251
|
Abstract
The molecular mechanisms of K(+) homeostasis are only poorly understood for protozoan parasites. Trypanosoma brucei subsp. parasites, the causative agents of human sleeping sickness and nagana, are strictly extracellular and need to actively concentrate K(+) from their hosts' body fluids. The T. brucei genome contains two putative K(+) channel genes, yet the trypanosomes are insensitive to K(+) antagonists and K(+) channel-blocking agents, and they do not spontaneously depolarize in response to high extracellular K(+) concentrations. However, the trypanosomes are extremely sensitive to K(+) ionophores such as valinomycin. Surprisingly, T. brucei possesses a member of the Trk/HKT superfamily of monovalent cation permeases which so far had only been known from bacteria, archaea, fungi, and plants. The protein was named TbHKT1 and functions as a Na(+)-independent K(+) transporter when expressed in Escherichia coli, Saccharomyces cerevisiae, or Xenopus laevis oocytes. In trypanosomes, TbHKT1 is expressed in both the mammalian bloodstream stage and the Tsetse fly midgut stage; however, RNA interference (RNAi)-mediated silencing of TbHKT1 expression did not produce a growth phenotype in either stage. The presence of HKT genes in trypanosomatids adds a further piece to the enigmatic phylogeny of the Trk/HKT superfamily of K(+) transporters. Parsimonial analysis suggests that the transporters were present in the first eukaryotes but subsequently lost in several of the major eukaryotic lineages, in at least four independent events.
Collapse
|
252
|
Haro R, Bañuelos MA, Rodríguez-Navarro A. High-affinity sodium uptake in land plants. PLANT & CELL PHYSIOLOGY 2010; 51:68-79. [PMID: 19939835 DOI: 10.1093/pcp/pcp168] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
High-affinity Na(+) uptake in plants and its mediation by HKT transporters have been studied in very few species. This study expands the knowledge of high-affinity Na(+) uptake in land plants for both uptake characteristics and involvement of HKT transporters. In non-flowering plants, we analyzed the Na(+) content of wild mosses, carried out experiments on K(+) and Na(+) uptake in the micromolar range of concentrations with the moss Physcomitrella patens and the liverwort Riccia fluitans, studied a Deltahkt1 mutant of P. patens and identified the HKT genes of the lycopodiophyta (clubmoss) Selaginella moellendorffii. In flowering plants we studied Na(+) uptake in the micromolar range of concentrations in 16 crop plant species, identified the HKT transporters that could mediate high-affinity Na(+) uptake in several species of the Triticeae tribe, and described some characteristics of high-affinity Na(+) uptake in other species. Our results suggest that high-affinity Na(+) uptake occurs in most land plants. In very few of them, rice and species in the Triticeae and Aveneae tribes of the Poaceae family, it is probably mediated by HKT transporters. In other plants, high-affinity Na(+) uptake is mediated by one or several transporters whose responses to the presence of K(+) or Ba(2+) are fundamentally different from those of HKT transporters.
Collapse
Affiliation(s)
- Rosario Haro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | |
Collapse
|
253
|
Yao X, Horie T, Xue S, Leung HY, Katsuhara M, Brodsky DE, Wu Y, Schroeder JI. Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. PLANT PHYSIOLOGY 2010; 152:341-55. [PMID: 19889878 PMCID: PMC2799368 DOI: 10.1104/pp.109.145722] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 10/26/2009] [Indexed: 05/18/2023]
Abstract
Na(+) and K(+) homeostasis are crucial for plant growth and development. Two HKT transporter/channel classes have been characterized that mediate either Na(+) transport or Na(+) and K(+) transport when expressed in Xenopus laevis oocytes and yeast. However, the Na(+)/K(+) selectivities of the K(+)-permeable HKT transporters have not yet been studied in plant cells. One study expressing 5' untranslated region-modified HKT constructs in yeast has questioned the relevance of cation selectivities found in heterologous systems for selectivity predictions in plant cells. Therefore, here we analyze two highly homologous rice (Oryza sativa) HKT transporters in plant cells, OsHKT2;1 and OsHKT2;2, that show differential K(+) permeabilities in heterologous systems. Upon stable expression in cultured tobacco (Nicotiana tabacum) Bright-Yellow 2 cells, OsHKT2;1 mediated Na(+) uptake, but little Rb(+) uptake, consistent with earlier studies and new findings presented here in oocytes. In contrast, OsHKT2;2 mediated Na(+)-K(+) cotransport in plant cells such that extracellular K(+) stimulated OsHKT2;2-mediated Na(+) influx and vice versa. Furthermore, at millimolar Na(+) concentrations, OsHKT2;2 mediated Na(+) influx into plant cells without adding extracellular K(+). This study shows that the Na(+)/K(+) selectivities of these HKT transporters in plant cells coincide closely with the selectivities in oocytes and yeast. In addition, the presence of external K(+) and Ca(2+) down-regulated OsHKT2;1-mediated Na(+) influx in two plant systems, Bright-Yellow 2 cells and intact rice roots, and also in Xenopus oocytes. Moreover, OsHKT transporter selectivities in plant cells are shown to depend on the imposed cationic conditions, supporting the model that HKT transporters are multi-ion pores.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (X.Y., T.H., S.X., H.-Y.L., D.E.B., J.I.S.); Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China (X.Y., Y.W.); and Group of Molecular and Functional Plant Biology, Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710–0046, Japan (T.H., M.K.)
| |
Collapse
|
254
|
Ligaba A, Katsuhara M. Insights into the salt tolerance mechanism in barley (Hordeum vulgare) from comparisons of cultivars that differ in salt sensitivity. JOURNAL OF PLANT RESEARCH 2010; 123:105-118. [PMID: 19902321 DOI: 10.1007/s10265-009-0272-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 09/21/2009] [Indexed: 05/28/2023]
Abstract
Although barley (Hordeum vulgare L.) is a salt-tolerant crop, the underlying physiological and molecular mechanisms of salt tolerance remain to be elucidated. Therefore, we investigated the response of salt-tolerant (K305) and salt-sensitive (I743) cultivars to salt stress at both physiological and molecular levels. Salt treatment increased xylem sap osmolarity, which was attributed primarily to a rise in Na(+) and Cl(-) concentration; enhanced accumulation of the ions in shoots; and reduced plant growth more severely in I743 than K305. The concentration of K(+) in roots and shoots decreased during 8 h of salt treatment in both cultivars but with no marked difference between cultivars. Hence, the severe growth reduction in I743 is attributed to the elevated levels of (mainly) Na(+) in shoots. Analysis of gene expression using quantitative RT-PCR showed that transcripts of K(+)-transporters (HvHAK1 and HvAKT1), vacuolar H(+)-ATPase and inorganic pyrophosphatase (HvHVA/68 and HvHVP1) were more abundant in shoots of K305 than in shoots of I743. Expression of HvHAK1 and Na(+)/H(+) antiporters (HvNHX1, HvNHX3 and HvNHX4) was higher in roots of K305 than in I743 with prolonged exposure to salt. Taken together, these results suggest that the better performance of K305 compared to I743 during salt stress may be related to its greater ability to sequester Na(+) into sub-cellular compartments and/or maintain K(+) homeostasis.
Collapse
Affiliation(s)
- Ayalew Ligaba
- Robert Holley Center for Agriculture and Health, US Department of Agriculture, Cornell University, Ithaca, NY 14853-2901, USA.
| | | |
Collapse
|
255
|
Horie T, Hauser F, Schroeder JI. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. TRENDS IN PLANT SCIENCE 2009; 14:660-8. [PMID: 19783197 PMCID: PMC2787891 DOI: 10.1016/j.tplants.2009.08.009] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 08/04/2009] [Accepted: 08/17/2009] [Indexed: 05/17/2023]
Abstract
The salinization of irrigated lands is increasingly detrimental to plant biomass production and agricultural productivity, as most plant species are sensitive to high concentrations of sodium (Na(+)), which causes combined Na(+) toxicity and osmotic stress. Plants have multiple Na(+)-transport systems to circumvent Na(+) toxicity. Essential physiological functions of major Na(+) transporters and their mechanisms mediating salinity resistance have been identified in Arabidopsis , including the AtSOS1, AtNHX and AtHKT1;1 transporters. As we discuss here, recent studies have demonstrated that a class of xylem-parenchyma-expressed Na(+)-permeable plant HKT transporters represent a primary mechanism mediating salt tolerance and Na(+) exclusion from leaves in Arabidopsis, and that major salt-tolerance quantitative trait loci in monocot crop plants are also based on this HKT-mediated mechanism.
Collapse
Affiliation(s)
- Tomoaki Horie
- Group of Molecular and Functional Plant Biology, Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan.
| | | | | |
Collapse
|
256
|
Kugler A, Köhler B, Palme K, Wolff P, Dietrich P. Salt-dependent regulation of a CNG channel subfamily in Arabidopsis. BMC PLANT BIOLOGY 2009; 9:140. [PMID: 19943938 PMCID: PMC2794285 DOI: 10.1186/1471-2229-9-140] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 11/27/2009] [Indexed: 05/20/2023]
Abstract
BACKGROUND In Arabidopsis thaliana, the family of cyclic nucleotide-gated channels (CNGCs) is composed of 20 members. Previous studies indicate that plant CNGCs are involved in the control of growth processes and responses to abiotic and biotic stresses. According to their proposed function as cation entry pathways these channels contribute to cellular cation homeostasis, including calcium and sodium, as well as to stress-related signal transduction. Here, we studied the expression patterns and regulation of CNGC19 and CNGC20, which constitute one of the five CNGC subfamilies. RESULTS GUS, GFP and luciferase reporter assays were used to study the expression of CNGC19 and CNGC20 genes from Arabidopsis thaliana in response to developmental cues and salt stress. CNGC19 and CNGC20 were differentially expressed in roots and shoots. The CNGC19 gene was predominantly active in roots already at early growth stages. Major expression was observed in the phloem. CNGC20 showed highest promoter activity in mesophyll cells surrounding the veins. Its expression increased during development and was maximal in mature and senescent leaves. Both genes were upregulated in the shoot in response to elevated NaCl but not mannitol concentrations. While in the root, CNGC19 did not respond to changes in the salt concentration, in the shoot it was strongly upregulated in the observed time frame (6-72 hours). Salt-induction of CNGC20 was also observed in the shoot, starting already one hour after stress treatment. It occurred with similar kinetics, irrespective of whether NaCl was applied to roots of intact plants or to the petiole of detached leaves. No differences in K and Na contents of the shoots were measured in homozygous T-DNA insertion lines for CNGC19 and CNGC20, respectively, which developed a growth phenotype in the presence of up to 75 mM NaCl similar to that of the wild type. CONCLUSION Together, the results strongly suggest that both channels are involved in the salinity response of different cell types in the shoot. Upon salinity both genes are upregulated within hours. CNGC19 and CNGC20 could assist the plant to cope with toxic effects caused by salt stress, probably by contributing to a re-allocation of sodium within the plant.
Collapse
Affiliation(s)
- Annette Kugler
- Molecular Plant Physiology, Department Biology, University of Erlangen, Erlangen, Germany
| | - Barbara Köhler
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Klaus Palme
- Institute of Biology II/Botany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Patricia Wolff
- Institute of Biology II/Botany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Petra Dietrich
- Molecular Plant Physiology, Department Biology, University of Erlangen, Erlangen, Germany
| |
Collapse
|
257
|
Jabnoune M, Espeout S, Mieulet D, Fizames C, Verdeil JL, Conéjéro G, Rodríguez-Navarro A, Sentenac H, Guiderdoni E, Abdelly C, Véry AA. Diversity in expression patterns and functional properties in the rice HKT transporter family. PLANT PHYSIOLOGY 2009; 150:1955-71. [PMID: 19482918 PMCID: PMC2719131 DOI: 10.1104/pp.109.138008] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 05/23/2009] [Indexed: 05/18/2023]
Abstract
Plant growth under low K(+) availability or salt stress requires tight control of K(+) and Na(+) uptake, long-distance transport, and accumulation. The family of membrane transporters named HKT (for High-Affinity K(+) Transporters), permeable either to K(+) and Na(+) or to Na(+) only, is thought to play major roles in these functions. Whereas Arabidopsis (Arabidopsis thaliana) possesses a single HKT transporter, involved in Na(+) transport in vascular tissues, a larger number of HKT transporters are present in rice (Oryza sativa) as well as in other monocots. Here, we report on the expression patterns and functional properties of three rice HKT transporters, OsHKT1;1, OsHKT1;3, and OsHKT2;1. In situ hybridization experiments revealed overlapping but distinctive and complex expression patterns, wider than expected for such a transporter type, including vascular tissues and root periphery but also new locations, such as osmocontractile leaf bulliform cells (involved in leaf folding). Functional analyses in Xenopus laevis oocytes revealed striking diversity. OsHKT1;1 and OsHKT1;3, shown to be permeable to Na(+) only, are strongly different in terms of affinity for this cation and direction of transport (inward only or reversible). OsHKT2;1 displays diverse permeation modes, Na(+)-K(+) symport, Na(+) uniport, or inhibited states, depending on external Na(+) and K(+) concentrations within the physiological concentration range. The whole set of data indicates that HKT transporters fulfill distinctive roles at the whole plant level in rice, each system playing diverse roles in different cell types. Such a large diversity within the HKT transporter family might be central to the regulation of K(+) and Na(+) accumulation in monocots.
Collapse
Affiliation(s)
- Mehdi Jabnoune
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/INRA/SupAgro-M/UM2, Campus SupAgro-M/INRA, 34060 Montpellier cedex 1, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Møller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. THE PLANT CELL 2009; 21:2163-78. [PMID: 19584143 PMCID: PMC2729596 DOI: 10.1105/tpc.108.064568] [Citation(s) in RCA: 322] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 05/18/2009] [Accepted: 06/09/2009] [Indexed: 05/18/2023]
Abstract
Soil salinity affects large areas of cultivated land, causing significant reductions in crop yield globally. The Na+ toxicity of many crop plants is correlated with overaccumulation of Na+ in the shoot. We have previously suggested that the engineering of Na+ exclusion from the shoot could be achieved through an alteration of plasma membrane Na+ transport processes in the root, if these alterations were cell type specific. Here, it is shown that expression of the Na+ transporter HKT1;1 in the mature root stele of Arabidopsis thaliana decreases Na+ accumulation in the shoot by 37 to 64%. The expression of HKT1;1 specifically in the mature root stele is achieved using an enhancer trap expression system for specific and strong overexpression. The effect in the shoot is caused by the increased influx, mediated by HKT1;1, of Na+ into stelar root cells, which is demonstrated in planta and leads to a reduction of root-to-shoot transfer of Na+. Plants with reduced shoot Na+ also have increased salinity tolerance. By contrast, plants constitutively expressing HKT1;1 driven by the cauliflower mosaic virus 35S promoter accumulated high shoot Na+ and grew poorly. Our results demonstrate that the modification of a specific Na+ transport process in specific cell types can reduce shoot Na+ accumulation, an important component of salinity tolerance of many higher plants.
Collapse
Affiliation(s)
- Inge S Møller
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
259
|
Olías R, Eljakaoui Z, Li J, De Morales PA, Marín-Manzano MC, Pardo JM, Belver A. The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. PLANT, CELL & ENVIRONMENT 2009; 32:904-16. [PMID: 19302170 DOI: 10.1111/j.1365-3040.2009.01971.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have identified a plasma membrane Na(+)/H(+) antiporter gene from tomato (Solanum lycopersicum), SlSOS1, and used heterologous expression in yeast to confirm that SlSOS1 was the functional homolog of AtSOS1. Using post-transcriptional gene silencing, we evaluated the role played by SlSOS1 in long-distance Na(+) transport and salt tolerance of tomato. Tomato was used because of its anatomical structure, more complex than that of Arabidopsis, and its agricultural significance. Transgenic tomato plants with reduced expression of SlSOS1 exhibited reduced growth rate compared to wild-type (WT) plants in saline conditions. This sensitivity correlated with higher accumulation of Na(+) in leaves and roots, but lower contents in stems of silenced plants under salt stress. Differential distribution of Na(+) and lower net Na(+) flux were observed in the xylem sap in the suppressed plants. In addition, K(+) concentration was lower in roots of silenced plants than in WT. Our results demonstrate that SlSOS1 antiporter is not only essential in maintaining ion homeostasis under salinity, but also critical for the partitioning of Na(+) between plant organs. The ability of tomato plants to retain Na(+) in the stems, thus preventing Na(+) from reaching the photosynthetic tissues, is largely dependent on the function of SlSOS1.
Collapse
Affiliation(s)
- Raquel Olías
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
260
|
Luan S, Lan W, Chul Lee S. Potassium nutrition, sodium toxicity, and calcium signaling: connections through the CBL-CIPK network. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:339-46. [PMID: 19501014 DOI: 10.1016/j.pbi.2009.05.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 05/02/2023]
Abstract
Plant roots take up numerous minerals from the soil. Some minerals (e.g., K(+)) are essential nutrients and others (e.g., Na(+)) are toxic for plant growth and development. In addition to the absolute level, the balance among the minerals is critical for their physiological functions. For instance, [K(+)]/[Na(+)] ratio and homeostasis often determine plant growth rate. Either low-K or high-Na in the soil represents a stress condition that severely affects plant life and agricultural production. Earlier observations indicated that higher soil Ca2(+) improve plants growth under low-K or high-Na condition, implying functional interaction among the three cations. Recent studies have begun to delineate the signaling mechanisms underlying such interactions. Either low-K(+) or high-Na(+) can trigger cellular Ca2(+) changes that lead to activation of complex signaling networks. One such network consists of Ca2(+) sensor proteins (e.g., CBLs) interacting with their target kinases (CIPKs). The CBL-CIPK signaling modules interact with and regulate the activity of a number of transporting proteins involved in the uptake and translocation of K(+) and Na(+), maintaining the "balance" of these cations in plants under stress conditions.
Collapse
Affiliation(s)
- Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
261
|
Szczerba MW, Britto DT, Kronzucker HJ. K+ transport in plants: physiology and molecular biology. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:447-66. [PMID: 19217185 DOI: 10.1016/j.jplph.2008.12.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/10/2008] [Accepted: 12/10/2008] [Indexed: 05/06/2023]
Abstract
Potassium (K(+)) is an essential nutrient and the most abundant cation in plant cells. Plants have a wide variety of transport systems for K(+) acquisition, catalyzing K(+) uptake across a wide spectrum of external concentrations, and mediating K(+) movement within the plant as well as its efflux into the environment. K(+) transport responds to variations in external K(+) supply, to the presence of other ions in the root environment, and to a range of plant stresses, via Ca(2+) signaling cascades and regulatory proteins. This review will summarize the molecular identities of known K(+) transporters, and examine how this information supports physiological investigations of K(+) transport and studies of plant stress responses in a changing environment.
Collapse
Affiliation(s)
- Mark W Szczerba
- Department of Plant Sciences, University of California, Davis, 1 Shields Ave., Davis, CA 95616, USA.
| | | | | |
Collapse
|
262
|
Rajendran K, Tester M, Roy SJ. Quantifying the three main components of salinity tolerance in cereals. PLANT, CELL & ENVIRONMENT 2009; 32:237-49. [PMID: 19054352 DOI: 10.1111/j.1365-3040.2008.01916.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salinity stress is a major factor inhibiting cereal yield throughout the world. Tolerance to salinity stress can be considered to contain three main components: Na(+) exclusion, tolerance to Na(+) in the tissues and osmotic tolerance. To date, most experimental work on salinity tolerance in cereals has focused on Na(+) exclusion due in part to its ease of measurement. It has become apparent, however, that Na(+) exclusion is not the sole mechanism for salinity tolerance in cereals, and research needs to expand to study osmotic tolerance and tissue tolerance. Here, we develop assays for high throughput quantification of Na(+) exclusion, Na(+) tissue tolerance and osmotic tolerance in 12 Triticum monococcum accessions, mainly using commercially available image capture and analysis equipment. We show that different lines use different combinations of the three tolerance mechanisms to increase their total salinity tolerance, with a positive correlation observed between a plant's total salinity tolerance and the sum of its proficiency in Na(+) exclusion, osmotic tolerance and tissue tolerance. The assays developed in this study can be easily adapted for other cereals and used in high throughput, forward genetic experiments to elucidate the molecular basis of these components of salinity tolerance.
Collapse
Affiliation(s)
- Karthika Rajendran
- The Australian Centre for Plant Functional Genomics, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | | | | |
Collapse
|
263
|
Abstract
Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.
Collapse
Affiliation(s)
- John M. Ward
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108;
| | - Pascal Mäser
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
264
|
Guo KM, Babourina O, Christopher DA, Borsics T, Rengel Z. The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis. PHYSIOLOGIA PLANTARUM 2008; 134:499-507. [PMID: 18823330 DOI: 10.1111/j.1399-3054.2008.01157.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cyclic nucleotide-gated channels (CNGCs) in the plasma membrane transport K+ and other cations; however, their roles in the response and adaptation of plants to environmental salinity are unclear. Growth, cation contents, salt tolerance and K+ fluxes were assessed in wild-type and two AtCNGC10 antisense lines (A2 and A3) of Arabidopsis thaliana (L.) Heynh. Compared with the wild-type, mature plants of both antisense lines had altered K+ and Na+ concentrations in shoots and were more sensitive to salt stress, as assessed by biomass and Chl fluorescence. The shoots of A2 and A3 plants contained higher Na+ concentrations and significantly higher Na+/K+ ratios compared with wild-type, whereas roots contained higher K+ concentrations and lower Na+/K+ ratios. Four-day-old seedlings of both antisense lines exposed to salt stress had smaller Na+/K+ ratios and longer roots than the wild-type. Under sudden salt treatment, the Na+ efflux was higher and the K+ efflux was smaller in the antisense lines, indicating that AtCNGC10 might function as a channel providing Na+ influx and K+ efflux at the root/soil interface. We conclude that the AtCNGC10 channel is involved in Na+ and K+ transport during cation uptake in roots and in long-distance transport, such as phloem loading and/or xylem retrieval. Mature A2 and A3 plants became more salt sensitive than wild-type plants because of impaired photosynthesis induced by a higher Na+ concentration in the leaves.
Collapse
Affiliation(s)
- Kun-Mei Guo
- School of Earth and Geographical Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | | | |
Collapse
|
265
|
Läuchli A, James RA, Huang CX, McCully M, Munns R. Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion. PLANT, CELL & ENVIRONMENT 2008; 31:1565-74. [PMID: 18702634 DOI: 10.1111/j.1365-3040.2008.01864.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sodium exclusion from leaves is an important mechanism for salt tolerance in durum wheat. To characterize possible control points for Na(+) exclusion, quantitative cryo-analytical scanning electron microscopy was used to determine cell-specific ion profiles across roots of two durum wheat genotypes with contrasting rates of Na(+) transport from root to shoot grown in 50 mm NaCl. The Na(+) concentration in Line 149 (low transport genotype) declined across the cortex, being highest in the epidermal and sub-epidermal cells (48 mm) and lowest in the inner cortical cells (22 mm). Na(+) was high in the pericycle (85 mm) and low in the xylem parenchyma (34 mm). The Na(+) profile in Tamaroi (high transport genotype) had a similar trend but with a high concentration (130 mm) in the xylem parenchyma. The K(+) profiles were generally inverse to those of Na(+). Chloride was only detected in the epidermis. These data suggest that the epidermal and cortical cells removed most of the Na(+) and Cl(-) from the transpiration stream before it reached the endodermis, and that the endodermis is not the control point for salt uptake by the plant. The pericycle as well as the xylem parenchyma may be important in the control of net Na(+) loading of the xylem.
Collapse
Affiliation(s)
- André Läuchli
- CSIRO Plant Industry, Canberra, ACT 2601, Canberra 0200, Australia
| | | | | | | | | |
Collapse
|
266
|
Abstract
Salinity is a major abiotic stress affecting approximately 7% of the world's total land area resulting in billion dollar losses in crop production around the globe. Recent progress in molecular genetics and plant electrophysiology suggests that the ability of a plant to maintain a high cytosolic K+/Na+ ratio appears to be critical to plant salt tolerance. So far, the major efforts of plant breeders have been aimed at improving this ratio by minimizing Na+ uptake and transport to shoot. In this paper, we discuss an alternative approach, reviewing the molecular and ionic mechanisms contributing to potassium homeostasis in salinized plant tissues and discussing prospects for breeding for salt tolerance by targeting this trait. Major K+ transporters and their functional expression under saline conditions are reviewed and the multiple modes of their control are evaluated, including ameliorative effects of compatible solutes, polyamines and supplemental calcium. Subsequently, the genetic aspects of inheritance of K+ transport 'markers' are discussed in the general context of salt tolerance as a polygenic trait. The molecular identity of 'salt tolerance' genes is analysed, and prospects for future research and breeding are examined.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia.
| | | |
Collapse
|
267
|
Kronzucker HJ, Szczerba MW, Schulze LM, Britto DT. Non-reciprocal interactions between K+ and Na+ ions in barley (Hordeum vulgare L.). JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2793-801. [PMID: 18562445 PMCID: PMC2486474 DOI: 10.1093/jxb/ern139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/18/2008] [Accepted: 04/22/2008] [Indexed: 05/18/2023]
Abstract
The interaction of sodium and potassium ions in the context of the primary entry of Na(+) into plant cells, and the subsequent development of sodium toxicity, has been the subject of much recent attention. In the present study, the technique of compartmental analysis with the radiotracers (42)K(+) and (24)Na(+) was applied in intact seedlings of barley (Hordeum vulgare L.) to test the hypothesis that elevated levels of K(+) in the growth medium will reduce both rapid, futile Na(+) cycling at the plasma membrane, and Na(+) build-up in the cytosol of root cells, under saline conditions (100 mM NaCl). We reject this hypothesis, showing that, over a wide (400-fold) range of K(+) supply, K(+) neither reduces the primary fluxes of Na(+) at the root plasma membrane nor suppresses Na(+) accumulation in the cytosol. By contrast, 100 mM NaCl suppressed the cytosolic K(+) pool by 47-73%, and also substantially decreased low-affinity K(+) transport across the plasma membrane. We confirm that the cytosolic [K(+)]:[Na(+)] ratio is a poor predictor of growth performance under saline conditions, while a good correlation is seen between growth and the tissue ratios of the two ions. The data provide insight into the mechanisms that mediate the toxic influx of sodium across the root plasma membrane under salinity stress, demonstrating that, in the glycophyte barley, K(+) and Na(+) are unlikely to share a common low-affinity pathway for entry into the plant cell.
Collapse
Affiliation(s)
- Herbert J Kronzucker
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Ontario, Canada.
| | | | | | | |
Collapse
|
268
|
Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:737-44. [PMID: 18624638 DOI: 10.1094/mpmi-21-6-0737] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Elevated sodium (Na(+)) decreases plant growth and, thereby, agricultural productivity. The ion transporter high-affinity K(+) transporter (HKT)1 controls Na(+) import in roots, yet dysfunction or overexpression of HKT1 fails to increase salt tolerance, raising questions as to HKT1's role in regulating Na(+) homeostasis. Here, we report that tissue-specific regulation of HKT1 by the soil bacterium Bacillus subtilis GB03 confers salt tolerance in Arabidopsis thaliana. Under salt stress (100 mM NaCl), GB03 concurrently down- and upregulates HKT1 expression in roots and shoots, respectively, resulting in lower Na(+) accumulation throughout the plant compared with controls. Consistent with HKT1 participation in GB03-induced salt tolerance, GB03 fails to rescue salt-stressed athkt1 mutants from stunted foliar growth and elevated total Na(+) whereas salt-stressed Na(+) export mutants sos3 show GB03-induced salt tolerance with enhanced shoot and root growth as well as reduced total Na(+). These results demonstrate that tissue-specific regulation of HKT1 is critical for managing Na(+) homeostasis in salt-stressed plants, as well as underscore the breadth and sophistication of plant-microbe interactions.
Collapse
Affiliation(s)
- Huiming Zhang
- Texas Tech University, Department of Chemistry, Biochemistry and Biology Lubbock 79409, U.S.A
| | | | | | | | | | | |
Collapse
|
269
|
Abstract
The physiological and molecular mechanisms of tolerance to osmotic and ionic components of salinity stress are reviewed at the cellular, organ, and whole-plant level. Plant growth responds to salinity in two phases: a rapid, osmotic phase that inhibits growth of young leaves, and a slower, ionic phase that accelerates senescence of mature leaves. Plant adaptations to salinity are of three distinct types: osmotic stress tolerance, Na(+) or Cl() exclusion, and the tolerance of tissue to accumulated Na(+) or Cl(). Our understanding of the role of the HKT gene family in Na(+) exclusion from leaves is increasing, as is the understanding of the molecular bases for many other transport processes at the cellular level. However, we have a limited molecular understanding of the overall control of Na(+) accumulation and of osmotic stress tolerance at the whole-plant level. Molecular genetics and functional genomics provide a new opportunity to synthesize molecular and physiological knowledge to improve the salinity tolerance of plants relevant to food production and environmental sustainability.
Collapse
Affiliation(s)
- Rana Munns
- CSIRO Plant Industry, Canberra, ACT, Australia.
| | | |
Collapse
|
270
|
Møller IS, Tester M. Salinity tolerance of Arabidopsis: a good model for cereals? TRENDS IN PLANT SCIENCE 2007; 12:534-40. [PMID: 18023242 DOI: 10.1016/j.tplants.2007.09.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 08/31/2007] [Accepted: 09/17/2007] [Indexed: 05/18/2023]
Abstract
Arabidopsis is a glycophyte species that is sensitive to moderate levels of NaCl. Arabidopsis offers unique benefits to genetic and molecular research and has provided much information about both Na(+) transport processes and Na(+) tolerance. A compilation of data available on Na(+) accumulation and Na(+) tolerance in Arabidopsis is presented, and comparisons are made with several crop plant species. The relationship between Na(+) tolerance and Na(+) accumulation is different in Arabidopsis and cereals, with an inverse relationship often found within cereal species that is not as evident in Arabidopsis ecotypes. Results on salinity tolerance obtained in Arabidopsis should therefore be extrapolated to cereals with caution. Arabidopsis remains a useful model to study and discover plant Na(+) transport processes.
Collapse
Affiliation(s)
- Inge Skrumsager Møller
- Department of Plant Sciences, University of Cambridge, Downing St, Cambridge CB2 3EA, UK
| | | |
Collapse
|
271
|
Wang SM, Zhang JL, Flowers TJ. Low-affinity Na+ uptake in the halophyte Suaeda maritima. PLANT PHYSIOLOGY 2007; 145:559-71. [PMID: 17766398 PMCID: PMC2048717 DOI: 10.1104/pp.107.104315] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 08/23/2007] [Indexed: 05/17/2023]
Abstract
Na(+) uptake by plant roots has largely been explored using species that accumulate little Na(+) into their shoots. By way of contrast, the halophyte Suaeda maritima accumulates, without injury, concentrations of the order of 400 mM NaCl in its leaves. Here we report that cAMP and Ca(2+) (blockers of nonselective cation channels) and Li(+) (a competitive inhibitor of Na(+) uptake) did not have any significant effect on the uptake of Na(+) by the halophyte S. maritima when plants were in 25 or 150 mM NaCl (150 mM NaCl is near optimal for growth). However, the inhibitors of K(+) channels, TEA(+) (10 mM), Cs(+) (3 mM), and Ba(2+) (5 mM), significantly reduced the net uptake of Na(+) from 150 mM NaCl over 48 h, by 54%, 24%, and 29%, respectively. TEA(+) (10 mM), Cs(+) (3 mM), and Ba(2+) (1 mm) also significantly reduced (22)Na(+) influx (measured over 2 min in 150 mM external NaCl) by 47%, 30%, and 31%, respectively. In contrast to the situation in 150 mm NaCl, neither TEA(+) (1-10 mM) nor Cs(+) (0.5-10 mM) significantly reduced net Na(+) uptake or (22)Na(+) influx in 25 mM NaCl. Ba(2+) (at 5 mm) did significantly decrease net Na(+) uptake (by 47%) and (22)Na(+) influx (by 36% with 1 mM Ba(2+)) in 25 mM NaCl. K(+) (10 or 50 mM) had no effect on (22)Na(+) influx at concentrations below 75 mM NaCl, but the influx of (22)Na(+) was inhibited by 50 mM K(+) when the external concentration of NaCl was above 75 mM. The data suggest that neither nonselective cation channels nor a low-affinity cation transporter are major pathways for Na(+) entry into root cells. We propose that two distinct low-affinity Na(+) uptake pathways exist in S. maritima: Pathway 1 is insensitive to TEA(+) or Cs(+), but sensitive to Ba(2+) and mediates Na(+) uptake under low salinities (25 mM NaCl); pathway 2 is sensitive to TEA(+), Cs(+), and Ba(2+) and mediates Na(+) uptake under higher external salt concentrations (150 mM NaCl). Pathway 1 might be mediated by a high-affinity K transporter-type transporter and pathway 2 by an AKT1-type channel.
Collapse
Affiliation(s)
- Suo-Min Wang
- School of Pastoral Agriculture Science and Technology, Key Laboratory of Grassland Agro-ecosystem, Ministry of Agriculture, Lanzhou University, Lanzhou 730000, People's Republic of China
| | | | | |
Collapse
|
272
|
Apse MP, Blumwald E. Na+ transport in plants. FEBS Lett 2007; 581:2247-54. [PMID: 17459382 DOI: 10.1016/j.febslet.2007.04.014] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 04/10/2007] [Accepted: 04/11/2007] [Indexed: 11/26/2022]
Abstract
The ability of plants to grow in high NaCl concentrations is associated with the ability of the plants to transport, compartmentalize, extrude, and mobilize Na(+) ions. While the influx and efflux at the roots establish the steady state rate of entry of Na(+) into the plant, the compartmentation of Na(+) into the cell vacuoles and the radial transport of Na(+) to the stele and its loading into the xylem establish the homeostatic control of Na(+) in the cytosol of the root cells. Removal of Na(+) from the transpirational stream, its distribution within the plant and its progressive accumulation in the leaf vacuoles, will determine the ability to deal with the toxic effects of Na(+). The aim of this review is to highlight and discuss the recent progress in understanding of Na(+) transport in plants.
Collapse
Affiliation(s)
- Maris P Apse
- Arcadia Biosciences, 202 Cousteau Place, Suite 200, Davis, CA 95616, USA.
| | | |
Collapse
|
273
|
Affiliation(s)
- Rana Munns
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia (tel +61 262465280; fax +61 262465399; email )
| |
Collapse
|