in the C-terminal SSXS motif by type I TGF-β receptor kinase is essential for mediating TGF-β response. Smad3 activity is also regulated by phosphorylation in the linker region. However, the functional role of Smad3 linker phosphorylation is not well characterized. We now show that Smad3 EPSM mutant, which mutated the four phosphorylation sites in the linker region, markedly enhanced TGF-β1-induced EMT of Smad3-deficient primary renal tubular epithelial cells, whereas Smad3 3S-A mutant, which mutated the C-terminal phosphorylation sites, was unable to induce EMT in response to TGF-β1. Furthermore, immunoblotting and RT-PCR analysis showed a marked induction of fibrogenic gene expression with a significant reduction in E-cadherin in HK2 human renal epithelial cells expressing Smad3 EPSM. TGF-β1 could not induce the expression of α-SMA, vimentin, fibronectin and PAI-1 or reduce the expression of E-cadherin in HK2 cells expressing Smad3 3S-A in response to TGF-β1. Our results suggest that Smad3 linker phosphorylation has a negative regulatory role on Smad3 transcriptional activity and TGF-β1/Smad3-induced renal EMT. Elucidation of mechanism regulating the Smad3 linker phosphorylation can provide a new strategy to control renal fibrosis.
Collapse
|
272
|
Li Z, Chen L, Niu X, Liu J, Ping M, Li R, Xie X, Guo L. Immunomodulatory synergy by combining atorvastatin and rapamycin in the treatment of experimental autoimmune encephalomyelitis (EAE). J Neuroimmunol 2012; 250:9-17. [DOI: 10.1016/j.jneuroim.2012.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/05/2012] [Accepted: 05/08/2012] [Indexed: 01/28/2023]
|
273
|
Patmore DM, Welch S, Fulkerson PC, Wu J, Choi K, Eaves D, Kordich JJ, Collins MH, Cripe TP, Ratner N. In vivo regulation of TGF-β by R-Ras2 revealed through loss of the RasGAP protein NF1. Cancer Res 2012; 72:5317-27. [PMID: 22918885 DOI: 10.1158/0008-5472.can-12-1972] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ras superfamily proteins participate in TGF-β-mediated developmental pathways that promote either tumor suppression or progression. However, the specific Ras proteins, which integrate in vivo with TGF-β signaling pathways, are unknown. As a general approach to this question, we activated all Ras proteins in vivo by genetic deletion of the RasGAP protein Nf1 and examined mice doubly deficient in a Ras protein to determine its requirement in formation of TGF-β-dependent neurofibromas that arise in Nf1-deficient mice. Animals lacking Nf1 and the Ras-related protein R-Ras2/TC21 displayed a delay in formation of neurofibromas but an acceleration in formation of brain tumors and sarcomas. Loss of R-Ras2 was associated with elevated expression of TGF-β in Nf1-deficient Schwann cell precursors, blockade of a Nf1/TGFβRII/AKT-dependent autocrine survival loop in tumor precursor cells, and decreased precursor cell numbers. Furthermore, the increase in size of sarcomas from xenografts doubly deficient in these genes was also found to be TGF-β-dependent, in this case resulting from cell nonautonomous effects on endothelial cells and myofibroblasts. Extending these findings in clinical specimens, we documented an increase in TGF-β ligands and an absence of TGF-β receptor II in malignant peripheral nerve sheath tumors, which correspond to tumors in the Nf1-deficient mouse model. Together, our findings reveal R-Ras2 as a critical regulator of TGF-β signaling in vivo.
Collapse
Affiliation(s)
- Deanna M Patmore
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Differential regulation of Smad3 and of the type II transforming growth factor-β receptor in mitosis: implications for signaling. PLoS One 2012; 7:e43459. [PMID: 22927969 PMCID: PMC3425481 DOI: 10.1371/journal.pone.0043459] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/24/2012] [Indexed: 01/17/2023] Open
Abstract
The response to transforming growth factor-β (TGF-β) depends on cellular context. This context is changed in mitosis through selective inhibition of vesicle trafficking, reduction in cell volume and the activation of mitotic kinases. We hypothesized that these alterations in cell context may induce a differential regulation of Smads and TGF-β receptors. We tested this hypothesis in mesenchymal-like ovarian cancer cells, arrested (or not) in mitosis with 2-methoxyestradiol (2ME2). In mitosis, without TGF-β stimulation, Smad3 was phosphorylated at the C-terminus and linker regions and localized to the mitotic spindle. Phosphorylated Smad3 interacted with the negative regulators of Smad signaling, Smurf2 and Ski, and failed to induce a transcriptional response. Moreover, in cells arrested in mitosis, Smad3 levels were progressively reduced. These phosphorylations and reduction in the levels of Smad3 depended on ERK activation and Mps1 kinase activity, and were abrogated by increasing the volume of cells arrested in mitosis with hypotonic medium. Furthermore, an Mps1-dependent phosphorylation of GFP-Smad3 was also observed upon its over-expression in interphase cells, suggesting a mechanism of negative regulation which counters increases in Smad3 concentration. Arrest in mitosis also induced a block in the clathrin-mediated endocytosis of the type II TGF-β receptor (TβRII). Moreover, following the stimulation of mitotic cells with TGF-β, the proteasome-mediated attenuation of TGF-β receptor activity, the degradation and clearance of TβRII from the plasma membrane, and the clearance of the TGF-β ligand from the medium were compromised, and the C-terminus phosphorylation of Smad3 was prolonged. We propose that the reduction in Smad3 levels, its linker phosphorylation, and its association with negative regulators (observed in mitosis prior to ligand stimulation) represent a signal attenuating mechanism. This mechanism is balanced by the retention of active TGF-β receptors at the plasma membrane. Together, both mechanisms allow for a regulated cellular response to TGF-β stimuli in mitosis.
Collapse
|
275
|
Hough C, Radu M, Doré JJE. Tgf-beta induced Erk phosphorylation of smad linker region regulates smad signaling. PLoS One 2012; 7:e42513. [PMID: 22880011 PMCID: PMC3412844 DOI: 10.1371/journal.pone.0042513] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 07/09/2012] [Indexed: 01/17/2023] Open
Abstract
The Transforming Growth Factor-Beta (TGF-β) family is involved in regulating a variety of cellular processes such as apoptosis, differentiation, and proliferation. TGF-β binding to a Serine/Threonine kinase receptor complex causes the recruitment and subsequent activation of transcription factors known as smad2 and smad3. These proteins subsequently translocate into the nucleus to negatively or positively regulate gene expression. In this study, we define a second signaling pathway leading to TGF-β receptor activation of Extracellular Signal Regulated Kinase (Erk) in a cell-type dependent manner. TGF-β induced Erk activation was found in phenotypically normal mesenchymal cells, but not normal epithelial cells. By activating phosphotidylinositol 3-kinase (PI3K), TGF-β stimulates p21-activated kinase2 (Pak2) to phosphorylate c-Raf, ultimately resulting in Erk activation. Activation of Erk was necessary for TGF-β induced fibroblast replication. In addition, Erk phosphorylated the linker region of nuclear localized smads, resulting in increased half-life of C-terminal phospho-smad 2 and 3 and increased duration of smad target gene transcription. Together, these data show that in mesenchymal cell types the TGF-β/PI3K/Pak2/Raf/MEK/Erk pathway regulates smad signaling, is critical for TGF-β-induced growth and is part of an integrated signaling web containing multiple interacting pathways rather than discrete smad/non-smad pathways.
Collapse
Affiliation(s)
- Chris Hough
- BioMedical Sciences, Memorial University, St. John's, Newfoundland, Canada
| | - Maria Radu
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Jules J. E. Doré
- BioMedical Sciences, Memorial University, St. John's, Newfoundland, Canada
- * E-mail:
| |
Collapse
|
276
|
Rezaei HB, Kamato D, Ansari G, Osman N, Little PJ. Cell biology of Smad2/3 linker region phosphorylation in vascular smooth muscle. Clin Exp Pharmacol Physiol 2012; 39:661-7. [DOI: 10.1111/j.1440-1681.2011.05592.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
277
|
Shin EHH, Basson MA, Robinson ML, McAvoy JW, Lovicu FJ. Sprouty is a negative regulator of transforming growth factor β-induced epithelial-to-mesenchymal transition and cataract. Mol Med 2012; 18:861-73. [PMID: 22517312 DOI: 10.2119/molmed.2012.00111] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 04/10/2012] [Indexed: 01/06/2023] Open
Abstract
Fibrosis affects an extensive range of organs and is increasingly acknowledged as a major component of many chronic disorders. It is now well accepted that the elevated expression of certain inflammatory cell-derived cytokines, especially transforming growth factor β (TGFβ), is involved in the epithelial-to-mesenchymal transition (EMT) leading to the pathogenesis of a diverse range of fibrotic diseases. In lens, aberrant TGFβ signaling has been shown to induce EMT leading to cataract formation. Sproutys (Sprys) are negative feedback regulators of receptor tyrosine kinase (RTK)-signaling pathways in many vertebrate systems, and in this study we showed that they are important in the murine lens for promoting the lens epithelial cell phenotype. Conditional deletion of Spry1 and Spry2 specifically from the lens leads to an aberrant increase in RTK-mediated extracellular signal-regulated kinase 1/2 phosphorylation and, surprisingly, elevated TGFβ-related signaling in lens epithelial cells, leading to an EMT and subsequent cataract formation. Conversely, increased Spry overexpression in lens cells can suppress not only TGFβ-induced signaling, but also the accompanying EMT and cataract formation. On the basis of these findings, we propose that a better understanding of the relationship between Spry and TGFβ signaling will not only elucidate the etiology of lens pathology, but will also lead to the development of treatments for other fibrotic-related diseases associated with TGFβ-induced EMT.
Collapse
Affiliation(s)
- Eun Hye H Shin
- Anatomy and Histology, Bosch Institute & Save Sight Institute, University of Sydney, Sydney, Australia
| | | | | | | | | |
Collapse
|
278
|
Targeting Stat3 and Smad7 to restore TGF-β cytostatic regulation of tumor cells in vitro and in vivo. Oncogene 2012; 32:2433-41. [PMID: 22751114 PMCID: PMC3655378 DOI: 10.1038/onc.2012.260] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Transforming Growth Factor-β (TGF-β) and Epidermal Growth Factor (EGF) signaling pathways are both independently implicated as key regulators in tumor formation and progression. Here, we report that the tumor-associated overexpression of epidermal growth factor receptor (EGFR) desensitizes TGF-β signaling and its cytostatic regulation through specific and persistent Stat3 activation and Smad7 induction in vivo. In human tumor cell lines, reduction of TGF-β-mediated Smad2 phosphorylation, nuclear translocation and Smad3 target gene activation were observed when EGFR was overexpressed, but not in cells that expressed EGFR at normal levels. We identified Stat3, which is activated specifically and persistently by overexpressed EGFR, as a key signaling molecule responsible for the reduced TGF-β sensitivity. Stable knockdown of Stat3 using small hairpin RNA(shRNA) in Head and Neck (HN5) and Epidermoid (A431) tumor cell lines resulted in reduced growth compared with control shRNA-transfected cells when grown as subcutaneous tumor xenografts. Furthermore, xenografts with Stat3 knockdown displayed increased Smad3 transcriptional activity, increased Smad2 phosphorylation and decreased Smad7 expression compared with control xenografts in vivo. Consistently, Smad7 mRNA and protein expression was also significantly reduced when EGFR activity was blocked by a specific tyrosine kinase inhibitor, AG1478, or in Stat3 knockdown tumors. Similarly, Smad7 knockdown also resulted in enhanced Smad3 transcriptional activity in vivo. Importantly, there was no uptake of subcutaneous HN5 xenografts with Smad7 knockdown. Taken together, we demonstrate here that targeting Stat3 or Smad7 for knockdown results in resensitization of TGF-β's cytostatic regulation in vivo. Overall, these results establish EGFR/Stat3/Smad7/TGF-β signaling axis driving tumor growth, which can be targeted therapeutically.
Collapse
|
279
|
Transforming growth factor β and Ras/MEK/ERK signaling regulate the expression level of a novel tumor suppressor Lefty. Pancreas 2012; 41:745-52. [PMID: 22441145 DOI: 10.1097/mpa.0b013e31823b66d3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES The objectives of the present study were (i) to identify a novel tumor suppressor gene whose expression level was regulated by transforming growth factor (TGF-β) and (ii) to evaluate the effect of Ras/MEK/ERK signaling on TGF-β-dependent Lefty up-regulation. METHODS Human pancreatic cancer cell lines were used. The effect of Ras/MEK/ERK pathway on TGF-β-mediated Lefty up-regulation was tested by adding K-ras small interfering RNA, MEK inhibitor U0126, or extracellular signal-regulated kinase (ERK) inhibitor LY294002. RESULTS Transforming growth factor β upregulated Lefty messenger RNA levels within 6 of the 7 cell lines. Lefty exerts an antagonistic effect against the tumor-promoting molecule, Nodal, as recombinant Lefty suppressed Nodal-mediated proliferation. Interestingly, inhibition of the Ras/MEK/ERK pathway dramatically enhanced TGF-mediated Lefty up-regulation, suggesting that Ras/MEK/ERK signaling suppresses TGF-β-Lefty pathway. CONCLUSIONS Our data suggest that Lefty is a novel TGF-β target molecule that mediates growth inhibition of pancreatic cancer cells. In addition, activation of the Ras/MEK/ERK pathway serves as a mechanism by which pancreatic cancer escapes from growth inhibition by the TGF-β-Lefty axis. The results imply a novel therapeutic strategy for pancreatic cancer, that is, combination treatment with Ras/MEK/ERK inhibitors and TGF-β.
Collapse
|
280
|
Tarasewicz E, Jeruss JS. Phospho-specific Smad3 signaling: impact on breast oncogenesis. Cell Cycle 2012; 11:2443-51. [PMID: 22659843 DOI: 10.4161/cc.20546] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Members of the TGFβ superfamily are known to exert a myriad of physiologic and pathologic growth controlling influences on mammary development and oncogenesis. In epithelial cells, TGFβ signaling inhibits cell growth through cytostatic and pro-apoptotic activities but can also induce cancer cell EMT and, thus, has a dichotomous role in breast cancer biology. Mechanisms governing this switch are the subject of active investigation. Smad3 is a critical intracellular mediator of TGFβ signaling regulated through phosphorylation by the TGFβ receptor complex at the C terminus. Smad3 is also a substrate for several other kinases that phosphorylate additional sites within the Smad protein. This discovery has expanded the understanding of the significance and complexity of TGFβ signaling through Smads. This review highlights recent advances revealing the critical role of phospho-specific Smad3 in malignancy and illustrates the potential prognostic and therapeutic impact of Smad3 phospho-isoforms in breast cancer.
Collapse
Affiliation(s)
- Elizabeth Tarasewicz
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | |
Collapse
|
281
|
Mascareno EJ, Belashov I, Siddiqui MAQ, Liu F, Dhar-Mascareno M. Hexim-1 modulates androgen receptor and the TGF-β signaling during the progression of prostate cancer. Prostate 2012; 72:1035-44. [PMID: 22095517 DOI: 10.1002/pros.21510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/13/2011] [Indexed: 01/30/2023]
Abstract
BACKGROUND Androgen and TGF-β signaling are important components during the progression of prostate cancer. However, whether common molecular events participate in the activation of these signaling pathways are less understood. METHOD Hexim 1 expression was detected by immunohistochemistry of human tissue microarrays and TRAMP mouse models. The in vivo significance of Hexim-1 was established by crossing the TRAMP mouse model of prostate cancer with Hexim-1 heterozygous mice. TRAMP C2 cell line was also modified to delete one copy of Hexim-1 gene to generate TRAMP-C2-Hexim-1+/- cell lines. RESULTS In this report, we observed that Hexim-1 protein expression is absent in normal prostate but highly expressed in adenocarcinoma of the prostate and a characteristic sub-cellular distribution among normal, benign hyperplasia, and adenocarcinoma of the prostate. Heterozygosity of the Hexim-1 gene in the prostate cancer mice model and the TRAMP-C2 cell line, leads to increased Cdk9-dependent serine phosphorylation on protein targets such as the androgen receptor (AR) and the TGF-β-dependent downstream transcription factors, such as the SMAD proteins. CONCLUSION Our results suggest that changes in the Hexim-1 protein expression and cellular distribution significantly influences the AR activation and the TGF-β signaling. Thus, Hexim-1 is likely to play a significant role in prostate cancer progression.
Collapse
Affiliation(s)
- Eduardo J Mascareno
- Department of Cell Biology, State University of New York, Downstate Medical School, Brooklyn, New York 11203, USA.
| | | | | | | | | |
Collapse
|
282
|
Hazen VM, Andrews MG, Umans L, Crenshaw EB, Zwijsen A, Butler SJ. BMP receptor-activated Smads confer diverse functions during the development of the dorsal spinal cord. Dev Biol 2012; 367:216-27. [PMID: 22609550 DOI: 10.1016/j.ydbio.2012.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/21/2012] [Accepted: 05/09/2012] [Indexed: 01/19/2023]
Abstract
Bone Morphogenetic Proteins (BMPs) have multiple activities in the developing spinal cord: they specify the identity of the dorsal-most neuronal populations and then direct the trajectories of dorsal interneuron (dI) 1 commissural axons. How are these activities decoded by dorsal neurons to result in different cellular outcomes? Our previous studies have shown that the diverse functions of the BMPs are mediated by the canonical family of BMP receptors and then regulated by specific inhibitory (I) Smads, which block the activity of a complex of Smad second messengers. However, the extent to which this complex translates the different activities of the BMPs in the spinal cord has remained unresolved. Here, we demonstrate that the receptor-activated (R) Smads, Smad1 and Smad5 play distinct roles mediating the abilities of the BMPs to direct cell fate specification and axon outgrowth. Smad1 and Smad5 occupy spatially distinct compartments within the spinal cord, with Smad5 primarily associated with neural progenitors and Smad1 with differentiated neurons. Consistent with this expression profile, loss of function experiments in mouse embryos reveal that Smad5 is required for the acquisition of dorsal spinal neuron identities whereas Smad1 is critical for the regulation of dI1 axon outgrowth. Thus the R-Smads, like the I-Smads, have discrete roles mediating BMP-dependent cellular processes during spinal interneuron development.
Collapse
Affiliation(s)
- V M Hazen
- Department of Biological Sciences, Neuroscience Graduate Program, University of Southern California, Los Angeles, CA90089, USA
| | | | | | | | | | | |
Collapse
|
283
|
Daroqui MC, Vazquez P, Bal de Kier Joffé E, Bakin AV, Puricelli LI. TGF-β autocrine pathway and MAPK signaling promote cell invasiveness and in vivo mammary adenocarcinoma tumor progression. Oncol Rep 2012; 28:567-75. [PMID: 22614218 PMCID: PMC3981025 DOI: 10.3892/or.2012.1813] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 02/20/2012] [Indexed: 11/06/2022] Open
Abstract
Breast cancer progression and metastasis have been linked to abnormal signaling by transforming growth factor-β (TGF-β) cytokines. In early-stage breast cancers, TGF-β exhibits tumor suppressor activity by repressing cell proliferation and inducing cell death, whereas in advanced-stage tumors, TGF-β promotes invasion and metastatic dissemination. The molecular mechanisms underlying pro-oncogenic activities of TGF-β are not fully understood. The present study validates the role of TGF-β signaling in cancer progression and explores mediators of pro-oncogenic TGF-β activities using the LM3 mammary adenocarcinoma cell line, derived from a spontaneous murine mammary adenocarcinoma. Expression of kinase-inactive TGF-β receptors decreased both basal and TGF-β-induced invasion. Analysis of signal transduction mediators showed that p38MAPK and MEK contribute to TGF-β stimulation of cell motility and invasion. TGF-β disrupted the epithelial actin structures supporting cell-cell adhesions, and increased linear actin filaments. Moreover, MEK and p38MAPK pathways showed opposite effects on actin remodeling in response to TGF-β. Blockade of Raf-MEK signaling enhanced TGF-β induction of actin stress-fibers whereas p38MAPK inhibitors blocked this effect. A novel observation was made that TGF-β rapidly activates the actin nucleation Arp2/3 complex. In addition, TGF-β stimulated matrix metalloproteinase MMP-9 secretion via a MAPK-independent pathway. Experiments using syngeneic mice showed that kinase-inactive TGF-β receptors inhibit the first stages of LM3 tumor growth in vivo. Our studies demonstrate that autocrine TGF-β signaling contributes to the invasive behavior of mammary carcinoma cells. Moreover, we show that both MAPK-dependent and -independent pathways are necessary for TGF-β-induced effects. Therefore, MEK-ERK and p38 MAPK pathways are potential venues for therapeutic intervention in pro-oncogenic TGF-β signaling.
Collapse
|
284
|
Zanotti S, Canalis E. Nemo-like kinase inhibits osteoblastogenesis by suppressing bone morphogenetic protein and WNT canonical signaling. J Cell Biochem 2012; 113:449-56. [PMID: 21928348 DOI: 10.1002/jcb.23365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The bone morphogenetic protein/Signaling mothers against decapentaplegic (BMP/Smad) and the WNT signaling pathways regulate the commitment of mesenchymal cells to the osteoblastic lineage. Nemo-like kinase (Nlk) is an evolutionary conserved kinase that suppresses Smad transactivation and WNT canonical signaling. However, it is not clear whether these effects of Nlk have any consequence on the differentiation of mammalian cells. To study the function of Nlk during the commitment of ST-2 bone marrow stromal cells to the osteoblastic fate, Nlk was downregulated by RNA interference (RNAi), following transfection of a specific small interfering (si)RNA. Nlk downregulation increased alkaline phosphatase and osteocalcin expression and sensitized ST-2 cells to the effects of BMP2 and WNT3 on alkaline phosphatase mRNA expression and activity. Accordingly, Nlk downregulation enhanced the effect of BMP2 on the transactivation of the BMP/Smad reporter construct 12xSBE-Oc-pGL3, and on the levels of phosphorylated Smad1/5/8, whereas it did not affect the transactivation of the transforming growth factor-β/Smad reporter pSBE-Luc. Nlk downregulation sensitized ST-2 cells to the effects of WNT3 on the transactivation of the WNT/T-cell factor (Tcf) reporter construct 16xTCF-Luc, whereas it did not affect cytosolic β-catenin levels. To understand the function of Nlk in cells committed to the osteoblastic lineage, Nlk was suppressed by RNAi in primary calvarial osteoblasts. Downregulation of Nlk increased alkaline phosphatase and osteocalcin transcripts and sensitized osteoblasts to the effects of BMP2 on alkaline phosphatase activity and Smad1/5/8 transactivation and phosphorylation. In conclusion, Nlk suppresses osteoblastogenesis by opposing BMP/Smad and WNT canonical signaling.
Collapse
Affiliation(s)
- Stefano Zanotti
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut 06105-1299, USA
| | | |
Collapse
|
285
|
Geisinger MT, Astaiza R, Butler T, Popoff SN, Planey SL, Arnott JA. Ets-1 is essential for connective tissue growth factor (CTGF/CCN2) induction by TGF-β1 in osteoblasts. PLoS One 2012; 7:e35258. [PMID: 22539964 PMCID: PMC3335151 DOI: 10.1371/journal.pone.0035258] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/14/2012] [Indexed: 11/18/2022] Open
Abstract
Background Ets-1 controls osteoblast differentiation and bone development; however, its downstream mechanism of action in osteoblasts remains largely undetermined. CCN2 acts as an anabolic growth factor to regulate osteoblast differentiation and function. CCN2 is induced by TGF-β1 and acts as a mediator of TGF-β1 induced matrix production in osteoblasts; however, the molecular mechanisms that control CCN2 induction are poorly understood. In this study, we investigated the role of Ets-1 for CCN2 induction by TGF-β1 in primary osteoblasts. Results We demonstrated that Ets-1 is expressed and induced by TGF-β1 treatment in osteoblasts, and that Ets-1 over-expression induces CCN2 protein expression and promoter activity at a level similar to TGF-β1 treatment alone. Additionally, we found that simultaneous Ets-1 over-expression and TGF-β1 treatment synergize to enhance CCN2 induction, and that CCN2 induction by TGF-β1 treatment was impaired using Ets-1 siRNA, demonstrating the requirement of Ets-1 for CCN2 induction by TGF-β1. Site-directed mutagenesis of eight putative Ets-1 motifs (EBE) in the CCN2 promoter demonstrated that specific EBE sites are required for CCN2 induction, and that mutation of EBE sites in closer proximity to TRE or SBE (two sites previously shown to regulate CCN2 induction by TGF-β1) had a greater effect on CCN2 induction, suggesting potential synergetic interaction among these sites for CCN2 induction. In addition, mutation of EBE sites prevented protein complex binding, and this protein complex formation was also inhibited by addition of Ets-1 antibody or Smad 3 antibody, demonstrating that protein binding to EBE motifs as a result of TGF-β1 treatment require synergy between Ets-1 and Smad 3. Conclusions This study demonstrates that Ets-1 is an essential downstream signaling component for CCN2 induction by TGF-β1 in osteoblasts, and that specific EBE sites in the CCN2 promoter are required for CCN2 promoter transactivation in osteoblasts.
Collapse
Affiliation(s)
- Max T. Geisinger
- Basic Sciences Department, The Commonwealth Medical College, Scranton, Pennsylvania, United States of America
| | - Randy Astaiza
- Basic Sciences Department, The Commonwealth Medical College, Scranton, Pennsylvania, United States of America
| | - Tiffany Butler
- Basic Sciences Department, The Commonwealth Medical College, Scranton, Pennsylvania, United States of America
| | - Steven N. Popoff
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sonia Lobo Planey
- Basic Sciences Department, The Commonwealth Medical College, Scranton, Pennsylvania, United States of America
| | - John A. Arnott
- Basic Sciences Department, The Commonwealth Medical College, Scranton, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
286
|
Notch receptors and Smad3 signaling cooperate in the induction of interleukin-9-producing T cells. Immunity 2012; 36:623-34. [PMID: 22503540 DOI: 10.1016/j.immuni.2012.01.020] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 01/05/2012] [Accepted: 01/27/2012] [Indexed: 01/06/2023]
Abstract
Interleukin 9 (IL-9) is a pleiotropic cytokine that can regulate autoimmune responses by enhancing regulatory CD4(+)FoxP3(+) T regulatory (Treg) cell survival and T helper 17 (Th17) cell proliferation. Here, we analyzed the costimulatory requirements for the induction of Th9 cells, and demonstrated that Notch pathway cooperated with TGF-β signaling to induce IL-9. Conditional ablation of Notch1 and Notch2 receptors inhibited the development of Th9 cells. Notch1 intracellular domain (NICD1) recruited Smad3, downstream of TGF-β cytokine signaling, and together with recombining binding protein (RBP)-Jκ bound the Il9 promoter and induced its transactivation. In experimental autoimmune encephalomyelitis (EAE), Jagged2 ligation regulated clinical disease in an IL-9-dependent fashion. Signaling through Jagged2 expanded Treg cells and suppressed EAE when administered before antigen immunization, but worsened EAE when administered concurrently with immunization by favoring Th17 cell expansion. We propose that Notch and Smad3 cooperate to induce IL-9 and participate in regulating the immune response.
Collapse
|
287
|
Lee S, Bae YS. Monomeric and dimeric models of ERK2 in conjunction with studies on cellular localization, nuclear translocation, and in vitro analysis. Mol Cells 2012; 33:325-34. [PMID: 22450690 PMCID: PMC3887802 DOI: 10.1007/s10059-012-0023-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/21/2012] [Accepted: 02/27/2012] [Indexed: 11/24/2022] Open
Abstract
Extracellular signal-regulated protein kinase 2 (ERK2) plays many vital roles in cellular signal regulation. Phosphorylation of ERK2 leads to propagation and execution of various extracellular stimuli, which influence cellular responses to stress. The final response of the ERK2 signaling pathway is determined by localization and duration of active ERK2 at specific target cell compartments through protein-protein interactions of ERK2 with various cytoplasmic and nuclear substrates, scaffold proteins, and anchoring counterparts. In this respect, dimerization of phosphorylated ERK2 has been suggested to be a part of crucial regulating mechanism in various protein-protein interactions. After the report of putative dimeric structure of active ERK2 (Canagarajah et al., 1997), dimeric model was employed to explain many in vivo and in vitro experimental results. But more recently, many reports have been presented questioning the validity of dimer hypothesis of active ERK2. In this review, we summarize the various in vitro and in vivo studies concerning the Monomeric or the dimeric forms of ERK2 and the validity of the dimer hypothesis.
Collapse
Affiliation(s)
- Sunbae Lee
- Division of Life Sciences, Center for Cell Signal.ing Research, Ewha Womans University, Seoul 120-750, Korea.
| | | |
Collapse
|
288
|
Galbraith MD, Donner AJ, Espinosa JM. CDK8: a positive regulator of transcription. Transcription 2012; 1:4-12. [PMID: 21327159 DOI: 10.4161/trns.1.1.12373] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/12/2010] [Accepted: 05/13/2010] [Indexed: 01/09/2023] Open
Abstract
CDK8 belongs to a group of cyclin-dependent kinases involved in transcriptional regulation from yeast to mammals. CDK8 associates with the Mediator complex, but functions outside of Mediator are also likely. Historically, CDK8 has been described mostly as a transcriptional repressor, but a growing body of research provides unequivocal evidence for various roles of CDK8 in gene activation. Several transcriptional programs of biomedical importance employ CDK8 as a co-activator, including the p53 network, the Wnt/β-catenin pathway, the serum response network, and those governed by SMADs and the thyroid hormone receptor, thus highlighting the importance of further investigation into this enigmatic transcriptional regulator.
Collapse
|
289
|
Yoshida K, Matsuzaki K. Differential Regulation of TGF-β/Smad Signaling in Hepatic Stellate Cells between Acute and Chronic Liver Injuries. Front Physiol 2012. [PMID: 22457652 DOI: 10.3389/fphys]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Current evidence suggests that regulation of extracellular matrix (ECM) accumulation by fibrogenic transforming growth factor (TGF)-β and platelet-derived growth factor (PDGF) signals involves different mechanisms in acute and chronic liver injuries, even though hepatic stellate cells (HSC) are the principal effecter in both cases. As a result of chronic liver damage, HSC undergo progressive activation to become myofibroblasts (MFB)-like cells. Our current review will discuss the differential regulation of TGF-β signaling between HSC and MFB in vitro and in vivo. Smad proteins, which convey signals from TGF-β receptors to the nucleus, have intermediate linker regions between conserved Mad-homology (MH) 1 and MH2 domains. TGF-β type I receptor and Ras-associated kinases differentially phosphorylate Smad2 and Smad3 to create COOH-terminally (C), linker (L), or dually (L/C) phosphorylated (p) isoforms. After acute liver injury, TGF-β and PDGF synergistically promote collagen synthesis in the activated HSC via pSmad2L/C and pSmad3L/C pathways. To avoid unlimited ECM deposition, Smad7 induced by TGF-β negatively regulates the fibrogenic TGF-β signaling. In contrast, TGF-β and PDGF can transmit the fibrogenic pSmad2L/C and mitogenic pSmad3L signals in MFB throughout chronic liver injury, because Smad7 cannot be induced by the pSmad3L pathway. This lack of Smad7 induction might lead to constitutive fibrogenesis in MFB, which eventually develop into accelerated liver fibrosis.
Collapse
Affiliation(s)
- Katsunori Yoshida
- Department of Gastroenterology and Hepatology, Kansai Medical University Moriguchi, Osaka, Japan
| | | |
Collapse
|
290
|
Yoshida K, Matsuzaki K. Differential Regulation of TGF-β/Smad Signaling in Hepatic Stellate Cells between Acute and Chronic Liver Injuries. Front Physiol 2012; 3:53. [PMID: 22457652 PMCID: PMC3307138 DOI: 10.3389/fphys.2012.00053] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/26/2012] [Indexed: 12/13/2022] Open
Abstract
Current evidence suggests that regulation of extracellular matrix (ECM) accumulation by fibrogenic transforming growth factor (TGF)-β and platelet-derived growth factor (PDGF) signals involves different mechanisms in acute and chronic liver injuries, even though hepatic stellate cells (HSC) are the principal effecter in both cases. As a result of chronic liver damage, HSC undergo progressive activation to become myofibroblasts (MFB)-like cells. Our current review will discuss the differential regulation of TGF-β signaling between HSC and MFB in vitro and in vivo. Smad proteins, which convey signals from TGF-β receptors to the nucleus, have intermediate linker regions between conserved Mad-homology (MH) 1 and MH2 domains. TGF-β type I receptor and Ras-associated kinases differentially phosphorylate Smad2 and Smad3 to create COOH-terminally (C), linker (L), or dually (L/C) phosphorylated (p) isoforms. After acute liver injury, TGF-β and PDGF synergistically promote collagen synthesis in the activated HSC via pSmad2L/C and pSmad3L/C pathways. To avoid unlimited ECM deposition, Smad7 induced by TGF-β negatively regulates the fibrogenic TGF-β signaling. In contrast, TGF-β and PDGF can transmit the fibrogenic pSmad2L/C and mitogenic pSmad3L signals in MFB throughout chronic liver injury, because Smad7 cannot be induced by the pSmad3L pathway. This lack of Smad7 induction might lead to constitutive fibrogenesis in MFB, which eventually develop into accelerated liver fibrosis.
Collapse
Affiliation(s)
- Katsunori Yoshida
- Department of Gastroenterology and Hepatology, Kansai Medical University Moriguchi, Osaka, Japan
| | | |
Collapse
|
291
|
Bruce DL, Sapkota GP. Phosphatases in SMAD regulation. FEBS Lett 2012; 586:1897-905. [PMID: 22576046 DOI: 10.1016/j.febslet.2012.02.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 11/28/2022]
Abstract
SMAD transcription factors are key mediators of the transforming growth factor-beta (TGFß) family of cytokines. Reversible phosphorylation of SMAD proteins plays a key role in regulating their function. Several phosphatases have been proposed to act on SMAD proteins to influence TGFß/BMP signalling. Here we provide an overview of the SMAD regulation by different protein phosphatases and review the evidence supporting each phosphatase as a candidate SMAD-phosphatase.
Collapse
Affiliation(s)
- David L Bruce
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH Dundee, Scotland, UK
| | | |
Collapse
|
292
|
Arnott JA, Lambi AG, Mundy C, Hendesi H, Pixley RA, Owen TA, Safadi FF, Popoff SN. The role of connective tissue growth factor (CTGF/CCN2) in skeletogenesis. Crit Rev Eukaryot Gene Expr 2012; 21:43-69. [PMID: 21967332 DOI: 10.1615/critreveukargeneexpr.v21.i1.40] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Connective tissue growth factor (CTGF) is a 38 kDa, cysteine rich, extracellular matrix protein composed of 4 domains or modules. CTGF has been shown to regulate a diverse array of cellular functions and has been implicated in more complex biological processes such as angiogenesis, chondrogenesis, and osteogenesis. A role for CTGF in the development and maintenance of skeletal tissues first came to light in studies demonstrating its expression in cartilage and bone cells, which was dramatically increased during skeletal repair or regeneration. The physiological significance of CTGF in skeletogenesis was confirmed in CTGF-null mice, which exhibited multiple skeletal dysmorphisms as a result of impaired growth plate chondrogenesis, angiogenesis, and bone formation/mineralization. Given the emerging importance of CTGF in osteogenesis and chondrogenesis, this review will focus on its expression in skeletal tissues, its effects on osteoblast and chondrocyte differentiation and function, and the skeletal implications of ablation or over-expression of CTGF in knockout or transgenic mouse models, respectively. In addition, this review will examine the role of integrin-mediated signaling and the regulation of CTGF expression as it relates to skeletogenesis. We will emphasize CTGF studies in bone or bone cells, and will identify opportunities for future investigations concerning CTGF and chondrogenesis/osteogenesis.
Collapse
Affiliation(s)
- John A Arnott
- Basic Sciences Department, The Commonwealth Medical College, Scranton, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
293
|
Sarkar P, Collier TS, Randall SM, Muddiman DC, Rao BM. The subcellular proteome of undifferentiated human embryonic stem cells. Proteomics 2012; 12:421-30. [DOI: 10.1002/pmic.201100507] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 10/31/2011] [Accepted: 11/14/2011] [Indexed: 11/11/2022]
|
294
|
Kannan Y, Wilson MS. TEC and MAPK Kinase Signalling Pathways in T helper (T H) cell Development, T H2 Differentiation and Allergic Asthma. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2012; Suppl 12:11. [PMID: 24116341 PMCID: PMC3792371 DOI: 10.4172/2155-9899.s12-011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Significant advances in our understanding of the signalling events during T cell development and differentiation have been made in the past few decades. It is clear that ligation of the T cell receptor (TCR) triggers a series of proximal signalling cascades regulated by an array of protein kinases. These orchestrated and highly regulated series of events, with differential requirements of particular kinases, highlight the disparities between αβ+CD4+ T cells. Throughout this review we summarise both new and old studies, highlighting the role of Tec and MAPK in T cell development and differentiation with particular focus on T helper 2 (TH2) cells. Finally, as the allergy epidemic continues, we feature the role played by TH2 cells in the development of allergy and provide a brief update on promising kinase inhibitors that have been tested in vitro, in pre-clinical disease models in vivo and into clinical studies.
Collapse
Affiliation(s)
- Yashaswini Kannan
- Division of Molecular Immunology, National Institute for Medical Research, MRC, London, NW7 1AA, UK
| | - Mark S. Wilson
- Division of Molecular Immunology, National Institute for Medical Research, MRC, London, NW7 1AA, UK
| |
Collapse
|
295
|
Abstract
Members of the TGF-beta superfamily exhibit various biological activities, and perturbations of their signaling are linked to certain clinical disorders including cancer. The role of TGF-beta signaling as a tumor suppressor pathway is best illustrated by the presence of inactivating mutations in genes encoding TGF-beta receptors and Smads in human carcinomas. This perspective is further supported by studies of tumor development in mouse models after modulation of receptors and Smads. TGF-beta also controls processes such as cell invasion, immune regulation, and microenvironment alterations that cancer cells may exploit to their advantage for their progression. Consequently, the output of a TGF-beta response is highly situation dependent, across different tissues, and also in cancer in general. Understanding the mechanisms of TGF-beta superfamily signaling is thus important for the development of new ways to treat various types of cancer. This review focuses on recent advances in understanding the Smad dependent TGF-beta pathway as it relates to human carcinogenesis.
Collapse
Affiliation(s)
- Debangshu Samanta
- Departments of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pran K. Datta
- Nashville Department of Veterans Affairs Medical Center, Nashville, TN
- Departments of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Surgery, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
296
|
Chapnick DA, Warner L, Bernet J, Rao T, Liu X. Partners in crime: the TGFβ and MAPK pathways in cancer progression. Cell Biosci 2011; 1:42. [PMID: 22204556 PMCID: PMC3275500 DOI: 10.1186/2045-3701-1-42] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 12/28/2011] [Indexed: 12/27/2022] Open
Abstract
The TGFβ and Ras-MAPK pathways play critical roles in cell development and cell cycle regulation, as well as in tumor formation and metastasis. In the absence of cellular transformation, these pathways operate in opposition to one another, where TGFβ maintains an undifferentiated cell state and suppresses proliferation, while Ras-MAPK pathways promote proliferation, survival and differentiation. However, in colorectal and pancreatic cancers, the opposing pathways' mechanisms are simultaneously activated in order to promote cancer progression and metastasis. Here, we highlight the roles of the TGFβ and Ras-MAPK pathways in normal and malignant states, and provide an explanation for how the concomitant activation of these pathways drives tumor biology. Finally, we survey potential therapeutic targets in these pathways.
Collapse
Affiliation(s)
- Douglas A Chapnick
- Department of Chemistry and Biochemistry and Molecular, Cellular and Developmental Biology
| | - Lisa Warner
- Department of Chemistry and Biochemistry and Molecular, Cellular and Developmental Biology
| | | | - Timsi Rao
- Department of Chemistry and Biochemistry and Molecular, Cellular and Developmental Biology
| | - Xuedong Liu
- Department of Chemistry and Biochemistry and Molecular, Cellular and Developmental Biology
| |
Collapse
|
297
|
Lee SY, Lim SK, Cha SW, Yoon J, Lee SH, Lee HS, Park JB, Lee JY, Kim SC, Kim J. Inhibition of FGF signaling converts dorsal mesoderm to ventral mesoderm in early Xenopus embryos. Differentiation 2011; 82:99-107. [PMID: 21684060 DOI: 10.1016/j.diff.2011.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 05/20/2011] [Accepted: 05/24/2011] [Indexed: 11/16/2022]
Abstract
In early vertebrate development, mesoderm induction is a crucial event regulated by several factors including the activin, BMP and FGF signaling pathways. While the requirement of FGF in Nodal/activin-induced mesoderm formation has been reported, the fate of the tissue modulated by these signals is not fully understood. Here, we examined the fate of tissues when exogenous activin was added and FGF signaling was inhibited in animal cap explants of Xenopus embryos. Activin-induced dorsal mesoderm was converted to ventral mesoderm by inhibition of FGF signaling. We also found that inhibiting FGF signaling in the dorsal marginal zone, in vegetal-animal cap conjugates or in the presence of the activin signaling component Smad2, converted dorsal mesoderm to ventral mesoderm. The expression and promoter activities of a BMP responsive molecule, PV.1 and a Spemann organizer, noggin, were investigated while FGF signaling was inhibited. PV.1 expression increased, while noggin decreased. In addition, inhibiting BMP-4 signaling abolished ventral mesoderm formation induced by exogenous activin and FGF inhibition. Taken together, these results suggest that the formation of dorso-ventral mesoderm in early Xenopus embryos is regulated by a combination of FGF, activin and BMP signaling.
Collapse
Affiliation(s)
- Sung-Young Lee
- Department of Biochemistry, College of Medicine, Hallym University, ChunCheon, Kangwon-Do, 200-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Anthocyanin-rich Mulberry extract inhibit the gastric cancer cell growth in vitro and xenograft mice by inducing signals of p38/p53 and c-jun. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.06.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
299
|
Wang J, Chen A, Yang C, Zeng H, Qi J, Guo FJ. A bone-seeking clone exhibits different biological properties from the ACHN parental human renal cell carcinoma in vivo and in vitro. Oncol Rep 2011; 27:1104-10. [PMID: 22139406 PMCID: PMC3583590 DOI: 10.3892/or.2011.1572] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/21/2011] [Indexed: 11/06/2022] Open
Abstract
Metastatic bone disease caused by renal cell carcinoma (RCC) occurs frequently. Very little is currently known about the mechanism of preferential metastasis of RCC to bone. We hypothesize that RCCs that develop bone metastases have the capacity to facilitate their colonization in bone. To examine this hypothesis, we established bone-seeking (ACHN-BO) clones of the human RCC cell line ACHN by repeated four passages in nude mice and in vitro of metastatic cells obtained from bone. These clones were examined for distinguishing biological characteristics and compared with the ACHN parental cells (ACHN-P) in vivo and in vitro. Our results showed that the ACHN-BO cell line could be successfully obtained by in vivo selection through the lateral tail vein. This approach results in the development of multiple osteolytic lesions in the distal femora and proximal tibiae within four weeks after inoculation, with a success rate of 85-100% and no additional comorbidity. ACHN-P cells developed metastases in lung, bone, brain, ovary and adrenal glands. Conversely, ACHN-BO cells exclusively metastasized to bones with larger osteolytic lesions. Compared with the ACHN-P cell line, the proliferation ability in ACHN-BO6 was increased by 9.68 and 6.42%, respectively (P<0.05), while the apoptotic ratio decreased significantly (P<0.05) and cells were blocked in the S phase with suppressed migration and invasion capacities. The ACHN-BO₆ cell line produced greater amounts of the pro-angiogenic factors VEGF and TGF-β than ACHN-P. Our data suggest that these phenotypic changes allow RCC cells to promote osteoclastic bone resorption, survive and proliferate in bone, which consequently leads to the establishment of bone metastases. This model provides a reliable reproduction of the clinical situation and, therefore, is suitable for designing and evaluating more effective treatments for RCC bone metastasis.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | | | | | | | | | | |
Collapse
|
300
|
Fuentes-Calvo I, Blázquez-Medela AM, Eleno N, Santos E, López-Novoa JM, Martínez-Salgado C. H-Ras isoform modulates extracellular matrix synthesis, proliferation, and migration in fibroblasts. Am J Physiol Cell Physiol 2011; 302:C686-97. [PMID: 22094331 DOI: 10.1152/ajpcell.00103.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ras GTPases are ubiquitous plasma membrane transducers of extracellular stimuli. In addition to their role as oncogenes, Ras GTPases are key regulators of cell function. Each of the Ras isoforms exhibits specific modulatory activity on different cellular pathways. This has prompted researchers to determine the pathophysiological roles of each isoform. There is a proven relationship between the signaling pathways of transforming growth factor-β1 (TGF-β1) and Ras GTPases. To assess the individual role of H-Ras oncogene in basal and TGF-β1-mediated extracellular matrix (ECM) synthesis, proliferation, and migration in fibroblasts, we analyzed these processes in embryonic fibroblasts obtained from H-Ras knockout mice (H-ras(-/-)). We found that H-ras(-/-) fibroblasts exhibited a higher basal phosphatidylinositol-3-kinase (PI3K)/Akt activation than wild-type (WT) fibroblasts, whereas MEK/ERK 1/2 activation was similar in both types of cells. Fibronectin and collagen synthesis were higher in H-ras(-/-) fibroblasts and proliferation was lower in H-ras(-/-) than in WT fibroblasts. Moreover, H-Ras appeared indispensable to maintain normal fibroblast motility, which was highly restricted in H-ras(-/-) cells. These results suggest that H-Ras (through downregulation of PI3K/Akt activation) could modulate fibroblast activity by reducing ECM synthesis and upregulating both proliferation and migration. TGF-β1 strongly increased ERK and Akt activation in WT but not in H-ras(-/-) fibroblasts, suggesting that H-Ras is necessary to increase ERK 1/2 activation and to maintain PI3K downregulation in TGF-β1-stimulated fibroblasts. TGF-β1 stimulated ECM synthesis and proliferation, although ECM synthesis was higher and proliferation lower in H-ras(-/-) than in WT fibroblasts. Hence, H-Ras activation seems to play a key role in the regulation of these effects.
Collapse
Affiliation(s)
- Isabel Fuentes-Calvo
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto “Reina Sofía” de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|