251
|
Zhou YJ, Buijs NA, Siewers V, Nielsen J. Fatty Acid-Derived Biofuels and Chemicals Production in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2014; 2:32. [PMID: 25225637 PMCID: PMC4150446 DOI: 10.3389/fbioe.2014.00032] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/18/2014] [Indexed: 11/28/2022] Open
Abstract
Volatile energy costs and environmental concerns have spurred interest in the development of alternative, renewable, sustainable, and cost-effective energy resources. Environment-friendly processes involving microbes can be used to synthesize advanced biofuels. These fuels have the potential to replace fossil fuels in supporting high-power demanding machinery such as aircrafts and trucks. From an engineering perspective, the pathway for fatty acid biosynthesis is an attractive route for the production of advanced fuels such as fatty acid ethyl esters, fatty alcohols, and alkanes. The robustness and excellent accessibility to molecular genetics make the yeast Saccharomyces cerevisiae a suitable host for the purpose of bio-manufacturing. Recent advances in metabolic engineering, as well as systems and synthetic biology, have now provided the opportunity to engineer yeast metabolism for the production of fatty acid-derived fuels and chemicals.
Collapse
Affiliation(s)
- Yongjin J. Zhou
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Nicolaas A. Buijs
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
252
|
Lee SB, Kim H, Kim RJ, Suh MC. Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation. PLANT CELL REPORTS 2014; 33:1535-46. [PMID: 24880908 DOI: 10.1007/s00299-014-1636-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/05/2014] [Accepted: 05/16/2014] [Indexed: 05/03/2023]
Abstract
Camelina has been highlighted as an emerging oilseed crop. Transgenic Camelina plants overexpressing Arabidopsis MYB96 exhibited drought resistance by activating expression of Camelina wax biosynthetic genes and accumulating wax load. Camelina (Camelina sativa L.) is an oilseed crop in the Brassicaeae family with potential to expand biofuel production to marginal land. The aerial portion of all land plants is covered with cuticular wax to protect them from desiccation. In this study, the Arabidopsis MYB96 gene was overexpressed in Camelina under the control of the CaMV35S promoter. Transgenic Camelina plants overexpressing Arabidopsis MYB96 exhibited normal growth and development and enhanced tolerance to drought. Deposition of epicuticular wax crystals and total wax loads increased significantly on the surfaces of transgenic leaves compared with that of non-transgenic plants. The levels of alkanes and primary alcohols prominently increased in transgenic Camelina plants relative to non-transgenic plants. Cuticular transpiration occurred more slowly in transgenic leaves than that in non-transgenic plants. Genome-wide identification of Camelina wax biosynthetic genes enabled us to determine that the expression levels of CsKCS2, CsKCS6, CsKCR1-1, CsKCR1-2, CsECR, and CsMAH1 were approximately two to sevenfold higher in transgenic Camelina leaves than those in non-transgenic leaves. These results indicate that MYB96-mediated transcriptional regulation of wax biosynthetic genes is an approach applicable to generating drought-resistant transgenic crops. Transgenic Camelina plants with enhanced drought tolerance could be cultivated on marginal land to produce renewable biofuels and biomaterials.
Collapse
Affiliation(s)
- Saet Buyl Lee
- Department of Bioenergy Science and Technology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, Korea
| | | | | | | |
Collapse
|
253
|
Xu X, Feng J, Lü S, Lohrey GT, An H, Zhou Y, Jenks MA. Leaf cuticular lipids on the Shandong and Yukon ecotypes of saltwater cress, Eutrema salsugineum, and their response to water deficiency and impact on cuticle permeability. PHYSIOLOGIA PLANTARUM 2014; 151:446-58. [PMID: 24215503 DOI: 10.1111/ppl.12127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 05/11/2023]
Abstract
The impact of water-deficit stress on leaf cuticular waxes and cutin monomers, and traits associated with cuticle permeability were examined in Shandong and Yukon ecotypes of Eutrema salsugineum (syn. Thellungiella salsuginea). Although Shandong exhibits glaucous leaves, and Yukon is non-glaucous, wax amounts on non-stressed Yukon leaves were 4.6-fold higher than on Shandong, due mainly to Yukon's eightfold higher wax fatty acids, especially the C22 and C24 acid homologues. Water deficit caused a 26.9% increase in total waxes on Shandong leaves, due mainly to increased C22 and C24 acids; and caused 10.2% more wax on Yukon, due mainly to an increase in wax alkanes. Total cutin monomers on non-stressed leaves of Yukon were 58.3% higher than on Shandong. Water deficit caused a 28.2% increase in total cutin monomers on Shandong, whereas total cutin monomers were not induced on Yukon. With or without stress, more abundant cuticle lipids were generally associated with lower water loss rates, lower chlorophyll efflux rates and an extended time before water deficit-induced wilting. In response to water deficit, Shandong showed elevated transcription of genes encoding elongase subunits, consistent with the higher stress induction of acids by Shandong. Yukon's higher induction of CER1 and CER3 transcripts may explain why alkanes increased most on Yukon after water deficit. Eutrema, with its diverse cuticle lipids and responsiveness, provides a valuable genetic resource for identifying new genes and alleles effecting cuticle metabolism, and lays groundwork for studies of the cuticle's role in extreme stress tolerance.
Collapse
Affiliation(s)
- Xiaojing Xu
- Department of Biological Sciences, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | | | | | | | | | | | | |
Collapse
|
254
|
Klähn S, Baumgartner D, Pfreundt U, Voigt K, Schön V, Steglich C, Hess WR. Alkane Biosynthesis Genes in Cyanobacteria and Their Transcriptional Organization. Front Bioeng Biotechnol 2014; 2:24. [PMID: 25022427 PMCID: PMC4094844 DOI: 10.3389/fbioe.2014.00024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/26/2014] [Indexed: 12/26/2022] Open
Abstract
In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl–acyl carrier protein reductase and aldehyde deformylating oxygenase. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short-chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado) and sll0209 (aar), which give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313, and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in cyanobacteria.
Collapse
Affiliation(s)
- Stephan Klähn
- Genetics and Experimental Bioinformatics, Institute of Biology 3, Faculty of Biology, University of Freiburg , Freiburg , Germany
| | - Desirée Baumgartner
- Genetics and Experimental Bioinformatics, Institute of Biology 3, Faculty of Biology, University of Freiburg , Freiburg , Germany
| | - Ulrike Pfreundt
- Genetics and Experimental Bioinformatics, Institute of Biology 3, Faculty of Biology, University of Freiburg , Freiburg , Germany
| | - Karsten Voigt
- Genetics and Experimental Bioinformatics, Institute of Biology 3, Faculty of Biology, University of Freiburg , Freiburg , Germany
| | - Verena Schön
- Genetics and Experimental Bioinformatics, Institute of Biology 3, Faculty of Biology, University of Freiburg , Freiburg , Germany
| | - Claudia Steglich
- Genetics and Experimental Bioinformatics, Institute of Biology 3, Faculty of Biology, University of Freiburg , Freiburg , Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Institute of Biology 3, Faculty of Biology, University of Freiburg , Freiburg , Germany
| |
Collapse
|
255
|
Singleton C, Howard TP, Smirnoff N. Synthetic metabolons for metabolic engineering. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1947-1954. [PMID: 24591054 DOI: 10.1093/jxb/eru050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
It has been proposed that enzymes can associate into complexes (metabolons) that increase the efficiency of metabolic pathways by channelling substrates between enzymes. Metabolons may increase flux by increasing the local concentration of intermediates, decreasing the concentration of enzymes needed to maintain a given flux, directing the products of a pathway to a specific subcellular location or minimizing the escape of reactive intermediates. Metabolons can be formed by relatively loose non-covalent protein-protein interaction, anchorage to membranes, and (in bacteria) by encapsulation of enzymes in protein-coated microcompartments. Evidence that non-coated metabolons are effective at channelling substrates is scarce and difficult to obtain. In plants there is strong evidence that small proportions of glycolytic enzymes are associated with the outside of mitochondria and are effective in substrate channelling. More recently, synthetic metabolons, in which enzymes are scaffolded to synthetic proteins or nucleic acids, have been expressed in microorganisms and these provide evidence that scaffolded enzymes are more effective than free enzymes for metabolic engineering. This provides experimental evidence that metabolons may have a general advantage and opens the way to improving the outcome of metabolic engineering in plants by including synthetic metabolons in the toolbox.
Collapse
Affiliation(s)
- Chloe Singleton
- Biosciences, College of Environmental and Life Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | | | | |
Collapse
|
256
|
Go YS, Kim H, Kim HJ, Suh MC. Arabidopsis Cuticular Wax Biosynthesis Is Negatively Regulated by the DEWAX Gene Encoding an AP2/ERF-Type Transcription Factor. THE PLANT CELL 2014; 26:1666-1680. [PMID: 24692420 PMCID: PMC4036578 DOI: 10.1105/tpc.114.123307] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/10/2014] [Accepted: 03/18/2014] [Indexed: 05/18/2023]
Abstract
The aerial parts of plants are protected from desiccation and other stress by surface cuticular waxes. The total cuticular wax loads and the expression of wax biosynthetic genes are significantly downregulated in Arabidopsis thaliana under dark conditions. We isolated Decrease Wax Biosynthesis (DEWAX), which encodes an AP2/ERF-type transcription factor that is preferentially expressed in the epidermis and induced by darkness. Disruption of DEWAX leads to an increase in total leaf and stem wax loads, and the excess wax phenotype of dewax was restored to wild type levels in complementation lines. Moreover, overexpression of DEWAX resulted in a reduction in total wax loads in leaves and stems compared with the wild type and altered the ultrastructure of cuticular layers. DEWAX negatively regulates the expression of alkane-forming enzyme, long-chain acyl-CoA synthetase, ATP citrate lyase A subunit, enoyl-CoA reductase, and fatty acyl-CoA reductase, and chromatin immunoprecipitation analysis suggested that DEWAX directly interacts with the promoters of wax biosynthesis genes. Cuticular wax biosynthesis is negatively regulated twice a day by the expression of DEWAX, throughout the night and at stomata closing. Significantly higher levels (10- to 100-fold) of DEWAX transcripts were found in leaves than in stems, suggesting that DEWAX-mediated transcriptional repression may be an additional mechanism contributing to the different total wax loads in leaves and stems.
Collapse
Affiliation(s)
- Young Sam Go
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Hyojin Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Hae Jin Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| |
Collapse
|
257
|
Go YS, Kim H, Kim HJ, Suh MC. Arabidopsis Cuticular Wax Biosynthesis Is Negatively Regulated by the DEWAX Gene Encoding an AP2/ERF-Type Transcription Factor. THE PLANT CELL 2014. [PMID: 24692420 DOI: 10.1105/tpc.114123307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The aerial parts of plants are protected from desiccation and other stress by surface cuticular waxes. The total cuticular wax loads and the expression of wax biosynthetic genes are significantly downregulated in Arabidopsis thaliana under dark conditions. We isolated Decrease Wax Biosynthesis (DEWAX), which encodes an AP2/ERF-type transcription factor that is preferentially expressed in the epidermis and induced by darkness. Disruption of DEWAX leads to an increase in total leaf and stem wax loads, and the excess wax phenotype of dewax was restored to wild type levels in complementation lines. Moreover, overexpression of DEWAX resulted in a reduction in total wax loads in leaves and stems compared with the wild type and altered the ultrastructure of cuticular layers. DEWAX negatively regulates the expression of alkane-forming enzyme, long-chain acyl-CoA synthetase, ATP citrate lyase A subunit, enoyl-CoA reductase, and fatty acyl-CoA reductase, and chromatin immunoprecipitation analysis suggested that DEWAX directly interacts with the promoters of wax biosynthesis genes. Cuticular wax biosynthesis is negatively regulated twice a day by the expression of DEWAX, throughout the night and at stomata closing. Significantly higher levels (10- to 100-fold) of DEWAX transcripts were found in leaves than in stems, suggesting that DEWAX-mediated transcriptional repression may be an additional mechanism contributing to the different total wax loads in leaves and stems.
Collapse
Affiliation(s)
- Young Sam Go
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Hyojin Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Hae Jin Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| |
Collapse
|
258
|
McFarlane HE, Watanabe Y, Yang W, Huang Y, Ohlrogge J, Samuels AL. Golgi- and trans-Golgi network-mediated vesicle trafficking is required for wax secretion from epidermal cells. PLANT PHYSIOLOGY 2014; 164:1250-60. [PMID: 24468625 PMCID: PMC3938617 DOI: 10.1104/pp.113.234583] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/16/2014] [Indexed: 05/18/2023]
Abstract
Lipid secretion from epidermal cells to the plant surface is essential to create the protective plant cuticle. Cuticular waxes are unusual secretory products, consisting of a variety of highly hydrophobic compounds including saturated very-long-chain alkanes, ketones, and alcohols. These compounds are synthesized in the endoplasmic reticulum (ER) but must be trafficked to the plasma membrane for export by ATP-binding cassette transporters. To test the hypothesis that wax components are trafficked via the endomembrane system and packaged in Golgi-derived secretory vesicles, Arabidopsis (Arabidopsis thaliana) stem wax secretion was assayed in a series of vesicle-trafficking mutants, including gnom like1-1 (gnl1-1), transport particle protein subunit120-4, and echidna (ech). Wax secretion was dependent upon GNL1 and ECH. Independent of secretion phenotypes, mutants with altered ER morphology also had decreased wax biosynthesis phenotypes, implying that the biosynthetic capacity of the ER is closely related to its structure. These results provide genetic evidence that wax export requires GNL1- and ECH-dependent endomembrane vesicle trafficking to deliver cargo to plasma membrane-localized ATP-binding cassette transporters.
Collapse
|
259
|
Shimizu N, Naito M, Mori N, Kuwahara Y. De novo biosynthesis of linoleic acid and its conversion to the hydrocarbon (Z,Z)-6,9-heptadecadiene in the astigmatid mite, Carpoglyphus lactis: incorporation experiments with 13C-labeled glucose. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 45:51-57. [PMID: 24333472 DOI: 10.1016/j.ibmb.2013.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 06/03/2023]
Abstract
De novo biosynthesis of linoleic acid (LA) and its conversion to (Z,Z)-6,9-heptadecadiene were examined in Carpoglyphus lactis (Acarina, Carpoglyphidae). Experiments involving (13)C-administration using [1-(13)C]-d-glucose revealed that (13)C atoms were incorporated into LA of total lipid extracted from the mite, resulting in labeling of all even-numbered carbons. This result demonstrated that LA was produced from (13)C-labeled acetyl-CoA, which is indicative of direct de novo biosynthesis. In these feeding experiments involving [1-(13)C]-D-glucose, (13)C atoms were also incorporated into (Z,Z)-6,9-heptadecadiene, which is one of the major secretory components in the mite. The labeling pattern of (Z,Z)-6,9-heptadecadiene at odd-numbered carbons agreed well with that of LA after loss of the carboxyl carbon. It was concluded that the mites could stably convert LA into (Z,Z)-6,9-heptadecadiene without the dietary requirement of this essential fatty acid.
Collapse
Affiliation(s)
- Nobuhiro Shimizu
- Faculty of Bioenvironmental Science, Kyoto Gakuen University, 1-1 Nanjo, Sogabe, Kameoka 621-8555, Japan.
| | - Michiya Naito
- Faculty of Bioenvironmental Science, Kyoto Gakuen University, 1-1 Nanjo, Sogabe, Kameoka 621-8555, Japan
| | - Naoki Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yasumasa Kuwahara
- Asano Active Enzyme Molecule Project, JST, ERATO, Kyoto Brunch, Kyoto 602-0841, Japan; Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
260
|
Borisjuk N, Hrmova M, Lopato S. Transcriptional regulation of cuticle biosynthesis. Biotechnol Adv 2014; 32:526-40. [PMID: 24486292 DOI: 10.1016/j.biotechadv.2014.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/08/2014] [Accepted: 01/23/2014] [Indexed: 12/12/2022]
Abstract
Plant cuticle is the hydrophobic protection layer that covers aerial plant organs and plays a pivotal role during plant development and interactions of plants with the environment. The mechanical structure and chemical composition of cuticle lipids and other secondary metabolites vary considerably between plant species, and in response to environmental stimuli and stresses. As the cuticle plays an important role in responses of plants to major abiotic stresses such as drought and high salinity, close attention has been paid to molecular processes underlying the stress-induced biosynthesis of cuticle components. This review addresses the genetic networks responsible for cuticle formation and in particular highlights the role of transcription factors that regulate cuticle formation in response to abiotic stresses.
Collapse
Affiliation(s)
- Nikolai Borisjuk
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia.
| | - Maria Hrmova
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia.
| | - Sergiy Lopato
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|
261
|
Ménard R, Verdier G, Ors M, Erhardt M, Beisson F, Shen WH. Histone H2B Monoubiquitination is Involved in the Regulation of Cutin and Wax Composition in Arabidopsis thaliana. ACTA ACUST UNITED AC 2014; 55:455-66. [DOI: 10.1093/pcp/pct182] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
262
|
Nawrath C, Schreiber L, Franke RB, Geldner N, Reina-Pinto JJ, Kunst L. Apoplastic diffusion barriers in Arabidopsis. THE ARABIDOPSIS BOOK 2013; 11:e0167. [PMID: 24465172 PMCID: PMC3894908 DOI: 10.1199/tab.0167] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented.
Collapse
Affiliation(s)
- Christiane Nawrath
- University of Lausanne, Department of Plant Molecular Biology, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Lukas Schreiber
- University of Bonn, Department of Ecophysiology of Plants, Institute of Cellular and Molecular Botany (IZMB), Kirschallee 1, D-53115 Bonn, Germany
| | - Rochus Benni Franke
- University of Bonn, Department of Ecophysiology of Plants, Institute of Cellular and Molecular Botany (IZMB), Kirschallee 1, D-53115 Bonn, Germany
| | - Niko Geldner
- University of Lausanne, Department of Plant Molecular Biology, Biophore Building, CH-1015 Lausanne, Switzerland
| | - José J. Reina-Pinto
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM-UMA-CSIC), Department of Plant Breeding, Estación Experimental ‘La Mayora’. 29750 Algarrobo-Costa. Málaga. Spain
| | - Ljerka Kunst
- University of British Columbia, Department of Botany, Vancouver, B.C. V6T 1Z4, Canada
| |
Collapse
|
263
|
Pu Y, Gao J, Guo Y, Liu T, Zhu L, Xu P, Yi B, Wen J, Tu J, Ma C, Fu T, Zou J, Shen J. A novel dominant glossy mutation causes suppression of wax biosynthesis pathway and deficiency of cuticular wax in Brassica napus. BMC PLANT BIOLOGY 2013; 13:215. [PMID: 24330756 PMCID: PMC3881019 DOI: 10.1186/1471-2229-13-215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/05/2013] [Indexed: 05/08/2023]
Abstract
BACKGROUND The aerial parts of land plants are covered with cuticular waxes that limit non-stomatal water loss and gaseous exchange, and protect plants from ultraviolet radiation and pathogen attack. This is the first report on the characterization and genetic mapping of a novel dominant glossy mutant (BnaA.GL) in Brassica napus. RESULTS Transmission electron microscopy revealed that the cuticle ultrastructure of GL mutant leaf and stem were altered dramatically compared with that of wide type (WT). Scanning electron microscopy corroborated the reduction of wax on the leaf and stem surface. A cuticular wax analysis of the GL mutant leaves further confirmed the drastic decrease in the total wax content, and a wax compositional analysis revealed an increase in aldehydes but a severe decrease in alkanes, ketones and secondary alcohols. These results suggested a likely blockage of the decarbonylation step in the wax biosynthesis pathway. Genetic mapping narrowed the location of the BnaA.GL gene to the end of A9 chromosome. A single-nucleotide polymorphism (SNP) chip assay in combination with bulk segregant analysis (BSA) also located SNPs in the same region. Two SNPs, two single sequence repeat (SSR) markers and one IP marker were located on the flanking region of the BnaA.GL gene at a distance of 0.6 cM. A gene homologous to ECERIFERUM1 (CER1) was located in the mapped region. A cDNA microarray chip assay revealed coordinated down regulation of genes encoding enzymes of the cuticular wax biosynthetic pathway in the glossy mutant, with BnCER1 being one of the most severely suppressed genes. CONCLUSIONS Our results indicated that surface wax biosynthesis is broadly affected in the glossy mutant due to the suppression of the BnCER1 and other wax-related genes. These findings offer novel clues for elucidating the molecular basis of the glossy phenotype.
Collapse
Affiliation(s)
- Yuanyuan Pu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanli Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lixia Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jitao Zou
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0 W9, Canada
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
264
|
Oshima Y, Mitsuda N. The MIXTA-like transcription factor MYB16 is a major regulator of cuticle formation in vegetative organs. PLANT SIGNALING & BEHAVIOR 2013; 8:e26826. [PMID: 24169067 PMCID: PMC4091352 DOI: 10.4161/psb.26826] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 05/18/2023]
Abstract
Cuticle secreted on the surface of the epidermis of aerial organs protects plants from the external environment. We recently found that Arabidopsis MIXTA-like R2R3-MYB family members MYB16 and MYB106 regulate cuticle formation in reproductive organs and trichomes. However, the artificial miRNA (amiRNA)-mediated knockdown plants showed no clear phenotypic abnormality in vegetative tissues. In this study, we used RNA interference (RNAi) targeting MYB16 to produce plants with reduced expression of both MYB16 and MYB106. The rosette leaves of RNAi plants showed more severe permeable cuticle phenotypes than the myb106 mutants expressing the MYB16 amiRNA in the previous study. The RNAi plants also showed reduced expression of cuticle biosynthesis genes LACERATA and ECERIFERUM1. By contrast, expression of a gain-of-function MYB16 construct induced over-accumulation of waxy substances on leaves. These results suggest that MYB16 functions as a major regulator of cuticle formation in vegetative organs, in addition to its effect in reproductive organs and trichomes.
Collapse
|
265
|
Marsh ENG, Waugh MW. Aldehyde Decarbonylases: Enigmatic Enzymes of Hydrocarbon Biosynthesis. ACS Catal 2013; 3. [PMID: 24319622 DOI: 10.1021/cs400637t] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- E. Neil G. Marsh
- Department of Chemistry and ‡Department of
Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Matthew W. Waugh
- Department of Chemistry and ‡Department of
Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
266
|
Microbial production of short-chain alkanes. Nature 2013; 502:571-4. [DOI: 10.1038/nature12536] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/08/2013] [Indexed: 12/19/2022]
|
267
|
Yeats TH, Rose JK. The formation and function of plant cuticles. PLANT PHYSIOLOGY 2013; 163:5-20. [PMID: 23893170 PMCID: PMC3762664 DOI: 10.1104/pp.113.222737] [Citation(s) in RCA: 715] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/25/2013] [Indexed: 05/18/2023]
Abstract
The plant cuticle is an extracellular hydrophobic layer that covers the aerial epidermis of all land plants, providing protection against desiccation and external environmental stresses. The past decade has seen considerable progress in assembling models for the biosynthesis of its two major components, the polymer cutin and cuticular waxes. Most recently, two breakthroughs in the long-sought molecular bases of alkane formation and polyester synthesis have allowed construction of nearly complete biosynthetic pathways for both waxes and cutin. Concurrently, a complex regulatory network controlling the synthesis of the cuticle is emerging. It has also become clear that the physiological role of the cuticle extends well beyond its primary function as a transpiration barrier, playing important roles in processes ranging from development to interaction with microbes. Here, we review recent progress in the biochemistry and molecular biology of cuticle synthesis and function and highlight some of the major questions that will drive future research in this field.
Collapse
Affiliation(s)
| | - Jocelyn K.C. Rose
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
268
|
Yeats TH, Rose JKC. The formation and function of plant cuticles. PLANT PHYSIOLOGY 2013; 163:5-20. [PMID: 23893170 DOI: 10.2307/23598549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plant cuticle is an extracellular hydrophobic layer that covers the aerial epidermis of all land plants, providing protection against desiccation and external environmental stresses. The past decade has seen considerable progress in assembling models for the biosynthesis of its two major components, the polymer cutin and cuticular waxes. Most recently, two breakthroughs in the long-sought molecular bases of alkane formation and polyester synthesis have allowed construction of nearly complete biosynthetic pathways for both waxes and cutin. Concurrently, a complex regulatory network controlling the synthesis of the cuticle is emerging. It has also become clear that the physiological role of the cuticle extends well beyond its primary function as a transpiration barrier, playing important roles in processes ranging from development to interaction with microbes. Here, we review recent progress in the biochemistry and molecular biology of cuticle synthesis and function and highlight some of the major questions that will drive future research in this field.
Collapse
Affiliation(s)
- Trevor H Yeats
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
269
|
Gapper NE, McQuinn RP, Giovannoni JJ. Molecular and genetic regulation of fruit ripening. PLANT MOLECULAR BIOLOGY 2013; 82:575-91. [PMID: 23585213 DOI: 10.1007/s11103-013-0050-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/23/2013] [Indexed: 05/21/2023]
Abstract
Fleshy fruit undergo a novel developmental program that ends in the irreversible process of ripening and eventual tissue senescence. During this maturation process, fruit undergo numerous physiological, biochemical and structural alterations, making them more attractive to seed dispersal organisms. In addition, advanced or over-ripening and senescence, especially through tissue softening and eventual decay, render fruit susceptible to invasion by opportunistic pathogens. While ripening and senescence are often used interchangeably, the specific metabolic activities of each would suggest that ripening is a distinct process of fleshy fruits that precedes and may predispose the fruit to subsequent senescence.
Collapse
Affiliation(s)
- Nigel E Gapper
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
270
|
Ling H, Chen B, Kang A, Lee JM, Chang MW. Transcriptome response to alkane biofuels in Saccharomyces cerevisiae: identification of efflux pumps involved in alkane tolerance. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:95. [PMID: 23826995 PMCID: PMC3717029 DOI: 10.1186/1754-6834-6-95] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/19/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Hydrocarbon alkanes have been recently considered as important next-generation biofuels because microbial production of alkane biofuels was demonstrated. However, the toxicity of alkanes to microbial hosts can possibly be a bottleneck for high productivity of alkane biofuels. To tackle this toxicity issue, it is essential to understand molecular mechanisms of interactions between alkanes and microbial hosts, and to harness these mechanisms to develop microbial host strains with improved tolerance against alkanes. In this study, we aimed to improve the tolerance of Saccharomyces cerevisiae, a model eukaryotic host of industrial significance, to alkane biofuels by exploiting cellular mechanisms underlying alkane response. RESULTS To this end, we first confirmed that nonane (C9), decane (C10), and undecane (C11) were significantly toxic and accumulated in S. cerevisiae. Transcriptome analyses suggested that C9 and C10 induced a range of cellular mechanisms such as efflux pumps, membrane modification, radical detoxification, and energy supply. Since efflux pumps could possibly aid in alkane secretion, thereby reducing the cytotoxicity, we formed the hypothesis that those induced efflux pumps could contribute to alkane export and tolerance. In support of this hypothesis, we demonstrated the roles of the efflux pumps Snq2p and Pdr5p in reducing intracellular levels of C10 and C11, as well as enhancing tolerance levels against C10 and C11. This result provided the evidence that Snq2p and Pdr5p were associated with alkane export and tolerance in S. cerevisiae. CONCLUSIONS Here, we investigated the cellular mechanisms of S. cerevisiae response to alkane biofuels at a systems level through transcriptome analyses. Based on these mechanisms, we identified efflux pumps involved in alkane export and tolerance in S. cerevisiae. We believe that the results here provide valuable insights into designing microbial engineering strategies to improve cellular tolerance for highly efficient alkane biofuel production.
Collapse
Affiliation(s)
- Hua Ling
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Nanyang 637459, Singapore
| | - Binbin Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Nanyang 637459, Singapore
| | - Aram Kang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Nanyang 637459, Singapore
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Nanyang 637459, Singapore
| | - Matthew Wook Chang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Nanyang 637459, Singapore
| |
Collapse
|
271
|
Kim J, Jung JH, Lee SB, Go YS, Kim HJ, Cahoon R, Markham JE, Cahoon EB, Suh MC. Arabidopsis 3-ketoacyl-coenzyme a synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. PLANT PHYSIOLOGY 2013; 162:567-80. [PMID: 23585652 PMCID: PMC3668053 DOI: 10.1104/pp.112.210450] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 04/09/2013] [Indexed: 05/18/2023]
Abstract
Very-long-chain fatty acids (VLCFAs) with chain lengths from 20 to 34 carbons are involved in diverse biological functions such as membrane constituents, a surface barrier, and seed storage compounds. The first step in VLCFA biosynthesis is the condensation of two carbons to an acyl-coenzyme A, which is catalyzed by 3-ketoacyl-coenzyme A synthase (KCS). In this study, amino acid sequence homology and the messenger RNA expression patterns of 21 Arabidopsis (Arabidopsis thaliana) KCSs were compared. The in planta role of the KCS9 gene, showing higher expression in stem epidermal peels than in stems, was further investigated. The KCS9 gene was ubiquitously expressed in various organs and tissues, including roots, leaves, and stems, including epidermis, silique walls, sepals, the upper portion of the styles, and seed coats, but not in developing embryos. The fluorescent signals of the KCS9::enhanced yellow fluorescent protein construct were merged with those of BrFAD2::monomeric red fluorescent protein, which is an endoplasmic reticulum marker in tobacco (Nicotiana benthamiana) epidermal cells. The kcs9 knockout mutants exhibited a significant reduction in C24 VLCFAs but an accumulation of C20 and C22 VLCFAs in the analysis of membrane and surface lipids. The mutant phenotypes were rescued by the expression of KCS9 under the control of the cauliflower mosaic virus 35S promoter. Taken together, these data demonstrate that KCS9 is involved in the elongation of C22 to C24 fatty acids, which are essential precursors for the biosynthesis of cuticular waxes, aliphatic suberins, and membrane lipids, including sphingolipids and phospholipids. Finally, possible roles of unidentified KCSs are discussed by combining genetic study results and gene expression data from multiple Arabidopsis KCSs.
Collapse
Affiliation(s)
- Juyoung Kim
- Department of Bioenergy Science and Technology (J.K., J.H.J., S.B.L., H.J.K., M.C.S.) and Department of Plant Biotechnology (Y.S.G.), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500–757, Republic of Korea; and
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (R.C., J.E.M., E.B.C.)
| | - Jin Hee Jung
- Department of Bioenergy Science and Technology (J.K., J.H.J., S.B.L., H.J.K., M.C.S.) and Department of Plant Biotechnology (Y.S.G.), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500–757, Republic of Korea; and
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (R.C., J.E.M., E.B.C.)
| | - Saet Buyl Lee
- Department of Bioenergy Science and Technology (J.K., J.H.J., S.B.L., H.J.K., M.C.S.) and Department of Plant Biotechnology (Y.S.G.), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500–757, Republic of Korea; and
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (R.C., J.E.M., E.B.C.)
| | - Young Sam Go
- Department of Bioenergy Science and Technology (J.K., J.H.J., S.B.L., H.J.K., M.C.S.) and Department of Plant Biotechnology (Y.S.G.), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500–757, Republic of Korea; and
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (R.C., J.E.M., E.B.C.)
| | | | - Rebecca Cahoon
- Department of Bioenergy Science and Technology (J.K., J.H.J., S.B.L., H.J.K., M.C.S.) and Department of Plant Biotechnology (Y.S.G.), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500–757, Republic of Korea; and
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (R.C., J.E.M., E.B.C.)
| | - Jonathan E. Markham
- Department of Bioenergy Science and Technology (J.K., J.H.J., S.B.L., H.J.K., M.C.S.) and Department of Plant Biotechnology (Y.S.G.), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500–757, Republic of Korea; and
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (R.C., J.E.M., E.B.C.)
| | - Edgar B. Cahoon
- Department of Bioenergy Science and Technology (J.K., J.H.J., S.B.L., H.J.K., M.C.S.) and Department of Plant Biotechnology (Y.S.G.), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500–757, Republic of Korea; and
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588 (R.C., J.E.M., E.B.C.)
| | | |
Collapse
|
272
|
Tran F, Penniket C, Patel RV, Provart NJ, Laroche A, Rowland O, Robert LS. Developmental transcriptional profiling reveals key insights into Triticeae reproductive development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:971-88. [PMID: 23581995 DOI: 10.1111/tpj.12206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 05/25/2023]
Abstract
Despite their importance, there remains a paucity of large-scale gene expression-based studies of reproductive development in species belonging to the Triticeae. As a first step to address this deficiency, a gene expression atlas of triticale reproductive development was generated using the 55K Affymetrix GeneChip(®) wheat genome array. The global transcriptional profiles of the anther/pollen, ovary and stigma were analyzed at concurrent developmental stages, and co-expressed as well as preferentially expressed genes were identified. Data analysis revealed both novel and conserved regulatory factors underlying Triticeae floral development and function. This comprehensive resource rests upon detailed gene annotations, and the expression profiles are readily accessible via a web browser.
Collapse
Affiliation(s)
- Frances Tran
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | | | | | | | | | | | | |
Collapse
|
273
|
Zhou L, Ni E, Yang J, Zhou H, Liang H, Li J, Jiang D, Wang Z, Liu Z, Zhuang C. Rice OsGL1-6 is involved in leaf cuticular wax accumulation and drought resistance. PLoS One 2013; 8:e65139. [PMID: 23741473 PMCID: PMC3669293 DOI: 10.1371/journal.pone.0065139] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/23/2013] [Indexed: 01/08/2023] Open
Abstract
Cuticular wax is a class of organic compounds that comprises the outermost layer of plant surfaces. Plant cuticular wax, the last barrier of self-defense, plays an important role in plant growth and development. The OsGL1-6 gene, a member of the fatty aldehyde decarbonylase gene family, is highly homologous to Arabidopsis CER1, which is involved in cuticular wax biosynthesis. However, whether OsGL1-6 participates in cuticular wax biosynthesis remains unknown. In this study, an OsGL1-6 antisense-RNA vector driven by its own promoter was constructed and introduced into the rice variety Zhonghua11 by Agrobacterium-mediated transformation to obtain several independent transgenic plants with decreased OsGL1-6 expression. These OsGL1-6 antisense-RNA transgenic plants showed droopy leaves at the booting stage, significantly decreased leaf cuticular wax deposition, thinner cuticle membrane, increased chlorophyll leaching and water loss rates, and enhanced drought sensitivity. The OsGL1-6 gene was constitutively expressed in all examined organs and was very highly expressed in leaf epidermal cells and vascular bundles. The transient expression of OsGL1-6-GFP fusion indicated that OsGL1-6 is localized in the endoplasmic reticulum. Qualitative and quantitative analysis of the wax composition using gas chromatography-mass spectrometry revealed a significantly reduced total cuticular wax load on the leaf blades of the OsGL1-6 antisense-RNA transgenic plants as well as markedly decreased alkane and aldehyde contents. Their primary alcohol contents increased significantly compared with those in the wild type plants, suggesting that OsGL1-6 is associated with the decarbonylation pathways in wax biosynthesis. We propose that OsGL1-6 is involved in the accumulation of leaf cuticular wax and directly impacts drought resistance in rice.
Collapse
Affiliation(s)
- Lingyan Zhou
- Laboratory Center of Basic Biology and Biotechnology, Education Department of Guangdong Province, College of Life Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, People’s Republic of China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People’s Republic of China
| | - Erdong Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People’s Republic of China
| | - Jiawei Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People’s Republic of China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People’s Republic of China
| | - Hong Liang
- Laboratory Center of Basic Biology and Biotechnology, Education Department of Guangdong Province, College of Life Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, People’s Republic of China
| | - Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People’s Republic of China
| | - Dagang Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhonghua Wang
- College of Agronomy, Northwest A&F University, Yangling, Shanxi, People’s Republic of China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People’s Republic of China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
274
|
Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proc Natl Acad Sci U S A 2013; 110:7636-41. [PMID: 23610415 DOI: 10.1073/pnas.1215966110] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Biofuels are the most immediate, practical solution for mitigating dependence on fossil hydrocarbons, but current biofuels (alcohols and biodiesels) require significant downstream processing and are not fully compatible with modern, mass-market internal combustion engines. Rather, the ideal biofuels are structurally and chemically identical to the fossil fuels they seek to replace (i.e., aliphatic n- and iso-alkanes and -alkenes of various chain lengths). Here we report on production of such petroleum-replica hydrocarbons in Escherichia coli. The activity of the fatty acid (FA) reductase complex from Photorhabdus luminescens was coupled with aldehyde decarbonylase from Nostoc punctiforme to use free FAs as substrates for alkane biosynthesis. This combination of genes enabled rational alterations to hydrocarbon chain length (Cn) and the production of branched alkanes through upstream genetic and exogenous manipulations of the FA pool. Genetic components for targeted manipulation of the FA pool included expression of a thioesterase from Cinnamomum camphora (camphor) to alter alkane Cn and expression of the branched-chain α-keto acid dehydrogenase complex and β-keto acyl-acyl carrier protein synthase III from Bacillus subtilis to synthesize branched (iso-) alkanes. Rather than simply reconstituting existing metabolic routes to alkane production found in nature, these results demonstrate the ability to design and implement artificial molecular pathways for the production of renewable, industrially relevant fuel molecules.
Collapse
|
275
|
Rabinovitch-Deere CA, Oliver JWK, Rodriguez GM, Atsumi S. Synthetic biology and metabolic engineering approaches to produce biofuels. Chem Rev 2013; 113:4611-32. [PMID: 23488968 DOI: 10.1021/cr300361t] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
276
|
Sakuradani E, Zhao L, Haslam TM, Kunst L. The CER22 gene required for the synthesis of cuticular wax alkanes in Arabidopsis thaliana is allelic to CER1. PLANTA 2013; 237:731-8. [PMID: 23117394 DOI: 10.1007/s00425-012-1791-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/17/2012] [Indexed: 05/25/2023]
Abstract
Cuticular waxes coat the primary aerial tissues of land plants and serve as a protective barrier against non-stomatal water loss and various environmental stresses. Alkanes are the most prominent cuticular wax components and are thought to have an important role in controlling permeability of the cuticle. However, alkane biosynthesis in plants is not well understood. Arabidopsis eceriferum1 (cer1) and cer22 mutants show dramatic reductions in alkane, secondary alcohol, and ketone content, and concomitant increases in aldehyde content, suggesting that one or both of these genes encode an alkane-forming enzyme. To determine the biochemical identity of CER22, and to investigate the relationship between CER1 and CER22 in alkane formation, we mapped the cer22 mutation as a first step to positional cloning. Unexpectedly, mapping revealed linkage of cer22 to markers on chromosome 1 in the vicinity of CER1, and not to markers on chromosome 3 as previously reported. Failure of the cer1-1 and cer22 mutants to complement each other, and the presence of an allele specific mutation in the CER1 gene amplified from cer22 genomic DNA demonstrated that CER22 is identical to CER1. The cer22 mutant was therefore renamed cer1-6. Analyses of CER1 transcript levels, and stem cuticular wax load and composition in the cer1-6 (cer22) line indicated that cer1-6 is a weak mutant allele of CER1. This represents an important step forward in our understanding of alkane synthesis in plants, and will direct future research in the field to focus on the role of CER1 in this process.
Collapse
Affiliation(s)
- Eiji Sakuradani
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | |
Collapse
|
277
|
Lee SB, Suh MC. Recent advances in cuticular wax biosynthesis and its regulation in Arabidopsis. MOLECULAR PLANT 2013; 6:246-9. [PMID: 23253604 DOI: 10.1093/mp/sss159] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Saet Buyl Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea
| | | |
Collapse
|
278
|
Pascal S, Bernard A, Sorel M, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Domergue F, Joubès J. The Arabidopsis cer26 mutant, like the cer2 mutant, is specifically affected in the very long chain fatty acid elongation process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:733-46. [PMID: 23384041 DOI: 10.1111/tpj.12060] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/15/2012] [Accepted: 10/19/2012] [Indexed: 05/20/2023]
Abstract
Plant aerial organs are covered by cuticular waxes, which form a hydrophobic crystal layer that mainly serves as a waterproof barrier. Cuticular wax is a complex mixture of very long chain lipids deriving from fatty acids, predominantly of chain lengths from 26 to 34 carbons, which result from acyl-CoA elongase activity. The biochemical mechanism of elongation is well characterized; however, little is known about the specific proteins involved in the elongation of compounds with more than 26 carbons available as precursors of wax synthesis. In this context, we characterized the three Arabidopsis genes of the CER2-like family: CER2, CER26 and CER26-like . Expression pattern analysis showed that the three genes are differentially expressed in an organ- and tissue-specific manner. Using individual T-DNA insertion mutants, together with a cer2 cer26 double mutant, we characterized the specific impact of the inactivation of the different genes on cuticular waxes. In particular, whereas the cer2 mutation impaired the production of wax components longer than 28 carbons, the cer26 mutant was found to be affected in the production of wax components longer than 30 carbons. The analysis of the acyl-CoA pool in the respective transgenic lines confirmed that inactivation of both genes specifically affects the fatty acid elongation process beyond 26 carbons. Furthermore, ectopic expression of CER26 in transgenic plants demonstrates that CER26 facilitates the elongation of the very long chain fatty acids of 30 carbons or more, with high tissular and substrate specificity.
Collapse
Affiliation(s)
- Stéphanie Pascal
- Laboratoire de Biogenèse Membranaire, Université de Bordeaux, UMR5200, F-33000, Bordeaux, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Chen B, Ling H, Chang MW. Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:21. [PMID: 23402697 PMCID: PMC3598725 DOI: 10.1186/1754-6834-6-21] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/08/2013] [Indexed: 05/15/2023]
Abstract
BACKGROUND Hydrocarbon alkanes, components of major fossil fuels, are considered as next-generation biofuels because their biological production has recently been shown to be possible. However, high-yield alkane production requires robust host cells that are tolerant against alkanes, which exhibit cytotoxicity. In this study, we aimed to improve alkane tolerance in Saccharomyces cerevisiae, a key industrial microbial host, by harnessing heterologous transporters that potentially pump out alkanes. RESULTS To this end, we attempted to exploit ABC transporters in Yarrowia lipolytica based on the observation that it utilizes alkanes as a carbon source. We confirmed the increased transcription of ABC2 and ABC3 transporters upon exposure to a range of alkanes in Y. lipolytica. We then showed that the heterologous expression of ABC2 and ABC3 transporters significantly increased tolerance against decane and undecane in S. cerevisiae through maintaining lower intracellular alkane level. In particular, ABC2 transporter increased the tolerance limit of S. cerevisiae about 80-fold against decane. Furthermore, through site-directed mutagenesis for glutamate (E988 for ABC2, and E989 for ABC3) and histidine (H1020 for ABC2, and H1021 for ABC3), we provided the evidence that glutamate was essential for the activity of ABC2 and ABC3 transporters, with ATP most likely to be hydrolyzed by a catalytic carboxylate mechanism. CONCLUSIONS Here, we demonstrated that transporter engineering through expression of heterologous efflux pumps led to significantly improved tolerance against alkane biofuels in S. cerevisiae. We believe that our results laid the groundwork for developing robust alkane-producing yeast cells through transporter engineering, which will greatly aid in next-generation alkane biofuel production and recovery.
Collapse
Affiliation(s)
- Binbin Chen
- Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Nanyang 637459, Singapore
| | - Hua Ling
- Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Nanyang 637459, Singapore
| | - Matthew Wook Chang
- Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Nanyang 637459, Singapore
| |
Collapse
|
280
|
Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2. Proc Natl Acad Sci U S A 2013; 110:3191-6. [PMID: 23391732 DOI: 10.1073/pnas.1218769110] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biologically produced alkanes represent potential renewable alternatives to petroleum-derived chemicals. A cyanobacterial pathway consisting of acyl-Acyl Carrier Protein reductase and an aldehyde-deformylating oxygenase (ADO) converts acyl-Acyl Carrier Proteins into corresponding n-1 alkanes via aldehyde intermediates in an oxygen-dependent manner (K(m) for O(2), 84 ± 9 µM). In vitro, ADO turned over only three times, but addition of more ADO to exhausted assays resulted in additional product formation. While evaluating the peroxide shunt to drive ADO catalysis, we discovered that ADO is inhibited by hydrogen peroxide (H(2)O(2)) with an apparent K(i) of 16 ± 6 µM and that H(2)O(2) inhibition is of mixed-type with respect to O(2). Supplementing exhausted assays with catalase (CAT) restored ADO activity, demonstrating that inhibition was reversible and dependent on H(2)O(2), which originated from poor coupling of reductant consumption with alkane formation. Kinetic analysis showed that long-chain (C14-C18) substrates follow Michaelis-Menten kinetics, whereas short and medium chains (C8-C12) exhibit substrate inhibition. A bifunctional protein comprising an N-terminal CAT coupled to a C-terminal ADO (CAT-ADO) prevents H(2)O(2) inhibition by converting it to the cosubstrate O(2). Indeed, alkane production by the fusion protein is observed upon addition of H(2)O(2) to an anaerobic reaction mix. In assays, CAT-ADO turns over 225 times versus three times for the native ADO, and its expression in Escherichia coli increases catalytic turnovers per active site by fivefold relative to the expression of native ADO. We propose the term "protection via inhibitor metabolism" for fusion proteins designed to metabolize inhibitors into noninhibitory compounds.
Collapse
|
281
|
Zhang Z, Wang W, Li W. Genetic interactions underlying the biosynthesis and inhibition of β-diketones in wheat and their impact on glaucousness and cuticle permeability. PLoS One 2013; 8:e54129. [PMID: 23349804 PMCID: PMC3547958 DOI: 10.1371/journal.pone.0054129] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/06/2012] [Indexed: 01/27/2023] Open
Abstract
Cuticular wax composition greatly impacts plant responses to dehydration. Two parallel pathways exist in Triticeae for manipulating wax composition: the acyl elongation, reduction, and decarbonylation pathway that is active at the vegetative stage and yields primary alcohols and alkanes, and the β-diketone pathway that predominates at the reproductive stage and synthesizes β-diketones. Variation in glaucousness during the reproductive stage of wheat is mainly controlled by the wax production genes, W1 and W2, and wax inhibitor genes, Iw1 and Iw2. Little is known about the metabolic and physiological effects of the genetic interactions among these genes and their roles in shifting wax composition during plant development. We characterized the effect of W1, W2, Iw1, and Iw2 and analyzed their interaction using a set of six near-isogenic lines (NILs) by metabolic, molecular and physiological approaches. Loss of functional alleles of both W genes or the presence of either Iw gene depletes β-diketones and results in the nonglaucous phenotype. Elimination of β-diketones is compensated for by an increase in aldehydes and primary alcohols in the Iw NILs. Accordingly, transcription of CER4-6, which encodes an alcohol-forming fatty acyl-CoA reductase, was elevated 120-fold in iw1Iw2. CER4-6 was transcribed at much higher levels in seedlings than in adult plants, and showed little difference between the glaucous and nonglaucous NILs, suggesting that Iw2 counteracts the developmental repression of CER4-6 at the reproductive stage. While W1 and W2 redundantly function in β-diketone biosynthesis, a combination of both functional alleles led to the β-diketone hydroxylation. Consistent with this, transcription of MAH1-9, which encodes a mid-chain alkane hydroxylase, increased seven-fold only in W1W2. In parallel with the hydroxyl-β-diketone production patterns, glaucousness was intensified and cuticle permeability was reduced significantly in W1W2 compared to the other NILs. This suggests that both W1 and W2 are required for enhancing drought tolerance.
Collapse
Affiliation(s)
- Zhengzhi Zhang
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, United States of America
| | - Wei Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, United States of America
| | - Wanlong Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, United States of America
- Department of Plant Science, South Dakota State University, Brookings, South Dakota, United States of America
- * E-mail:
| |
Collapse
|
282
|
Bernard A, Joubès J. Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res 2012; 52:110-29. [PMID: 23103356 DOI: 10.1016/j.plipres.2012.10.002] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 11/15/2022]
Abstract
Cuticular waxes and cutin form the cuticle, a hydrophobic layer covering the aerial surfaces of land plants and acting as a protective barrier against environmental stresses. Very-long-chain fatty acid derived compounds that compose the cuticular waxes are produced in the endoplasmic reticulum of epidermal cells before being exported to the environmental face of the epidermis. Twenty years of genetic studies on Arabidopsis thaliana have led to the molecular characterization of enzymes catalyzing major steps in fatty acid elongation and wax biosynthesis. Although transporters required for wax export from the plasma membrane have been identified, intracellular and extracellular traffic remains largely unknown. In accordance with its major function in producing an active waterproof barrier, wax metabolism is up-regulated at the transcriptional level in response to water deficiency. However its developmental regulation is still poorly described. Here, we discuss the present knowledge of wax functions, biosynthesis and transport as well as the regulation of these processes.
Collapse
Affiliation(s)
- Amélie Bernard
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR5200, F-33000 Bordeaux, France.
| | | |
Collapse
|