251
|
Salatino JW, Winter BM, Drazin MH, Purcell EK. Functional remodeling of subtype-specific markers surrounding implanted neuroprostheses. J Neurophysiol 2017; 118:194-202. [PMID: 28356474 DOI: 10.1152/jn.00162.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 01/04/2023] Open
Abstract
Microelectrode arrays implanted in the brain are increasingly used for the research and treatment of intractable neurological disease. However, local neuronal loss and glial encapsulation are known to interfere with effective integration and communication between implanted devices and brain tissue, where these observations are typically based on assessments of broad neuronal and astroglial markers. However, both neurons and astrocytes comprise heterogeneous cellular populations that can be further divided into subclasses based on unique functional and morphological characteristics. In this study, we investigated whether or not device insertion causes alterations in specific subtypes of these cells. We assessed the expression of both excitatory and inhibitory markers of neurotransmission (vesicular glutamate and GABA transporters, VGLUT1 and VGAT, respectively) surrounding single-shank Michigan-style microelectrode arrays implanted in the motor cortex of adult rats by use of quantitative immunohistochemistry. We found a pronounced shift from significantly elevated VGLUT1 within the initial days following implantation to relatively heightened VGAT by the end of the 4-wk observation period. Unexpectedly, we observed VGAT positivity in a subset of reactive astrocytes during the first week of implantation, indicating heterogeneity in early-responding encapsulating glial cells. We coupled our VGLUT1 data with the evaluation of a second marker of excitatory neurons (CamKiiα); the results closely paralleled each other and underscored a progression from initially heightened to subsequently weakened excitatory tone in the neural tissue proximal to the implanted electrode interface (within 40 μm). Our results provide new evidence for subtype-specific remodeling surrounding brain implants that inform observations of suboptimal integration and performance.NEW & NOTEWORTHY We report novel changes in the local expression of excitatory and inhibitory synaptic markers surrounding microelectrode arrays implanted in the motor cortex of rats, where a progressive shift toward increased inhibitory tone was observed over the 4-wk observation period. The result was driven by declining glutamate transporter expression (VGLUT1) in parallel with increasing GABA transporter expression (VGAT) over time, where a reactive VGAT+ astroglial subtype made an unexpected contribution to our findings.
Collapse
Affiliation(s)
- Joseph W Salatino
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan
| | - Bailey M Winter
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan.,Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan
| | - Matthew H Drazin
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan; and
| | - Erin K Purcell
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan; .,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan.,Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan.,Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
252
|
Lutter D, Ullrich F, Lueck JC, Kempa S, Jentsch TJ. Selective transport of neurotransmitters and modulators by distinct volume-regulated LRRC8 anion channels. J Cell Sci 2017; 130:1122-1133. [PMID: 28193731 DOI: 10.1242/jcs.196253] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/31/2017] [Indexed: 01/10/2023] Open
Abstract
In response to swelling, mammalian cells release chloride and organic osmolytes through volume-regulated anion channels (VRACs). VRACs are heteromers of LRRC8A and other LRRC8 isoforms (LRRC8B to LRRC8E), which are co-expressed in HEK293 and most other cells. The spectrum of VRAC substrates and its dependence on particular LRRC8 isoforms remains largely unknown. We show that, besides the osmolytes taurine and myo-inositol, LRRC8 channels transport the neurotransmitters glutamate, aspartate and γ-aminobutyric acid (GABA) and the co-activator D-serine. HEK293 cells engineered to express defined subsets of LRRC8 isoforms were used to elucidate the subunit-dependence of transport. Whereas LRRC8D was crucial for the translocation of overall neutral compounds like myo-inositol, taurine and GABA, and sustained the transport of positively charged lysine, flux of negatively charged aspartate was equally well supported by LRRC8E. Disruption of LRRC8B or LRRC8C failed to decrease the transport rates of all investigated substrates, but their inclusion into LRRC8 heteromers influenced the substrate preference of VRAC. This suggested that individual VRACs can contain three or more different LRRC8 subunits, a conclusion confirmed by sequential co-immunoprecipitations. Our work suggests a composition-dependent role of VRACs in extracellular signal transduction.
Collapse
Affiliation(s)
- Darius Lutter
- Leibniz-Institut für Molekulare Pharmakologie (FMP), D-13125 Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany.,Graduate Program of the Freie Universität Berlin, D-14195 Berlin, Germany
| | - Florian Ullrich
- Leibniz-Institut für Molekulare Pharmakologie (FMP), D-13125 Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany
| | - Jennifer C Lueck
- Leibniz-Institut für Molekulare Pharmakologie (FMP), D-13125 Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany.,Graduate Program of the Freie Universität Berlin, D-14195 Berlin, Germany
| | - Stefan Kempa
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany
| | - Thomas J Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP), D-13125 Berlin, Germany .,Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany.,Neurocure, Charité Universitätsmedizin, D-10117 Berlin, Germany
| |
Collapse
|
253
|
Barca-Mayo O, Pons-Espinal M, Follert P, Armirotti A, Berdondini L, De Pietri Tonelli D. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat Commun 2017; 8:14336. [PMID: 28186121 PMCID: PMC5309809 DOI: 10.1038/ncomms14336] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 12/19/2016] [Indexed: 02/08/2023] Open
Abstract
Circadian rhythms are controlled by a network of clock neurons in the central pacemaker, the suprachiasmatic nucleus (SCN). Core clock genes, such as Bmal1, are expressed in SCN neurons and in other brain cells, such as astrocytes. However, the role of astrocytic clock genes in controlling rhythmic behaviour is unknown. Here we show that ablation of Bmal1 in GLAST-positive astrocytes alters circadian locomotor behaviour and cognition in mice. Specifically, deletion of astrocytic Bmal1 has an impact on the neuronal clock through GABA signalling. Importantly, pharmacological modulation of GABAA-receptor signalling completely rescues the behavioural phenotypes. Our results reveal a crucial role of astrocytic Bmal1 for the coordination of neuronal clocks and propose a new cellular target, astrocytes, for neuropharmacology of transient or chronic perturbation of circadian rhythms, where alteration of astrocytic clock genes might contribute to the impairment of the neurobehavioural outputs such as cognition.
Collapse
Affiliation(s)
- Olga Barca-Mayo
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
- NetS3 Lab, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Meritxell Pons-Espinal
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Philipp Follert
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Andrea Armirotti
- D3 PharmaChemistry, Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Luca Berdondini
- NetS3 Lab, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Davide De Pietri Tonelli
- Neurobiology of miRNA Lab, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
254
|
Kwon J, An H, Sa M, Won J, Shin JI, Lee CJ. Orai1 and Orai3 in Combination with Stim1 Mediate the Majority of Store-operated Calcium Entry in Astrocytes. Exp Neurobiol 2017; 26:42-54. [PMID: 28243166 PMCID: PMC5326714 DOI: 10.5607/en.2017.26.1.42] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 01/06/2023] Open
Abstract
Astrocytes are non-excitable cells in the brain and their activity largely depends on the intracellular calcium (Ca2+) level. Therefore, maintaining the intracellular Ca2+ homeostasis is critical for proper functioning of astrocytes. One of the key regulatory mechanisms of Ca2+ homeostasis in astrocytes is the store-operated Ca2+ entry (SOCE). This process is mediated by a combination of the Ca2+-store-depletion-sensor, Stim, and the store-operated Ca2+-channels, Orai and TrpC families. Despite the existence of all those families in astrocytes, previous studies have provided conflicting results on the molecular identification of astrocytic SOCE. Here, using the shRNA-based gene-silencing approach and Ca2+-imaging from cultured mouse astrocytes, we report that Stim1 in combination with Orai1 and Orai3 contribute to the major portion of astrocytic SOCE. Gene-silencing of Stim1 showed a 79.2% reduction of SOCE, indicating that Stim1 is the major Ca2+-store-depletion-sensor. Further gene-silencing showed that Orai1, Orai2, Orai3, and TrpC1 contribute to SOCE by 35.7%, 20.3%, 26.8% and 12.2%, respectively. Simultaneous gene-silencing of all three Orai subtypes exhibited a 67.6% reduction of SOCE. Based on the detailed population analysis, we predict that Orai1 and Orai3 are expressed in astrocytes with a large SOCE, whereas TrpC1 is exclusively expressed in astrocytes with a small SOCE. This analytical approach allows us to identify the store operated channel (SOC) subtype in each cell by the degree of SOCE. Our results propose that Stim1 in combination with Orai1 and Orai3 are the major molecular components of astrocytic SOCE under various physiological and pathological conditions.
Collapse
Affiliation(s)
- Jea Kwon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.; Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Heeyoung An
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.; Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Moonsun Sa
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.; Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Joungha Won
- Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jeong Im Shin
- Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.; Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| |
Collapse
|
255
|
Dionisio L, Caldironi H, Rosa MD. Expression and Function of Non-neuronal GABA Transporters in
Human Lymphocytes. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.205.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
256
|
Johnson AA, Guziewicz KE, Lee CJ, Kalathur RC, Pulido JS, Marmorstein LY, Marmorstein AD. Bestrophin 1 and retinal disease. Prog Retin Eye Res 2017; 58:45-69. [PMID: 28153808 DOI: 10.1016/j.preteyeres.2017.01.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/18/2022]
Abstract
Mutations in the gene BEST1 are causally associated with as many as five clinically distinct retinal degenerative diseases, which are collectively referred to as the "bestrophinopathies". These five associated diseases are: Best vitelliform macular dystrophy, autosomal recessive bestrophinopathy, adult-onset vitelliform macular dystrophy, autosomal dominant vitreoretinochoroidopathy, and retinitis pigmentosa. The most common of these is Best vitelliform macular dystrophy. Bestrophin 1 (Best1), the protein encoded by the gene BEST1, has been the subject of a great deal of research since it was first identified nearly two decades ago. Today we know that Best1 functions as both a pentameric anion channel and a regulator of intracellular Ca2+ signaling. Best1 is an integral membrane protein which, within the eye, is uniquely expressed in the retinal pigment epithelium where it predominantly localizes to the basolateral plasma membrane. Within the brain, Best1 expression has been documented in both glial cells and astrocytes where it functions in both tonic GABA release and glutamate transport. The crystal structure of Best1 has revealed critical information about how Best1 functions as an ion channel and how Ca2+ regulates that function. Studies using animal models have led to critical insights into the physiological roles of Best1 and advances in stem cell technology have allowed for the development of patient-derived, "disease in a dish" models. In this article we review our knowledge of Best1 and discuss prospects for near-term clinical trials to test therapies for the bestrophinopathies, a currently incurable and untreatable set of diseases.
Collapse
Affiliation(s)
- Adiv A Johnson
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA; Nikon Instruments, Melville, NY, USA
| | - Karina E Guziewicz
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C Justin Lee
- Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Ravi C Kalathur
- New York Structural Biology Center, New York Consortium on Membrane Protein Structure, New York, NY, USA
| | - Jose S Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
257
|
Albers HE, Walton JC, Gamble KL, McNeill JK, Hummer DL. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus. Front Neuroendocrinol 2017; 44:35-82. [PMID: 27894927 PMCID: PMC5225159 DOI: 10.1016/j.yfrne.2016.11.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/16/2016] [Accepted: 11/22/2016] [Indexed: 12/31/2022]
Abstract
Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker.
Collapse
Affiliation(s)
- H Elliott Albers
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States.
| | - James C Walton
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - John K McNeill
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Daniel L Hummer
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Department of Psychology, Morehouse College, Atlanta, GA 30314, United States
| |
Collapse
|
258
|
Ha GE, Lee J, Kwak H, Song K, Kwon J, Jung SY, Hong J, Chang GE, Hwang EM, Shin HS, Lee CJ, Cheong E. The Ca 2+-activated chloride channel anoctamin-2 mediates spike-frequency adaptation and regulates sensory transmission in thalamocortical neurons. Nat Commun 2016; 7:13791. [PMID: 27991499 PMCID: PMC5187435 DOI: 10.1038/ncomms13791] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022] Open
Abstract
Neuronal firing patterns, which are crucial for determining the nature of encoded information, have been widely studied; however, the molecular identity and cellular mechanisms of spike-frequency adaptation are still not fully understood. Here we show that spike-frequency adaptation in thalamocortical (TC) neurons is mediated by the Ca2+-activated Cl− channel (CACC) anoctamin-2 (ANO2). Knockdown of ANO2 in TC neurons results in significantly reduced spike-frequency adaptation along with increased tonic spiking. Moreover, thalamus-specific knockdown of ANO2 increases visceral pain responses. These results indicate that ANO2 contributes to reductions in spike generation in highly activated TC neurons and thereby restricts persistent information transmission.
Spike-frequency adaptation in thalamocortical (TC) neurons is important for sensory transmission though the underlying mechanisms are not fully understood. Here, the authors identify a role for the calcium-activated chloride channel, ANO2, in mediating TC spiking adaptations and visceral pain response.
Collapse
Affiliation(s)
- Go Eun Ha
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaekwang Lee
- Center for Neural Science, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hankyul Kwak
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Kiyeong Song
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jea Kwon
- Center for Neural Science, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Soon-Young Jung
- Center for Neural Science, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Joohyeon Hong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Gyeong-Eon Chang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - C Justin Lee
- Center for Neural Science, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
259
|
Seifert G, Henneberger C, Steinhäuser C. Diversity of astrocyte potassium channels: An update. Brain Res Bull 2016; 136:26-36. [PMID: 27965079 DOI: 10.1016/j.brainresbull.2016.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 01/08/2023]
Abstract
Astrocyte K+ channels and the K+ currents they mediate dwarf all other transmembrane conductances in these cells. This defining feature of astrocytes and its functional implications have been investigated intensely over the past decades. Nonetheless, many aspects of astrocyte K+ handling and signaling remain incompletely understood. In this review, we provide an update on the diversity of K+ channels expressed by astrocytes and new functional implications. We focus on inwardly-rectifying K+ channels (particularly Kir4.1), two-pore K+ channels and voltage and Ca2+-dependent K+ channels. We further discuss new insights into the involvement of these K+ channels in K+ buffering, control of synaptic transmission, regulation of the vasculature and in diseases of the central nervous system.
Collapse
Affiliation(s)
- Gerald Seifert
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany; German Center of Neurodegenerative Diseases (DZNE), Bonn, Germany; Institute of Neurology, University College London, London, United Kingdom
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.
| |
Collapse
|
260
|
Schreiber R, Kunzelmann K. Expression of anoctamins in retinal pigment epithelium (RPE). Pflugers Arch 2016; 468:1921-1929. [PMID: 27822608 DOI: 10.1007/s00424-016-1898-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 01/24/2023]
Abstract
The anoctamin (ANO, TMEM16) family of Ca2+-activated Cl- channels consists of ten members with different cellular functions (ANO1-10). ANO1 is a Ca2+-activated Cl- channel in secretory epithelial cells of exocrine pancreas, salivary glands, or enterocytes. Expression of ANO1 also promotes cell proliferation and migration of tumor cells. ANO6 is essential for Ca2+-dependent scrambling of membrane phospholipids in platelets, red blood cells, and lymphocytes. ANO10 modulates Ca2+ signals in macrophages and has a role in cerebellar ataxia and other neurological disorders. All three anoctamins have been proposed to control intracellular Ca2+ signals. Anoctamins may also form the basolateral Ca2+-activated Cl- channel in the retinal pigment epithelium (RPE). We show that native human, bovine, porcine, and mouse RPEs express ANO1, ANO6, and ANO10. Growth arrested and confluent RPR cells expressed ANO1 in the plasma membrane, whereas ANO6 and ANO10 were found in the primary cilium. Ussing chamber experiments showed that the application of ATP to the apical (retinal) side of porcine RPE induced a Ca2+-activated Cl- secretion. Activation was inhibited by basolateral (choroidal) administration of the ANO inhibitors AO1, niflumic acid (NFA), and 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS). The results suggest that ANO1 is responsible for basolateral Ca2+-dependent Cl- secretion in RPE, whereas ANO6 and ANO10 may have different functions, such as modulating Ca2+ signals.
Collapse
Affiliation(s)
- Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
261
|
Nikoui V, Ostadhadi S, Azhand P, Zolfaghari S, Amiri S, Foroohandeh M, Motevalian M, Sharifi AM, Bakhtiarian A. The effect of nitrazepam on depression and curiosity in behavioral tests in mice: The role of potassium channels. Eur J Pharmacol 2016; 791:369-376. [DOI: 10.1016/j.ejphar.2016.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023]
|
262
|
Carter JM, Landin JD, Gigante ED, Rieger SP, Diaz MR, Werner DF. Inhibitors of Calcium-Activated Anion Channels Modulate Hypnotic Ethanol Responses in Adult Sprague Dawley Rats. Alcohol Clin Exp Res 2016; 40:301-8. [PMID: 26842249 DOI: 10.1111/acer.12957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/02/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ethanol is widely known for its depressant effects; however, the underlying neurobiological mechanisms are not clear. Calcium-activated anion channels (CAACs) contribute to extracellular chloride levels and thus may be involved in regulating inhibitory mechanisms within the central nervous system. Therefore, we hypothesized that CAACs influence ethanol behavioral sensitivity by altering CAAC expression. METHODS We assessed the role of CAACs in ethanol-induced loss of righting reflex (LORR) and locomotor activity using intracerebroventricular infusions of several nonselective CAAC blockers. CAAC expression was determined after ethanol exposure. RESULTS Ethanol-induced LORR (4.0 g/kg, intraperitoneally [i.p.]) was significantly attenuated by all 4 CAAC blockers. Blocking CAACs did not impact ethanol's low-dose (1.5 g/kg, i.p.) locomotor-impairing effects. Biochemical analysis of CAAC protein expression revealed that cortical Bestrophin1 (Best1) and Tweety1 levels were reduced as early as 30 minutes following a single ethanol injection (3.5 g/kg, intraperitoneally [i.p.]) and remained decreased 24 hours later in P2 fractions. Cortical Best1 levels were also reduced following 1.5 g/kg. However, CAAC expression was unaltered in the striatum following a single ethanol exposure. Ethanol did not affect Tweety2 levels in either brain region. CONCLUSIONS These results suggest that CAACs are a major target of ethanol in vivo, and the regulation of these channels contributes to select behavioral actions of ethanol.
Collapse
Affiliation(s)
- Jenna M Carter
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, New York
| | - Justine D Landin
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, New York
| | - Eduardo D Gigante
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, New York.,Department of Health and Human Services, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Samuel P Rieger
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, New York
| | - Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, New York
| | - David F Werner
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, New York
| |
Collapse
|
263
|
Kaneko Y, Pappas C, Tajiri N, Borlongan CV. Oxytocin modulates GABA AR subunits to confer neuroprotection in stroke in vitro. Sci Rep 2016; 6:35659. [PMID: 27767042 PMCID: PMC5073361 DOI: 10.1038/srep35659] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022] Open
Abstract
Oxytocin protects against ischemia-induced inflammation and oxidative stress, and is associated with GABA (γ-aminobutyric acid, an inhibitory neurotransmitter) signaling transduction in neurons. However, the molecular mechanism by which oxytocin affords neuroprotection, especially the interaction between oxytocin receptor and GABAA receptor (GABAAR), remains to be elucidated. Primary rat neural cells were exposed to oxytocin before induction of experimental acute stroke model via oxygen-glucose deprivation-reperfusion (OGD/R) injury. Pretreatment with oxytocin increased cell viability, decreased the cell damage against oxidative stress, and prevented the release of high mobility group box1 during OGD/R. However, introduction of oxytocin during OGD/R did not induce neuroprotection. Although oxytocin did not affect the glutathione-related cellular metabolism before OGD, oxytocin modulated the expression levels of GABAAR subunits, which function to remove excessive neuronal excitability via chloride ion influx. Oxytocin-pretreated cells significantly increased the chloride ion influx in response to GABA and THIP (δ-GABAAR specific agonist). This study provides evidence that oxytocin regulated GABAAR subunits in affording neuroprotection against OGD/R injury.
Collapse
Affiliation(s)
- Yuji Kaneko
- Center of Excellence for Aging and Brain, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa FL 33612, USA
| | - Colleen Pappas
- School of Aging Studies, University of South Florida, 13301 Bruce B Downs Blvd, Tampa FL 33612, USA
| | - Naoki Tajiri
- Center of Excellence for Aging and Brain, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa FL 33612, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa FL 33612, USA
| |
Collapse
|
264
|
Bang J, Kim HY, Lee H. Optogenetic and Chemogenetic Approaches for Studying Astrocytes and Gliotransmitters. Exp Neurobiol 2016; 25:205-221. [PMID: 27790055 PMCID: PMC5081467 DOI: 10.5607/en.2016.25.5.205] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022] Open
Abstract
The brain consists of heterogeneous populations of neuronal and non-neuronal cells. The revelation of their connections and interactions is fundamental to understanding normal brain functions as well as abnormal changes in pathological conditions. Optogenetics and chemogenetics have been developed to allow functional manipulations both in vitro and in vivo to examine causal relationships between cellular changes and functional outcomes. These techniques are based on genetically encoded effector molecules that respond exclusively to exogenous stimuli, such as a certain wavelength of light or a synthetic ligand. Activation of effector molecules provokes diverse intracellular changes, such as an influx or efflux of ions, depolarization or hyperpolarization of membranes, and activation of intracellular signaling cascades. Optogenetics and chemogenetics have been applied mainly to the study of neuronal circuits, but their use in studying non-neuronal cells has been gradually increasing. Here we introduce recent studies that have employed optogenetics and chemogenetics to reveal the function of astrocytes and gliotransmitters.
Collapse
Affiliation(s)
- Juwon Bang
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Hak Yeong Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Hyosang Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| |
Collapse
|
265
|
Gendrel M, Atlas EG, Hobert O. A cellular and regulatory map of the GABAergic nervous system of C. elegans. eLife 2016; 5. [PMID: 27740909 PMCID: PMC5065314 DOI: 10.7554/elife.17686] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/22/2016] [Indexed: 12/16/2022] Open
Abstract
Neurotransmitter maps are important complements to anatomical maps and represent an invaluable resource to understand nervous system function and development. We report here a comprehensive map of neurons in the C. elegans nervous system that contain the neurotransmitter GABA, revealing twice as many GABA-positive neuron classes as previously reported. We define previously unknown glia-like cells that take up GABA, as well as 'GABA uptake neurons' which do not synthesize GABA but take it up from the extracellular environment, and we map the expression of previously uncharacterized ionotropic GABA receptors. We use the map of GABA-positive neurons for a comprehensive analysis of transcriptional regulators that define the GABA phenotype. We synthesize our findings of specification of GABAergic neurons with previous reports on the specification of glutamatergic and cholinergic neurons into a nervous system-wide regulatory map which defines neurotransmitter specification mechanisms for more than half of all neuron classes in C. elegans. DOI:http://dx.doi.org/10.7554/eLife.17686.001
Collapse
Affiliation(s)
- Marie Gendrel
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Emily G Atlas
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| |
Collapse
|
266
|
Effects of Ca 2+ ions on bestrophin-1 surface films. Colloids Surf B Biointerfaces 2016; 149:226-232. [PMID: 27768912 DOI: 10.1016/j.colsurfb.2016.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 01/01/2023]
Abstract
Human bestrophin-1 (hBest1) is a transmembrane calcium-activated chloride channel protein - member of the bestrophin family of anion channels, predominantly expressed in the membrane of retinal pigment epithelium (RPE) cells. Mutations in the protein cause ocular diseases, named Bestrophinopathies. Here, we present the first Fourier transform infrared (FTIR) study of the secondary structure elements of hBest1, π/A isotherms and hysteresis, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) visualization of the aggregation state of protein molecules dispersed as Langmuir and Langmuir-Blodgett films. The secondary structure of hBest1 consists predominantly of 310-helices (27.2%), α-helixes (16.3%), β-turns and loops (32.2%). AFM images of hBest1 suggest approximate lateral dimensions of 100×160Å and 75Å height. Binding of calcium ions (Ca2+) induces conformational changes in the protein secondary structure leading to assembly of protein molecules and changes in molecular and macro-organization of hBest1 in monolayers. These data provide basic information needed in pursuit of molecular mechanisms underlying retinal and other pathologies linked to this protein.
Collapse
|
267
|
Orellana JA. Physiological Functions of Glial Cell Hemichannels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:93-108. [DOI: 10.1007/978-3-319-40764-7_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
268
|
Diaz MR, Valenzuela CF. Sensitivity of GABAergic Tonic Currents to Acute Ethanol in Cerebellar Granule Neurons is Not Age- or δ Subunit-Dependent in Developing Rats. Alcohol Clin Exp Res 2016; 40:83-92. [PMID: 26727526 DOI: 10.1111/acer.12940] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/22/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND The age of first exposure to ethanol (EtOH), as well as reduced sensitivity to its motor-impairing effects, are associated with a future predisposition to abuse EtOH. In adolescence, acute EtOH potentiates GABA transmission, including tonic inhibition mediated by δ-containing extrasynaptic GABAA receptors (GABAA Rs) in cerebellar granule neurons (CGNs), an effect that likely contributes to EtOH-induced motor impairment. Prenatal EtOH exposure is strikingly prevalent and is associated with increased EtOH abuse later in life; however, the acute effects of EtOH on GABA transmission in developing CGNs are unknown. METHODS Using whole-cell patch-clamp electrophysiological techniques in acute brain slices, we examined the acute effects of EtOH on GABA transmission and functionally assessed the role of δ-containing GABAA Rs in CGNs of preweanling (postnatal day [P] 12 to 14) and postweanling (P28 to 30) male Sprague-Dawley rats. RESULTS The magnitude of basal tonic currents were similar at both ages. However, 4,5,6,7-Tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride, an agonist with preferential affinity for δ-containing GABAA Rs, significantly potentiated tonic currents to a larger magnitude in CGNs from postweanlings compared to preweanlings. Conversely, acute application of EtOH (80 mM) significantly increased tonic currents and the frequency of spontaneous inhibitory postsynaptic currents to a similar extent in CGNs from pre- and postweanlings. CONCLUSIONS These findings highlight the sensitivity of the developing cerebellum to EtOH. Furthermore, this study demonstrates age-dependent functional changes in a well-characterized circuitry that may contribute to the short- and long-term effects of prenatal exposure to EtOH.
Collapse
Affiliation(s)
- Marvin R Diaz
- Department of Neurosciences, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, New Mexico.,Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University-State University of New York, Binghamton, New York
| | - C Fernando Valenzuela
- Department of Neurosciences, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
269
|
Advances in understanding the functions of native GlyT1 and GlyT2 neuronal glycine transporters. Neurochem Int 2016; 99:169-177. [DOI: 10.1016/j.neuint.2016.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 11/20/2022]
|
270
|
GABAergic Regulation of Adult Hippocampal Neurogenesis. Mol Neurobiol 2016; 54:5497-5510. [DOI: 10.1007/s12035-016-0072-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/18/2016] [Indexed: 01/17/2023]
|
271
|
Purkinje Cells Directly Inhibit Granule Cells in Specialized Regions of the Cerebellar Cortex. Neuron 2016; 91:1330-1341. [PMID: 27593180 DOI: 10.1016/j.neuron.2016.08.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/02/2016] [Accepted: 08/11/2016] [Indexed: 01/19/2023]
Abstract
Inhibition of granule cells plays a key role in gating the flow of signals into the cerebellum, and it is thought that Golgi cells are the only interneurons that inhibit granule cells. Here we show that Purkinje cells, the sole output neurons of the cerebellar cortex, also directly inhibit granule cells via their axon collaterals. Anatomical and optogenetic studies indicate that this non-canonical feedback is region specific: it is most prominent in lobules that regulate eye movement and process vestibular information. Collaterals provide fast, slow, and tonic inhibition to granule cells, and thus allow Purkinje cells to regulate granule cell excitability on multiple timescales. We propose that this feedback mechanism could regulate excitability of the input layer, contribute to sparse coding, and mediate temporal integration.
Collapse
|
272
|
Glia plasma membrane transporters: Key players in glutamatergic neurotransmission. Neurochem Int 2016; 98:46-55. [DOI: 10.1016/j.neuint.2016.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/07/2016] [Accepted: 04/06/2016] [Indexed: 12/27/2022]
|
273
|
Shibasaki K, Hosoi N, Kaneko R, Tominaga M, Yamada K. Glycine release from astrocytes via functional reversal of GlyT1. J Neurochem 2016; 140:395-403. [PMID: 27419919 DOI: 10.1111/jnc.13741] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/14/2016] [Accepted: 07/07/2016] [Indexed: 11/30/2022]
Abstract
It was previously reported that functional glycine receptors were expressed in neonatal prefrontal cortex; however, the glycine-releasing cells were unknown. We hypothesized that astrocytes might be a major glycine source, and examined the glycine release properties of astrocytes. We also hypothesized that dopamine (DA) might be a trigger for the astrocytic glycine release, as numerous DA terminals localize in the cortex. We combined two different methods to confirm the glycine release from astrocytes. Firstly, we analyzed the supernatant of astrocytes by amino acid analyzer after DA stimulation, and detect significant glycine peak. Furthermore, we utilized a patch-clamp biosensor method to confirm the glycine release from astrocytes by using GlyRα1 and Glyβ-expressing HEK293T cells, and detected significant glycine-evoked current upon DA stimulation. Thus, we clearly demonstrated that DA induces glycine release from astrocytes. Surprisingly, DA caused a functional reversal of astrocytic glycine transporter 1, an astrocytic type of glycine transporter, causing astrocytes to release glycine. Hence, astrocytes transduce pre-synaptic DA signals to glycine signals through a reversal of astrocytic glycine transporter 1 to regulate neuronal excitability. Cover Image for this issue: doi: 10.1111/jnc.13785.
Collapse
Affiliation(s)
- Koji Shibasaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan.,Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan.,Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Nobutake Hosoi
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ryosuke Kaneko
- Bioresource Center, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan.,Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Katsuya Yamada
- Department of Physiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
274
|
Jung JY, Lee SE, Hwang EM, Lee CJ. Neuronal Expression and Cell-Type-Specific Gene-Silencing of Best1 in Thalamic Reticular Nucleus Neurons Using pSico-Red System. Exp Neurobiol 2016; 25:120-9. [PMID: 27358580 PMCID: PMC4923356 DOI: 10.5607/en.2016.25.3.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 12/22/2022] Open
Abstract
Assessing the cell-type expression pattern of a certain gene can be achieved by using cell-type-specific gene manipulation. Recently, cre-recombinase-dependent gene-silencing tool, pSico has become popular in neuroscientific research. However, pSico has a critical limitation that gene-silenced cell cannot be identified by fluorescence, due to an excision of the reporter gene for green fluorescence protein (GFP). To overcome this limitation, we newly developed pSico-Red, with mCherry gene as a reporter outside two loxP sites, so that red mCherry signal is detected in all transfected cells. When a cell expresses cre, GFP is excised and shRNA is enabled, resulting in disappearance of GFP. This feature of pSico-Red provides not only cell-type-specific gene-silencing but also identification of cre expressing cells. Using this system, we demonstrated for the first time the neuronal expression of the Bestrophin-1 (Best1) in thalamic reticular nucleus (TRN) and TRN-neuron-specific gene-silencing of Best1. We combined adeno-associated virus (AAV) carrying Best1-shRNA in pSico-Red vector and transgenic mouse expressing cre under the promoter of distal-less homeobox 5/6 (DLX5/6), a marker for inhibitory neurons. Firstly, we found that almost all of inhibitory neurons in TRN express Best1 by immunohistochemistry. Using pSico-Red virus, we found that 80% of infected TRN neurons were DLX5/6-cre positive but parvalbumin negative. Finally, we found that Best1 in DLX5/6-cre positive neurons were significantly reduced by Best1-shRNA. Our study demonstrates that TRN neurons strongly express Best1 and that pSico-Red is a valuable tool for cell-type-specific gene manipulation and identification of specific cell population.
Collapse
Affiliation(s)
- Jae-Young Jung
- Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Neuroscience Program, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Eun Mi Hwang
- Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Neuroscience Program, University of Science and Technology (UST), Daejeon 34113, Korea
| | - C Justin Lee
- Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Neuroscience Program, University of Science and Technology (UST), Daejeon 34113, Korea.; KU-KIST School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| |
Collapse
|
275
|
Bao L, Si L, Wang Y, Wuyun G, Bo A. Effect of two GABA-ergic drugs on the cognitive functions of rapid eye movement in sleep-deprived and recovered rats. Exp Ther Med 2016; 12:1075-1084. [PMID: 27446323 DOI: 10.3892/etm.2016.3445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/16/2016] [Indexed: 01/05/2023] Open
Abstract
Rapid eye movement (REM) sleep is closely associated with nervous functions. The present study aimed to evaluate the effects of gabazine and tiagabine on the cognitive functions (CF) of REM sleep-deprived and sleep recovered rats. Rats were divided into REM sleep deprivation, blank control (CC) and environmental groups. The REM sleep deprivation group was further divided into non-operation (nonOP), sham-operated (Sham), gabazine (SR) and tiagabine groups. Each group was evaluated over five time points: Sleep deprived for 1 day (SD 1 day), SD 3 day, SD 5 day, sleep recovery 6 h (RS 6 h) and RS 12 h. A rat model of REM sleep deprivation was established by a modified multi-platform water method, with CF assessed by Morris water maze. Hypothalamic γ-aminobutyric acid (GABA) and glutamic acid contents were measured via high performance liquid chromatography. The number and morphology of hypocretin (Hcrt) neurons and Fos in the hypothalamus, and GABAARα1-induced integral optical density were detected by immunofluorescence. Compared to the CC group, the nonOP and Sham group rats CF were significantly diminished, Fos-positive and Fos-Hcrt double positive cells were significantly increased, and GABA content and GABAARα1 expression levels were significantly elevated (P<0.05). The tiagabine and CC groups exhibited similar results at three time points. The CF of rats in the SR group were diminished and the number of Fos-positive and Fos-Hcrt double positive cells were significantly increased (P<0.05) at RS 6 h and RS l2 h. GABA content and GABAARα1 expression levels were significantly increased in the SR group at all time points (P<0.05), whereas only GABAARα1 expression levels were significantly increased in the tiagabine group at SD 5 day (P<0.05). The results of the present study indicated that REM sleep deprivation diminished CF, increased the number of Hcrt neurons, GABA content and GABAARα1 expression. Furthermore, all alterations were positively correlated with deprivation time and corrected by sleep recovery, as demonstrated by single-factor multi-level variance analysis at the various time points in each group. Therefore, the Hcrt nervous system may be an eligible therapeutic target for the treatment of insomnia.
Collapse
Affiliation(s)
- Lidao Bao
- College of Traditional Mongolian Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China; Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Lengge Si
- College of Traditional Mongolian Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Yuehong Wang
- College of Traditional Mongolian Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Gerile Wuyun
- College of Traditional Mongolian Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Agula Bo
- College of Traditional Mongolian Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| |
Collapse
|
276
|
Wu L, Sun Y, Ma L, Zhu J, Zhang B, Pan Q, Li Y, Liu H, Diao A, Li Y. A C-terminally truncated mouse Best3 splice variant targets and alters the ion balance in lysosome-endosome hybrids and the endoplasmic reticulum. Sci Rep 2016; 6:27332. [PMID: 27265833 PMCID: PMC4893618 DOI: 10.1038/srep27332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/16/2016] [Indexed: 02/07/2023] Open
Abstract
The Bestrophin family has been characterized as Cl(-) channels in mammals and Na(+) channels in bacteria, but their exact physiological roles remian unknown. In this study, a natural C-terminally truncated variant of mouse Bestrophin 3 (Best3V2) expression in myoblasts and muscles is demonstrated. Unlike full-length Best3, Best3V2 targets the two important intracellular Ca stores: the lysosome and the ER. Heterologous overexpression leads to lysosome swelling and renders it less acidic. Best3V2 overexpression also results in compromised Ca(2+) release from the ER. Knocking down endogenous Best3 expression in myoblasts makes these cells more excitable in response to Ca(2+) mobilizing reagents, such as caffeine. We propose that Best3V2 in myoblasts may work as a tuner to control Ca(2+) release from intracellular Ca(2+) stores.
Collapse
Affiliation(s)
- Lichang Wu
- Department of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Liqiao Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jun Zhu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Baoxia Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qingjie Pan
- Department of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yuyin Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Huanqi Liu
- Department of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China
| | - Aipo Diao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yinchuan Li
- Department of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
277
|
Bazargani N, Attwell D. Astrocyte calcium signaling: the third wave. Nat Neurosci 2016; 19:182-9. [PMID: 26814587 DOI: 10.1038/nn.4201] [Citation(s) in RCA: 634] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/10/2015] [Indexed: 02/06/2023]
Abstract
The discovery that transient elevations of calcium concentration occur in astrocytes, and release 'gliotransmitters' which act on neurons and vascular smooth muscle, led to the idea that astrocytes are powerful regulators of neuronal spiking, synaptic plasticity and brain blood flow. These findings were challenged by a second wave of reports that astrocyte calcium transients did not mediate functions attributed to gliotransmitters and were too slow to generate blood flow increases. Remarkably, the tide has now turned again: the most important calcium transients occur in fine astrocyte processes not resolved in earlier studies, and new mechanisms have been discovered by which astrocyte [Ca(2+)]i is raised and exerts its effects. Here we review how this third wave of discoveries has changed our understanding of astrocyte calcium signaling and its consequences for neuronal function.
Collapse
Affiliation(s)
- Narges Bazargani
- Department of Neuroscience, Physiology &Pharmacology, University College London, London, UK
| | - David Attwell
- Department of Neuroscience, Physiology &Pharmacology, University College London, London, UK
| |
Collapse
|
278
|
Kovács A, Bordás C, Bíró T, Hegyi Z, Antal M, Szücs P, Pál B. Direct presynaptic and indirect astrocyte-mediated mechanisms both contribute to endocannabinoid signaling in the pedunculopontine nucleus of mice. Brain Struct Funct 2016; 222:247-266. [DOI: 10.1007/s00429-016-1214-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/06/2016] [Indexed: 12/20/2022]
|
279
|
Valenzuela CF, Jotty K. Mini-Review: Effects of Ethanol on GABAA Receptor-Mediated Neurotransmission in the Cerebellar Cortex--Recent Advances. THE CEREBELLUM 2016; 14:438-46. [PMID: 25575727 DOI: 10.1007/s12311-014-0639-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Studies from several laboratories have shown that ethanol impairs cerebellar function, in part, by altering GABAergic transmission. Here, we discuss recent advances in our understanding of the acute effects of ethanol on GABA(A) receptor-mediated neurotransmission at cerebellar cortical circuits, mainly focusing on electrophysiological studies with slices from laboratory animals. These studies have shown that acute ethanol exposure increases GABA release at molecular layer interneuron-to-Purkinje cell synapses and also at reciprocal synapses between molecular layer interneurons. In granule cells, studies with rat cerebellar slices have consistently shown that acute ethanol exposure both potentiates tonic currents mediated by extrasynaptic GABA(A) receptors and also increases the frequency of spontaneous inhibitory postsynaptic currents mediated by synaptic GABA(A) receptors. These effects have been also documented in some granule cells from mice and nonhuman primates. Currently, there are two distinct models on how ethanol produces these effects. In one model, ethanol primarily acts by directly potentiating extrasynaptic GABA(A) receptors, including a population that excites granule cell axons and stimulates glutamate release onto Golgi cells. In the other model, ethanol acts indirectly by increasing spontaneous Golgi cell firing via inhibition of the Na(+)/K(+) ATPase, a quinidine-sensitive K(+) channel, and neuronal nitric oxide synthase. It was also demonstrated that a direct inhibitory effect of ethanol on tonic currents can be unmasked under conditions of low protein kinase C activity. In the last section, we briefly discuss studies on the chronic effect of ethanol on cerebellar GABA(A) receptor-mediated transmission and highlight potential areas where future research is needed.
Collapse
Affiliation(s)
- C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA,
| | | |
Collapse
|
280
|
Dar MS. Ethanol-Induced Cerebellar Ataxia: Cellular and Molecular Mechanisms. THE CEREBELLUM 2016; 14:447-65. [PMID: 25578036 DOI: 10.1007/s12311-014-0638-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cerebellum is an important target of ethanol toxicity given that cerebellar ataxia is the most consistent physical manifestation of acute ethanol consumption. Despite the significance of the cerebellum in ethanol-induced cerebellar ataxia (EICA), the cellular and molecular mechanisms underlying EICA are incompletely understood. However, two important findings have shed greater light on this phenomenon. First, ethanol-induced blockade of cerebellar adenosine uptake in rodent models points to a role for adenosinergic A1 modulation of EICA. Second, the consistent observation that intracerebellar administration of nicotine in mice leads to antagonism of EICA provides evidence for a critical role of cerebellar nitric oxide (NO) in EICA reversal. Based on these two important findings, this review discusses the potential molecular events at two key synaptic sites (mossy fiber-granule cell-Golgi cell (MGG synaptic site) and granule cell parallel fiber-Purkinje cell (GPP synaptic site) that lead to EICA. Specifically, ethanol-induced neuronal NOS inhibition at the MGG synaptic site acts as a critical trigger for Golgi cell activation which leads to granule cell deafferentation. Concurrently, ethanol-induced inhibition of adenosine uptake at the GPP synaptic site produces adenosine accumulation which decreases glutamate release and leads to the profound activation of Purkinje cells (PCs). These molecular events at the MGG and GPP synaptic sites are mutually reinforcing and lead to cerebellar dysfunction, decreased excitatory output of deep cerebellar nuclei, and EICA. The critical importance of PCs as the sole output of the cerebellar cortex suggests normalization of PC function could have important therapeutic implications.
Collapse
Affiliation(s)
- M Saeed Dar
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, 27858, USA,
| |
Collapse
|
281
|
Glial cell response after aneurysmal subarachnoid hemorrhage — Functional consequences and clinical implications. Biochim Biophys Acta Mol Basis Dis 2016; 1862:492-505. [DOI: 10.1016/j.bbadis.2015.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 12/17/2022]
|
282
|
Kane Dickson V. Phasing and structure of bestrophin-1: a case study in the use of heavy-atom cluster compounds with multi-subunit transmembrane proteins. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:319-25. [PMID: 26960119 PMCID: PMC4784663 DOI: 10.1107/s2059798315022524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/25/2015] [Indexed: 11/16/2022]
Abstract
The structure of a eukaryotic ion channel solved using tantalum bromide SAD phasing is discussed in the context of basic challenges common to membrane proteins. The purification and three-dimensional crystallization of membrane proteins are commonly affected by a cumulation of pathologies that are less prevalent in their soluble counterparts. This may include severe anisotropy, poor spot shape, poor to moderate-resolution diffraction, crystal twinning, translational pseudo-symmetry and poor uptake of heavy atoms for derivatization. Such challenges must be circumvented by adaptations in the approach to crystallization and/or phasing. Here, an example of a protein that exhibited all of the above-mentioned complications is presented. Bestrophin-1 is a eukaryotic calcium-activated chloride channel, the structure of which was recently determined in complex with monoclonal antibody fragments using SAD phasing with tantalum bromide clusters (Ta6Br12·Br2). Some of the obstacles to obtaining improved diffraction and phasing for this particular channel are discussed, as well as the approach and adaptations that were key to determining the structure.
Collapse
Affiliation(s)
- Veronica Kane Dickson
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, England
| |
Collapse
|
283
|
Petrelli F, Bezzi P. Novel insights into gliotransmitters. Curr Opin Pharmacol 2016; 26:138-45. [DOI: 10.1016/j.coph.2015.11.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022]
|
284
|
New Insights on Astrocyte Ion Channels: Critical for Homeostasis and Neuron-Glia Signaling. J Neurosci 2016; 35:13827-35. [PMID: 26468182 DOI: 10.1523/jneurosci.2603-15.2015] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Initial biophysical studies on glial cells nearly 50 years ago identified these cells as being electrically silent. These first studies also demonstrated a large K(+) conductance, which led to the notion that glia may regulate extracellular K(+) levels homeostatically. This view has now gained critical support from the study of multiple disease models discussed herein. Dysfunction of a major astrocyte K(+) channel, Kir4.1, appears as an early pathological event underlying neuronal phenotypes in several neurodevelopmental and neurodegenerative diseases. An expanding list of other astrocyte ion channels, including the calcium-activated ion channel BEST-1, hemichannels, and two-pore domain K(+) channels, all contribute to astrocyte biology and CNS function and underpin new forms of crosstalk between neurons and glia. Once considered merely the glue that holds the brain together, it is now increasingly recognized that astrocytes contribute in several fundamental ways to neuronal function. Emerging new insights and future perspectives of this active research area are highlighted within. SIGNIFICANCE STATEMENT The critical role of astrocyte potassium channels in CNS homeostasis has been reemphasized by recent studies conducted in animal disease models. Emerging evidence also supports the signaling role mediated by astrocyte ion channels such as BEST1, hemichannels, and two-pore channels, which enable astrocytes to interact with neurons and regulate synaptic transmission and plasticity. This minisymposium highlights recent developments and future perspectives of these research areas.
Collapse
|
285
|
Min JO, Kim SY, Shin US, Yoon BE. Multi-walled carbon nanotubes change morpho-functional and GABA characteristics of mouse cortical astrocytes. J Nanobiotechnology 2015; 13:92. [PMID: 26683698 PMCID: PMC4683728 DOI: 10.1186/s12951-015-0152-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multi-walled carbon nanotubes (MW-CNTs) have been extensively explored for their possible beneficial use in the nervous system. CNTs have shown to modulate neuronal growth and electrical properties, but its effect that varying length of MW-CNTs on primary astrocyte roles have not been clearly demonstrated yet. RESULTS We investigate here the effect of MW-CNTs on astrocytic morphology, cell-cell interaction and the distribution of intracellular GABA (gamma-amino butyric acid). Primary cultured cortical astrocytes on MW-CNT-coated glass coverslips grow rounder and make more cell-cell interactions, with many cell processes, compared to astrocytes on poly-D-lysine (PDL) coverslips. In addition, intracellular GABA spreads into the cell processes of astrocytes on MW-CNT coverslips. When this GABA spreads into cell processes from the cell body GABA can be released more easily and in larger quantities compared to astrocytes on PDL coverslips. CONCLUSIONS Our result confirm that MW-CNTs modulate astrocytic morphology, the distribution of astrocytic GABA, cell-cell interactions and the extension of cell processes. CNTs look to be a promising material for use neuroprosthetics such as brain-machine interface technologies.
Collapse
Affiliation(s)
- Joo-Ok Min
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 330-714, Republic of Korea.
| | - Seong Yeol Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 330-714, Republic of Korea. .,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 330-714, Republic of Korea.
| | - Ueon Sang Shin
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 330-714, Republic of Korea. .,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 330-714, Republic of Korea.
| | - Bo-Eun Yoon
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 330-714, Republic of Korea.
| |
Collapse
|
286
|
Pál B. Astrocytic Actions on Extrasynaptic Neuronal Currents. Front Cell Neurosci 2015; 9:474. [PMID: 26696832 PMCID: PMC4673305 DOI: 10.3389/fncel.2015.00474] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/20/2015] [Indexed: 01/23/2023] Open
Abstract
In the last few decades, knowledge about astrocytic functions has significantly increased. It was demonstrated that astrocytes are not passive elements of the central nervous system (CNS), but active partners of neurons. There is a growing body of knowledge about the calcium excitability of astrocytes, the actions of different gliotransmitters and their release mechanisms, as well as the participation of astrocytes in the regulation of synaptic functions and their contribution to synaptic plasticity. However, astrocytic functions are even more complex than being a partner of the “tripartite synapse,” as they can influence extrasynaptic neuronal currents either by releasing substances or regulating ambient neurotransmitter levels. Several types of currents or changes of membrane potential with different kinetics and via different mechanisms can be elicited by astrocytic activity. Astrocyte-dependent phasic or tonic, inward or outward currents were described in several brain areas. Such currents, together with the synaptic actions of astrocytes, can contribute to neuromodulatory mechanisms, neurosensory and -secretory processes, cortical oscillatory activity, memory, and learning or overall neuronal excitability. This mini-review is an attempt to give a brief summary of astrocyte-dependent extrasynaptic neuronal currents and their possible functional significance.
Collapse
Affiliation(s)
- Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| |
Collapse
|
287
|
Del Rio R, Quintanilla RA, Orellana JA, Retamal MA. Neuron-Glia Crosstalk in the Autonomic Nervous System and Its Possible Role in the Progression of Metabolic Syndrome: A New Hypothesis. Front Physiol 2015; 6:350. [PMID: 26648871 PMCID: PMC4664731 DOI: 10.3389/fphys.2015.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/09/2015] [Indexed: 01/26/2023] Open
Abstract
Metabolic syndrome (MS) is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure, and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct, and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission, and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process.
Collapse
Affiliation(s)
- Rodrigo Del Rio
- Centro de Investigación Biomédica, Universidad Autónoma de Chile Santiago, Chile ; Dirección de Investigación, Universidad Científica del Sur Lima, Perú
| | | | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina. Clínica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
288
|
Mongin AA. Volume-regulated anion channel--a frenemy within the brain. Pflugers Arch 2015; 468:421-41. [PMID: 26620797 DOI: 10.1007/s00424-015-1765-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
Abstract
The volume-regulated anion channel (VRAC) is a ubiquitously expressed yet highly enigmatic member of the superfamily of chloride/anion channels. It is activated by cellular swelling and mediates regulatory cell volume decrease in a majority of vertebrate cells, including those in the central nervous system (CNS). In the brain, besides its crucial role in cellular volume regulation, VRAC is thought to play a part in cell proliferation, apoptosis, migration, and release of physiologically active molecules. Although these roles are not exclusive to the CNS, the relative significance of VRAC in the brain is amplified by several unique aspects of its physiology. One important example is the contribution of VRAC to the release of the excitatory amino acid neurotransmitters glutamate and aspartate. This latter process is thought to have impact on both normal brain functioning (such as astrocyte-neuron signaling) and neuropathology (via promoting the excitotoxic death of neuronal cells in stroke and traumatic brain injury). In spite of much work in the field, the molecular nature of VRAC remained unknown until less than 2 years ago. Two pioneer publications identified VRAC as the heterohexamer formed by the leucine-rich repeat-containing 8 (LRRC8) proteins. These findings galvanized the field and are likely to result in dramatic revisions to our understanding of the place and role of VRAC in the brain, as well as other organs and tissues. The present review briefly recapitulates critical findings in the CNS and focuses on anticipated impact on the LRRC8 discovery on further progress in neuroscience research.
Collapse
Affiliation(s)
- Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, 47 New Scotland Ave., Albany, NY, 12208, USA.
| |
Collapse
|
289
|
Ghatak S, Banerjee A, Sikdar SK. Ischaemic concentrations of lactate increase TREK1 channel activity by interacting with a single histidine residue in the carboxy terminal domain. J Physiol 2015; 594:59-81. [PMID: 26445100 DOI: 10.1113/jp270706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 09/21/2015] [Indexed: 02/01/2023] Open
Abstract
KEY POINTS The physiological metabolite, lactate and the two-pore domain leak potassium channel, TREK1 are known neuroprotectants against cerebral ischaemia. However, it is not known whether lactate interacts with TREK1 channel to provide neuroprotection. In this study we show that lactate increases TREK1 channel activity and hyperpolarizes CA1 stratum radiatum astrocytes in hippocampal slices. Lactate increases open probability and decreases longer close time of the human (h)TREK1 channel in a concentration dependent manner. Lactate interacts with histidine 328 (H328) in the carboxy terminal domain of hTREK1 channel to decrease its dwell time in the longer closed state. This interaction was dependent on the charge on H328. Lactate-insensitive mutant H328A hTREK1 showed pH sensitivity similar to wild-type hTREK1, indicating that the effect of lactate on hTREK1 is independent of pH change. A rise in lactate concentration and the leak potassium channel TREK1 have been independently associated with cerebral ischaemia. Recent literature suggests lactate to be neuroprotective and TREK1 knockout mice show an increased sensitivity to brain and spinal cord ischaemia; however, the connecting link between the two is missing. Therefore we hypothesized that lactate might interact with TREK1 channels. In the present study, we show that lactate at ischaemic concentrations (15-30 mm) at pH 7.4 increases TREK1 current in CA1 stratum radiatum astrocytes and causes membrane hyperpolarization. We confirm the intracellular action of lactate on TREK1 in hippocampal slices using monocarboxylate transporter blockers and at single channel level in cell-free inside-out membrane patches. The intracellular effect of lactate on TREK1 is specific since other monocarboxylates such as pyruvate and acetate at pH 7.4 failed to increase TREK1 current. Deletion and point mutation experiments suggest that lactate decreases the longer close dwell time incrementally with increase in lactate concentration by interacting with the histidine residue at position 328 (H328) in the carboxy terminal domain of the TREK1 channel. The interaction of lactate with H328 is dependent on the charge on the histidine residue since isosteric mutation of H328 to glutamine did not show an increase in TREK1 channel activity with lactate. This is the first demonstration of a direct effect of lactate on ion channel activity. The action of lactate on the TREK1 channel signifies a separate neuroprotective mechanism in ischaemia since it was found to be independent of the effect of acidic pH on channel activity.
Collapse
Affiliation(s)
- Swagata Ghatak
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Aditi Banerjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Sujit Kumar Sikdar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| |
Collapse
|
290
|
Losi G, Mariotti L, Carmignoto G. GABAergic interneuron to astrocyte signalling: a neglected form of cell communication in the brain. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130609. [PMID: 25225102 DOI: 10.1098/rstb.2013.0609] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
GABAergic interneurons represent a minority of all cortical neurons and yet they efficiently control neural network activities in all brain areas. In parallel, glial cell astrocytes exert a broad control of brain tissue homeostasis and metabolism, modulate synaptic transmission and contribute to brain information processing in a dynamic interaction with neurons that is finely regulated in time and space. As most studies have focused on glutamatergic neurons and excitatory transmission, our knowledge of functional interactions between GABAergic interneurons and astrocytes is largely defective. Here, we critically discuss the currently available literature that hints at a potential relevance of this specific signalling in brain function. Astrocytes can respond to GABA through different mechanisms that include GABA receptors and transporters. GABA-activated astrocytes can, in turn, modulate local neuronal activity by releasing gliotransmitters including glutamate and ATP. In addition, astrocyte activation by different signals can modulate GABAergic neurotransmission. Full clarification of the reciprocal signalling between different GABAergic interneurons and astrocytes will improve our understanding of brain network complexity and has the potential to unveil novel therapeutic strategies for brain disorders.
Collapse
Affiliation(s)
- Gabriele Losi
- Department of Biomedical Science, Consiglio Nazionale delle Ricerche, Neuroscience Institute and University of Padova, Padova, Italy
| | - Letizia Mariotti
- Department of Biomedical Science, Consiglio Nazionale delle Ricerche, Neuroscience Institute and University of Padova, Padova, Italy
| | - Giorgio Carmignoto
- Department of Biomedical Science, Consiglio Nazionale delle Ricerche, Neuroscience Institute and University of Padova, Padova, Italy
| |
Collapse
|
291
|
Verkhratsky A, Nedergaard M. Astroglial cradle in the life of the synapse. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130595. [PMID: 25225089 DOI: 10.1098/rstb.2013.0595] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Astroglial perisynaptic sheath covers the majority of synapses in the central nervous system. This glial coverage evolved as a part of the synaptic structure in which elements directly responsible for neurotransmission (exocytotic machinery and appropriate receptors) concentrate in neuronal membranes, whereas multiple molecules imperative for homeostatic maintenance of the synapse (transporters for neurotransmitters, ions, amino acids, etc.) are shifted to glial membranes that have substantially larger surface area. The astrocytic perisynaptic processes act as an 'astroglial cradle' essential for synaptogenesis, maturation, isolation and maintenance of synapses, representing the fundamental mechanism contributing to synaptic connectivity, synaptic plasticity and information processing in the nervous system.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, University of Manchester, Manchester, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Maiken Nedergaard
- Division of Glia Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14580, USA
| |
Collapse
|
292
|
Sahlender DA, Savtchouk I, Volterra A. What do we know about gliotransmitter release from astrocytes? Philos Trans R Soc Lond B Biol Sci 2015; 369:20130592. [PMID: 25225086 PMCID: PMC4173278 DOI: 10.1098/rstb.2013.0592] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Astrocytes participate in information processing by actively modulating synaptic properties via gliotransmitter release. Various mechanisms of astrocytic release have been reported, including release from storage organelles via exocytosis and release from the cytosol via plasma membrane ion channels and pumps. It is still not fully clear which mechanisms operate under which conditions, but some of them, being Ca2+-regulated, may be physiologically relevant. The properties of Ca2+-dependent transmitter release via exocytosis or via ion channels are different and expected to produce different extracellular transmitter concentrations over time and to have distinct functional consequences. The molecular aspects of these two release pathways are still under active investigation. Here, we discuss the existing morphological and functional evidence in support of either of them. Transgenic mouse models, specific antagonists and localization studies have provided insight into regulated exocytosis, albeit not in a systematic fashion. Even more remains to be uncovered about the details of channel-mediated release. Better functional tools and improved ultrastructural approaches are needed in order fully to define specific modalities and effects of astrocytic gliotransmitter release pathways.
Collapse
Affiliation(s)
- Daniela A Sahlender
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, Lausanne 1005, Switzerland
| | - Iaroslav Savtchouk
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, Lausanne 1005, Switzerland
| | - Andrea Volterra
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, Lausanne 1005, Switzerland
| |
Collapse
|
293
|
Ropert N, Jalil A, Li D. Expression and cellular function of vSNARE proteins in brain astrocytes. Neuroscience 2015; 323:76-83. [PMID: 26518463 DOI: 10.1016/j.neuroscience.2015.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/07/2015] [Accepted: 10/21/2015] [Indexed: 12/27/2022]
Abstract
Gray matter protoplasmic astrocytes, a major type of glial cell in the mammalian brain, extend thin processes ensheathing neuronal synaptic terminals. Albeit electrically silent, astrocytes respond to neuronal activity with Ca(2+) signals that trigger the release of gliotransmitters, such as glutamate, d-serine, and ATP, which modulate synaptic transmission. It has been suggested that the astrocytic processes, together with neuronal pre- and post-synaptic elements, constitute a tripartite synapse, and that astrocytes actively regulate information processing. Astrocytic vesicles expressing VAMP2 and VAMP3 vesicular SNARE (vSNARE) proteins have been suggested to be a key feature of the tripartite synapse and mediate gliotransmitter release through Ca(2+)-regulated exocytosis. However, the concept of exocytotic release of gliotransmitters by astrocytes has been challenged. Here we review studies investigating the expression profile of VAMP2 and VAMP3 vSNARE proteins in rodent astrocytes, and the functional implication of VAMP2/VAMP3 vesicles in astrocyte signaling. We also discuss our recent data suggesting that astrocytic VAMP3 vesicles regulate the trafficking of glutamate transporters at the plasma membrane and glutamate uptake. A better understanding of the functional consequences of the astrocytic vSNARE vesicles on glutamate signaling, neuronal excitability and plasticity, will require the development of new strategies to selectively interrogate the astrocytic vesicles trafficking in vivo.
Collapse
Affiliation(s)
- N Ropert
- Brain Physiology Laboratory, CNRS UMR8118, Paris F-75006, France; Fédération de Recherche en Neurosciences, FR 3636, Université Paris Descartes, 45 rue des Saints Pères, Paris F-75006, France; Sorbonne Paris Cité, 190, avenue de France, Paris F-75013, France
| | - A Jalil
- Brain Physiology Laboratory, CNRS UMR8118, Paris F-75006, France; Fédération de Recherche en Neurosciences, FR 3636, Université Paris Descartes, 45 rue des Saints Pères, Paris F-75006, France; Sorbonne Paris Cité, 190, avenue de France, Paris F-75013, France
| | - D Li
- Brain Physiology Laboratory, CNRS UMR8118, Paris F-75006, France; Fédération de Recherche en Neurosciences, FR 3636, Université Paris Descartes, 45 rue des Saints Pères, Paris F-75006, France; Sorbonne Paris Cité, 190, avenue de France, Paris F-75013, France.
| |
Collapse
|
294
|
Son Y, Jenny Lee H, Kim J, Shin H, Choi N, Justin Lee C, Yoon ES, Yoon E, Wise KD, Geun Kim T, Cho IJ. In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays. Sci Rep 2015; 5:15466. [PMID: 26494437 PMCID: PMC4616027 DOI: 10.1038/srep15466] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 09/17/2015] [Indexed: 11/09/2022] Open
Abstract
Integration of stimulation modalities (e.g. electrical, optical, and chemical) on a large array of neural probes can enable an investigation of important underlying mechanisms of brain disorders that is not possible through neural recordings alone. Furthermore, it is important to achieve this integration of multiple functionalities in a compact structure to utilize a large number of the mouse models. Here we present a successful optical modulation of in vivo neural signals of a transgenic mouse through our compact 2D MEMS neural array (optrodes). Using a novel fabrication method that embeds a lower cladding layer in a silicon substrate, we achieved a thin silicon 2D optrode array that is capable of delivering light to multiple sites using SU-8 as a waveguide core. Without additional modification to the microelectrodes, the measured impedance of the multiple microelectrodes was below 1 MΩ at 1 kHz. In addition, with a low background noise level (± 25 μV), neural spikes from different individual neurons were recorded on each microelectrode. Lastly, we successfully used our optrodes to modulate the neural activity of a transgenic mouse through optical stimulation. These results demonstrate the functionality of the 2D optrode array and its potential as a next-generation tool for optogenetic applications.
Collapse
Affiliation(s)
- Yoojin Son
- Centre for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Korea
- Department of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-701, Korea
| | - Hyunjoo Jenny Lee
- Centre for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Korea
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Korea
| | - Jeongyeon Kim
- Centre for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Korea
| | - Hyogeun Shin
- Centre for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350, Korea
| | - Nakwon Choi
- Centre for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Korea
| | - C. Justin Lee
- Centre for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Korea
| | - Eui-Sung Yoon
- Centre for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Korea
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan, 48105, USA
| | - Kensall D. Wise
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan, 48105, USA
| | - Tae Geun Kim
- Department of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-701, Korea
| | - Il-Joo Cho
- Centre for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 305-350, Korea
| |
Collapse
|
295
|
Nam JH, Park ES, Won SY, Lee YA, Kim KI, Jeong JY, Baek JY, Cho EJ, Jin M, Chung YC, Lee BD, Kim SH, Kim EG, Byun K, Lee B, Woo DH, Lee CJ, Kim SR, Bok E, Kim YS, Ahn TB, Ko HW, Brahmachari S, Pletinkova O, Troconso JC, Dawson VL, Dawson TM, Jin BK. TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson's disease via CNTF. Brain 2015; 138:3610-22. [PMID: 26490328 DOI: 10.1093/brain/awv297] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/23/2015] [Indexed: 11/12/2022] Open
Abstract
Currently there is no neuroprotective or neurorestorative therapy for Parkinson's disease. Here we report that transient receptor potential vanilloid 1 (TRPV1) on astrocytes mediates endogenous production of ciliary neurotrophic factor (CNTF), which prevents the active degeneration of dopamine neurons and leads to behavioural recovery through CNTF receptor alpha (CNTFRα) on nigral dopamine neurons in both the MPP(+)-lesioned or adeno-associated virus α-synuclein rat models of Parkinson's disease. Western blot and immunohistochemical analysis of human post-mortem substantia nigra from Parkinson's disease suggests that this endogenous neuroprotective system (TRPV1 and CNTF on astrocytes, and CNTFRα on dopamine neurons) might have relevance to human Parkinson's disease. Our results suggest that activation of astrocytic TRPV1 activates endogenous neuroprotective machinery in vivo and that it is a novel therapeutic target for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Jin H Nam
- 1 Department of Biochemistry and Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Centre, School of Medicine Kyung Hee University, Seoul 130-701, Korea
| | - Eun S Park
- 1 Department of Biochemistry and Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Centre, School of Medicine Kyung Hee University, Seoul 130-701, Korea
| | - So-Yoon Won
- 2 Department of Biochemistry and Signaling Disorder Research Centre, College of Medicine, Chungbuk National University, Cheongju 361-763, Korea
| | - Yu A Lee
- 1 Department of Biochemistry and Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Centre, School of Medicine Kyung Hee University, Seoul 130-701, Korea
| | - Kyoung I Kim
- 1 Department of Biochemistry and Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Centre, School of Medicine Kyung Hee University, Seoul 130-701, Korea
| | - Jae Y Jeong
- 1 Department of Biochemistry and Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Centre, School of Medicine Kyung Hee University, Seoul 130-701, Korea
| | - Jeong Y Baek
- 1 Department of Biochemistry and Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Centre, School of Medicine Kyung Hee University, Seoul 130-701, Korea
| | - Eun J Cho
- 1 Department of Biochemistry and Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Centre, School of Medicine Kyung Hee University, Seoul 130-701, Korea
| | - Minyoung Jin
- 1 Department of Biochemistry and Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Centre, School of Medicine Kyung Hee University, Seoul 130-701, Korea
| | - Young C Chung
- 1 Department of Biochemistry and Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Centre, School of Medicine Kyung Hee University, Seoul 130-701, Korea
| | - Byoung D Lee
- 1 Department of Biochemistry and Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Centre, School of Medicine Kyung Hee University, Seoul 130-701, Korea
| | - Sung Hyun Kim
- 1 Department of Biochemistry and Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Centre, School of Medicine Kyung Hee University, Seoul 130-701, Korea
| | - Eung-Gook Kim
- 2 Department of Biochemistry and Signaling Disorder Research Centre, College of Medicine, Chungbuk National University, Cheongju 361-763, Korea
| | - Kyunghee Byun
- 3 Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon 406-840, Korea
| | - Bonghee Lee
- 3 Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon 406-840, Korea
| | - Dong Ho Woo
- 4 Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 130-701, Korea
| | - C Justin Lee
- 4 Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 130-701, Korea
| | - Sang R Kim
- 5 School of Life Sciences, BK21 Plus KNU Creative Bio Research Group, Kyungpook National University, Daegu 702-701, Korea
| | - Eugene Bok
- 1 Department of Biochemistry and Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Centre, School of Medicine Kyung Hee University, Seoul 130-701, Korea 6 Burnett School of Biomedical Sciences, College of Medicine University of Central Florida, FL 32827, USA
| | - Yoon-Seong Kim
- 6 Burnett School of Biomedical Sciences, College of Medicine University of Central Florida, FL 32827, USA
| | - Tae-Beom Ahn
- 7 Department of Neurology, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Hyuk Wan Ko
- 1 Department of Biochemistry and Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Centre, School of Medicine Kyung Hee University, Seoul 130-701, Korea
| | - Saurav Brahmachari
- 8 Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA 9 Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA 10 Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Olga Pletinkova
- 11 Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Juan C Troconso
- 9 Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA 11 Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Valina L Dawson
- 8 Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA 9 Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA 12 Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA 13 Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA 14 Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Ted M Dawson
- 8 Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA 9 Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA 10 Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA 12 Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA 14 Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA 15 Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Byung K Jin
- 1 Department of Biochemistry and Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Centre, School of Medicine Kyung Hee University, Seoul 130-701, Korea
| |
Collapse
|
296
|
Johnson AA, Bachman LA, Gilles BJ, Cross SD, Stelzig KE, Resch ZT, Marmorstein LY, Pulido JS, Marmorstein AD. Autosomal Recessive Bestrophinopathy Is Not Associated With the Loss of Bestrophin-1 Anion Channel Function in a Patient With a Novel BEST1 Mutation. Invest Ophthalmol Vis Sci 2015. [PMID: 26200502 DOI: 10.1167/iovs.15-16910] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
PURPOSE Mutations in BEST1, encoding bestrophin-1 (Best1), cause autosomal recessive bestrophinopathy (ARB). Encoding bestrophin-1 is a pentameric anion channel localized to the basolateral plasma membrane of the RPE. Here, we characterize the effects of the mutations R141H (CGC > CAC) and I366fsX18 (c.1098_1100+7del), identified in a patient in our practice, on Best1 trafficking, oligomerization, and channel activity. METHODS Currents of Cl- were assessed in transfected HEK293 cells using whole-cell patch clamp. Best1 localization was assessed by confocal microscopy in differentiated, human-induced pluripotent stem cell-derived RPE (iPSC-RPE) cells following expression of mutants via adenovirus-mediated gene transfer. Oligomerization was evaluated by coimmunoprecipitation in iPSC-RPE and MDCK cells. RESULTS Compared to Best1, Best1 I366fsX18 currents were increased while Best1 R141H Cl- currents were diminished. Coexpression of Best1 R141H with Best1 or Best1 I366fsX18 resulted in rescued channel activity. Overexpressed Best1, Best1 R141H, and Best1 I366fsX18 were all properly localized in iPSC-RPE cells; Best1 R141H and Best1 I366fsX18 coimmunoprecipitated with endogenous Best1 in iPSC-RPE cells and with each other in MDCK cells. CONCLUSIONS The first 366 amino acids of Best1 are sufficient to mediate channel activity and homo-oligomerization. The combination of Best1 and Best1 R141H does not cause disease, while Best1 R141H together with Best1 I366fsX18 causes ARB. Since both combinations generate comparable Cl- currents, this indicates that ARB in this patient is not caused by a loss of channel activity. Moreover, Best1 I366fsX18 differs from Best1 in that it lacks most of the cytosolic C-terminal domain, suggesting that the loss of this region contributes significantly to the pathogenesis of ARB in this patient.
Collapse
Affiliation(s)
- Adiv A Johnson
- Department of Ophthalmology Mayo Clinic, Rochester, Minnesota, United States
| | - Lori A Bachman
- Department of Ophthalmology Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin J Gilles
- Department of Ophthalmology Mayo Clinic, Rochester, Minnesota, United States
| | - Samuel D Cross
- Department of Ophthalmology Mayo Clinic, Rochester, Minnesota, United States
| | - Kimberly E Stelzig
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Zachary T Resch
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Lihua Y Marmorstein
- Department of Ophthalmology Mayo Clinic, Rochester, Minnesota, United States
| | - Jose S Pulido
- Department of Ophthalmology Mayo Clinic, Rochester, Minnesota, United States 3Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Alan D Marmorstein
- Department of Ophthalmology Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
297
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [PMID: 26403687 DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Usman Farooq
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Elena Vashchinkina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - David J Nutt
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Gavin S Dawe
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| |
Collapse
|
298
|
Schipper S, Aalbers MW, Rijkers K, Swijsen A, Rigo JM, Hoogland G, Vles JSH. Tonic GABAA Receptors as Potential Target for the Treatment of Temporal Lobe Epilepsy. Mol Neurobiol 2015; 53:5252-65. [PMID: 26409480 PMCID: PMC5012145 DOI: 10.1007/s12035-015-9423-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/03/2015] [Indexed: 12/11/2022]
Abstract
Tonic GABAA receptors are a subpopulation of receptors that generate long-lasting inhibition and thereby control network excitability. In recent years, these receptors have been implicated in various neurological and psychiatric disorders, including Parkinson’s disease, schizophrenia, and epilepsy. Their distinct subunit composition and function, compared to phasic GABAA receptors, opens the possibility to specifically modulate network properties. In this review, the role of tonic GABAA receptors in epilepsy and as potential antiepileptic target will be discussed.
Collapse
Affiliation(s)
- S Schipper
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands.
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - M W Aalbers
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - K Rijkers
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neurosurgery and Orthopedic Surgery, Atrium Hospital Heerlen, Heerlen, The Netherlands
| | - A Swijsen
- BIOMED Research Institute, Hasselt University/Transnational University Limburg, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - J M Rigo
- BIOMED Research Institute, Hasselt University/Transnational University Limburg, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - G Hoogland
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J S H Vles
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
299
|
Abstract
We delineate perspectives for the design and discovery of antiepileptic drugs (AEDs) with fewer side effects by focusing on astroglial modulation of spatiotemporal seizure dynamics. It is now recognized that the major inhibitory neurotransmitter of the brain, γ-aminobutyric acid (GABA), can be released through the reversal of astroglial GABA transporters. Synaptic spillover and subsequent glutamate (Glu) uptake in neighboring astrocytes evoke replacement of extracellular Glu for GABA, driving neurons away from the seizure threshold. Attenuation of synaptic signaling by this negative feedback through the interplay of Glu and GABA transporters of adjacent astroglia can result in shortened seizures. By contrast, long-range activation of astroglia through gap junctions may promote recurrent seizures on the model of pharmacoresistant temporal lobe epilepsy. From their first detection to our current understanding, we identify various targets that shape both short- and long-range neuro-astroglia coupling, as these are manifest in epilepsy phenomena and in the associated research promotions of AED.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| |
Collapse
|
300
|
Yarishkin O, Lee J, Jo S, Hwang EM, Lee CJ. Disinhibitory Action of Astrocytic GABA at the Perforant Path to Dentate Gyrus Granule Neuron Synapse Reverses to Inhibitory in Alzheimer's Disease Model. Exp Neurobiol 2015; 24:211-8. [PMID: 26412970 PMCID: PMC4580748 DOI: 10.5607/en.2015.24.3.211] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/11/2022] Open
Abstract
Like neurons, astrocytes produce and release GABA to influence neuronal signaling. At the perforant path to dentate gyrus granule neuron synapse, GABA from astrocyte was found to be a strong inhibitory factor, which impairs synaptic transmission, synaptic plasticity and memory in Alzheimer's disease. Although astrocytic GABA is observed in many brain regions, its physiological role has not been clearly demonstrated yet. Here, we show that astrocytic GABA exerts disinhibitory action to dentate granule neurons by targeting GABAB receptors of GABAergic interneurons in wild-type mice. This disinhibitory effect is specific to a low intensity of electrical stimulation at perforant path fibers. Inversely in Alzheimer's disease model mice, astrocytic GABA targets GABAA receptors and exerts inhibitory action by reducing release probability of glutamatergic perforant path terminals. These results suggest that astrocytic GABA differentially modulates the signaling from cortical input to dentate gyrus under physiological and pathological conditions.
Collapse
Affiliation(s)
- Oleg Yarishkin
- Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jaekwang Lee
- Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Seonmi Jo
- Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea. ; Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eun Mi Hwang
- Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea. ; Neuroscience Program, University of Science and Technology (UST), Daejeon 34113, Korea
| | - C Justin Lee
- Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea. ; Neuroscience Program, University of Science and Technology (UST), Daejeon 34113, Korea. ; KU-KIST Graduate School of Converging Science and Technology, Seoul 02841, Korea
| |
Collapse
|