251
|
Chen M, Maodzeka A, Zhou L, Ali E, Wang Z, Jiang L. Removal of DELLA repression promotes leaf senescence in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 219-220:26-34. [PMID: 24576761 DOI: 10.1016/j.plantsci.2013.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/19/2013] [Accepted: 11/24/2013] [Indexed: 05/23/2023]
Abstract
Leaf senescence is an integrated response of leaf cells to developmental age and various internal and environmental signals. However, the role of gibberellins (GA) in leaf senescence is not clear. In the current study, we investigated the effect of DELLA on leaf senescence. Compared with the wild type (WT), leaf senescence occurred earlier in the mutant ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 (abbreviated as Q-DELLA/ga1-3) whose DELLA repression was removed, whereas leaf senescence was retarded in the mutant ga1-3 whose GA biosynthesis was blocked and whose DELLA proteins accumulated abnormally. During leaf senescence, SAG12 and SAG29 were upregulated in Q-DELLA/ga1-3 and downregulated in ga1-3 plants. The Q-DELLA/ga1-3 senescent leaves contained more sugar but less chlorophyll and fatty acids (FAs) than those of ga1-3 and WT. Both absolute and relative contents of C18:3 in Q-DELLA/ga1-3 senescent leaves were lower compared with those of the WT and ga1-3 leaves. The genes regulating FA β-oxidation in Q-DELLA/ga1-3, such as KAT2, LACS6, LACS7, ACX1, ACX2 and MAP2, were significantly upregulated. The removal of DELLA repression highly upregulated certain genes on various hormone pathways, suggesting that GA signaling acts upstream of the jasmonic acid, salicylic acid, and ethylene pathways in regulating leaf senescence.
Collapse
Affiliation(s)
- Mingxun Chen
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Antony Maodzeka
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Longhua Zhou
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Essa Ali
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Zhong Wang
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Lixi Jiang
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China.
| |
Collapse
|
252
|
Ma C, Xin M, Feldmann KA, Wang X. Machine learning-based differential network analysis: a study of stress-responsive transcriptomes in Arabidopsis. THE PLANT CELL 2014; 26:520-37. [PMID: 24520154 PMCID: PMC3967023 DOI: 10.1105/tpc.113.121913] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 12/13/2013] [Accepted: 01/10/2014] [Indexed: 05/18/2023]
Abstract
Machine learning (ML) is an intelligent data mining technique that builds a prediction model based on the learning of prior knowledge to recognize patterns in large-scale data sets. We present an ML-based methodology for transcriptome analysis via comparison of gene coexpression networks, implemented as an R package called machine learning-based differential network analysis (mlDNA) and apply this method to reanalyze a set of abiotic stress expression data in Arabidopsis thaliana. The mlDNA first used a ML-based filtering process to remove nonexpressed, constitutively expressed, or non-stress-responsive "noninformative" genes prior to network construction, through learning the patterns of 32 expression characteristics of known stress-related genes. The retained "informative" genes were subsequently analyzed by ML-based network comparison to predict candidate stress-related genes showing expression and network differences between control and stress networks, based on 33 network topological characteristics. Comparative evaluation of the network-centric and gene-centric analytic methods showed that mlDNA substantially outperformed traditional statistical testing-based differential expression analysis at identifying stress-related genes, with markedly improved prediction accuracy. To experimentally validate the mlDNA predictions, we selected 89 candidates out of the 1784 predicted salt stress-related genes with available SALK T-DNA mutagenesis lines for phenotypic screening and identified two previously unreported genes, mutants of which showed salt-sensitive phenotypes.
Collapse
|
253
|
Feng Y, Zhang M, Guo Q, Wang G, Gong J, Xu Y, Wang W. Manipulation of monoubiquitin improves chilling tolerance in transgenic tobacco (Nicotiana tabacum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 75:138-44. [PMID: 24445300 DOI: 10.1016/j.plaphy.2013.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/07/2013] [Indexed: 05/06/2023]
Abstract
Ubiquitin (Ub) is a multifunctional protein that mainly functions to tag proteins for selective degradation by the 26S proteasome. We cloned an Ub gene TaUb2 from wheat (Triticum aestivum L.) previously. To study the function of TaUB2 in chilling stress, sense and antisense Ub transgenic tobacco plants (Nicotiana tabacum L.), as well as wild type (WT) and vector control β-glucuronidase (T-GUS) plants, were used. Under stress, leaf wilting in sense plants was significantly less than in controls, but more severe in antisense plants. Meanwhile, the net photosynthetic rate (Pn) and the maximal photochemical efficiency of PSII (Fv/Fm) in sense plants were greater than controls, but lower in antisense plants during chilling stress and recovery. Less wilting in sense plants resulted from improved water status, which may be related to the accumulation of proline and solute sugar. Furthermore, as indicated by electrolyte leakage, membrane damage under stress was less in sense plants and more severe in antisense plants than controls. Consistent with electrolyte leakage, the malondialdehyde (MDA) content was less in sense plants, but more in antisense plants compared to controls. Meanwhile, the less accumulation of reactive oxygen species (ROS) and the greater antioxidant enzyme activity in sense plants implied the improved antioxidant competence by the overexpression of monoubiquitin gene Ta-Ub2 from wheat. We suggest that overexpressing Ub is a useful strategy to promote chilling tolerance. The improvement of ROS scavenging may be an important mechanism underlying the role of Ub in promoting plants tolerant to chilling stress.
Collapse
Affiliation(s)
- Yanan Feng
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Meng Zhang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qifang Guo
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Guokun Wang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jiangfeng Gong
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Ying Xu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
254
|
Silva PO, Medina EF, Barros RS, Ribeiro DM. Germination of salt-stressed seeds as related to the ethylene biosynthesis ability in three Stylosanthes species. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:14-22. [PMID: 24120532 DOI: 10.1016/j.jplph.2013.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/01/2013] [Accepted: 09/03/2013] [Indexed: 05/06/2023]
Abstract
Stylosanthes, a genus of tropical forage legume, is known to exhibit good persistence in saline soils, yet mechanisms for regulation of seed germination under salt stress are poorly understood. This study was carried out to evaluate the mode of action of salt stress on seed germination of Stylosanthes. 1-Aminocyclopropane-1-carboxylic acid (ACC) increased ethylene biosynthesis and germination of NaCl-inhibited seeds in a dose-dependent manner. Contents of ACC and germination of Stylosanthes humilis seeds increased following transfer from NaCl solution to deionised water, but not after transfer to l-α-(2-aminoethoxyvinyl)-glycine (AVG) solution, an inhibitor of ethylene biosynthesis. Ethylene biosynthesis was much larger in NaCl-treated seeds of Stylosanthes guianensis than in seeds of S. humilis and Stylosanthes capitata, a fact which was reflected in higher germination rates. S. guianensis seedlings also displayed higher growth and survival rates than S. humilis and S. capitata under salt stress. Moreover, smaller ACC levels, as well as reduced ethylene biosynthesis of S. capitata seeds were accompanied by lower germination under salt stress. In addition, S. capitata seedlings treated with NaCl solutions exhibited relatively lower growth and survival rates in comparison with S. humilis and S. guianensis. Thus, different abilities to synthesize ethylene by S. guianensis, S. humilis and S. capitata seeds explain the differences in tolerance to salt stress of the three species.
Collapse
Affiliation(s)
- Priscila O Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
| | | | | | | |
Collapse
|
255
|
Kim HJ, Tang Y, Moon HS, Delhom CD, Fang DD. Functional analyses of cotton (Gossypium hirsutum L.) immature fiber (im) mutant infer that fiber cell wall development is associated with stress responses. BMC Genomics 2013; 14:889. [PMID: 24341782 PMCID: PMC3904472 DOI: 10.1186/1471-2164-14-889] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 12/07/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cotton fiber maturity is an important factor for determining the commercial value of cotton. How fiber cell wall development affects fiber maturity is not well understood. A comparison of fiber cross-sections showed that an immature fiber (im) mutant had lower fiber maturity than its near isogenic wild type, Texas marker-1 (TM-1). The availability of the im mutant and TM-1 provides a unique way to determine molecular mechanisms regulating cotton fiber maturity. RESULTS Transcriptome analysis showed that the differentially expressed genes (DEGs) in the im mutant fibers grown under normal stress conditions were similar to those in wild type cotton fibers grown under severe stress conditions. The majority of these DEGs in the im mutant were related to stress responses and cellular respiration. Stress is known to reduce the activity of a classical respiration pathway responsible for energy production and reactive oxygen species (ROS) accumulation. Both energy productions and ROS levels in the im mutant fibers are expected to be reduced if the im mutant is associated with stress responses. In accord with the prediction, the transcriptome profiles of the im mutant showed the same alteration of transcriptional regulation that happened in energy deprived plants in which expressions of genes associated with cell growth processes were reduced whereas expressions of genes associated with recycling and transporting processes were elevated. We confirmed that ROS production in developing fibers from the im mutant was lower than that from the wild type. The lower production of ROS in the im mutant fibers might result from the elevated levels of alternative respiration induced by stress. CONCLUSION The low degree of fiber cell wall thickness of the im mutant fibers is associated with deregulation of the genes involved in stress responses and cellular respiration. The reduction of ROS levels and up-regulation of the genes involved in alternative respirations suggest that energy deprivation may occur in the im mutant fibers.
Collapse
Affiliation(s)
- Hee Jin Kim
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, 1100 Robert E, Lee Blvd,, New Orleans, LA 70124, USA.
| | | | | | | | | |
Collapse
|
256
|
Chen LJ, Wuriyanghan H, Zhang YQ, Duan KX, Chen HW, Li QT, Lu X, He SJ, Ma B, Zhang WK, Lin Q, Chen SY, Zhang JS. An S-domain receptor-like kinase, OsSIK2, confers abiotic stress tolerance and delays dark-induced leaf senescence in rice. PLANT PHYSIOLOGY 2013; 163:1752-65. [PMID: 24143807 PMCID: PMC3850199 DOI: 10.1104/pp.113.224881] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 10/16/2013] [Indexed: 05/18/2023]
Abstract
Receptor-like kinases play important roles in plant development and defense responses; however, their functions in other processes remain unclear. Here, we report that OsSIK2, an S-domain receptor-like kinase from rice (Oryza sativa), is involved in abiotic stress and the senescence process. OsSIK2 is a plasma membrane-localized protein with kinase activity in the presence of Mn(2+). OsSIK2 is expressed mainly in rice leaf and sheath and can be induced by NaCl, drought, cold, dark, and abscisic acid treatment. Transgenic plants overexpressing OsSIK2 and mutant sik2 exhibit enhanced and reduced tolerance to salt and drought stress, respectively, compared with the controls. Interestingly, a truncated version of OsSIK2 without most of the extracellular region confers higher salt tolerance than the full-length OsSIK2, likely through the activation of different sets of downstream genes. Moreover, seedlings of OsSIK2-overexpressing transgenic plants exhibit early leaf development and a delayed dark-induced senescence phenotype, while mutant sik2 shows the opposite phenotype. The downstream PR-related genes specifically up-regulated by full-length OsSIK2 or the DREB-like genes solely enhanced by truncated OsSIK2 are all induced by salt, drought, and dark treatments. These results indicate that OsSIK2 may integrate stress signals into a developmental program for better adaptive growth under unfavorable conditions. Manipulation of OsSIK2 should facilitate the improvement of production in rice and other crops.
Collapse
|
257
|
Ma B, He SJ, Duan KX, Yin CC, Chen H, Yang C, Xiong Q, Song QX, Lu X, Chen HW, Zhang WK, Lu TG, Chen SY, Zhang JS. Identification of rice ethylene-response mutants and characterization of MHZ7/OsEIN2 in distinct ethylene response and yield trait regulation. MOLECULAR PLANT 2013; 6:1830-48. [PMID: 23718947 DOI: 10.1093/mp/sst087] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ethylene plays essential roles in adaptive growth of rice plants in water-saturating environment; however, ethylene signaling pathway in rice is largely unclear. In this study, we report identification and characterization of ethylene-response mutants based on the specific ethylene-response phenotypes of etiolated rice seedlings, including ethylene-inhibited root growth and ethylene-promoted coleoptile elongation, which is different from the ethylene triple-response phenotype in Arabidopsis. We establish an efficient system for screening and a set of rice mutants have been identified. Genetic analysis reveals that these mutants form eight complementation groups. All the mutants show insensitivity or reduced sensitivity to ethylene in root growth but exhibit differential responses in coleoptile growth. One mutant group mhz7 has insensitivity to ethylene in both root and coleoptile growth. We identified the corresponding gene by a map-based cloning method. MHZ7 encodes a membrane protein homologous to EIN2, a central component of ethylene signaling in Arabidopsis. Upon ethylene treatment, etiolated MHZ7-overexpressing seedlings exhibit enhanced coleoptile elongation, increased mesocotyl growth and extremely twisted short roots, featuring enhanced ethylene-response phenotypes in rice. Grain length was promoted in MHZ7-transgenic plants and 1000-grain weight was reduced in mhz7 mutants. Leaf senescent process was also affected by MHZ7 expression. Manipulation of ethylene signaling may improve adaptive growth and yield-related traits in rice.
Collapse
Affiliation(s)
- Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Abass M, Morris PC. The Hordeum vulgare signalling protein MAP kinase 4 is a regulator of biotic and abiotic stress responses. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1353-9. [PMID: 23702246 DOI: 10.1016/j.jplph.2013.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/22/2013] [Accepted: 04/22/2013] [Indexed: 05/08/2023]
Abstract
Mitogen activated protein kinase (MAP kinase) signal transduction pathways are important eukaryotic mechanisms for regulating cellular responses to stress. The objective of this work was to investigate the role of the barley MAP kinase HvMPK4 (a homologue of the Arabidopsis MAP kinase AtMPK1) in the plant response to biotic and abiotic stress. Transgenic barley plants bearing antisense or overexpression constructs for HvMPK4 were produced, and RNA blot analysis showed that HvMPK4 gene expression was much reduced in the antisense lines and approximately double in the overexpression lines. Three independent lines of each construct were tested for their response to a fungal pathogen and to salt treatment. The antisense lines were more resistant to the hemibiotrophic fungal pathogen Magnaporthe grisea, and showed enhanced levels of salicylic acid (SA) and of hydrogen peroxide following infection; HvMPK4 is thus a negative regulator of SA production post infection. The overexpression lines had constitutively higher levels of jasmonic acid and enhanced levels of ethylene following infection but were not more resistant to the pathogen. However the overexpression lines showed greater tolerance to abiotic stress, as following 2 weeks of salt treatment these lines showed less reduction in fresh and dry weight, accumulated less salt in the leaves and contained enhanced levels of the osmoprotectant amino acid, proline.
Collapse
Affiliation(s)
- Mohammed Abass
- Heriot-Watt University, School of Life Sciences, Riccarton, Edinburgh EH14 4AS, UK
| | | |
Collapse
|
259
|
Jiang C, Belfield EJ, Cao Y, Smith JAC, Harberd NP. An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. THE PLANT CELL 2013; 25:3535-52. [PMID: 24064768 PMCID: PMC3809548 DOI: 10.1105/tpc.113.115659] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 05/18/2023]
Abstract
High soil Na concentrations damage plants by increasing cellular Na accumulation and K loss. Excess soil Na stimulates ethylene-induced soil-salinity tolerance, the mechanism of which we here define via characterization of an Arabidopsis thaliana mutant displaying transpiration-dependent soil-salinity tolerance. This phenotype is conferred by a loss-of-function allele of ethylene overproducer1 (ETO1; mutant alleles of which cause increased production of ethylene). We show that lack of ETO1 function confers soil-salinity tolerance through improved shoot Na/K homeostasis, effected via the ethylene resistant1-constitutive triple response1 ethylene signaling pathway. Under transpiring conditions, lack of ETO1 function reduces root Na influx and both stelar and xylem sap Na concentrations, thereby restricting root-to-shoot delivery of Na. These effects are associated with increased accumulation of respiratory burst oxidase homolog F (RBOHF)-dependent reactive oxygen species in the root stele. Additionally, lack of ETO1 function leads to significant enhancement of tissue K status by an RBOHF-independent mechanism associated with elevated high-affinity K(+) TRANSPORTER5 transcript levels. We conclude that ethylene promotes soil-salinity tolerance via improved Na/K homeostasis mediated by RBOHF-dependent regulation of Na accumulation and RBOHF-independent regulation of K accumulation.
Collapse
Affiliation(s)
- Caifu Jiang
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Eric J. Belfield
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Yi Cao
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - J. Andrew C. Smith
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Nicholas P. Harberd
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
260
|
Jibran R, A Hunter D, P Dijkwel P. Hormonal regulation of leaf senescence through integration of developmental and stress signals. PLANT MOLECULAR BIOLOGY 2013; 82:547-61. [PMID: 23504405 DOI: 10.1007/s11103-013-0043-2] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 03/07/2013] [Indexed: 05/18/2023]
Abstract
Leaf senescence is a genetically controlled dismantling programme that enables plants to efficiently remobilise nutrients to new growing sinks. It involves substantial metabolic reprogramming whose timing is affected by developmental and environmental signals. Plant hormones have long been known to affect the timing of leaf senescence, but they also affect plant development and stress responses. It has therefore been difficult to tease apart how the different hormones regulate the onset and progression of leaf senescence, i.e., whether they directly affect leaf senescence or affect it indirectly by altering the developmental programme or by altering plants' response to stress. Here we review research on hormonal regulation of leaf senescence and propose that hormones affect senescence through differential responses to developmental and environmental signals. We suggest that leaf senescence strictly depends on developmental changes, after which senescence can be induced, depending on the type of hormonal and environmental cues.
Collapse
Affiliation(s)
- Rubina Jibran
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
261
|
Wargent JJ, Pickup DA, Paul ND, Roberts MR. Reduction of photosynthetic sensitivity in response to abiotic stress in tomato is mediated by a new generation plant activator. BMC PLANT BIOLOGY 2013; 13:108. [PMID: 23898952 PMCID: PMC3733976 DOI: 10.1186/1471-2229-13-108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 07/18/2013] [Indexed: 05/09/2023]
Abstract
BACKGROUND Yield losses as a result of abiotic stress factors present a significant challenge for the future of global food production. While breeding technologies provide potential to combat negative stress-mediated outcomes over time, interventions which act to prime plant tolerance to stress, via the use of phytohormone-based elicitors for example, could act as a valuable tool for crop protection. However, the translation of fundamental biology into functioning solution is often constrained by knowledge-gaps. RESULTS Photosynthetic and transcriptomic responses were characterised in young tomato (Solanum lycopersicum L.) seedlings in response to pre-treatment with a new plant health activator technology, 'Alethea', followed by a subsequent 100 mM salinity stress. Alethea is a novel proprietary technology composed of three key constituent compounds; the hitherto unexplored compound potassium dihydrojasmonate, an analogue of jasmonic acid; sodium benzoate, a carboxylic acid precursor to salicylic acid, and the α-amino acid L-arginine. Salinity treatment led to a maximal 47% reduction in net photosynthetic rate 8 d following NaCl treatment, yet in Alethea pre-treated seedlings, sensitivity to salinity stress was markedly reduced during the experimental period. Microarray analysis of leaf transcriptional responses showed that while salinity stress and Alethea individually impacted on largely non-overlapping, distinct groups of genes, Alethea pre-treatment substantially modified the response to salinity. Alethea affected the expression of genes related to biotic stress, ethylene signalling, cell wall synthesis, redox signalling and photosynthetic processes. Since Alethea had clear effects on photosynthesis/chloroplastic function at the physiological and molecular levels, we also investigated the ability of Alethea to protect various crop species against methyl viologen, a potent generator of oxidative stress in chloroplasts. Alethea pre-treatment produced dramatic reductions in visible foliar necrosis caused by methyl viologen compared with non-primed controls. CONCLUSIONS 'Alethea' technology mediates positive recovery of abiotic stress-induced photosynthetic and foliar loss of performance, which is accompanied by altered transcriptional responses to stress.
Collapse
Affiliation(s)
- Jason J Wargent
- Institute of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Douglas A Pickup
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Nigel D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Michael R Roberts
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
262
|
Duan X, Zhang C, Ju X, Li Q, Chen S, Wang J, Liu Z. Effect of lignocellulosic composition and structure on the bioethanol production from different poplar lines. BIORESOURCE TECHNOLOGY 2013; 140:363-7. [PMID: 23708852 DOI: 10.1016/j.biortech.2013.04.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 05/16/2023]
Abstract
Branches from three transgenic poplar lines and their wild type line 107 were used to study the effect of lignocellulosic composition and structure on the production of glucose and ethanol. Experimental results showed that the transgenic line 18-1 had the high cellulose content and amorphous fibril structure. After poplar meals were pretreated with 10% NaOH and a mixture of hydrogen peroxide and acetic acid, their lateral order index decreased significantly. The highest glucose yield in enzymatic hydrolysis and ethanol yield from the substrate of 18-1 was much higher than that from feedstock of 107 by 192.7% and 108.7%, respectively. Scanning electron microscopy images confirmed that lignocellulose from the 18-1 could be destroyed by chemicals more easily than those from other lines. These results demonstrated that changing lignocellulose structure could be more effective on improving the digestibility and enzymatic hydrolysis of poplar biomass than increasing the cellulose content in biomass.
Collapse
Affiliation(s)
- Xiaojian Duan
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, PR China
| | | | | | | | | | | | | |
Collapse
|
263
|
Cheng MC, Liao PM, Kuo WW, Lin TP. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. PLANT PHYSIOLOGY 2013; 162:1566-82. [PMID: 23719892 PMCID: PMC3707555 DOI: 10.1104/pp.113.221911] [Citation(s) in RCA: 362] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 05/18/2023]
Abstract
ETHYLENE RESPONSE FACTOR1 (ERF1) is an upstream component in both jasmonate (JA) and ethylene (ET) signaling and is involved in pathogen resistance. Accumulating evidence suggests that ERF1 might be related to the salt stress response through ethylene signaling. However, the specific role of ERF1 in abiotic stress and the molecular mechanism underlying the signaling cross talk still need to be elucidated. Here, we report that ERF1 was highly induced by high salinity and drought stress in Arabidopsis (Arabidopsis thaliana). The salt stress induction required both JA and ET signaling but was inhibited by abscisic acid. ERF1-overexpressing lines (35S:ERF1) were more tolerant to drought and salt stress. They also displayed constitutively smaller stomatal aperture and less transpirational water loss. Surprisingly, 35S:ERF1 also showed enhanced heat tolerance and up-regulation of heat tolerance genes compared with the wild type. Several suites of genes activated by JA, drought, salt, and heat were found in microarray analysis of 35S:ERF1. Chromatin immunoprecipitation assays found that ERF1 up-regulates specific suites of genes in response to different abiotic stresses by stress-specific binding to GCC or DRE/CRT. In response to biotic stress, ERF1 bound to GCC boxes but not DRE elements; conversely, under abiotic stress, we observed specific binding of ERF1 to DRE elements. Furthermore, ERF1 bound preferentially to only one among several GCC box or DRE/CRT elements in the promoter region of its target genes. ERF1 plays a positive role in salt, drought, and heat stress tolerance by stress-specific gene regulation, which integrates JA, ET, and abscisic acid signals.
Collapse
|
264
|
Zhang H, Zhang J, Quan R, Pan X, Wan L, Huang R. EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. PLANTA 2013; 237:1443-51. [PMID: 23420309 DOI: 10.1007/s00425-013-1852-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/23/2013] [Indexed: 05/26/2023]
Abstract
OsERF3 is a transcriptional repressor with an ethylene-responsive element-binding factor-associated amphiphilic repression (EAR) motif (F/LDLNxxP), which transcriptionally represses the ethylene emission and drought tolerance in rice. However, its molecular mechanism to explore repression function remains unknown. Here, we first revealed that the expression of OsERF3 was induced by drought, salt, ACC and ABA treatment. In addition, it showed a higher expression level in the root and sheath than that in the leaf. Then, we generated transgenic rice overexpressing full-length OsERF3 (OE) and its mutation of EAR motif with the A 680/C substitution (mEAR), respectively. The physiological analyses showed that mEAR lines showed better drought tolerance and more ethylene emission compared with those of OE lines and wild type plants. Consistent with our previous research, the expression of ethylene synthesis genes, including ACO2, ACS2, and ACS6 was down-regulated in OE lines. However, the repression of OsERF3 was eliminated in mEAR lines. Specifically, ACS2 was up-regulated in mEAR lines compared with that in OE lines and WT plants, suggesting that the Leu/Ala substitution within the EAR motif resulted in loss of repression of OsERF3. Thus, our data reveal that the EAR motif is required for OsERF3 to transcriptionally regulate the ethylene synthesis and drought tolerance in rice, providing new insight to the roles of ethylene-response factor proteins in regulating ethylene biosynthesis and stress response.
Collapse
Affiliation(s)
- Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | |
Collapse
|
265
|
Dubois M, Skirycz A, Claeys H, Maleux K, Dhondt S, De Bodt S, Vanden Bossche R, De Milde L, Yoshizumi T, Matsui M, Inzé D. Ethylene Response Factor6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:319-32. [PMID: 23553636 PMCID: PMC3641212 DOI: 10.1104/pp.113.216341] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/31/2013] [Indexed: 05/20/2023]
Abstract
Leaf growth is a complex developmental process that is continuously fine-tuned by the environment. Various abiotic stresses, including mild drought stress, have been shown to inhibit leaf growth in Arabidopsis (Arabidopsis thaliana), but the underlying mechanisms remain largely unknown. Here, we identify the redundant Arabidopsis transcription factors ETHYLENE RESPONSE FACTOR5 (ERF5) and ERF6 as master regulators that adapt leaf growth to environmental changes. ERF5 and ERF6 gene expression is induced very rapidly and specifically in actively growing leaves after sudden exposure to osmotic stress that mimics mild drought. Subsequently, enhanced ERF6 expression inhibits cell proliferation and leaf growth by a process involving gibberellin and DELLA signaling. Using an ERF6-inducible overexpression line, we demonstrate that the gibberellin-degrading enzyme GIBBERELLIN 2-OXIDASE6 is transcriptionally induced by ERF6 and that, consequently, DELLA proteins are stabilized. As a result, ERF6 gain-of-function lines are dwarfed and hypersensitive to osmotic stress, while the growth of erf5erf6 loss-of-function mutants is less affected by stress. Besides its role in plant growth under stress, ERF6 also activates the expression of a plethora of osmotic stress-responsive genes, including the well-known stress tolerance genes STZ, MYB51, and WRKY33. Interestingly, activation of the stress tolerance genes by ERF6 occurs independently from the ERF6-mediated growth inhibition. Together, these data fit into a leaf growth regulatory model in which ERF5 and ERF6 form a missing link between the previously observed stress-induced 1-aminocyclopropane-1-carboxylic acid accumulation and DELLA-mediated cell cycle exit and execute a dual role by regulating both stress tolerance and growth inhibition.
Collapse
|
266
|
Sun YG, Wang B, Jin SH, Qu XX, Li YJ, Hou BK. Ectopic expression of Arabidopsis glycosyltransferase UGT85A5 enhances salt stress tolerance in tobacco. PLoS One 2013; 8:e59924. [PMID: 23533660 PMCID: PMC3606239 DOI: 10.1371/journal.pone.0059924] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/19/2013] [Indexed: 01/07/2023] Open
Abstract
Abiotic stresses greatly influence plant growth and productivity. While glycosyltransferases are widely distributed in plant kingdom, their biological roles in response to abiotic stresses are largely unknown. In this study, a novel Arabidopsis glycosyltransferase gene UGT85A5 was identified as significantly induced by salt stress. Ectopic expression of UGT85A5 in tobacco enhanced the salt stress tolerance in the transgenic plants. There were higher seed germination rates, better plant growth and less chlorophyll loss in transgenic lines compared to wild type plants under salt stress. This enhanced tolerance of salt stress was correlated with increased accumulations of proline and soluble sugars, but with decreases in malondialdehyde accumulation and Na(+)/K(+) ratio in UGT85A5-expressing tobacco. Furthermore, during salt stress, expression of several carbohydrate metabolism-related genes including those for sucrose synthase, sucrose-phosphate synthase, hexose transporter and a group2 LEA protein were obviously upregulated in UGT85A5-expressing transgenic plants compared with wild type controls. Thus, these findings suggest a specific protective role of this glycosyltransferase against salt stress and provide a genetic engineering strategy to improve salt tolerance of crops.
Collapse
Affiliation(s)
- Yan-Guo Sun
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China; School of Life Science, Shandong University, Jinan, Shandong, P. R. China
| | - Bo Wang
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China; School of Life Science, Shandong University, Jinan, Shandong, P. R. China
| | - Shang-Hui Jin
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China; School of Life Science, Shandong University, Jinan, Shandong, P. R. China
| | - Xiao-Xia Qu
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China; School of Life Science, Shandong University, Jinan, Shandong, P. R. China
| | - Yan-Jie Li
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China; School of Life Science, Shandong University, Jinan, Shandong, P. R. China
| | - Bing-Kai Hou
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Education Ministry of China; School of Life Science, Shandong University, Jinan, Shandong, P. R. China
| |
Collapse
|
267
|
Hou H, Li J, Gao M, Singer SD, Wang H, Mao L, Fei Z, Wang X. Genomic organization, phylogenetic comparison and differential expression of the SBP-box family genes in grape. PLoS One 2013; 8:e59358. [PMID: 23527172 PMCID: PMC3601960 DOI: 10.1371/journal.pone.0059358] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/13/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The SBP-box gene family is specific to plants and encodes a class of zinc finger-containing transcription factors with a broad range of functions. Although SBP-box genes have been identified in numerous plants including green algae, moss, silver birch, snapdragon, Arabidopsis, rice and maize, there is little information concerning SBP-box genes, or the corresponding miR156/157, function in grapevine. METHODOLOGY/PRINCIPAL FINDINGS Eighteen SBP-box gene family members were identified in Vitis vinifera, twelve of which bore sequences that were complementary to miRNA156/157. Phylogenetic reconstruction demonstrated that plant SBP-domain proteins could be classified into seven subgroups, with the V. vinifera SBP-domain proteins being more closely related to SBP-domain proteins from dicotyledonous angiosperms than those from monocotyledonous angiosperms. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologs of several grape SBP genes were found in corresponding syntenic blocks of Arabidopsis. Expression analysis of the grape SBP-box genes in various organs and at different stages of fruit development in V. quinquangularis 'Shang-24' revealed distinct spatiotemporal patterns. While the majority of the grape SBP-box genes lacking a miR156/157 target site were expressed ubiquitously and constitutively, most genes bearing a miR156/157 target site exhibited distinct expression patterns, possibly due to the inhibitory role of the microRNA. Furthermore, microarray data mining and quantitative real-time RT-PCR analysis identified several grape SBP-box genes that are potentially involved in the defense against biotic and abiotic stresses. CONCLUSION The results presented here provide a further understanding of SBP-box gene function in plants, and yields additional insights into the mechanism of stress management in grape, which may have important implications for the future success of this crop.
Collapse
Affiliation(s)
- Hongmin Hou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Stacy D. Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Linyong Mao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, United States of America
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, United States of America
- USDA Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
268
|
Insight into differential responses of upland and paddy rice to drought stress by comparative expression profiling analysis. Int J Mol Sci 2013; 14:5214-38. [PMID: 23459234 PMCID: PMC3634487 DOI: 10.3390/ijms14035214] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 01/30/2013] [Accepted: 02/05/2013] [Indexed: 12/13/2022] Open
Abstract
In this study, the drought responses of two genotypes, IRAT109 and Zhenshan 97 (ZS97), representing upland and paddy rice, respectively, were systematically compared at the morphological, physiological and transcriptional levels. IRAT109 has better performance in traits related to drought avoidance, such as leaf rolling, root volumes, the ratio of leaf water loss and relative conductivity. At the transcriptional level, more genes were induced by drought in IRAT109 at the early drought stage, but more genes had dynamic expression patterns in ZS97 at different drought degrees. Under drought conditions, more genes related to reproductive development and establishment of localization were repressed in IRAT109, but more genes involved in degradation of cellular components were induced in ZS97. By checking the expression patterns of 36 drought-responsive genes (located in 14 quantitative trail loci [QTL] intervals) in ZS97, IRAT109 and near isogenic lines (NILs) of the QTL intervals, we found that more than half of these genes had their expression patterns or expression levels changed in the NILs when compared to that in ZS97 or IRAT109. Our results may provide valuable information for dissecting the genetic bases of traits related to drought resistance, as well as for narrowing the candidate genes for the traits.
Collapse
|
269
|
Li F, Han Y, Feng Y, Xing S, Zhao M, Chen Y, Wang W. Expression of wheat expansin driven by the RD29 promoter in tobacco confers water-stress tolerance without impacting growth and development. J Biotechnol 2013; 163:281-91. [PMID: 23183383 DOI: 10.1016/j.jbiotec.2012.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/13/2012] [Accepted: 11/16/2012] [Indexed: 12/13/2022]
Abstract
Expansins are the key regulators of cell wall extension during plant growth. Previously, we produced transgenic tobacco plants with increased tolerance to water stress by overexpressing the wheat expansin gene TaEXPB23 driven by the constitutive 35S cauliflower mosaic virus (CaMV) promoter. However, the growth and development of 35S::TaEXPB23 transgenic tobacco plants were altered under normal growth conditions, with a faster growth rate at the seedling stage, earlier flowering and maturation, and a shorter plant height compared to WT. In the current study, we determined that cellular characteristics and carbohydrate metabolism were altered in 35S::TaEXPB23 transgenic tobacco plants. We also generated transgenic Arabidopsis plants using the same vector. The transgenic Arabidopsis plants had the same phenotype as the transgenic tobacco plants, which may have resulted from the altered expression of several flowering-related genes. We then produced TaEXPB23 transgenic tobacco plants using the stress-inducible RD29A promoter. The use of this promoter reduced the negative effects of TaEXPB23 on plant growth and development. The RD29A::TaEXPB23 transgenic tobacco plants had greater tolerance to water stress than WT, as determined by examining physiological and biochemical parameters. Therefore, the use of stress-inducible promoters, such as RD29A, may minimize the negative effects of constitutive transgene expression and improve the water-stress tolerance of plants.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | | | | | | | | | | | | |
Collapse
|
270
|
Zhao Q, Zhang H, Wang T, Chen S, Dai S. Proteomics-based investigation of salt-responsive mechanisms in plant roots. J Proteomics 2013; 82:230-53. [PMID: 23385356 DOI: 10.1016/j.jprot.2013.01.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/10/2013] [Accepted: 01/25/2013] [Indexed: 12/29/2022]
Abstract
Salinity is one of the major abiotic stresses that limits agricultural productivity worldwide. Plant roots function as the primary site of salinity perception. Salt responses in roots are essential for maintaining root functionality, as well as for transmitting the salt signal to shoot for proper salt response and adaptation in the entire plant. Therefore, a thorough understanding of signaling and metabolic mechanisms of salt response in roots is critical for improving plant salt tolerance. Current proteomic studies have provided salt-responsive expression patterns of 905 proteins in 14 plant species. Through integrative analysis of salt-responsive proteins and previous physiological and molecular findings, this review summarizes current understanding of salt responses in roots and highlights proteomic findings on the molecular mechanisms in the fine-tuned salt-responsive networks. At the proteome level, the following processes become dominant in root salt response: (i) salt signal perception and transduction; (ii) detoxification of reactive oxygen species (ROS); (iii) salt uptake/exclusion and compartmentalization; (iv) protein translation and/or turnover dynamics; (v) cytoskeleton/cell wall dynamics; (vi) carbohydrate and energy metabolism; and (vii) other salt-responsive metabolisms. These processes work together to gain cellular homeostasis in roots and determine the overall phenotype of plant growth and development under salt stress.
Collapse
Affiliation(s)
- Qi Zhao
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin 150040, China
| | | | | | | | | |
Collapse
|
271
|
mRNA-seq analysis of the Gossypium arboreum transcriptome reveals tissue selective signaling in response to water stress during seedling stage. PLoS One 2013; 8:e54762. [PMID: 23382961 PMCID: PMC3557298 DOI: 10.1371/journal.pone.0054762] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/14/2012] [Indexed: 02/06/2023] Open
Abstract
The cotton diploid species, Gossypium arboreum, shows important properties of stress tolerance and good genetic stability. In this study, through mRNA-seq, we de novo assembled the unigenes of multiple samples with 3h H2O, NaCl, or PEG treatments in leaf, stem and root tissues and successfully obtained 123,579 transcripts of G. arboreum, 89,128 of which were with hits through BLAST against known cotton ESTs and draft genome of G. raimondii. About 36,961 transcripts (including 1,958 possible transcription factor members) were identified with differential expression under water stresses. Principal component analysis of differential expression levels in multiple samples suggested tissue selective signalling responding to water stresses. Venn diagram analysis showed the specificity and intersection of transcripts’ response to NaCl and PEG treatments in different tissues. Self-organized mapping and hierarchical cluster analysis of the data also revealed strong tissue selectivity of transcripts under salt and osmotic stresses. In addition, the enriched gene ontology (GO) terms for the selected tissue groups were differed, including some unique enriched GO terms such as photosynthesis and tetrapyrrole binding only in leaf tissues, while the stem-specific genes showed unique GO terms related to plant-type cell wall biogenesis, and root-specific genes showed unique GO terms such as monooxygenase activity. Furthermore, there were multiple hormone cross-talks in response to osmotic and salt stress. In summary, our multidimensional mRNA sequencing revealed tissue selective signalling and hormone crosstalk in response to salt and osmotic stresses in G. arboreum. To our knowledge, this is the first such report of spatial resolution of transcriptome analysis in G. arboreum. Our study will potentially advance understanding of possible transcriptional networks associated with water stress in cotton and other crop species.
Collapse
|
272
|
Iqbal N, Masood A, Khan MIR, Asgher M, Fatma M, Khan NA. Cross-talk between sulfur assimilation and ethylene signaling in plants. PLANT SIGNALING & BEHAVIOR 2013; 8:e22478. [PMID: 23104111 PMCID: PMC3745555 DOI: 10.4161/psb.22478] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 05/06/2023]
Abstract
Sulfur (S) deficiency is prevailing all over the world and becoming an important issue for crop improvement through maximising its utilization efficiency by plants for sustainable agriculture. Its interaction with other regulatory molecules in plants is necessary to improve our understanding on its role under changing environment. Our knowledge on the influence of S on ethylene signaling is meagre although it is a constituent of cysteine (Cys) required for the synthesis of reduced glutathione (GSH) and S-adenosyl methionine (SAM), a precursor of ethylene biosynthesis. Thus, there may be an interaction between S assimilation, ethylene signaling and plant responses under optimal and stressful environmental conditions. The present review emphasizes that responses of plants to S involve ethylene action. This evaluation will provide an insight into the details of interactive role of S and ethylene signaling in regulating plant processes and prove profitable for developing sustainability under changing environmental conditions.
Collapse
Affiliation(s)
- Noushina Iqbal
- Department of Botany; Aligarh Muslim University; Aligarh, India
| | - Asim Masood
- Department of Botany; Aligarh Muslim University; Aligarh, India
| | | | - Mohd Asgher
- Department of Botany; Aligarh Muslim University; Aligarh, India
| | - Mehar Fatma
- Department of Botany; Aligarh Muslim University; Aligarh, India
| | - Nafees A. Khan
- Department of Botany; Aligarh Muslim University; Aligarh, India
| |
Collapse
|
273
|
Alikhani M, Khatabi B, Sepehri M, Nekouei MK, Mardi M, Salekdeh GH. A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica. MOLECULAR BIOSYSTEMS 2013; 9:1498-510. [DOI: 10.1039/c3mb70069k] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
274
|
Abstract
Soybean (Glycine max) is one of the most important crops in legume family. Soybean and soybean-based products are also considered as popular food for human and animal husbandry. With its high oil content, soybean has become a potential resource for the production of renewable fuel. However, soybean is considered one of the most drought-sensitive crops, with approximately 40% reduction of the yield in the worst years. Recent research progresses in elucidation of biochemical, morphological and physiological responses as well as molecular mechanisms of plant adaptation to drought stress in model plants have provided a solid foundation for translational genomics of soybean toward drought tolerance. In this review, we will summarize the recent advances in development of drought-tolerant soybean cultivars by gene transfer.
Collapse
Affiliation(s)
- Nguyen Phuong Thao
- International University, Vietnam National University-HCMC, St block 6, Linh Trung ward, Thu Duc district, HCM city, Vietnam
| | | |
Collapse
|
275
|
Zhang L, Zhao G, Xia C, Jia J, Liu X, Kong X. A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5873-85. [PMID: 23048128 DOI: 10.1093/jxb/ers237] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The MYB-type proteins are involved in various processes of plant growth, development, and stress response. In a previous work, a polyethylene glycol (PEG) stress-induced gene, TaMYB30, which encodes a R2R3-type MYB protein was identified in wheat. In this study, the isolation and functional characterization of the TaMYB30 gene are reported. Three homologous sequences of TaMYB30 were isolated from hexaploid wheat and designated as TaMYB30-A, TaMYB30-B, and TaMYB30-D genes based on the localizations of these three sequences to chromosomes 2A, 2B, and 2D, respectively. The expression levels of these three genes were similar under PEG stress conditions, and TaMYB30-B was selected for further analysis. The TaMYB30-B protein was localized to the nucleus where it activated transcription. The detailed characterization of Arabidopsis transgenic plants that overexpress the TaMYB30-B gene revealed that the TaMYB30-B protein can improve drought stress tolerance during the germination and the seedling stages. It was also found that overexpression of TaMYB30-B resulted in altered expression levels of some drought stress-responsive genes and changes in several physiological indices, which allow plants to overcome adverse conditions. These results indicate that the TaMYB30-B protein plays important roles in plant stress tolerance, and modification of its expression may improve drought stress tolerance in crop plants.
Collapse
Affiliation(s)
- Lichao Zhang
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | |
Collapse
|
276
|
Gratão PL, Monteiro CC, Carvalho RF, Tezotto T, Piotto FA, Peres LEP, Azevedo RA. Biochemical dissection of diageotropica and Never ripe tomato mutants to Cd-stressful conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 56:79-96. [PMID: 22609458 DOI: 10.1016/j.plaphy.2012.04.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/13/2012] [Indexed: 05/21/2023]
Abstract
In order to further address the modulation of signaling pathways of stress responses and their relation to hormones, we used the ethylene-insensitive Never ripe (Nr) and the auxin-insensitive diageotropica (dgt) tomato mutants. The two mutants and the control Micro-Tom (MT) cultivar were grown over a 40-day period in the presence of Cd (0.2 mM CdCl₂ and 1 mM CdCl₂). Lipid peroxidation, leaf chlorophyll, proline content, Cd content and antioxidant enzyme activities in roots, leaves and fruits were determined. The overall results indicated that the MT genotype had the most pronounced Cd damage effects while Nr and dgt genotypes might withstand or avoid stress imposed by Cd. This fact may be attributed, at least in part, to the fact that the known auxin-stimulated ethylene production is comprised in dgt plants. Conversely, the Nr genotype was more affected by the Cd imposed stress than dgt, which may be explained by the fact that Nr retains a partial sensitivity to ethylene. These results add further information that should help unraveling the relative importance of ethylene in regulating the cell responses to stressful conditions.
Collapse
Affiliation(s)
- Priscila L Gratão
- Departamento de Biologia Aplicada à Agropecuária, Universidade Estadual Paulista "Júlio de Mesquita Filho"-UNESP, 14884-900 Jaboticabal, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
277
|
Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, Zhang WK, Ma B, Lin Q, Zhang ZB, Zhang JS, Chen SY. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. PLANT, CELL & ENVIRONMENT 2012; 35:1156-70. [PMID: 22220579 DOI: 10.1111/j.1365-3040.2012.02480.x] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
WRKY-type transcription factors are involved in multiple aspects of plant growth, development and stress response. WRKY genes have been found to be responsive to abiotic stresses; however, their roles in abiotic stress tolerance are largely unknown especially in crops. Here, we identified stress-responsive WRKY genes from wheat (Triticum aestivum L.) and studied their functions in stress tolerance. Forty-three putative TaWRKY genes were identified and two multiple stress-induced genes, TaWRKY2 and TaWRKY19, were further characterized. TaWRKY2 and TaWRKY19 are nuclear proteins, and displayed specific binding to typical cis-element W box. Transgenic Arabidopsis plants overexpressing TaWRKY2 exhibited salt and drought tolerance compared with controls. Overexpression of TaWRKY19 conferred tolerance to salt, drought and freezing stresses in transgenic plants. TaWRKY2 enhanced expressions of STZ and RD29B, and bound to their promoters. TaWRKY19 activated expressions of DREB2A, RD29A, RD29B and Cor6.6, and bound to DREB2A and Cor6.6 promoters. The two TaWRKY proteins may regulate the downstream genes through direct binding to the gene promoter or via indirect mechanism. Manipulation of TaWRKY2 and TaWRKY19 in wheat or other crops should improve their performance under various abiotic stress conditions.
Collapse
Affiliation(s)
- Can-Fang Niu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. THE PLANT CELL 2012; 24:2578-95. [PMID: 22706288 PMCID: PMC3406918 DOI: 10.1105/tpc.112.098640] [Citation(s) in RCA: 378] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/22/2012] [Accepted: 05/28/2012] [Indexed: 05/18/2023]
Abstract
The phytohormone ethylene regulates multiple aspects of plant growth and development and responses to environmental stress. However, the exact role of ethylene in freezing stress remains unclear. Here, we report that ethylene negatively regulates plant responses to freezing stress in Arabidopsis thaliana. Freezing tolerance was decreased in ethylene overproducer1 and by the application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid but increased by the addition of the ethylene biosynthesis inhibitor aminoethoxyvinyl glycine or the perception antagonist Ag+. Furthermore, ethylene-insensitive mutants, including etr1-1, ein4-1, ein2-5, ein3-1, and ein3 eil1, displayed enhanced freezing tolerance. By contrast, the constitutive ethylene response mutant ctr1-1 and EIN3-overexpressing plants exhibited reduced freezing tolerance. Genetic and biochemical analyses revealed that EIN3 negatively regulates the expression of CBFs and type-A Arabidopsis response regulator5 (ARR5), ARR7, and ARR15 by binding to specific elements in their promoters. Overexpression of these ARR genes enhanced the freezing tolerance of plants. Thus, our study demonstrates that ethylene negatively regulates cold signaling at least partially through the direct transcriptional control of cold-regulated CBFs and type-A ARR genes by EIN3. Our study also provides evidence that type-A ARRs function as key nodes to integrate ethylene and cytokinin signaling in regulation of plant responses to environmental stress.
Collapse
Affiliation(s)
- Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shouwei Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lingyan Hou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaozhen Huang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hongwei Guo
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
- National Plant Gene Research Center, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- National Plant Gene Research Center, Beijing 100193, China
- Address correspondence to
| |
Collapse
|
279
|
Singh K, Singla-Pareek SL, Pareek A. Dissecting out the crosstalk between salinity and hormones in roots of Arabidopsis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 15:913-24. [PMID: 22181020 DOI: 10.1089/omi.2011.0098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Phytohormones are chemical messengers that play a leading role in regulating the vital activity of plants, including transcription, posttranscriptional pre-mRNA splicing, translation, and posttranslational modifications by interacting with specific protein receptors. Plant hormones are synthesized in one tissue and act on specific target sites in other tissues at vanishingly low concentrations. High salinity is one of the main factors limiting Arabidopsis growth and productivity. In this study, phytohormones including abscisic acid, auxin, ethylene, and cytokinin responsive genes regulating salinity stress in Arabidopsis roots were monitored using microarray data. We identified phytohormone responsive genes on the basis of their expression pattern at genomic level at various time points. Using publicly available microarray data, we analyzed the effect of salt stress on the transcription of phytohormone responsive genes. Gene ontology (GO) analysis of phytohormone responsive genes showed their role in important biological processes such as signal transduction, hormone metabolism, biosynthetic process, and gene expression. Gene enrichment terms also reveal that transcription regulator activity is the main class of ABA responsive genes under salinity stress. We conclude that expression of ABA responsive genes involves induction of several transcription factors under salt stress treatment in Arabidopsis roots.
Collapse
Affiliation(s)
- Khushwant Singh
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
280
|
Wang B, Guo B, Xie X, Yao Y, Peng H, Xie C, Zhang Y, Sun Q, Ni Z. A novel histidine kinase gene, ZmHK9, mediate drought tolerance through the regulation of stomatal development in Arabidopsis. Gene 2012; 501:171-9. [PMID: 22525037 DOI: 10.1016/j.gene.2012.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 03/07/2012] [Accepted: 04/05/2012] [Indexed: 11/18/2022]
Abstract
Plants have developed complex signaling networks to regulate biochemical and physiological acclimation, environmental signals were perceived and transmitted to cellular machinery to activate adaptive responses. Here, a novel drought responsive histidine kinase gene was identified and designated as ZmHK9. Under normal conditions, ZmHK9 was predominantly expressed in roots, and the roots of ZmHK9-OX transgenic lines are markedly hypersensitive to ABA and ethylene, as compare to wild type. Consistent with its expression induced by PEG and exogenous ABA treatment, promoter sequence of this gene possessed drought and ABA responsive element. Moreover, the transgenic plants were much less affected by drought stress and recovered quickly after rewatering, stomatal complex size and stomatal density in the transgenic plants are significantly smaller and lower than those of the wild-type plants. In addition, ABA induced stomatal closure and the stomatal aperture of ZmHK9-OX lines was smaller than that of wild type. Collectively, it can be concluded that ZmHK9 regulates root elongation, stomatal development and drought tolerance through ABA dependent signaling pathway in Arabidopsis.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Asensi-Fabado MA, Cela J, Müller M, Arrom L, Chang C, Munné-Bosch S. Enhanced oxidative stress in the ethylene-insensitive (ein3-1) mutant of Arabidopsis thaliana exposed to salt stress. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:360-8. [PMID: 22209220 DOI: 10.1016/j.jplph.2011.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/03/2011] [Accepted: 11/03/2011] [Indexed: 05/04/2023]
Abstract
To better understand the role of ethylene signaling in plant stress tolerance, salt-induced changes in gene expression levels of ethylene biosynthesis, perception and signaling genes were measured in Arabidopsis thaliana plants exposed to 15 days of salinity. Among the genes analyzed, EIN3 showed the highest expression level increase under salt stress, suggesting a key role for this ethylene-signaling component in response to salt stress. Therefore, we analyzed the salt stress response over 15 days (by adding 100 mM NaCl to the nutrient solution) in the ein3-1 mutant compared to the wild-type (Col-0) in terms of growth, oxidative stress markers (lipid peroxidation, foliar pigments and low-molecular-weight antioxidants) and levels of growth- and stress-related phytohormones (including cytokinins, auxins, gibberellins, abscisic acid, jasmonic acid and salicylic acid). The ein3-1 mutant grew similarly to wild-type plants both under control and salt stress conditions, which was associated with a differential time course evolution in the levels of the cytokinins zeatin and zeatin riboside, and the auxin indole-3-acetic acid between the ein3-1 mutant and the wild-type. Despite showing no signs of physiological deterioration under salt stress (in terms of rosette biomass, leaf water and pigment contents, and PSII efficiency) the ein3-1 mutant showed enhanced lipid peroxidation under salt stress, as indicated by 2.4-fold increase in both malondialdehyde and jasmonic acid contents compared to the wild-type. We conclude that, at moderate doses of salinity, partial insensitivity to ethylene might be compensated by changes in endogenous levels of other phytohormones and lipid peroxidation-derived signals in the ein3-1 mutant exposed to salt stress, but at the same time, this mutant shows higher oxidative stress under salinity than the wild-type.
Collapse
Affiliation(s)
- María Amparo Asensi-Fabado
- Departament de Biologia Vegetal, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
282
|
Zhang J, Guo QF, Feng YN, Li F, Gong JF, Fan ZY, Wang W. Manipulation of monoubiquitin improves salt tolerance in transgenic tobacco. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:315-24. [PMID: 22187972 DOI: 10.1111/j.1438-8677.2011.00512.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ubiquitin (Ub) is regarded as a stress protein involved in many stress responses. In this paper, sense and antisense transgenic tobacco plants, as well as the wild type and vector control, were used to study the role of Ub in salt tolerance of plants. In sense Ta-Ub2 transgenic tobacco plants, there was higher expression of Ub protein conjugates than in the wild type and vector control, but the reverse trend was observed in antisense Nt-Ub1 transgenic plants. The germination rate of tobacco seed, growth status and photosynthesis of the tobacco plants suggested that over-expressing Ub promoted the growth of transgenic tobacco plants and enhanced their salt tolerance, but the opposite effect was seen in plants with repressed Ub expression. Changes in antioxidant capacity may be one of the mechanisms underlying Ub-regulated salt tolerance. Furthermore, improved tolerance to a combination of stresses was also observed in the sense transgenic tobacco plants. These findings imply that Ub is involved in the tolerance of plants to abiotic stress.
Collapse
Affiliation(s)
- J Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences/College of Agriculture, Shandong Agricultural University, Tai'an, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
283
|
Zhang B, Chen HW, Mu RL, Zhang WK, Zhao MY, Wei W, Wang F, Yu H, Lei G, Zou HF, Ma B, Chen SY, Zhang JS. NIMA-related kinase NEK6 affects plant growth and stress response in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:830-43. [PMID: 21801253 DOI: 10.1111/j.1365-313x.2011.04733.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The NIMA-related kinases (NEKs) are a family of serine/threonine kinases involved largely in cell cycle control in fungi, mammals and other eukaryotes. In Arabidopsis, NEK6 is involved in the regulation of epidermal cell morphogenesis. However, other roles of NEK6 in plants are less well understood. Here we report functions of NEK6 in plant growth, development and stress responses in Arabidopsis. NEK6 transcripts and proteins are induced by ethylene precursor ACC and salt stress. Expression of other NEK genes except NEK5 is also responsive to the two treatments. Overexpression and mutant analysis disclose that the NEK6 gene increases rosette growth, seed yield and lateral root formation. However, NEK6 appears to play a negative role in the control of seed size. The gene also promotes plant tolerance to salt stress and osmotic stress in its overexpressing plants. The NEK6 gene may achieve its function through suppression of ethylene biosynthesis and activation of CYCB1;1 and CYCA3;1 expression. Our present study reveals new functions of the NEK6 gene in plant growth and stress tolerance, and manipulation of NEK6 may improve important agronomic traits in crop plants.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Manaa A, Ahmed HB, Smiti S, Faurobert M. Salt-Stress Induced Physiological and Proteomic Changes in Tomato (Solanum lycopersicum) Seedlings. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:801-9. [DOI: 10.1089/omi.2011.0045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Arafet Manaa
- Unité d'Ecophysiologie et Nutrition des Plantes, Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunisie
- Institut National de la Recherche Agronomique, Unité de Génétique et Amélioration des Fruits et Légumes, INRA, UR 1052, Domaine Saint-Maurice, Montfavet cedex, France
| | - Hela Ben Ahmed
- Unité d'Ecophysiologie et Nutrition des Plantes, Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunisie
| | - Samira Smiti
- Unité d'Ecophysiologie et Nutrition des Plantes, Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunisie
| | - Mireille Faurobert
- Institut National de la Recherche Agronomique, Unité de Génétique et Amélioration des Fruits et Légumes, INRA, UR 1052, Domaine Saint-Maurice, Montfavet cedex, France
| |
Collapse
|
285
|
Zhang L, Li Z, Quan R, Li G, Wang R, Huang R. An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:854-65. [PMID: 21832142 PMCID: PMC3192559 DOI: 10.1104/pp.111.179028] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 08/09/2011] [Indexed: 05/19/2023]
Abstract
Accumulating investigations reveal that ethylene signaling is involved in the salt response in Arabidopsis (Arabidopsis thaliana), and it has been reported that overexpression of a number of ethylene response factor (ERF) genes enhances salt tolerance; however, transcriptional regulation of the ethylene signal component ETHYLENE INSENSITIVE3 (EIN3) in the salt response has not been clearly defined. Consulting microarray data and transcriptional confirmations showed that three of the ERF genes were ethylene and salt inducible, named ESE1 to ESE3. Additionally, the expression of one of the ESE genes (ESE1) was suppressed in ein2, ein3-1, eil1-3, and ein3 eil1 but enhanced in EIN3-overexpressing (EIN3ox) lines. Inhibitors of ethylene biosynthesis, aminoethoxyvinylglycine, and ethylene action, AgNO₃, reduced the expression of ESE1, while ethylene overproduction eto mutants enhanced the expression of ESE1, indicating that ESE1 is an ethylene-modulated gene downstream of EIN3/EIL1. Further analyses with biochemical and molecular approaches revealed that EIN3 physically binds to the ESE1 promoter, demonstrating that ESE1 was one target of EIN3. ESE1 in turn binds to promoters of salt-related genes, such as RD29A and COR15A. Moreover, either EIN3ox or ESE1ox was sufficient to enhance transcript levels of salt-related genes and salt tolerance. In addition, ESE1ox in ein3 enhanced the salt response during seed germination and seedling development, demonstrating that ESE1 is genetically downstream of EIN3. Thus, the evidence in this report reveals that the transcriptional complex of EIN3-ESE1 is a crucial event in the salt response, thereby connecting the transcriptional regulation of EIN3 and the downstream ERF protein ESE1 in the salt response.
Collapse
|
286
|
Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F, Zou HF, Lei G, Tian AG, Zhang WK, Ma B, Zhang JS, Chen SY. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:302-13. [PMID: 21707801 DOI: 10.1111/j.1365-313x.2011.04687.x] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
NAC transcription factors play important roles in plant growth, development and stress responses. Previously, we identified multiple NAC genes in soybean (Glycine max). Here, we identify the roles of two genes, GmNAC11 and GmNAC20, in stress responses and other processes. The two genes were differentially induced by multiple abiotic stresses and plant hormones, and their transcripts were abundant in roots and cotyledons. Both genes encoded proteins that localized to the nucleus and bound to the core DNA sequence CGT[G/A]. In the protoplast assay system, GmNAC11 acts as a transcriptional activator, whereas GmNAC20 functions as a mild repressor; however, the C-terminal end of GmANC20 has transcriptional activation activity. Over-expression of GmNAC20 enhances salt and freezing tolerance in transgenic Arabidopsis plants; however, GmNAC11 over-expression only improves salt tolerance. Over-expression of GmNAC20 also promotes lateral root formation. GmNAC20 may regulate stress tolerance through activation of the DREB/CBF-COR pathway, and may control lateral root development by altering auxin signaling-related genes. GmNAC11 probably regulates DREB1A and other stress-related genes. The roles of the two GmNAC genes in stress tolerance were further analyzed in soybean transgenic hairy roots. These results provide a basis for genetic manipulation to improve the agronomic traits of important crops.
Collapse
Affiliation(s)
- Yu-Jun Hao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Dong H, Zhen Z, Peng J, Chang L, Gong Q, Wang NN. Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4875-87. [PMID: 21765163 PMCID: PMC3193000 DOI: 10.1093/jxb/err143] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 05/18/2023]
Abstract
The phytohormones ethylene and abscisic acid (ABA) play essential roles in the abiotic stress adaptation of plants, with both cross-talk of ethylene signalling and ABA biosynthesis and signalling reported. Any reciprocal effects on each other's biosynthesis, however, remain elusive. ACC synthase (ACS) acts as the key enzyme in ethylene biosynthesis. A pilot study on changes in ACS promoter activities in response to abiotic stresses revealed the unique involvement in abiotic stress responses of the only type 3 ACC synthase, ACS7, among all nine ACSs of Arabidopsis. Hence an acs7 mutant was characterized and its abiotic stress responses were analysed. The acs7 mutant germinated slightly faster than the wild type and subsequently maintained a higher growth rate at the vegetative growth stage. Ethylene emission of acs7 was merely one-third of that of the wild type. acs7 exhibited enhanced tolerance to salt, osmotic, and heat stresses. Furthermore, acs7 seeds were hypersensitive to both ABA and glucose during germination. Transcript analyses revealed that acs7 had elevated transcript levels of the stress-responsive genes involved in the ABA-dependent pathway under salt stress. The ABA level was also higher in acs7 following salt treatment. Our data suggest that ACS7 acts as a negative regulator of ABA sensitivity and accumulation under stress and appears as a node in the cross-talk between ethylene and ABA.
Collapse
Affiliation(s)
- Hui Dong
- Department of Plant Biology and Ecology, Nankai University, Tianjin 300071, China
| | - Zhiqin Zhen
- Department of Plant Biology and Ecology, Nankai University, Tianjin 300071, China
| | - Jinying Peng
- College of Life Sciences, National Laboratory of Protein Engineering and Plant Genetic Engineering Center, Peking University, Beijing 100871, China
| | - Li Chang
- Department of Plant Biology and Ecology, Nankai University, Tianjin 300071, China
| | - Qingqiu Gong
- Department of Plant Biology and Ecology, Nankai University, Tianjin 300071, China
- To whom correspondence should be addressed. E-mail: ;
| | - Ning Ning Wang
- Department of Plant Biology and Ecology, Nankai University, Tianjin 300071, China
- To whom correspondence should be addressed. E-mail: ;
| |
Collapse
|
288
|
Lei G, Shen M, Li ZG, Zhang B, Duan KX, Wang N, Cao YR, Zhang WK, Ma B, Ling HQ, Chen SY, Zhang JS. EIN2 regulates salt stress response and interacts with a MA3 domain-containing protein ECIP1 in Arabidopsis. PLANT, CELL & ENVIRONMENT 2011; 34:1678-92. [PMID: 21631530 DOI: 10.1111/j.1365-3040.2011.02363.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ethylene signalling regulates plant growth and development. However, its roles in salt stress response are less known. Here we studied functions of EIN2, a central membrane protein of ethylene signalling, and its interacting protein ECIP1 in salt stress responses. Mutation of EIN2 led to extreme salt sensitivity as revealed by phenotypic and physiological changes, and overexpression of C-terminus of EIN2 suppressed salt sensitivity in ein2-5, indicating that EIN2 is required for salt tolerance. Downstream components EIN3 and EIL1 are also essential for salt tolerance because ein3-1eil1-1 double mutant showed extreme salt-sensitive phenotype. A MA3 domain-containing protein ECIP1 was further identified to interact with EIN2 in yeast two-hybrid assay and GST pull-down assay. Loss-of-function of ECIP1 resulted in enhanced ethylene response but altered salt response during seed germination and plant growth. Double mutant analysis revealed that ein2-1 was epistatic to ecip1, and ecip1 mutation partially suppressed ethylene-insensitivity of etr2-1 and ein4-1. These studies strengthen that interactions between ECIP1 and EIN2 or ethylene receptors regulate ethylene response and stress response.
Collapse
Affiliation(s)
- Gang Lei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Three positive regulators of leaf senescence in Arabidopsis, ORE1, ORE3 and ORE9, play roles in crosstalk among multiple hormone-mediated senescence pathways. Genes Genomics 2011. [DOI: 10.1007/s13258-011-0044-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
290
|
Xing HT, Guo P, Xia XL, Yin WL. PdERECTA, a leucine-rich repeat receptor-like kinase of poplar, confers enhanced water use efficiency in Arabidopsis. PLANTA 2011; 234:229-41. [PMID: 21399949 DOI: 10.1007/s00425-011-1389-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 02/21/2011] [Indexed: 05/04/2023]
Abstract
Water deficiency causes a dramatic reduction in crop production globally. Breeding crop varieties that are more efficient in their water use is one strategy to overcome this predicament. In this study, a member of the LRR-RLKs family, the Populus nigra × (Populus deltoides × Populus nigra) ERECTA (PdERECTA) gene was cloned. To study the biological functions of PdERECTA, transgenic Arabidopsis plants (35S:PdERECTA) that constitutively expressed the PdERECTA gene were constructed. Overexpression of PdERECTA resulted in early seedling establishment, longer primary roots, and larger leaf areas. Notably, transgenic Arabidopsis overexpressing PdERECTA resulted in enhanced long-term water use efficiency (WUEl), as estimated by the analysis of carbon isotopic discrimination. The WUEl results were supported by the physiological and anatomical results, which included improved photosynthetic rate, decreased transpiration rate, and stomatal density. The transgenic lines have significantly more dry-biomass as compared to the wild type. Since the overexpression of PdERECTA can strongly enhance the water use efficiency in transgenic Arabidopsis plants, PdERECTA could potentially be used in transgenic breeding to improve the water use efficiency.
Collapse
Affiliation(s)
- Hai Tao Xing
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No.35 Tsinghua East Road, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
291
|
Cela J, Chang C, Munné-Bosch S. Accumulation of γ- rather than α-tocopherol alters ethylene signaling gene expression in the vte4 mutant of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2011; 52:1389-400. [PMID: 21719428 PMCID: PMC3153729 DOI: 10.1093/pcp/pcr085] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 06/22/2011] [Indexed: 05/18/2023]
Abstract
Tocopherols are antioxidants found in chloroplasts of leaves, and it is a matter of current debate whether or not they can affect signaling and gene expression in plant cells. For insight into the possible effects of altered tocopherol composition in chloroplasts on gene expression in the nucleus, the expression of ethylene biosynthesis, perception and signaling genes was investigated in vte1 and vte4 Arabidopsis thaliana mutants, which are impaired in tocopherol (vitamin E) biosynthesis. Changes in gene expression were measured in plants exposed to either salt or water stress, and in young and mature leaves of vte1 and vte4 mutants, which lack tocopherol cyclase and γ-tocopherol methyltransferase, respectively. While transcript levels of ethylene signaling genes in the vte1 mutant and the wild type were similar in all tested conditions, major changes in gene expression occurred in the vte4 mutant, particularly in mature leaves (compared with young leaves) and under salt stress. Accumulation of γ- instead of α-tocopherol in this mutant led to elevated transcript levels of ethylene signaling pathway genes (particularly CTR1, EIN2, EIN3 and ERF1) in mature leaves of control plants. However, with salt treatment, transcript levels of most of these genes remained constant or dropped in the vte4 mutant, while they were dramatically induced in the wild type and the vte1 mutant. Furthermore, under salt stress, leaf age-induced jasmonic acid accumulated in both the vte1 mutant and the wild type, but not in the vte4 mutant. It is concluded that jasmonic acid and ethylene signaling pathways are down-regulated in mature leaves of salt-stressed vte4 plants.
Collapse
Affiliation(s)
- Jana Cela
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-5815, USA
| | - Sergi Munné-Bosch
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
292
|
Li F, Xing S, Guo Q, Zhao M, Zhang J, Gao Q, Wang G, Wang W. Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:960-6. [PMID: 21316798 DOI: 10.1016/j.jplph.2010.11.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 11/12/2010] [Accepted: 11/17/2010] [Indexed: 05/24/2023]
Abstract
Expansins are proteins that are the key regulators of wall extension during plant growth. To investigate the role of TaEXPB23, a wheat expansin gene, we analyzed TaEXPB23 mRNA expression levels in response to water stress in wheat and examined the drought resistance of transgenic tobaccos over-expressing TaEXPB23. We found that the expression of TaEXPB23 corresponded to wheat coleoptile growth and the response to water stress. The results also indicated that the transgenic tobacco lines lost water more slowly than the wild-type (WT) plants under drought stress; their cells could sustain a more integrated structure under water stress than that of WT. Other physiological and biochemical parameters under water stress, such as electrolyte leakage, malondialdehyde (MDA) level, photosynthetic rate, F(v)/F(m) and ΦPSII, also suggested that the transgenic tobaccos were more drought resistant than WT plants.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | | | | | | | | | | | | | | |
Collapse
|
293
|
Zhang Y, Yang YX, Zhou X, Jia YH, Nie LL, Zhang Y, Chen SY, Wang JA, Liu ZQ. The continuous accumulation of Na + in detached leaf sections is associated with over-expression of NTHK1 and salt tolerance in poplar plants. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:236-245. [PMID: 32480880 DOI: 10.1071/fp10215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/23/2011] [Indexed: 06/11/2023]
Abstract
Detached leaf sections (2×2cm2) from transgenic poplar line 18-1 and its wild type (WT) (Populus× euramericana 'Neva') were used to test their salt tolerance and gene expression under controlled environment conditions. The sections from line 18-1 displayed better tolerance to NaCl stress, indicated by high chlorophyll retention and K+ content but low relative electrolyte leakage (REL). Transient overexpression of NTHK1 (Nicotiana tabacum histidine kinase 1) and V-H+-PPase was found in the detached young leaves from line 18-1 after they had been stressed for a few minutes. The activities of vacuolar-type H+-ATPase and H+-PPase in line 18-1 were boosted initially and then decreased to normal level as in unstressed leaves. After sections were stressed for 10 days, the maximal Na+ concentration in line 18-1 was much higher than that in the WT. The higher capacity for Na+ accumulation in line 18-1 may be due to stable Na+ sequestration into the vacuoles. Osmotic stress imposed little effect on REL and chlorophyll content of the sections. The capacity of detached leaf sections in NaCl solution to tolerate stress and to accumulate Na+ may be useful for identifying genotypes with good salt tolerance in poplar and other plants.
Collapse
Affiliation(s)
- Ying Zhang
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300192, China
| | - Ying-Xia Yang
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300192, China
| | - Xiangming Zhou
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300192, China
| | - Yan-Hong Jia
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300192, China
| | - Li-Li Nie
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300192, China
| | - Yue Zhang
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300192, China
| | - Shou-Yi Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing-An Wang
- College of Life Sciences, Tianjin Normal University, Tianjin 300384, China
| | - Zhong-Qi Liu
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300192, China
| |
Collapse
|
294
|
Qian D, Jiang L, Lu L, Wei C, Li Y. Biochemical and structural properties of cyanases from Arabidopsis thaliana and Oryza sativa. PLoS One 2011; 6:e18300. [PMID: 21494323 PMCID: PMC3070753 DOI: 10.1371/journal.pone.0018300] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 03/02/2011] [Indexed: 11/21/2022] Open
Abstract
Cyanate is toxic to all organisms. Cyanase converts cyanate to CO₂ and NH₃ in a bicarbonate-dependent reaction. The biophysical functions and biochemical characteristics of plant cyanases are poorly studied, although it has been investigated in a variety of proteobacteria, cyanobacteria and fungi. In this study, we characterised plant cyanases from Arabidopsis thaliana and Oryza sativa (AtCYN and OsCYN). Prokaryotic-expressed AtCYN and OsCYN both showed cyanase activity in vitro. Temperature had a similar influence on the activity of both cyanases, but pH had a differential impact on AtCYN and OsCYN activity. Homology modelling provided models of monomers of AtCYN and OsCYN, and a coimmunoprecipitation assay and gel filtration indicated that AtCYN and OsCYN formed homodecamers. The analysis of single-residue mutants of AtCYN indicated that the conserved catalytic residues also contributed to the stability of the homodecamer. KCNO treatment inhibited Arabidopsis germination and early seedling growth. Plants containing AtCYN or OsCYN exhibited resistance to KCNO stress, which demonstrated that one role of cyanases in plants is detoxification. Transcription level of AtCYN was higher in the flower than in other organs of Arabidopsis. AtCYN transcription was not significantly affected by KCNO treatment in Arabidopsis, but was induced by salt stress. This research broadens our knowledge on plant detoxification of cyanate via cyanase.
Collapse
Affiliation(s)
- Dan Qian
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Lin Jiang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Lu Lu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Chunhong Wei
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing, People's Republic of China
| |
Collapse
|
295
|
Lei M, Zhu C, Liu Y, Karthikeyan AS, Bressan RA, Raghothama KG, Liu D. Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis. THE NEW PHYTOLOGIST 2011; 189:1084-1095. [PMID: 21118263 DOI: 10.1111/j.1469-8137.2010.03555.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• With the exception of root hair development, the role of the phytohormone ethylene is not clear in other aspects of plant responses to inorganic phosphate (Pi) starvation. • The induction of AtPT2 was used as a marker to find novel signalling components involved in plant responses to Pi starvation. Using genetic and chemical approaches, we examined the role of ethylene in the regulation of plant responses to Pi starvation. • hps2, an Arabidopsis mutant with enhanced sensitivity to Pi starvation, was identified and found to be a new allele of CTR1 that is a key negative regulator of ethylene responses. 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene, increases plant sensitivity to Pi starvation, whereas the ethylene perception inhibitor Ag+ suppresses this response. The Pi starvation-induced gene expression and acid phosphatase activity are also enhanced in the hps2 mutant, but suppressed in the ethylene-insensitive mutant ein2-5. By contrast, we found that ethylene signalling plays a negative role in Pi starvation-induced anthocyanin production. • These findings extend the roles of ethylene in the regulation of plant responses to Pi starvation and will help us to gain a better understanding of the molecular mechanism underlying these responses.
Collapse
Affiliation(s)
- Mingguang Lei
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuanmei Zhu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yidan Liu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- Center for Plant Stress Genomics, King Abdullah University for Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Division of Applied Life Sciences, WCU Program, Gyeongsang National University, Jinju, 660-701, Korea
| | - Kashchandra G Raghothama
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Dong Liu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
296
|
Singh LP, Singh Gill S, Tuteja N. Unraveling the role of fungal symbionts in plant abiotic stress tolerance. PLANT SIGNALING & BEHAVIOR 2011; 6:175-91. [PMID: 21512319 PMCID: PMC3121976 DOI: 10.4161/psb.6.2.14146] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 11/06/2010] [Indexed: 05/18/2023]
Abstract
Fungal symbionts have been found associated with every plant studied in natural ecosystem, where they colonize and reside entirely in the internal tissues of their host plant or partially. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress, heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered.
Collapse
Affiliation(s)
| | - Sarvajeet Singh Gill
- Plant Molecular Biology Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
- Stress Physiology and Molecular Biology Lab; Centre for Biotechnology; MD University; Rohtak, Haryana India
| | - Narendra Tuteja
- Plant Molecular Biology Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
| |
Collapse
|
297
|
Zhang Z, Zhang S, Zhang Y, Wang X, Li D, Li Q, Yue M, Li Q, Zhang YE, Xu Y, Xue Y, Chong K, Bao S. Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. THE PLANT CELL 2011; 23:396-411. [PMID: 21258002 PMCID: PMC3051234 DOI: 10.1105/tpc.110.081356] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 11/15/2010] [Accepted: 01/04/2011] [Indexed: 05/19/2023]
Abstract
Plants adapt their growth and development in response to perceived salt stress. Although DELLA-dependent growth restraint is thought to be an integration of the plant's response to salt stress, little is known about how histone modification confers salt stress and, in turn, affects development. Here, we report that floral initiator Shk1 kinase binding protein1 (SKB1) and histone4 arginine3 (H4R3) symmetric dimethylation (H4R3sme2) integrate responses to plant developmental progress and salt stress. Mutation of SKB1 results in salt hypersensitivity, late flowering, and growth retardation. SKB1 associates with chromatin and thereby increases the H4R3sme2 level to suppress the transcription of FLOWERING LOCUS C (FLC) and a number of stress-responsive genes. During salt stress, the H4R3sme2 level is reduced, as a consequence of SKB1 disassociating from chromatin to induce the expression of FLC and the stress-responsive genes but increasing the methylation of small nuclear ribonucleoprotein Sm-like4 (LSM4). Splicing defects are observed in the skb1 and lsm4 mutants, which are sensitive to salt. We propose that SKB1 mediates plant development and the salt response by altering the methylation status of H4R3sme2 and LSM4 and linking transcription to pre-mRNA splicing.
Collapse
Affiliation(s)
- Zhaoliang Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Shupei Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Wang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dan Li
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiuling Li
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Minghui Yue
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Qun Li
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu-e Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunyuan Xu
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yongbiao Xue
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- National Plant Gene Research Centre, Beijing 100101, China
| | - Kang Chong
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- National Plant Gene Research Centre, Beijing 100101, China
| | - Shilai Bao
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
298
|
Kanani H, Dutta B, Klapa MI. Individual vs. combinatorial effect of elevated CO2 conditions and salinity stress on Arabidopsis thaliana liquid cultures: comparing the early molecular response using time-series transcriptomic and metabolomic analyses. BMC SYSTEMS BIOLOGY 2010; 4:177. [PMID: 21190570 PMCID: PMC3027597 DOI: 10.1186/1752-0509-4-177] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 12/29/2010] [Indexed: 10/26/2022]
Abstract
BACKGROUND In this study, we investigated the individual and combinatorial effect of elevated CO2 conditions and salinity stress on the dynamics of both the transcriptional and metabolic physiology of Arabidopsis thaliana liquid hydroponic cultures over the first 30 hours of continuous treatment. Both perturbations are of particular interest in plant and agro-biotechnological applications. Moreover, within the timeframe of this experiment, they are expected to affect plant growth to opposite directions. Thus, a major objective was to investigate whether this expected "divergence" was valid for the individual perturbations and to study how it is manifested under the combined stress at two molecular levels of cellular function, using high-throughput analyses. RESULTS We observed that a) high salinity has stronger effect than elevated CO2 at both the transcriptional and metabolic levels, b) the transcriptional responses to the salinity and combined stresses exhibit strong similarity, implying a robust transcriptional machinery acting to the salinity stress independent of the co-occurrence of elevated CO2, c) the combinatorial effect of the two perturbations on the metabolic physiology is milder than of the salinity stress alone. Metabolomic analysis suggested that the beneficial role of elevated CO2 on salt-stressed plants within the timeframe of this study should be attributed to the provided additional resources; these allow the plants to respond to high salinity without having to forfeit other major metabolic functions, and d) 9 h-12 h and 24 h of treatment coincide with significant changes in the metabolic physiology under any of the investigated stresses. Significant differences between the acute and longer term responses were observed at both molecular levels. CONCLUSIONS This study contributes large-scale dynamic omic data from two levels of cellular function for a plant system under various stresses. It provides an additional example of the power of integrated omic analyses for the comprehensive study of the molecular physiology of complex biological systems. Moreover, taking into consideration the particular interest of the two investigated perturbations in plant biotechnology, enhanced understanding of the molecular physiology of the plants under these conditions could lead to the design of novel metabolic engineering strategies to increase the resistance of commercial crops to salinity stress.
Collapse
Affiliation(s)
- Harin Kanani
- Metabolic Engineering and Systems Biology Laboratory, Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
299
|
Prasad ME, Stone SL. Further analysis of XBAT32, an Arabidopsis RING E3 ligase, involved in ethylene biosynthesis. PLANT SIGNALING & BEHAVIOR 2010; 5:1425-9. [PMID: 21051934 PMCID: PMC3115245 DOI: 10.4161/psb.5.11.13294] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 05/20/2023]
Abstract
The Arabidopsis RING E3 ligase, XBAT32, was previously characterized as a regulator of lateral root initiation. However, how XBAT32 function to modulate lateral root initiation was unknown. In our recent paper, we demonstrated that XBAT32 is involved in ethylene biosynthesis and it is through this function that XBAT32 is able to regulate lateral root production. Here we discuss a few other findings, observed in the ethylene overproducing mutant, xbat32, that reflect the effect of elevated ethylene levels on plant growth and development. Ethylene signaling also regulates plant responses to adverse environmental conditions such as high salinity. Consistent with ethylene's role as a stress hormone, xbat32 exhibited increased sensitivity to salt stress during seed germination and postgerminative growth. Thus, XBAT32 may also play a role in ethylene mediated response to abiotic stresses.
Collapse
|
300
|
Jeong SW, Das PK, Jeoung SC, Song JY, Lee HK, Kim YK, Kim WJ, Park YI, Yoo SD, Choi SB, Choi G, Park YI. Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:1514-31. [PMID: 20876338 PMCID: PMC2971625 DOI: 10.1104/pp.110.161869] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 09/25/2010] [Indexed: 05/18/2023]
Abstract
Anthocyanin accumulation is regulated negatively by ethylene signaling and positively by sugar and light signaling. However, the antagonistic interactions underlying these signalings remain to be elucidated fully. We show that ethylene inhibits anthocyanin accumulation induced by sucrose (Suc) and light by suppressing the expression of transcription factors that positively regulate anthocyanin biosynthesis, including GLABRA3, TRANSPARENT TESTA8, and PRODUCTION OF ANTHOCYANIN PIGMENT1, while stimulating the concomitant expression of the negative R3-MYB regulator MYBL2. Genetic analyses show that the ethylene-mediated suppression of anthocyanin accumulation is dependent upon ethylene signaling components responsible for the triple response. Furthermore, these positive and negative signaling pathways appear to be under photosynthetic control. Suc and light induction of anthocyanin accumulation was almost fully inhibited in wild-type Arabidopsis (Arabidopsis thaliana) ecotype Columbia and ethylene (ethylene response1 [etr1-1]) and light (long hypocotyl1 [hy1], cryptochrome1/2, and hy5) signaling mutants treated with the photosynthetic electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea. The transcript level of the sugar transporter gene SUC1 was enhanced in ecotype Columbia treated with the ethylene-binding inhibitor silver and in etr1-1, ethylene insensitive2 (ein2-1), and ein3 ein3-like1 mutants. In contrast, 3-(3,4-dichlorophenyl)-1,1-dimethylurea treatment reduced SUC1 expression, which indicates strongly that SUC1 represents an integrator for signals provided by sugar, light, and ethylene. SUC1 mutations lowered accumulations of anthocyanin pigment, soluble sugar content, and ethylene production in response to Suc and light signals. These data demonstrate that the suppression of SUC1 expression by ethylene inhibits Suc-induced anthocyanin accumulation in the presence of light and, hence, fine-tunes anthocyanin homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Youn-Il Park
- Department of Biological Science and Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305–764, Korea (S.-W.J., P.K.D., J.-Y.S., H.K.L., Y.-I.P.); Division of Advanced Technology, Korea Research Institute of Standards and Science, Daejeon 305–340, Korea (S.-W.J., S.C.J.); GreenGene Biotech (Y.-K.K.) and Division of Bioscience and Bioinformatics (S.-B.C.), Myongji University, Yongin 449–728, Korea; Division of Biotechnology, Catholic University, Bucheon 420–743, Korea (W.J.K., Y.I.P.); Department of Biological Science, Sungkyunkwan University, Suwon 440–764, Korea (S.-D.Y.); Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305–701, Korea (G.C.)
| |
Collapse
|