251
|
McKenzie SE, Keller MA, Cassel DL, Schreiber AD, Schwartz E, Surrey S, Rappaport EF. Characterization of the 5'-flanking transcriptional regulatory region of the human Fc gamma receptor gene, Fc gamma RIIA. Mol Immunol 1992; 29:1165-74. [PMID: 1382218 DOI: 10.1016/0161-5890(92)90052-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The human Fc gamma receptor gene Fc gamma RIIA is expressed in platelets, neutrophils, monocytes and macrophages. Understanding the regulation of expression of Fc gamma RIIA will enhance our knowledge of regulated gene expression and immune function in these cells. We cloned a 3.65 kb region of the 5' end of the Fc gamma RIIA gene and characterized 3.4 kb of previously unreported sequence of the 5'-flanking region. Primer extension studies and RNase protection analyses of mRNA from HEL, K562 and U937 cells revealed multiple transcription start sites. One transcription start site mapped to a 5'-untranslated (5'UT) exon approximately 1 kb 5' to the ATG translation initiation codon, while a second start site mapped near the ATG codon. Reverse transcription combined with PCR (RT-PCR) employing an oligonucleotide in the putative 5'UT exon and an antisense oligonucleotide in the translated region yielded products which confirm that transcription starts in this 5'UT exon 881 bp upstream of the ATG codon. Sequence analysis of the RT-PCR products showed two related RNA splice products which use alternative 3'-consensus AG splice acceptor sites. Fc gamma RIIA mRNA thus has three distinct potential 5'UT regions, two alternatively spliced forms from the start site in the 5'UT exon and the third from the start site near the ATG codon. Comparisons of the human Fc gamma RIIA 5'-flanking region with human Fc gamma RI and mouse Fc gamma RII beta genes as well as with other genes expressed in megakaryocytes, neutrophils and monocytes reveal structural similarities and shared promoter elements.
Collapse
Affiliation(s)
- S E McKenzie
- Division of Hematology, Children's Hospital of Philadelphia, PA 19104
| | | | | | | | | | | | | |
Collapse
|
252
|
Hepatocyte nuclear factor 3 beta contains two transcriptional activation domains, one of which is novel and conserved with the Drosophila fork head protein. Mol Cell Biol 1992. [PMID: 1324404 DOI: 10.1128/mcb.12.9.3723] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hepatocyte nuclear factor 3 (HNF-3) gene family is composed of three proteins (alpha, beta, and gamma) that are transcription factors involved in the coordinate expression of several liver genes. All three proteins share strong homology in their DNA binding domains (region I) and are able to recognize the same DNA sequence. They also possess two similar stretches of amino acids at the carboxyl terminus (regions II and III) and a fourth segment of homology at the amino terminus (region IV). Furthermore, the HNF-3 proteins demonstrate homology with the Drosophila homeotic gene fork head in regions I, II, and III, suggesting that HNF-3 may be its mammalian homolog. In order to define HNF-3 beta protein domains involved in transcriptional activation, we have used a reporter gene, whose transcription is dependent on HNF-3 binding, for hepatoma cell cotransfection assays with expression vectors that produced different truncated HNF-3 beta proteins. A position-independent activation domain which contained conserved regions II and III was identified at the carboxyl terminus of the HNF-3 beta protein (amino acids 361 to 458). Moreover, site-directed mutations that altered the sequences within regions II and III demonstrated their importance to transactivation. The region II-III domain does not possess amino acid sequences in common with other transcription factors and may define a novel activation motif. HNF-3 beta amino-terminal sequences defined by conserved region IV also contributed to transactivation, but region IV activity required the participation of the region II-III domain. Region IV is abundant in serine amino acids and contains two putative casein kinase I phosphorylation sites, a feature similar to protein motifs described for the transcription factors Pit-1/GHF-1 and HNF-1.
Collapse
|
253
|
Schwartzbauer G, Schlesinger K, Evans T. Interaction of the erythroid transcription factor cGATA-1 with a critical auto-regulatory element. Nucleic Acids Res 1992; 20:4429-36. [PMID: 1408744 PMCID: PMC334168 DOI: 10.1093/nar/20.17.4429] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have performed a mutational analysis of the promoter for the chicken erythroid-specific GATA-1 transcription factor, and have investigated in detail the interaction of the factor with an upstream auto-regulatory element (ARE). We find that a single proximal GATA binding site of the ARE is required for promoter activity in primary erythroid cells; however, this minimal promoter is inappropriately active in fibroblasts. At least two molecules of GATA-1 can interact with the ARE, and sequences outside of the consensus site appear critical for the transcriptional activity of the bound protein. Finally, we provide evidence for complex protein/DNA interactions at the ARE, including the ability of GATA-1 to bend DNA.
Collapse
Affiliation(s)
- G Schwartzbauer
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | | | | |
Collapse
|
254
|
Pani L, Overdier DG, Porcella A, Qian X, Lai E, Costa RH. Hepatocyte nuclear factor 3 beta contains two transcriptional activation domains, one of which is novel and conserved with the Drosophila fork head protein. Mol Cell Biol 1992; 12:3723-32. [PMID: 1324404 PMCID: PMC360231 DOI: 10.1128/mcb.12.9.3723-3732.1992] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hepatocyte nuclear factor 3 (HNF-3) gene family is composed of three proteins (alpha, beta, and gamma) that are transcription factors involved in the coordinate expression of several liver genes. All three proteins share strong homology in their DNA binding domains (region I) and are able to recognize the same DNA sequence. They also possess two similar stretches of amino acids at the carboxyl terminus (regions II and III) and a fourth segment of homology at the amino terminus (region IV). Furthermore, the HNF-3 proteins demonstrate homology with the Drosophila homeotic gene fork head in regions I, II, and III, suggesting that HNF-3 may be its mammalian homolog. In order to define HNF-3 beta protein domains involved in transcriptional activation, we have used a reporter gene, whose transcription is dependent on HNF-3 binding, for hepatoma cell cotransfection assays with expression vectors that produced different truncated HNF-3 beta proteins. A position-independent activation domain which contained conserved regions II and III was identified at the carboxyl terminus of the HNF-3 beta protein (amino acids 361 to 458). Moreover, site-directed mutations that altered the sequences within regions II and III demonstrated their importance to transactivation. The region II-III domain does not possess amino acid sequences in common with other transcription factors and may define a novel activation motif. HNF-3 beta amino-terminal sequences defined by conserved region IV also contributed to transactivation, but region IV activity required the participation of the region II-III domain. Region IV is abundant in serine amino acids and contains two putative casein kinase I phosphorylation sites, a feature similar to protein motifs described for the transcription factors Pit-1/GHF-1 and HNF-1.
Collapse
Affiliation(s)
- L Pani
- Department of Biochemistry, University of Illinois College of Medicine, Chicago 60612
| | | | | | | | | | | |
Collapse
|
255
|
Cole TJ, Copeland NG, Gilbert DJ, Jenkins NA, Schütz G, Ruppert S. The mouse CREB (cAMP responsive element binding protein) gene: structure, promoter analysis, and chromosomal localization. Genomics 1992; 13:974-82. [PMID: 1387109 DOI: 10.1016/0888-7543(92)90010-p] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this paper we report the isolation and characterization of the mouse CREB gene. It is composed of 11 exons and 10 introns and spans a region of 70 kb. BR-A and BR-B, the two alpha-helical regions of the proposed basic DNA binding domain of CREB, are encoded separately on exons 10 and 11. The mouse CREB gene is expressed from a promoter that is situated in a CpG island. The promoter contains no TATA or CCAAT box homologies but has a number of putative binding sites for the acidic transcriptional activator Sp1 and a 9/11 match with the initiator region. Transcriptional start site mapping identified five major start sites spread over at least 41 nucleotides. Northern blot analysis indicated that expression of the CREB gene is almost ubiquitous with expression at differing levels of multiple transcripts. Testis expressed a predominant RNA species of approximately 1.6 kb. The CREB gene was found to be single copy in the mouse and well conserved through evolution. Finally Creb-1, the CREB locus, was mapped to the proximal region of mouse chromosome 1.
Collapse
Affiliation(s)
- T J Cole
- Institute of Cell and Tumor Biology, German Cancer Research Center, Heidelberg
| | | | | | | | | | | |
Collapse
|
256
|
Sposi NM, Zon LI, Carè A, Valtieri M, Testa U, Gabbianelli M, Mariani G, Bottero L, Mather C, Orkin SH. Cell cycle-dependent initiation and lineage-dependent abrogation of GATA-1 expression in pure differentiating hematopoietic progenitors. Proc Natl Acad Sci U S A 1992; 89:6353-7. [PMID: 1631130 PMCID: PMC49499 DOI: 10.1073/pnas.89.14.6353] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The programmed activation/repression of transcription factors in early hematopoietic differentiation has not yet been explored. The DNA-binding protein GATA-1 is required for normal erythroid development and regulates erythroid-expressed genes in maturing erythroblasts. We analyzed GATA-1 expression in early human adult hematopoiesis by using an in vitro system in which "pure" early hematopoietic progenitors are induced to gradual and synchronized differentiation selectively along the erythroid or granulocyte-macrophage pathway by differential treatment with hematopoietic growth factors. The GATA-1 gene, though virtually silent in quiescent progenitors, is activated after entrance into the cell cycle upon stimulation with hematopoietic growth factors. Subsequently, increasing expression along the erythroid pathway contrasts with an abrupt downregulation in the granulocyte-macrophage lineage. These results suggest a microenvironment-directed, two-step model for GATA-1 expression in differentiating hematopoietic progenitors that involves (i) cycle-dependent initiation and (ii) lineage-dependent maintenance or suppression. Hypothetically, on/off switches of lineage-restricted transactivators may underlie the binary fate decisions of hematopoietic progenitors.
Collapse
Affiliation(s)
- N M Sposi
- Department of Hematology-Oncology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Krappa R, Behn-Krappa A, Jahnel F, Doerfler W, Knebel-Mörsdorf D. Differential factor binding at the promoter of early baculovirus gene PE38 during viral infection: GATA motif is recognized by an insect protein. J Virol 1992; 66:3494-503. [PMID: 1583720 PMCID: PMC241130 DOI: 10.1128/jvi.66.6.3494-3503.1992] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Regulatory elements interacting with DNA-binding proteins have been investigated in the promoter sequence of the early PE38 gene in the Autographa californica nuclear polyhedrosis virus (AcNPV). A GATA motif located 50 nucleotides upstream of the PE38 transcriptional start site is recognized differentially in the course of infection. As demonstrated by footprint and gel mobility shift assays, the GATA sequences TTATCT are protected by nuclear extracts from uninfected Spodoptera frugiperda cells and from S. frugiperda cells early postinfection (p.i.) but not by S. frugiperda cell extracts isolated 40 h p.i. We have compared the binding capacity of the insect GATA-like protein with that of the vertebrate GATA-1 factor identified as erythroid-specific factor. Our results indicate that a factor present in mouse erythroleukemia cells, presumably GATA-1, can bind to the insect GATA motif and vice versa. Evidence from transient expression studies suggests that the mutated GATA sequences do not influence PE38 promoter activity in cell culture.
Collapse
Affiliation(s)
- R Krappa
- Institute of Genetics, University of Cologne, Germany
| | | | | | | | | |
Collapse
|
258
|
Aurigemma RE, Blair DG, Ruscetti SK. Transactivation of erythroid transcription factor GATA-1 by a myb-ets-containing retrovirus. J Virol 1992; 66:3056-61. [PMID: 1560536 PMCID: PMC241066 DOI: 10.1128/jvi.66.5.3056-3061.1992] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ME26 virus is a recombinant mouse retrovirus construct homologous to the avian E26 virus. Both encode a 135-kDa gag-myb-ets fusion protein which is localized in the nucleus. We have recently shown that ME26 virus can induce erythropoietin (Epo) responsiveness in hematopoietic cells. Mice infected with ME26 virus develop a hyperplasia of Epo-dependent hematopoietic precursor cells from which permanent cell lines can be established. In vitro, ME26 virus specifically induces Epo responsiveness in the interleukin-3-dependent myeloid cell line FDC-P2 by enhancing expression of the Epo receptor (EpoR). In the present study we demonstrate that ME26 virus infection of FDC-P2 cells also results in enhanced expression of beta-globin and the erythroid-specific transcription factor GATA-1, a protein which can transactivate both the EpoR promoter and globin genes. In addition, these cells exhibit a down-regulation of c-myb expression similar to that seen in differentiating erythroid cells. To determine the molecular basis for activation of erythroid genes in ME26 virus-infected cells, we carried out transient expression assays with DNA constructs of either the EpoR promoter of the GATA-1 promoter linked to reporter genes. Our results indicate that while ME26 virus did not directly enhance expression from the EpoR promoter, both it and its avian parent, E26, transactivated the GATA-1 promoter. Furthermore, ME26 virus cooperates with the GATA-1 protein to enhance expression of the EpoR gene. We propose that the mechanism by which ME26 virus induces erythroleukemia involves transactivation of the GATA-1 gene, thus positively regulating the expression of the EpoR and leading to the proliferation of a unique population of Epo-responsive cells. By specifically inducing Epo responsiveness in hematopoietic cells via transactivation of a transcription factor, ME26 virus utilizes a novel mechanism for retrovirus pathogenesis.
Collapse
Affiliation(s)
- R E Aurigemma
- Laboratory of Molecular Oncology, National Cancer Institute, Frederick, Maryland 21702-1201
| | | | | |
Collapse
|
259
|
Simon MC, Pevny L, Wiles MV, Keller G, Costantini F, Orkin SH. Rescue of erythroid development in gene targeted GATA-1- mouse embryonic stem cells. Nat Genet 1992; 1:92-8. [PMID: 1302015 DOI: 10.1038/ng0592-92] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Development of definitive (fetal liver-derived) red cells is blocked by a targeted mutation in the gene encoding the transcription factor GATA-1. We used in vitro differentiation of GATA-1- mouse embryonic stem (ES) cells to reveal a requirement for GATA-1 during primitive (yolk sac-derived) erythropoiesis and to establish a rescue assay. We show that the block to development includes primitive, as well as definitive, erythroid cells and is complete at the level of globin RNA expression; that the introduction of a normal GATA-1 gene restores developmental potential both in vivo and in vitro; and that efficient rescue is dependent on a putative autoregulatory GATA-motif in the distal promoter. Use of in vitro differentiated ES cells bridges a gap between conventional approaches to gene function in cell lines and analysis of loss of function mutations in the whole animal.
Collapse
Affiliation(s)
- M C Simon
- Division of Hematology-Oncology, Children's Hospital, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|
260
|
Affiliation(s)
- L I Zon
- Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA
| | | |
Collapse
|
261
|
Coornaert D, Vissers S, André B, Grenson M. The UGA43 negative regulatory gene of Saccharomyces cerevisiae contains both a GATA-1 type zinc finger and a putative leucine zipper. Curr Genet 1992; 21:301-7. [PMID: 1525858 DOI: 10.1007/bf00351687] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The UGA43 gene of Saccharomyces cerevisiae is required for repression of inducible genes involved in the utilization of 4-aminobutyric acid (GABA) or urea as nitrogen sources. The UGA43 gene has been cloned by complementation of a uga43 mutation. The N-terminal region of the UGA43 protein is very similar to the DNA-binding zinc-finger region typical of the GATA regulatory factor family in vertebrates. UGA43 is the first reported instance of a GATA protein with a negative regulatory function. The C-terminal region of the predicted UGA43 protein contains a putative leucine zipper. Sequencing of three uga43 mutant alleles suggests that the GATA and putative leucine-zipper regions are both required for the repressive activity of UGA43. UGA43 appears to be a highly regulated gene. On "poor" nitrogen sources, UGA43 transcripts are measured at high levels whereas they are nearly undetectable in conditions of nitrogen catabolite repression. The levels measured on "poor" nitrogen sources are further increased in uga43 mutant cells, suggesting that UGA43 exerts negative autoregulation.
Collapse
Affiliation(s)
- D Coornaert
- Laboratoire de Physiologie Cellulaire et de Génétique des Levures, Faculté des Sciences, Université Libre de Bruxelles, Belgium
| | | | | | | |
Collapse
|
262
|
Hromas R, Zon L, Friedman AD. Hematopoietic transcription regulators and the origins of leukemia. Crit Rev Oncol Hematol 1992; 12:167-90. [PMID: 1590941 DOI: 10.1016/1040-8428(92)90088-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- R Hromas
- Walter Oncology Center, Indiana University Medical Center, Indianapolis 46202
| | | | | |
Collapse
|
263
|
The restricted promoter activity of the liver transcription factor hepatocyte nuclear factor 3 beta involves a cell-specific factor and positive autoactivation. Mol Cell Biol 1992. [PMID: 1732730 DOI: 10.1128/mcb.12.2.552] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor hepatocyte nuclear factor 3 (HNF-3) is involved in the coordinate expression of several liver genes. HNF-3 DNA binding activity is composed of three different liver proteins which recognize the same DNA site. The HNF-3 proteins (designated alpha, beta, and gamma) possess homology in the DNA binding domain and in several additional regions. To understand the cell-type-specific expression of HNF-3 beta, we have defined the regulatory sequences that elicit hepatoma-specific expression. Promoter activity requires -134 bp of HNF-3 beta proximal sequences and binds four nuclear proteins, including two ubiquitous factors. One of these promoter sites interacts with a novel cell-specific factor, LF-H3 beta, whose binding activity correlates with the HNF-3 beta tissue expression pattern. Furthermore, there is a binding site for the HNF-3 protein within its own promoter, suggesting that an autoactivation mechanism is involved in the establishment of HNF-3 beta expression. We propose that both the LF-H3 beta and HNF-3 sites play an important role in the cell-type-specific expression of the HNF-3 beta transcription factor.
Collapse
|
264
|
Pani L, Quian XB, Clevidence D, Costa RH. The restricted promoter activity of the liver transcription factor hepatocyte nuclear factor 3 beta involves a cell-specific factor and positive autoactivation. Mol Cell Biol 1992; 12:552-62. [PMID: 1732730 PMCID: PMC364229 DOI: 10.1128/mcb.12.2.552-562.1992] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The transcription factor hepatocyte nuclear factor 3 (HNF-3) is involved in the coordinate expression of several liver genes. HNF-3 DNA binding activity is composed of three different liver proteins which recognize the same DNA site. The HNF-3 proteins (designated alpha, beta, and gamma) possess homology in the DNA binding domain and in several additional regions. To understand the cell-type-specific expression of HNF-3 beta, we have defined the regulatory sequences that elicit hepatoma-specific expression. Promoter activity requires -134 bp of HNF-3 beta proximal sequences and binds four nuclear proteins, including two ubiquitous factors. One of these promoter sites interacts with a novel cell-specific factor, LF-H3 beta, whose binding activity correlates with the HNF-3 beta tissue expression pattern. Furthermore, there is a binding site for the HNF-3 protein within its own promoter, suggesting that an autoactivation mechanism is involved in the establishment of HNF-3 beta expression. We propose that both the LF-H3 beta and HNF-3 sites play an important role in the cell-type-specific expression of the HNF-3 beta transcription factor.
Collapse
Affiliation(s)
- L Pani
- Department of Biochemistry, University of Illinois College of Medicine, Chicago 60612
| | | | | | | |
Collapse
|
265
|
Kuo CJ, Conley PB, Chen L, Sladek FM, Darnell JE, Crabtree GR. A transcriptional hierarchy involved in mammalian cell-type specification. Nature 1992; 355:457-61. [PMID: 1734282 DOI: 10.1038/355457a0] [Citation(s) in RCA: 343] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although transcriptional hierarchies have been extensively studied in invertebrates, their involvement in mammalian cell-type specification is poorly understood. Here we report a hepatocyte transcriptional cascade suggested by the expression patterns of hepatic transcription factors in dedifferentiated hepatomas and hepatocyte: fibroblast hybrids in which the liver phenotype was extinguished. These results indicated that the homeoprotein hepatocyte nuclear factor-1 alpha (HNF-1 alpha), and HNF-4, a member of the steroid hormone receptor superfamily, were regulated coordinately or in a hierarchy by a higher-order locus, independently of other hepatic transactivators. HNF-4 was implicated as an essential positive regulator of HNF-1 alpha, as deletion of an HNF-4 binding site in the HNF-1 alpha promoter abolished promoter activity, and HNF-4 potently transactivated the HNF-1 alpha promoter in cotransfection assays. Moreover, genetic complementation of dedifferentiated hepatomas with HNF-4 complementary DNA rescued expression of endogenous HNF-1 alpha messenger RNA and DNA-binding activity. Our studies therefore define an HNF-4----HNF-1 alpha (4----1 alpha) transcriptional hierarchy operative in differentiated hepatocytes but selectively inhibited by an extinguishing locus and somatic mutations which antagonize the liver phenotype.
Collapse
Affiliation(s)
- C J Kuo
- Howard Hughes Medical Institute, Stanford University School of Medicine, California 94305-5425
| | | | | | | | | | | |
Collapse
|
266
|
Developmental Regulation of Human Globin Genes: a Model for Cell Differentiation in the Hematopoietic System. Development 1992. [DOI: 10.1007/978-3-642-77043-2_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
267
|
Zon LI, Mather C, Burgess S, Bolce ME, Harland RM, Orkin SH. Expression of GATA-binding proteins during embryonic development in Xenopus laevis. Proc Natl Acad Sci U S A 1991; 88:10642-6. [PMID: 1961730 PMCID: PMC52986 DOI: 10.1073/pnas.88.23.10642] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Proteins that recognize the core sequence GATA are important regulators of hematopoietic-specific gene transcription. We have characterized cDNAs encoding the Xenopus laevis homologues of three related transcription factors, designated GATA-1, -2, and -3. Comparative sequence analysis reveals strong conservation of the zinc-finger DNA-binding domain among all vertebrate GATA-binding proteins. GATA-2 and GATA-3 polypeptides are homologous throughout their entire sequences, whereas GATA-1 sequence is conserved only in the region responsible for DNA binding. In Xenopus, RNAs encoding GATA-binding proteins are expressed in both larval and adult erythroid cells. GATA-1, -2, and -3 RNAs are first detectable in early gastrula (Nieuwkoop developmental stage 11). This is earlier than the appearance of the early larval alpha T1 globin RNA (stage 15), beta T1 globin RNA (stage 26), or blood island formation (stage 30). The expression of GATA-1, -2, and -3 in early development may signal an early commitment of mesoderm to form hematopoietic tissue.
Collapse
Affiliation(s)
- L I Zon
- Division of Hematology-Oncology, Children's Hospital, Boston, MA
| | | | | | | | | | | |
Collapse
|
268
|
Zon LI, Youssoufian H, Mather C, Lodish HF, Orkin SH. Activation of the erythropoietin receptor promoter by transcription factor GATA-1. Proc Natl Acad Sci U S A 1991; 88:10638-41. [PMID: 1660143 PMCID: PMC52985 DOI: 10.1073/pnas.88.23.10638] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Erythropoietin, a glycoprotein produced by the kidneys in response to anemia and hypoxia, is a major growth factor for cells of the erythroid lineage. Erythropoietin interacts with high-affinity cell surface receptors (EpoR) present on developing progenitors and is required for their survival. Previously we characterized the gene for EpoR and demonstrated that its promoter acts in a cell-specific manner. Here we show that the hematopoietic-specific transcription factor GATA-1 is necessary, and indeed is sufficient as the sole cell-restricted regulator, for activation of the EpoR promoter in fibroblast transfection assays. Hence, GATA-1, which participates in transcriptional control of the majority of erythroid-expressed genes, also acts on the promoter of an essential lineage-restricted receptor (EpoR). This central contribution of GATA-1 to EpoR promoter function provides a mechanism whereby a cell-restricted regulator may ensure the viability and subsequent maturation of progenitor cells during hematopoietic differentiation.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Blotting, Northern
- Cell Line
- Cell Nucleus/physiology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Erythroid-Specific DNA-Binding Factors
- Erythropoietin/metabolism
- GATA1 Transcription Factor
- Gene Expression
- Leukemia, Erythroblastic, Acute
- Mice
- Promoter Regions, Genetic
- RNA, Neoplasm/genetics
- RNA, Neoplasm/isolation & purification
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Erythropoietin
- Restriction Mapping
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- Zinc Fingers/genetics
Collapse
Affiliation(s)
- L I Zon
- Division of Hematology-Oncology, Children's Hospital, Boston, MA
| | | | | | | | | |
Collapse
|
269
|
GATA-binding transcription factors in mast cells regulate the promoter of the mast cell carboxypeptidase A gene. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54446-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
270
|
Ikuta T, Kan YW. In vivo protein-DNA interactions at the beta-globin gene locus. Proc Natl Acad Sci U S A 1991; 88:10188-92. [PMID: 1946439 PMCID: PMC52893 DOI: 10.1073/pnas.88.22.10188] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have investigated in vivo protein-DNA interactions in the beta-globin gene locus by dimethyl sulfate (DMS) footprinting in K562 cells, which express epsilon- and gamma-globin but not beta-globin. In the locus control region, hypersensitive site 2 (HS-2) exhibited footprints in several putative protein binding motifs. HS-3 was not footprinted. The beta promoter was also not footprinted, while extensive footprints were observed in the promoter of the active gamma-globin gene. No footprints were seen in the A gamma and beta 3' enhancers. With several motifs, additional protein interactions and alterations in binding patterns occurred with hemin induction. In HeLa cells, some footprints were observed in some of the motifs in HS-2, compatible with the finding that HS-2 has some enhancer function in HeLa cells, albeit much weaker than its activity in K562 cells. No footprint was seen in B lymphocytes. In vivo footprinting is a useful method for studying relevant protein-DNA interactions in erythroid cells.
Collapse
Affiliation(s)
- T Ikuta
- Howard Hughes Medical Institute Laboratory, San Francisco, CA
| | | |
Collapse
|
271
|
Nicolis S, Bertini C, Ronchi A, Crotta S, Lanfranco L, Moroni E, Giglioni B, Ottolenghi S. An erythroid specific enhancer upstream to the gene encoding the cell-type specific transcription factor GATA-1. Nucleic Acids Res 1991; 19:5285-91. [PMID: 1656391 PMCID: PMC328889 DOI: 10.1093/nar/19.19.5285] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The transcription factor GATA-1 is expressed in a subset of hemopoietic cells, where it mediates the cell-type specific expression of several genes. We have cloned the mouse and human GATA-1 genes. A region upstream to the first exon, and highly conserved between mouse and man, acts as an erythroid specific enhancer in transient assays, if linked to the GATA-1 or to the SV40 promoter. The activity of the enhancer is almost completely dependent on the integrity of a dimeric GATA-1 binding site.
Collapse
Affiliation(s)
- S Nicolis
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università di Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
272
|
elt-1, an embryonically expressed Caenorhabditis elegans gene homologous to the GATA transcription factor family. Mol Cell Biol 1991. [PMID: 1875944 DOI: 10.1128/mcb.11.9.4651] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The short, asymmetrical DNA sequence to which the vertebrate GATA family of transcription factors binds is present in some Caenorhabditis elegans gene regulatory regions: it is required for activation of the vitellogenin genes and is also found just 5' of the TATA boxes of tra-2 and the msp genes. In vertebrates GATA-1 is specific to erythroid lineages, whereas GATA-2 and GATA-3 are present in multiple tissues. In an effort to identify the trans-acting factors that may recognize this sequence element in C. elegans, we used a degenerate oligonucleotide to clone a C. elegans homolog to this gene. We call this gene elt-1 (erythrocytelike transcription factor). It is single copy and specifies a 1.75-kb mRNA that is present predominantly, if not exclusively, in embryos. The region of elt-1 encoding two zinc fingers is remarkably similar to the DNA-binding domain of the vertebrate GATA-binding proteins. However, outside of the DNA-binding domains the amino acid sequences are quite divergent. Nevertheless, introns are located at identical or nearly identical positions in elt-1 and the mouse GATA-1 gene. In addition, elt-1 mRNA is trans-spliced to the 22-base untranslated leader, SL1. The DNA upstream of the elt-1 TATA box contains eight copies of the GATA recognition sequence within the first 300 bp, suggesting that elt-1 may be autogenously regulated. Our results suggest that the specialized role of GATA-1 in erythroid gene expression was derived after separation of the nematodes and the line that led to the vertebrates, since C. elegans lacks an erythroid lineage.
Collapse
|
273
|
Spieth J, Shim YH, Lea K, Conrad R, Blumenthal T. elt-1, an embryonically expressed Caenorhabditis elegans gene homologous to the GATA transcription factor family. Mol Cell Biol 1991; 11:4651-9. [PMID: 1875944 PMCID: PMC361353 DOI: 10.1128/mcb.11.9.4651-4659.1991] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The short, asymmetrical DNA sequence to which the vertebrate GATA family of transcription factors binds is present in some Caenorhabditis elegans gene regulatory regions: it is required for activation of the vitellogenin genes and is also found just 5' of the TATA boxes of tra-2 and the msp genes. In vertebrates GATA-1 is specific to erythroid lineages, whereas GATA-2 and GATA-3 are present in multiple tissues. In an effort to identify the trans-acting factors that may recognize this sequence element in C. elegans, we used a degenerate oligonucleotide to clone a C. elegans homolog to this gene. We call this gene elt-1 (erythrocytelike transcription factor). It is single copy and specifies a 1.75-kb mRNA that is present predominantly, if not exclusively, in embryos. The region of elt-1 encoding two zinc fingers is remarkably similar to the DNA-binding domain of the vertebrate GATA-binding proteins. However, outside of the DNA-binding domains the amino acid sequences are quite divergent. Nevertheless, introns are located at identical or nearly identical positions in elt-1 and the mouse GATA-1 gene. In addition, elt-1 mRNA is trans-spliced to the 22-base untranslated leader, SL1. The DNA upstream of the elt-1 TATA box contains eight copies of the GATA recognition sequence within the first 300 bp, suggesting that elt-1 may be autogenously regulated. Our results suggest that the specialized role of GATA-1 in erythroid gene expression was derived after separation of the nematodes and the line that led to the vertebrates, since C. elegans lacks an erythroid lineage.
Collapse
Affiliation(s)
- J Spieth
- Program in Molecular, Cellular and Developmental Biology, Indiana University, Bloomington 47405
| | | | | | | | | |
Collapse
|