251
|
Reilley MJ, McCoon P, Cook C, Lyne P, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, Fowler N, Curran M, Liu Q, Zhou T, Schmidt J, Jo M, Lee SJ, Yamashita M, Hughes SG, Fayad L, Piha-Paul S, Nadella MVP, Xiao X, Hsu J, Revenko A, Monia BP, MacLeod AR, Hong DS. STAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: results of a phase 1b trial. J Immunother Cancer 2018; 6:119. [PMID: 30446007 PMCID: PMC6240242 DOI: 10.1186/s40425-018-0436-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/28/2018] [Indexed: 01/05/2023] Open
Abstract
Background The Janus kinase (JAK) and signal transduction and activation of transcription (STAT) signaling pathway is an attractive target in multiple cancers. Activation of the JAK-STAT pathway is important in both tumorigenesis and activation of immune responses. In diffuse large B-cell lymphoma (DLBCL), the transcription factor STAT3 has been associated with aggressive disease phenotype and worse overall survival. While multiple therapies inhibit upstream signaling, there has been limited success in selectively targeting STAT3 in patients. Antisense oligonucleotides (ASOs) represent a compelling therapeutic approach to target difficult to drug proteins such as STAT3 through of mRNA targeting. We report the evaluation of a next generation STAT3 ASO (AZD9150) in a non-Hodgkin’s lymphoma population, primarily consisting of patients with DLBCL. Methods Patients with relapsed or treatment refractory lymphoma were enrolled in this expansion cohort. AZD9150 was administered at 2 mg/kg and the 3 mg/kg (MTD determined by escalation cohort) dose levels with initial loading doses in the first week on days 1, 3, and 5 followed by weekly dosing. Patients were eligible to remain on therapy until unacceptable toxicity or progression. Blood was collected pre- and post-treatment for analysis of peripheral immune cells. Results Thirty patients were enrolled, 10 at 2 mg/kg and 20 at 3 mg/kg dose levels. Twenty-seven patients had DLBCL. AZD9150 was safe and well tolerated at both doses. Common drug-related adverse events included transaminitis, fatigue, and thrombocytopenia. The 3 mg/kg dose level is the recommended phase 2 dose. All responses were seen among DLBCL patients, including 2 complete responses with median duration of response 10.7 months and 2 partial responses. Peripheral blood cell analysis of three patients without a clinical response to therapy revealed a relative increase in proportion of macrophages, CD4+, and CD8+ T cells; this trend did not reach statistical significance. Conclusions AZD9150 was well tolerated and demonstrated efficacy in a subset of heavily pretreated patients with DLBCL. Studies in combination with checkpoint immunotherapies are ongoing. Trial registration Registered at ClinicalTrials.gov: NCT01563302. First submitted 2/13/2012. Electronic supplementary material The online version of this article (10.1186/s40425-018-0436-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew J Reilley
- Division of Hematology/Oncology, University of Virginia Health System, Charlottesville, VA, USA
| | - Patricia McCoon
- Oncology, IMED Biotech Unit, AstraZeneca Pharmaceuticals, Waltham, MA, USA
| | - Carl Cook
- Oncology, IMED Biotech Unit, AstraZeneca Pharmaceuticals, Waltham, MA, USA
| | - Paul Lyne
- Oncology, IMED Biotech Unit, AstraZeneca Pharmaceuticals, Waltham, MA, USA
| | | | - Youngsoo Kim
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Richard Woessner
- Oncology, IMED Biotech Unit, AstraZeneca Pharmaceuticals, Waltham, MA, USA
| | - Anas Younes
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Nathan Fowler
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0455, Houston, TX, 77030, USA
| | - Michael Curran
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0455, Houston, TX, 77030, USA
| | - Qinying Liu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0455, Houston, TX, 77030, USA
| | - Tianyuan Zhou
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Joanna Schmidt
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Minji Jo
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Samantha J Lee
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Mason Yamashita
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Steven G Hughes
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Luis Fayad
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0455, Houston, TX, 77030, USA
| | - Sarina Piha-Paul
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0455, Houston, TX, 77030, USA
| | - Murali V P Nadella
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca Pharmaceuticals, Waltham, MA, USA
| | - Xiaokun Xiao
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Jeff Hsu
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Alexey Revenko
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Brett P Monia
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - A Robert MacLeod
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0455, Houston, TX, 77030, USA.
| |
Collapse
|
252
|
Shastri A, Choudhary G, Teixeira M, Gordon-Mitchell S, Ramachandra N, Bernard L, Bhattacharyya S, Lopez R, Pradhan K, Giricz O, Ravipati G, Wong LF, Cole S, Bhagat TD, Feld J, Dhar Y, Bartenstein M, Thiruthuvanathan VJ, Wickrema A, Ye BH, Frank DA, Pellagatti A, Boultwood J, Zhou T, Kim Y, MacLeod AR, Epling-Burnette PK, Ye M, McCoon P, Woessner R, Steidl U, Will B, Verma A. Antisense STAT3 inhibitor decreases viability of myelodysplastic and leukemic stem cells. J Clin Invest 2018; 128:5479-5488. [PMID: 30252677 DOI: 10.1172/jci120156] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 09/20/2018] [Indexed: 01/01/2023] Open
Abstract
Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are associated with disease-initiating stem cells that are not eliminated by conventional therapies. Transcriptomic analysis of stem and progenitor populations in MDS and AML demonstrated overexpression of STAT3 that was validated in an independent cohort. STAT3 overexpression was predictive of a shorter survival and worse clinical features in a large MDS cohort. High STAT3 expression signature in MDS CD34+ cells was similar to known preleukemic gene signatures. Functionally, STAT3 inhibition by a clinical, antisense oligonucleotide, AZD9150, led to reduced viability and increased apoptosis in leukemic cell lines. AZD9150 was rapidly incorporated by primary MDS/AML stem and progenitor cells and led to increased hematopoietic differentiation. STAT3 knockdown also impaired leukemic growth in vivo and led to decreased expression of MCL1 and other oncogenic genes in malignant cells. These studies demonstrate that STAT3 is an adverse prognostic factor in MDS/AML and provide a preclinical rationale for studies using AZD9150 in these diseases.
Collapse
Affiliation(s)
- Aditi Shastri
- Albert Einstein College of Medicine, New York, New York, USA
| | | | | | | | | | - Lumie Bernard
- Albert Einstein College of Medicine, New York, New York, USA
| | | | - Robert Lopez
- Albert Einstein College of Medicine, New York, New York, USA
| | - Kith Pradhan
- Albert Einstein College of Medicine, New York, New York, USA
| | - Orsolya Giricz
- Albert Einstein College of Medicine, New York, New York, USA
| | | | - Li-Fan Wong
- Albert Einstein College of Medicine, New York, New York, USA
| | - Sally Cole
- Albert Einstein College of Medicine, New York, New York, USA
| | - Tushar D Bhagat
- Albert Einstein College of Medicine, New York, New York, USA
| | - Jonathan Feld
- Albert Einstein College of Medicine, New York, New York, USA
| | - Yosman Dhar
- Albert Einstein College of Medicine, New York, New York, USA
| | | | | | | | - B Hilda Ye
- Albert Einstein College of Medicine, New York, New York, USA
| | - David A Frank
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford Biomedical Research Centre Haematology Theme, Oxford, United Kingdom
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford Biomedical Research Centre Haematology Theme, Oxford, United Kingdom
| | - Tianyuan Zhou
- Ionis Pharmaceuticals Inc., Carlsbad, California, USA
| | - Youngsoo Kim
- Ionis Pharmaceuticals Inc., Carlsbad, California, USA
| | | | | | - Minwei Ye
- AstraZeneca Pharmaceuticals, Waltham, Massachusetts, USA
| | | | | | - Ulrich Steidl
- Albert Einstein College of Medicine, New York, New York, USA
| | - Britta Will
- Albert Einstein College of Medicine, New York, New York, USA
| | - Amit Verma
- Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
253
|
Ip CKM, Ng PKS, Jeong KJ, Shao SH, Ju Z, Leonard PG, Hua X, Vellano CP, Woessner R, Sahni N, Scott KL, Mills GB. Neomorphic PDGFRA extracellular domain driver mutations are resistant to PDGFRA targeted therapies. Nat Commun 2018; 9:4583. [PMID: 30389923 PMCID: PMC6214970 DOI: 10.1038/s41467-018-06949-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/02/2018] [Indexed: 11/09/2022] Open
Abstract
Activation of platelet-derived growth factor receptor alpha (PDGFRA) by genomic aberrations contributes to tumor progression in several tumor types. In this study, we characterize 16 novel PDGFRA mutations identified from different tumor types and identify three previously uncharacterized activating mutations that promote cell survival and proliferation. PDGFRA Y288C, an extracellular domain mutation, is primarily high mannose glycosylated consistent with trapping in the endoplasmic reticulum (ER). Strikingly, PDGFRA Y288C is constitutively dimerized and phosphorylated in the absence of ligand suggesting that trapping in the ER or aberrant glycosylation is sufficient for receptor activation. Importantly, PDGFRA Y288C induces constitutive phosphorylation of Akt, ERK1/2, and STAT3. PDGFRA Y288C is resistant to PDGFR inhibitors but sensitive to PI3K/mTOR and MEK inhibitors consistent with pathway activation results. Our findings further highlight the importance of characterizing functional consequences of individual mutations for precision medicine.
Collapse
Affiliation(s)
- Carman K M Ip
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Patrick K S Ng
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Kang Jin Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - S H Shao
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - P G Leonard
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX, 77054, USA.,Core for Biomolecular Structure and Function, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX, 77054, USA
| | - Xu Hua
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Christopher P Vellano
- Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Richard Woessner
- Cancer Bioscience, in vivo Cancer Pharmacology, AstraZeneca Phamaceuticals, Boston, MA, 02451, USA
| | - Nidhi Sahni
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.,Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Rd 1C, Smithville, TX, 78957, USA
| | - Kenneth L Scott
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Suite 450A, Houston, TX, 77030, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.,Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| |
Collapse
|
254
|
Soldevilla MM, Meraviglia-Crivelli de Caso D, Menon AP, Pastor F. Aptamer-iRNAs as Therapeutics for Cancer Treatment. Pharmaceuticals (Basel) 2018; 11:E108. [PMID: 30340426 PMCID: PMC6315413 DOI: 10.3390/ph11040108] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/04/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
Aptamers are single-stranded oligonucleotides (ssDNA or ssRNA) that bind and recognize their targets with high affinity and specificity due to their complex tertiary structure. Aptamers are selected by a method called SELEX (Systematic Evolution of Ligands by EXponential enrichment). This method has allowed the selection of aptamers to different types of molecules. Since then, many aptamers have been described for the potential treatment of several diseases including cancer. It has been described over the last few years that aptamers represent a very useful tool as therapeutics, especially for cancer therapy. Aptamers, thanks to their intrinsic oligonucleotide nature, present inherent advantages over other molecules, such as cell-based products. Owing to their higher tissue penetrability, safer profile, and targeting capacity, aptamers are likely to become a novel platform for the delivery of many different types of therapeutic cargos. Here we focus the review on interfering RNAs (iRNAs) as aptamer-based targeting delivered agents. We have gathered the most reliable information on aptamers as targeting and carrier agents for the specific delivery of siRNAs, shRNA, microRNAs, and antisense oligonucleotides (ASOs) published in the last few years in the context of cancer therapy.
Collapse
Affiliation(s)
- Mario M Soldevilla
- Molecular Therapy Program, Aptamer Core, Center for the Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain.
- Navarre Health Research Institute (IdiSNA), 31008 Pamplona, Spain.
| | - Daniel Meraviglia-Crivelli de Caso
- Molecular Therapy Program, Aptamer Core, Center for the Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain.
- Navarre Health Research Institute (IdiSNA), 31008 Pamplona, Spain.
| | - Ashwathi P Menon
- Molecular Therapy Program, Aptamer Core, Center for the Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain.
- Navarre Health Research Institute (IdiSNA), 31008 Pamplona, Spain.
| | - Fernando Pastor
- Molecular Therapy Program, Aptamer Core, Center for the Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain.
- Navarre Health Research Institute (IdiSNA), 31008 Pamplona, Spain.
| |
Collapse
|
255
|
Moreira D, Adamus T, Zhao X, Su YL, Zhang Z, White SV, Swiderski P, Lu X, DePinho RA, Pal SK, Kortylewski M. STAT3 Inhibition Combined with CpG Immunostimulation Activates Antitumor Immunity to Eradicate Genetically Distinct Castration-Resistant Prostate Cancers. Clin Cancer Res 2018; 24:5948-5962. [PMID: 30337279 DOI: 10.1158/1078-0432.ccr-18-1277] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/09/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Prostate cancers show remarkable resistance to emerging immunotherapies, partly due to tolerogenic STAT3 signaling in tumor-associated myeloid cells. Here, we describe a novel strategy combining STAT3 inhibition with Toll-like Receptor 9 (TLR9) stimulation to unleash immune response against prostate cancers regardless of the genetic background. EXPERIMENTAL DESIGN We developed and validated a conjugate of the STAT3 antisense oligonucleotide (ASO) tethered to immunostimulatory TLR9 agonist (CpG oligonucleotide) to improve targeting of human and mouse prostate cancer and myeloid immune cells, such as myeloid-derived suppressor cells (MDSC). RESULTS CpG-STAT3ASO conjugates showed improved biodistribution and potency of STAT3 knockdown in target cells in vitro and in vivo. Systemic administration of CpG-STAT3ASO (5 mg/kg) eradicated bone-localized, Ras/Myc-driven, and Ptenpc -/- Smad4pc -/- Trp53c -/- prostate tumors in the majority of treated mice. These antitumor effects were primarily immune-mediated and correlated with an increased ratio of CD8+ to regulatory T cells and reduced pSTAT3+/PD-L1+ MDSCs. Both innate and adaptive immunity contributed to systemic antitumor responses as verified by the depletion of Gr1+ myeloid cells and CD8+ and CD4+ T cells, respectively. Importantly, only the bifunctional CpG-STAT3ASO, but not control CpG oligonucleotides, STAT3ASO alone, or the coinjection of both oligonucleotides, succeeded in recruiting neutrophils and CD8+ T cells into tumors. Thus, the concurrence of TLR9 activation with STAT3 inhibition in the same cellular compartment is indispensable for overcoming tumor immune tolerance and effective antitumor immunity against prostate cancer. CONCLUSIONS The bifunctional, immunostimulatory, and tolerance-breaking design of CpG-STAT3ASO offers a blueprint for the development of effective and safer oligonucleotide strategies for treatment of immunologically "cold" human cancers.
Collapse
Affiliation(s)
- Dayson Moreira
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Tomasz Adamus
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Xingli Zhao
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Yu-Lin Su
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Zhuoran Zhang
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Seok Voon White
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Piotr Swiderski
- DNA/RNA Synthesis Core Laboratory, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Xin Lu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sumanta K Pal
- Medical Oncology and Experimental Therapeutics, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California.
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California. .,Center for Gene Therapy, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| |
Collapse
|
256
|
Ryan MR, Sohl CD, Luo B, Anderson KS. The FGFR1 V561M Gatekeeper Mutation Drives AZD4547 Resistance through STAT3 Activation and EMT. Mol Cancer Res 2018; 17:532-543. [PMID: 30257990 DOI: 10.1158/1541-7786.mcr-18-0429] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/06/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
FGFR1 has been implicated in numerous cancer types including squamous cell lung cancer, a subset of non-small cell lung cancer with a dismal 5-year survival rate. Small-molecule inhibitors targeting FGFR1 are currently in clinical trials, with AZD4547 being one of the furthest along; however, the development of drug resistance is a major challenge for targeted therapies. A prevalent mechanism of drug resistance in kinases occurs through mutation of the gatekeeper residue, V561M in FGFR1; however, mechanisms underlying V561M resistance to AZD4547 are not fully understood. Here, the cellular consequences of the V561M gatekeeper mutation were characterized, and it was found that although AZD4547 maintains nanomolar affinity for V561M FGFR1, based on in vitro binding assays, cells expressing V561M demonstrate dramatic resistance to AZD4547 driven by increased STAT3 activation downstream of V561M FGFR1. The data reveal that the V561M mutation biases cells toward a more mesenchymal phenotype, including increased levels of proliferation, migration, invasion, and anchorage-independent growth, which was confirmed using CyTOF, a novel single-cell analysis tool. Using shRNA knockdown, loss of STAT3 restored sensitivity of cancer cells expressing V561M FGFR1 to AZD4547. Thus, the data demonstrate that combination therapies including FGFR and STAT3 may overcome V561M FGFR1-driven drug resistance in the clinic. IMPLICATIONS: The V561M FGFR1 gatekeeper mutation leads to devastating drug resistance through activation of STAT3 and the epithelial-mesenchymal transition; this study demonstrates that FGFR1 inhibitor sensitivity can be restored upon STAT3 knockdown.
Collapse
Affiliation(s)
- Molly R Ryan
- Department of Pharmacology, Yale University, New Haven, Connecticut
| | - Christal D Sohl
- Department of Pharmacology, Yale University, New Haven, Connecticut
| | - BeiBei Luo
- Department of Pharmacology, Yale University, New Haven, Connecticut
| | - Karen S Anderson
- Department of Pharmacology, Yale University, New Haven, Connecticut.
| |
Collapse
|
257
|
Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol 2018; 18:773-789. [DOI: 10.1038/s41577-018-0066-7] [Citation(s) in RCA: 435] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
258
|
Rozovski U, Harris DM, Li P, Liu Z, Jain P, Ferrajoli A, Burger J, Thompson P, Jain N, Wierda W, Keating MJ, Estrov Z. STAT3 is constitutively acetylated on lysine 685 residues in chronic lymphocytic leukemia cells. Oncotarget 2018; 9:33710-33718. [PMID: 30263097 PMCID: PMC6154750 DOI: 10.18632/oncotarget.26110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/01/2018] [Indexed: 12/21/2022] Open
Abstract
Signal transducer and activator of transcription (STAT)-3 might be phosphorylated or acetylated. Unlike the phosphorylation of STAT3, little is known about the acetylation of STAT3 in chronic lymphocytic leukemia (CLL) cells. Because acetylation activates STAT3 transcription, we sought to study the acetylation status of STAT3 in CLL cells. Using Western immunoblotting, immunoprecipitation, and flow cytometry we found that, apart from its constitutive serine phosphorylation, STAT3 is constitutively acetylated on lysine 685 residues. Because the acetyltransferase p300 was found to acetylate STAT3 on lysine 685 residues, we wondered whether p300 acetylates STAT3 in CLL cells. Using Western immunoblotting we detected high levels of p300 protein in CLL but not normal B cells. Transfection of CLL cells with p300 small-interfering (si) RNA downregulated p300 transcripts as well as p300 and acetyl-STAT3 protein levels. In addition, p300 siRNA attenuated STAT3-DNA binding and downregulated mRNA levels of STAT3-regulated genes. Furthermore, transfection of CLL cells with p300-siRNA induced a 3-fold increase in the rate of spontaneous apoptosis. Taken together, our data suggest that in CLL cells STAT3 p300 induces constitutive acetylation and activation of STAT3. Whether inhibition of STAT3 acetylation might provide clinical benefit in patients with CLL remains to be determined.
Collapse
Affiliation(s)
- Uri Rozovski
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David M Harris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ping Li
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhiming Liu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Preetesh Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jan Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Phillip Thompson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - William Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
259
|
Arora L, Kumar AP, Arfuso F, Chng WJ, Sethi G. The Role of Signal Transducer and Activator of Transcription 3 (STAT3) and Its Targeted Inhibition in Hematological Malignancies. Cancers (Basel) 2018; 10:cancers10090327. [PMID: 30217007 PMCID: PMC6162647 DOI: 10.3390/cancers10090327] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), a member of the STAT protein family, can be phosphorylated by receptor-associated Janus kinases (JAKs) in response to stimulation by cytokines and growth factors. It forms homo- or heterodimers that can translocate to the cell nucleus where they act as transcription activators. Constitutive activation of STAT3 has been found to be associated with initiation and progression of various cancers. It can exert proliferative as well as anti-apoptotic effects. This review focuses on the role of STAT3 in pathogenesis i.e., proliferation, differentiation, migration, and apoptosis of hematological malignancies viz. leukemia, lymphoma and myeloma, and briefly highlights the potential therapeutic approaches developed against STAT3 activation pathway.
Collapse
Affiliation(s)
- Loukik Arora
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
- Cancer Science Institute of Singapore, Centre for Translational Medicine, 14 Medical Drive, #11-01M, Singapore 117599, Singapore.
- Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia.
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, Centre for Translational Medicine, 14 Medical Drive, #11-01M, Singapore 117599, Singapore.
- Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119074, Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia.
| |
Collapse
|
260
|
Forster MD, Devlin MJ. Immune Checkpoint Inhibition in Head and Neck Cancer. Front Oncol 2018; 8:310. [PMID: 30211111 PMCID: PMC6123367 DOI: 10.3389/fonc.2018.00310] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is the 6th most common cancer globally and commonly presents with locally advanced disease, which has a recurrence rate of around 50% despite aggressive multi-modality treatment involving surgery, radiotherapy and chemotherapy or EGFR inhibition where appropriate. As understanding of the underlying cancer biology and the complex interactions within the tumor microenvironment improves, there is gathering interest in and evidence for the role of immunomodulating agents in the management of HNSCC. Immune checkpoint inhibitors, which aim to hinder the inhibitory interaction between programmed cell death protein 1 (PD-1) and its ligand PD-L1, have demonstrated durable improvements in patient outcomes in advanced / metastatic HNSCC, with both pembrolizumab and nivolumab being granted FDA approval in 2016. There are numerous ongoing clinical trials exploring the role of checkpoint inhibitors both as single agents and in combination, administered with established treatment modalities such as chemotherapy and radiotherapy, as well as alongside other novel immune modulators. These trials are not limited to advanced / metastatic HNSCC, but also to the neo-adjuvant or adjuvant settings. As studies complete and more results become available, the role immunotherapy agents will have within the treatment strategies for HNSCC may change, with increasing biomarker selection resulting in personalized therapy aiming to further improve patient outcomes.
Collapse
|
261
|
Xiao L, Tien JC, Vo J, Tan M, Parolia A, Zhang Y, Wang L, Qiao Y, Shukla S, Wang X, Zheng H, Su F, Jing X, Luo E, Delekta A, Juckette KM, Xu A, Cao X, Alva AS, Kim Y, MacLeod AR, Chinnaiyan AM. Epigenetic Reprogramming with Antisense Oligonucleotides Enhances the Effectiveness of Androgen Receptor Inhibition in Castration-Resistant Prostate Cancer. Cancer Res 2018; 78:5731-5740. [PMID: 30135193 DOI: 10.1158/0008-5472.can-18-0941] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/12/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
Advanced prostate cancer initially responds to androgen deprivation therapy (ADT), but the disease inevitably recurs as castration-resistant prostate cancer (CRPC). Although CRPC initially responds to abiraterone and enzalutamide, the disease invariably becomes nonresponsive to these agents. Novel approaches are required to circumvent resistance pathways and to extend survival, but the mechanisms underlying resistance remain poorly defined. Our group previously showed the histone lysine-N-methyltransferase EZH2 to be overexpressed in prostate cancer and quantitatively associated with progression and poor prognosis. In this study, we screened a library of epigenetic inhibitors for their ability to render CRPC cells sensitive to enzalutamide and found that EZH2 inhibitors specifically potentiated enzalutamide-mediated inhibition of proliferation. Moreover, we identified antisense oligonucleotides (ASO) as a novel drug strategy to ablate EZH2 and androgen receptor (AR) expression, which may have advantageous properties in certain settings. RNA-seq, chromatin immunoprecipitation sequencing, and assay for transposase-accessible chromatin using sequencing demonstrated that EZH2 inhibition altered the AR cistrome to significantly upregulate AR signaling, suggesting an enhanced dependence of CRPC cells on this pathway following inhibition of EZH2. Combination treatment with ASO targeting EZH2 and AR transcripts inhibited prostate cancer cell growth in vitro and in vivo better than single agents. In sum, this study identifies EZH2 as a critical epigenetic regulator of ADT resistance and defines ASO-based cotargeting of EZH2 and AR as a promising strategy for the treatment of CRPC.Significance: Simultaneous targeting of lysine methyltransferase EZH2 and the AR with ASO proves a novel and effective therapeutic strategy in patients with CRPC. Cancer Res; 78(20); 5731-40. ©2018 AACR.
Collapse
Affiliation(s)
- Lanbo Xiao
- Michigan Center for Translational Pathology, Ann Arbor, Michigan.,Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan
| | - Jean C Tien
- Michigan Center for Translational Pathology, Ann Arbor, Michigan.,Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan
| | - Josh Vo
- Michigan Center for Translational Pathology, Ann Arbor, Michigan.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Mengyao Tan
- Michigan Center for Translational Pathology, Ann Arbor, Michigan.,Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, Ann Arbor, Michigan.,Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan
| | - Yajia Zhang
- Michigan Center for Translational Pathology, Ann Arbor, Michigan.,Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan
| | - Lisha Wang
- Michigan Center for Translational Pathology, Ann Arbor, Michigan.,Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, Ann Arbor, Michigan.,Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan
| | - Sudhanshu Shukla
- Michigan Center for Translational Pathology, Ann Arbor, Michigan.,Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan.,Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Xiaoju Wang
- Michigan Center for Translational Pathology, Ann Arbor, Michigan.,Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan
| | - Heng Zheng
- Michigan Center for Translational Pathology, Ann Arbor, Michigan.,Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan
| | - Fengyun Su
- Michigan Center for Translational Pathology, Ann Arbor, Michigan.,Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan
| | - Xiaojun Jing
- Michigan Center for Translational Pathology, Ann Arbor, Michigan.,Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan
| | - Esther Luo
- Michigan Center for Translational Pathology, Ann Arbor, Michigan.,Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan
| | - Andrew Delekta
- Michigan Center for Translational Pathology, Ann Arbor, Michigan.,Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan
| | - Kristin M Juckette
- Michigan Center for Translational Pathology, Ann Arbor, Michigan.,Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan
| | - Alice Xu
- Michigan Center for Translational Pathology, Ann Arbor, Michigan.,Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan
| | - Xuhong Cao
- Michigan Center for Translational Pathology, Ann Arbor, Michigan.,Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan
| | - Ajjai S Alva
- Michigan Center for Translational Pathology, Ann Arbor, Michigan.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, Ann Arbor, Michigan. .,Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.,Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
262
|
Myeloid-Derived Suppressor Cells and Pulmonary Hypertension. Int J Mol Sci 2018; 19:ijms19082277. [PMID: 30081463 PMCID: PMC6121540 DOI: 10.3390/ijms19082277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 01/04/2023] Open
Abstract
Myeloid–derived suppressor cells (MDSCs) comprised a heterogeneous subset of bone marrow–derived myeloid cells, best studied in cancer research, that are increasingly implicated in the pathogenesis of pulmonary vascular remodeling and the development of pulmonary hypertension. Stem cell transplantation represents one extreme interventional strategy for ablating the myeloid compartment but poses a number of translational challenges. There remains an outstanding need for additional therapeutic targets to impact MDSC function, including the potential to alter interactions with innate and adaptive immune subsets, or alternatively, alter trafficking receptors, metabolic pathways, and transcription factor signaling with readily available and safe drugs. In this review, we summarize the current literature on the role of myeloid cells in the development of pulmonary hypertension, first in pulmonary circulation changes associated with myelodysplastic syndromes, and then by examining intrinsic myeloid cell changes that contribute to disease progression in pulmonary hypertension. We then outline several tractable targets and pathways relevant to pulmonary hypertension via MDSC regulation. Identifying these MDSC-regulated effectors is part of an ongoing effort to impact the field of pulmonary hypertension research through identification of myeloid compartment-specific therapeutic applications in the treatment of pulmonary vasculopathies.
Collapse
|
263
|
Bousoik E, Montazeri Aliabadi H. "Do We Know Jack" About JAK? A Closer Look at JAK/STAT Signaling Pathway. Front Oncol 2018; 8:287. [PMID: 30109213 PMCID: PMC6079274 DOI: 10.3389/fonc.2018.00287] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Janus tyrosine kinase (JAK) family of proteins have been identified as crucial proteins in signal transduction initiated by a wide range of membrane receptors. Among the proteins in this family JAK2 has been associated with important downstream proteins, including signal transducers and activators of transcription (STATs), which in turn regulate the expression of a variety of proteins involved in induction or prevention of apoptosis. Therefore, the JAK/STAT signaling axis plays a major role in the proliferation and survival of different cancer cells, and may even be involved in resistance mechanisms against molecularly targeted drugs. Despite extensive research focused on the protein structure and mechanisms of activation of JAKs, and signal transduction through these proteins, their importance in cancer initiation and progression seem to be underestimated. This manuscript is an attempt to highlight the role of JAK proteins in cancer biology, the most recent developments in targeting JAKs, and the central role they play in intracellular cross-talks with other signaling cascades.
Collapse
Affiliation(s)
- Emira Bousoik
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, School of Pharmacy, Chapman University, Irvine, CA, United States.,School of Pharmacy, Omar Al-Mukhtar University, Dèrna, Libya
| | - Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, School of Pharmacy, Chapman University, Irvine, CA, United States
| |
Collapse
|
264
|
Gadina M, Johnson C, Schwartz D, Bonelli M, Hasni S, Kanno Y, Changelian P, Laurence A, O'Shea JJ. Translational and clinical advances in JAK-STAT biology: The present and future of jakinibs. J Leukoc Biol 2018; 104:499-514. [PMID: 29999544 DOI: 10.1002/jlb.5ri0218-084r] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
In this era, it is axiomatic that cytokines have critical roles in cellular development and differentiation, immune homeostasis, and host defense. Equally, dysregulation of cytokines is known to contribute to diverse inflammatory and immune-mediated disorders. In fact, the past 20 years have witnessed the rapid translation of basic discoveries in cytokine biology to multiple successful biological agents (mAbs and recombinant fusion proteins) that target cytokines. These targeted therapies have not only fundamentally changed the face of multiple immune-mediated diseases but have also unequivocally established the role of specific cytokines in human disease; cytokine biologists have many times over provided remarkable basic advances with direct clinical benefit. Numerous cytokines rely on the JAK-STAT pathway for signaling, and new, safe, and effective small molecule inhibitors have been developed for a range of disorders. In this review, we will briefly summarize basic discoveries in cytokine signaling and briefly comment on some major unresolved issues. We will review clinical data pertaining to the first generation of JAK inhibitors and their clinical indications, discuss additional opportunities for targeting this pathway, and lay out some of the challenges that lie ahead.
Collapse
Affiliation(s)
- Massimo Gadina
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Catrina Johnson
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniella Schwartz
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Bonelli
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarfaraz Hasni
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuka Kanno
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul Changelian
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Arian Laurence
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - John J O'Shea
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, Molecular Immunology and Inflammation Branch, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
265
|
Urbanski L, Leclair N, Anczuków O. Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1476. [PMID: 29693319 PMCID: PMC6002934 DOI: 10.1002/wrna.1476] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/14/2022]
Abstract
Defects in alternative splicing are frequently found in human tumors and result either from mutations in splicing-regulatory elements of specific cancer genes or from changes in the regulatory splicing machinery. RNA splicing regulators have emerged as a new class of oncoproteins and tumor suppressors, and contribute to disease progression by modulating RNA isoforms involved in the hallmark cancer pathways. Thus, dysregulation of alternative RNA splicing is fundamental to cancer and provides a potentially rich source of novel therapeutic targets. Here, we review the alterations in splicing regulatory factors detected in human tumors, as well as the resulting alternatively spliced isoforms that impact cancer hallmarks, and discuss how they contribute to disease pathogenesis. RNA splicing is a highly regulated process and, as such, the regulators are themselves tightly regulated. Differential transcriptional and posttranscriptional regulation of splicing factors modulates their levels and activities in tumor cells. Furthermore, the composition of the tumor microenvironment can also influence which isoforms are expressed in a given cell type and impact drug responses. Finally, we summarize current efforts in targeting alternative splicing, including global splicing inhibition using small molecules blocking the spliceosome or splicing-factor-modifying enzymes, as well as splice-switching RNA-based therapeutics to modulate cancer-specific splicing isoforms. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
|
266
|
Su YL, Banerjee S, White SV, Kortylewski M. STAT3 in Tumor-Associated Myeloid Cells: Multitasking to Disrupt Immunity. Int J Mol Sci 2018; 19:ijms19061803. [PMID: 29921770 PMCID: PMC6032252 DOI: 10.3390/ijms19061803] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023] Open
Abstract
Myeloid immune cells, such as dendritic cells, monocytes, and macrophages, play a central role in the generation of immune responses and thus are often either disabled or even hijacked by tumors. These new tolerogenic activities of tumor-associated myeloid cells are controlled by an oncogenic transcription factor, signal transducer and activator of transcription 3 (STAT3). STAT3 multitasks to ensure tumors escape immune detection by impairing antigen presentation and reducing production of immunostimulatory molecules while augmenting the release of tolerogenic mediators, thereby reducing innate and adaptive antitumor immunity. Tumor-associated myeloid cells and STAT3 signaling in this compartment are now commonly recognized as an attractive cellular target for improving efficacy of standard therapies and immunotherapies. Hereby, we review the importance and functional complexity of STAT3 signaling in this immune cell compartment as well as potential strategies for cancer therapy.
Collapse
Affiliation(s)
- Yu-Lin Su
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, 91010 CA, USA.
| | - Shuvomoy Banerjee
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, 91010 CA, USA.
| | - Seok Voon White
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, 91010 CA, USA.
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, 91010 CA, USA.
| |
Collapse
|
267
|
Weber R, Fleming V, Hu X, Nagibin V, Groth C, Altevogt P, Utikal J, Umansky V. Myeloid-Derived Suppressor Cells Hinder the Anti-Cancer Activity of Immune Checkpoint Inhibitors. Front Immunol 2018; 9:1310. [PMID: 29942309 PMCID: PMC6004385 DOI: 10.3389/fimmu.2018.01310] [Citation(s) in RCA: 383] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) used for cancer immunotherapy were shown to boost the existing anti-tumor immune response by preventing the inhibition of T cells by tumor cells. Antibodies targeting two negative immune checkpoint pathways, namely cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), and programmed cell death-ligand 1 (PD-L1), have been approved first for patients with melanoma, squamous non-small cell lung cancer (NSCLC), and renal cell carcinoma. Clinical trials are ongoing to verify the efficiency of these antibodies for other cancer types and to evaluate strategies to block other checkpoint molecules. However, a number of patients do not respond to this treatment possibly due to profound immunosuppression, which is mediated partly by myeloid-derived suppressor cells (MDSC). This heterogeneous population of immature myeloid cells can strongly inhibit anti-tumor activities of T and NK cells and stimulate regulatory T cells (Treg), leading to tumor progression. Moreover, MDSC can contribute to patient resistance to immune checkpoint inhibition. Accumulating evidence demonstrates that the frequency and immunosuppressive function of MDSC in cancer patients can be used as a predictive marker for therapy response. This review focuses on the role of MDSC in immune checkpoint inhibition and provides an analysis of combination strategies for MDSC targeting together with ICI to improve their therapeutic efficiency in cancer patients.
Collapse
Affiliation(s)
- Rebekka Weber
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
| | - Viktor Fleming
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.,Faculty of Biosciences, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
| | - Xiaoying Hu
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Vasyl Nagibin
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Christopher Groth
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
268
|
Rincon M, Pereira FV. A New Perspective: Mitochondrial Stat3 as a Regulator for Lymphocyte Function. Int J Mol Sci 2018; 19:ijms19061656. [PMID: 29866996 PMCID: PMC6032237 DOI: 10.3390/ijms19061656] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022] Open
Abstract
Stat3 as a transcription factor regulating gene expression in lymphocytes during the immune response is well known. However, since the pioneering studies discovering the presence of Stat3 in mitochondria and its role in regulating mitochondrial metabolism, only a few studies have investigated this non-conventional function of Stat3 in lymphocytes. From this perspective, we review what is known about Stat3 as a transcription factor and what is known and unknown about mitochondrial Stat3 (mitoStat3) in lymphocytes. We also provide a framework to consider how some of the functions previously assigned to Stat3 as regulator of gene transcription could be mediated by mitoStat3 in lymphocytes. The goal of this review is to stimulate interest for future studies investigating mitoStat3 in the immune response that could lead to the generation of alternative pharmacological inhibitors of mitoStat3 for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Mercedes Rincon
- Department of Medicine, Immunobiology Division, University of Vermont, Burlington, VT 05405, USA.
| | - Felipe Valença Pereira
- Department of Medicine, Immunobiology Division, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
269
|
Diamantopoulos MA, Tsiakanikas P, Scorilas A. Non-coding RNAs: the riddle of the transcriptome and their perspectives in cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:241. [PMID: 30069443 DOI: 10.21037/atm.2018.06.10] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) constitute a heterogeneous group of RNA molecules in terms of biogenesis, biological function as well as length and structure. These biological molecules have gained attention recently as a potentially crucial layer of tumor cell progression or regulation. ncRNAs are expressed in a broad spectrum of tumors, and they play an important role not only in maintaining but also in promoting cancer development and progression. Recent discoveries have revealed that ncRNAs may act as key signal transduction mediators in tumor signaling pathways by interacting with RNA or proteins. These results reinforce the hypothesis, that ncRNAs constitute therapeutic targets, and point out their clinical potential as stratification markers. The major purpose of this review is to mention the emergence of the importance of ncRNAs, as molecules which are correlated with cancer, and to discuss their clinical implicit as prognostic diagnostic indicators, biomarkers, and therapeutic targets.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
270
|
Lee DS, O'Keefe RA, Ha PK, Grandis JR, Johnson DE. Biochemical Properties of a Decoy Oligodeoxynucleotide Inhibitor of STAT3 Transcription Factor. Int J Mol Sci 2018; 19:ijms19061608. [PMID: 29848966 PMCID: PMC6032396 DOI: 10.3390/ijms19061608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
Cyclic STAT3 decoy (CS3D) is a second-generation, double-stranded oligodeoxynucleotide (ODN) that mimics a genomic response element for signal transducer and activator of transcription 3 (STAT3), an oncogenic transcription factor. CS3D competitively inhibits STAT3 binding to target gene promoters, resulting in decreased expression of proteins that promote cellular proliferation and survival. Previous studies have demonstrated antitumor activity of CS3D in preclinical models of solid tumors. However, prior to entering human clinical trials, the efficiency of generating the CS3D molecule and its stability in biological fluids should be determined. CS3D is synthesized as a single-stranded ODN and must have its free ends ligated to generate the final cyclic form. In this study, we report a ligation efficiency of nearly 95 percent. The ligated CS3D demonstrated a half-life of 7.9 h in human serum, indicating adequate stability for intravenous delivery. These results provide requisite biochemical characterization of CS3D that will inform upcoming clinical trials.
Collapse
Affiliation(s)
- David S Lee
- School of Medicine, University of California at San Francisco, San Francisco, CA 94115, USA.
| | - Rachel A O'Keefe
- Department of Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA 94115, USA.
| | - Patrick K Ha
- Department of Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA 94115, USA.
| | - Jennifer R Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA 94115, USA.
| | - Daniel E Johnson
- Department of Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA 94115, USA.
| |
Collapse
|
271
|
Oh RS, Haak AJ, Smith KMJ, Ligresti G, Choi KM, Xie T, Wang S, Walters PR, Thompson MA, Freeman MR, Manlove LJ, Chu VM, Feghali-Bostwick C, Roden AC, Schymeinsky J, Pabelick CM, Prakash YS, Vassallo R, Tschumperlin DJ. RNAi screening identifies a mechanosensitive ROCK-JAK2-STAT3 network central to myofibroblast activation. J Cell Sci 2018; 131:jcs.209932. [PMID: 29678906 DOI: 10.1242/jcs.209932] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Myofibroblasts play key roles in wound healing and pathological fibrosis. Here, we used an RNAi screen to characterize myofibroblast regulatory genes, using a high-content imaging approach to quantify α-smooth muscle actin stress fibers in cultured human fibroblasts. Screen hits were validated on physiological compliance hydrogels, and selected hits tested in primary fibroblasts from patients with idiopathic pulmonary fibrosis. Our RNAi screen led to the identification of STAT3 as an essential mediator of myofibroblast activation and function. Strikingly, we found that STAT3 phosphorylation, while responsive to exogenous ligands on both soft and stiff matrices, is innately active on a stiff matrix in a ligand/receptor-independent, but ROCK- and JAK2-dependent fashion. These results demonstrate how a cytokine-inducible signal can become persistently activated by pathological matrix stiffening. Consistent with a pivotal role for this pathway in driving persistent fibrosis, a STAT3 inhibitor attenuated murine pulmonary fibrosis when administered in a therapeutic fashion after bleomycin injury. Our results identify novel genes essential for the myofibroblast phenotype, and point to STAT3 as an important target in pulmonary fibrosis and other fibrotic diseases.
Collapse
Affiliation(s)
- Raymond S Oh
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - Andrew J Haak
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Karry M J Smith
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Giovanni Ligresti
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Kyoung Moo Choi
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tiao Xie
- Image and Data Analysis Core, Harvard Medical School, Boston, MA 02115, USA
| | - Shaohua Wang
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Paula R Walters
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael A Thompson
- Departments of Anesthesiology and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Michelle R Freeman
- Departments of Anesthesiology and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Logan J Manlove
- Departments of Anesthesiology and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Vivian M Chu
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Carol Feghali-Bostwick
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jürgen Schymeinsky
- Department of Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Christina M Pabelick
- Departments of Anesthesiology and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Y S Prakash
- Departments of Anesthesiology and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
272
|
MacLeod AR, Crooke ST. RNA Therapeutics in Oncology: Advances, Challenges, and Future Directions. J Clin Pharmacol 2018; 57 Suppl 10:S43-S59. [PMID: 28921648 DOI: 10.1002/jcph.957] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
Abstract
RNA-based therapeutic technologies represent a rapidly expanding class of therapeutic opportunities with the power to modulate cellular biology in ways never before possible. With RNA-targeted therapeutics, inhibitors of previously undruggable proteins, gene expression modulators, and even therapeutic proteins can be rationally designed based on sequence information alone, something that is not possible with other therapeutic modalities. The most advanced RNA therapeutic modalities are antisense oligonucleotides (ASOs) and small interfering RNAs. Particularly with ASOs, recent clinical data have demonstrated proof of mechanism and clinical benefit with these approaches across several nononcology disease areas by multiple routes of administration. In cancer, next-generation ASOs have recently demonstrated single-agent activity in patients with highly refractory cancers. Here we discuss advances in RNA therapeutics for the treatment of cancer and the challenges that remain to solidify these as mainstay therapeutic modalities to bridge the pharmacogenomic divide that remains in cancer drug discovery.
Collapse
Affiliation(s)
- A Robert MacLeod
- Vice President, Oncology Discovery, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Stanley T Crooke
- CEO and Chairman of the Board, Ionis Pharmaceuticals, Carlsbad, CA, USA
| |
Collapse
|
273
|
Santuray RT, Johnson DE, Grandis JR. New Therapies in Head and Neck Cancer. Trends Cancer 2018; 4:385-396. [PMID: 29709262 DOI: 10.1016/j.trecan.2018.03.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/05/2018] [Accepted: 03/09/2018] [Indexed: 01/04/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common malignancy with high rates of mortality and morbidity. Beginning with cetuximab, investigators continue to optimize antibody technology to target cell-surface receptors that promote HNSCC growth. Small molecules and oligonucleotides have also emerged as therapeutic inhibitors of key receptor-mediated signaling pathways. Although many such therapies have been disappointing in clinical trials as single agents, they continue to be studied in combination with standard therapies. Approvals of pembrolizumab and nivolumab opened a new era of immunotherapy that aims to stimulate antitumor immunity in the tumor microenvironment. Immunotherapies are being intensively investigated in new HNSCC clinical trials, with the goal of optimizing the therapeutic potential of this new class of anticancer agent.
Collapse
Affiliation(s)
- Rodell T Santuray
- School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel E Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
274
|
Betsch A, Rutgeerts O, Fevery S, Sprangers B, Verhoef G, Dierickx D, Beckers M. Myeloid-derived suppressor cells in lymphoma: The good, the bad and the ugly. Blood Rev 2018; 32:490-498. [PMID: 29691090 DOI: 10.1016/j.blre.2018.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 02/20/2018] [Accepted: 04/17/2018] [Indexed: 12/23/2022]
Abstract
Lymphomas cause significant morbidity and mortality worldwide. A substantial number of patients ultimately relapse after standard treatment. However, the efficacy of these therapies can be counteracted by the patients' immune system, more specifically by myeloid-derived suppressor cells (MDSC). MDSC are a heterogeneous group of immature myeloid cells that suppress the innate and adaptive immune system via different mechanisms and accumulate under pathological conditions, such as cancer. MDSC play a role in the induction and progression of cancer and immune evasion. Increased numbers of MDSC have been reported in different lymphoma subtypes and are associated with a poor clinical outcome. This review aims to clarify the role of MDSC and their working mechanism in different lymphoma subtypes. Furthermore, the effect of MDSC on immunotherapies will be discussed.
Collapse
Affiliation(s)
- A Betsch
- KU Leuven - University of Leuven, Department of Oncology, Laboratory for Experimental Hematology, University Hospitals Leuven, Department of Hematology, B-3000 Leuven, Belgium.
| | - O Rutgeerts
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Experimental Transplantation, University Hospitals Leuven, Department of Nephrology, B-3000 Leuven, Belgium.
| | - S Fevery
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Experimental Transplantation, University Hospitals Leuven, Department of Nephrology, B-3000 Leuven, Belgium.
| | - B Sprangers
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Experimental Transplantation, University Hospitals Leuven, Department of Nephrology, B-3000 Leuven, Belgium.
| | - G Verhoef
- KU Leuven - University of Leuven, Department of Oncology, Laboratory for Experimental Hematology, University Hospitals Leuven, Department of Hematology, B-3000 Leuven, Belgium.
| | - D Dierickx
- KU Leuven - University of Leuven, Department of Oncology, Laboratory for Experimental Hematology, University Hospitals Leuven, Department of Hematology, B-3000 Leuven, Belgium.
| | - M Beckers
- KU Leuven - University of Leuven, Department of Oncology, Laboratory for Experimental Hematology, University Hospitals Leuven, Department of Hematology, B-3000 Leuven, Belgium.
| |
Collapse
|
275
|
Mabeta P. Oncosuppressors and Oncogenes: Role in Haemangioma Genesis and Potential for Therapeutic Targeting. Int J Mol Sci 2018; 19:E1192. [PMID: 29652858 PMCID: PMC5979526 DOI: 10.3390/ijms19041192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 01/08/2023] Open
Abstract
Genetic lesions in proto-oncogenes result in the perturbation of angiogenesis, the formation of neovessels from a pre-existing microvasculature. Similarly, the subversion of tumor suppressor genes promotes tumor vascularization. Excessive neovessel formation is associated with various neoplasms such as infantile hemangiomas (IH). Hemangiomas are the most common tumors in pediatric patients and at present have no definitive treatment. The pathogenesis of IH is not well understood; however, both vasculogenesis and angiogenesis are associated with hemangioma genesis. A number of factors that modulate angiogenesis and vasculogenesis have been shown to be dysregulated in IH. Several of the oncogenes and tumor suppressors linked to the promotion of angiogenesis are also altered in infantile hemangioma. In this review, the roles of oncogenes and tumor suppressor genes during neovascularization and hemangioma genesis are explored. In addition, the potential for targeting these genes in IH therapy is discussed.
Collapse
Affiliation(s)
- Peace Mabeta
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, 9 Botshelo Road, Pretoria 0007, South Africa.
| |
Collapse
|
276
|
Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood 2018; 131:2454-2465. [PMID: 29650799 DOI: 10.1182/blood-2017-11-814913] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/05/2018] [Indexed: 12/25/2022] Open
Abstract
Dissecting the pathogenesis of classical Hodgkin lymphoma (cHL), a common cancer in young adults, remains challenging because of the rarity of tumor cells in involved tissues (usually <5%). Here, we analyzed the coding genome of cHL by microdissecting tumor and normal cells from 34 patient biopsies for a total of ∼50 000 singly isolated lymphoma cells. We uncovered several recurrently mutated genes, namely, STAT6 (32% of cases), GNA13 (24%), XPO1 (18%), and ITPKB (16%), and document the functional role of mutant STAT6 in sustaining tumor cell viability. Mutations of STAT6 genetically and functionally cooperated with disruption of SOCS1, a JAK-STAT pathway inhibitor, to promote cHL growth. Overall, 87% of cases showed dysregulation of the JAK-STAT pathway by genetic alterations in multiple genes (also including STAT3, STAT5B, JAK1, JAK2, and PTPN1), attesting to the pivotal role of this pathway in cHL pathogenesis and highlighting its potential as a new therapeutic target in this disease.
Collapse
|
277
|
Bijnsdorp IV, van Royen ME, Verhaegh GW, Martens-Uzunova ES. The Non-Coding Transcriptome of Prostate Cancer: Implications for Clinical Practice. Mol Diagn Ther 2018; 21:385-400. [PMID: 28299719 PMCID: PMC5511609 DOI: 10.1007/s40291-017-0271-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa) is the most common type of cancer and the second leading cause of cancer-related death in men. Despite extensive research, the molecular mechanisms underlying PCa initiation and progression remain unclear, and there is increasing need of better biomarkers that can distinguish indolent from aggressive and life-threatening disease. With the advent of advanced genomic technologies in the last decade, it became apparent that the human genome encodes tens of thousands non-protein-coding RNAs (ncRNAs) with yet to be discovered function. It is clear now that the majority of ncRNAs exhibit highly specific expression patterns restricted to certain tissues and organs or developmental stages and that the expression of many ncRNAs is altered in disease and cancer, including cancer of the prostate. Such ncRNAs can serve as important biomarkers for PCa diagnosis, prognosis, or prediction of therapy response. In this review, we give an overview of the different types of ncRNAs and their function, describe ncRNAs relevant for the diagnosis and prognosis of PCa, and present emerging new aspects of ncRNA research that may contribute to the future utilization of ncRNAs as clinically useful therapeutic targets.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/urine
- Early Detection of Cancer/methods
- Gene Expression Regulation, Neoplastic
- High-Throughput Nucleotide Sequencing
- Humans
- Male
- Molecular Targeted Therapy
- Precision Medicine
- Prognosis
- Prostatic Neoplasms/diagnosis
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- RNA, Untranslated/blood
- RNA, Untranslated/classification
- RNA, Untranslated/genetics
- RNA, Untranslated/urine
Collapse
Affiliation(s)
- Irene V Bijnsdorp
- Department of Urology, VU University Medical Center, Amsterdam, The Netherlands
| | - Martin E van Royen
- Department of Pathology and Erasmus Optical Imaging Centre (OIC), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gerald W Verhaegh
- Department of Urology, Radboud university medical center, Nijmegen, The Netherlands
| | - Elena S Martens-Uzunova
- Department of Urology, Erasmus Medical Center, Erasmus Cancer Institute, Room Be-362b, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
278
|
Abstract
RNA-targeted therapies represent a platform for drug discovery involving chemically modified oligonucleotides, a wide range of cellular RNAs, and a novel target-binding motif, Watson-Crick base pairing. Numerous hurdles considered by many to be impassable have been overcome. Today, four RNA-targeted therapies are approved for commercial use for indications as diverse as Spinal Muscular Atrophy (SMA) and reduction of low-density lipoprotein cholesterol (LDL-C) and by routes of administration including subcutaneous, intravitreal, and intrathecal delivery. The technology is efficient and supports approaching "undruggable" targets. Three additional agents are progressing through registration, and more are in clinical development, representing several chemical and structural classes. Moreover, progress in understanding the molecular mechanisms by which these drugs work has led to steadily better clinical performance and a wide range of mechanisms that may be exploited for therapeutic purposes. Here we summarize the progress, future challenges, and opportunities for this drug discovery platform.
Collapse
Affiliation(s)
- Stanley T Crooke
- Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA.
| | - Joseph L Witztum
- University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - C Frank Bennett
- Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Brenda F Baker
- Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
279
|
Lin C, Yang L. Long Noncoding RNA in Cancer: Wiring Signaling Circuitry. Trends Cell Biol 2018; 28:287-301. [PMID: 29274663 PMCID: PMC5869122 DOI: 10.1016/j.tcb.2017.11.008] [Citation(s) in RCA: 394] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Long noncoding RNAs (lncRNAs), which are encoded by a vast less explored region of the human genome, may hold missing drivers of cancer and have gained attention recently as a potentially crucial layer of cancer cell regulation. lncRNAs are aberrantly expressed in a broad spectrum of cancers, and they play key roles in promoting and maintaining tumor initiation and progression, demonstrating their clinical potential as biomarkers and therapeutic targets. Recent discoveries have revealed that lncRNAs act as key signal transduction mediators in cancer signaling pathways by interacting with proteins, RNA, and lipids. Here, we review the mechanisms by which lncRNAs regulate cellular responses to extracellular signals and discuss their clinical potential as diagnostic indicators, stratification markers, and therapeutic targets of combinatorial treatments.
Collapse
Affiliation(s)
- Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
280
|
Immuno-oncology in head and neck squamous cell cancers: News from clinical trials, emerging predictive factors and unmet needs. Cancer Treat Rev 2018; 65:78-86. [DOI: 10.1016/j.ctrv.2018.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/16/2018] [Accepted: 03/16/2018] [Indexed: 12/22/2022]
|
281
|
Ohanian M, Tari Ashizawa A, Garcia-Manero G, Pemmaraju N, Kadia T, Jabbour E, Ravandi F, Borthakur G, Andreeff M, Konopleva M, Lim M, Pierce S, O'Brien S, Alvarado Y, Verstovsek S, Wierda W, Kantarjian H, Cortes J. Liposomal Grb2 antisense oligodeoxynucleotide (BP1001) in patients with refractory or relapsed haematological malignancies: a single-centre, open-label, dose-escalation, phase 1/1b trial. Lancet Haematol 2018; 5:e136-e146. [PMID: 29550383 DOI: 10.1016/s2352-3026(18)30021-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND Activating mutations of tyrosine kinases are common in leukaemias. Oncogenic tyrosine kinases use the growth factor receptor-bound protein 2 (Grb2) for signal transduction, leading to activation of mitogen-activated protein kinase (MAPK) 1 and MAPK3 (ERK2 and ERK1). We hypothesised that inhibition of Grb2 would suppress ERK1 and ERK2 activation and inhibit leukaemia progression. To inhibit Grb2, a liposome-incorporated antisense oligodeoxynucleotide that blocks Grb2 protein expression, BP1001, was developed. We report the first phase 1 findings of BP1001. METHODS In this single-centre, open-label, dose-escalation phase 1/1b trial, we enrolled participants (aged ≥18 years) with refractory or relapsed acute myeloid leukaemia, Philadelphia-chromosome-positive chronic myeloid leukaemia (in chronic, accelerated, or blast phase), acute lymphoblastic leukaemia, or myelodysplastic syndrome, at MD Anderson Cancer Center (Houston, TX, USA). We used a 3 + 3 dose escalation strategy, with at least three patients enrolled at each dose level. We administered BP1001 intravenously, twice weekly, for 28 days, with a starting dose of 5 mg/m2. If two or more patients developed toxic effects of grade 3 or higher, that dose level was deemed toxic. The dose was escalated if it did not produce dose-limiting toxic effects, and patients would be sequentially enrolled into cohort 2 (10 mg/m2), cohort 3 (20 mg/m2), cohort 4 (40 mg/m2), cohort 5 (60 mg/m2), or cohort 6 (90 mg/m2). After completion of monotherapy, we assessed the safety and toxicity of BP1001 (60 or 90 mg/m2) in combination with 20 mg low-dose cytarabine (twice-daily subcutaneous injections) in a phase 1b study in patients with refractory or relapsed acute myeloid leukaemia (ie, those who were refractory to at least one previous therapy regimen and no more than one previous salvage regimen). The objectives of this study were to establish the toxicity and tolerance of escalating doses of BP1001 monotherapy in patients with refractory or relapsed leukaemia, to assess the maximum tolerated dose of BP1001, and to determine the optimal biologically active dose of BP1001, defined as a 50% reduction in Grb2 expression in circulating leukaemia cells. We also aimed to assess the in-vivo pharmacokinetics of BP1001 and tumour response. The study is completed and is registered with ClinicalTrials.gov, number NCT01159028. FINDINGS Between July 23, 2010, and Feb 23, 2016, we enrolled and treated 39 patients, of whom 27 were assessable for dose-limiting toxicity. The first patient treated had mucositis and hand-foot syndrome, which were assessed as possibly related to BP1001 and counted as a dose-limiting toxicity. We noted no other dose-limiting toxicities, and a maximum tolerated dose was not identified. The highest tested dose of BP1001 was 90 mg/m2. The most common grade 3-4 adverse events were cardiopulmonary disorders (25 [64%] of 39 patients), and fever (including neutropenic fever) and infections (17 [44%] patients). Grade 5 adverse events were cardiopulmonary disorders (two [5%] of 39 patients), fever (including neutropenic fever) and infections (two [5%] of 39 patients), and multi-organ failure (one [3%] of 39 patients). Nine (33%) of 27 patients who had peripheral blood blasts at the start of therapy had a reduction of 50% or more in peripheral blood blasts while receiving BP1001 montherapy. Three (10%) of 29 patients who had bone marrow blasts at the start of therapy had a reduction in bone marrow blasts of 50% or more while receiving BP1001 monotherapy. Per investigator's assessment, seven (22%) of 32 patients benefited from BP1001 monotherapy and had extended cycles of treatment. Of seven patients receiving BP1001 plus low-dose cytarabine combination therapy, two had complete remission, one had complete remission with incomplete haematological recovery, and two had stable disease with no dose-limiting toxicity; one patient died and one withdrew, both because of disease progression. There were eight deaths; none were treatment related. INTERPRETATION BP1001 is well tolerated, with early evidence of anti-leukaemic activity in combination with low-dose cytarabine. To further explore this anti-leukaemic activity, the efficacy of BP1001 plus low-dose cytarabine combination is being investigated in an ongoing phase 2 study in patients with previously untreated acute myeloid leukaemia who are ineligible for intensive induction therapy. FUNDING Bio-Path Holdings Inc.
Collapse
Affiliation(s)
- Maro Ohanian
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Naveen Pemmaraju
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan Kadia
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miranda Lim
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sherry Pierce
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan O'Brien
- Chao Family Comprehensive Cancer Center, University of California Irvine Medical Center, Orange, CA, USA
| | - Yesid Alvarado
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srdan Verstovsek
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Wierda
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jorge Cortes
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
282
|
Abstract
The IL-6/JAK/STAT3 pathway is aberrantly hyperactivated in many types of cancer, and such hyperactivation is generally associated with a poor clinical prognosis. In the tumour microenvironment, IL-6/JAK/STAT3 signalling acts to drive the proliferation, survival, invasiveness, and metastasis of tumour cells, while strongly suppressing the antitumour immune response. Thus, treatments that target the IL-6/JAK/STAT3 pathway in patients with cancer are poised to provide therapeutic benefit by directly inhibiting tumour cell growth and by stimulating antitumour immunity. Agents targeting IL-6, the IL-6 receptor, or JAKs have already received FDA approval for the treatment of inflammatory conditions or myeloproliferative neoplasms and for the management of certain adverse effects of chimeric antigen receptor T cells, and are being further evaluated in patients with haematopoietic malignancies and in those with solid tumours. Novel inhibitors of the IL-6/JAK/STAT3 pathway, including STAT3-selective inhibitors, are currently in development. Herein, we review the role of IL-6/JAK/STAT3 signalling in the tumour microenvironment and the status of preclinical and clinical investigations of agents targeting this pathway. We also discuss the potential of combining IL-6/JAK/STAT3 inhibitors with currently approved therapeutic agents directed against immune-checkpoint inhibitors.
Collapse
Affiliation(s)
- Daniel E. Johnson
- Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Rachel A. O’Keefe
- Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Jennifer R. Grandis
- Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
283
|
Ross SJ, Revenko AS, Hanson LL, Ellston R, Staniszewska A, Whalley N, Pandey SK, Revill M, Rooney C, Buckett LK, Klein SK, Hudson K, Monia BP, Zinda M, Blakey DC, Lyne PD, Macleod AR. Targeting KRAS-dependent tumors with AZD4785, a high-affinity therapeutic antisense oligonucleotide inhibitor of KRAS. Sci Transl Med 2018; 9:9/394/eaal5253. [PMID: 28615361 DOI: 10.1126/scitranslmed.aal5253] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/21/2017] [Indexed: 12/28/2022]
Abstract
Activating mutations in KRAS underlie the pathogenesis of up to 20% of human tumors, and KRAS is one of the most frequently mutated genes in cancer. Developing therapeutics to block KRAS activity has proven difficult, and no direct inhibitor of KRAS function has entered clinical trials. We describe the preclinical evaluation of AZD4785, a high-affinity constrained ethyl-containing therapeutic antisense oligonucleotide (ASO) targeting KRAS mRNA. AZD4785 potently and selectively depleted cellular KRAS mRNA and protein, resulting in inhibition of downstream effector pathways and antiproliferative effects selectively in KRAS mutant cells. AZD4785-mediated depletion of KRAS was not associated with feedback activation of the mitogen-activated protein kinase (MAPK) pathway, which is seen with RAS-MAPK pathway inhibitors. Systemic delivery of AZD4785 to mice bearing KRAS mutant non-small cell lung cancer cell line xenografts or patient-derived xenografts resulted in inhibition of KRAS expression in tumors and antitumor activity. The safety of this approach was demonstrated in mice and monkeys with KRAS ASOs that produced robust target knockdown in a broad set of tissues without any adverse effects. Together, these data suggest that AZD4785 is an attractive therapeutic for the treatment of KRAS-driven human cancers and warrants further development.
Collapse
|
284
|
Kurt H, Jorgensen JL, Amin HM, Patel KP, Wang SA, Lin P, Kanagal-Shamanna R, Loghavi S, Thakral B, Khogeer HA, Jabbour EJ, Li S, Yin CC, Medeiros LJ, Khoury JD. Chronic lymphoproliferative disorder of NK-cells: A single-institution review with emphasis on relative utility of multimodality diagnostic tools. Eur J Haematol 2018; 100:444-454. [PMID: 29385279 DOI: 10.1111/ejh.13038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Chronic lymphoproliferative disorder of NK-cells (CLPD-NK) manifests as a persistent increase (≥2 × 109 /L, for > 6 months) of mature NK-cells in peripheral blood with an indolent clinical course. The disease is rare, and only limited case series have been published. METHODS We retrospectively studied 11 patients with CLPD-NK diagnosed at our institution between 2005 and 2017. RESULTS Patients included 7 men and 4 women with a median age of 60 years (range, 25-89 years). Ten patients (91%) had cytopenias. Bone marrow involvement by CLPD-NK ranged from 5-15%. The most commonly detected antigenic aberrancies by low cytometry immunophenotyping were as follows: CD7decreased/dim (30%), CD8uniform+ (36%), CD56-/partial (73%), CD94bright (55%), and KIR restriction (100%). JAK/STAT pathway mutations were detected in 8 of 10 (80%) patients and involved STAT3 (n = 7) and JAK3 (n = 1). The presence of mutations tended to correlate with the occurrence of other cytopenias (anemia/thrombocytopenia) and requirement for treatment. Seven patients received single-agent therapy, with amelioration of symptoms; 4 patients were observed. There were no disease-associated deaths or progression to more aggressive disease during the follow-up interval (median, 17 months). CONCLUSIONS Patients with CLPD-NK have an indolent clinical course and frequent hematologic manifestations that are responsive to single-agent therapy. Mutations in STAT3 are common and portend more pronounced clinical manifestations.
Collapse
Affiliation(s)
- Habibe Kurt
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey L Jorgensen
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haitham A Khogeer
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias J Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
285
|
Abstract
The promising results of clinical trials using immune checkpoint inhibitors revived interests in cancer immunotherapy. However, it also became apparent that efficacy of immune checkpoint blockade can benefit from combining it with immunostimulatory strategies. Here, we review prior and re-emerging approaches using Toll-like Receptor 9 (TLR9) agonists, CpG oligodeoxynucleotides (ODNs), focused on the generation of antitumor immune responses in cancer patients. While numerous early clinical trials using TLR9 ligands in monotherapies provided evidence of CpG ODNs tolerability and safety, they failed to demonstrate sufficient antitumor efficacy. Recent studies unraveled multiple levels of negative regulation of immunostimulatory TLR9 signaling in immune cells by the tumor microenvironment that can stifle immune activity in cancer patients. Therefore, CpG ODNs-based strategies can greatly benefit from combination with strategies targeting immune checkpoint regulation. The most recent clinical trials of CpG ODNs together with immune checkpoint inhibitors have a chance to generate novel, more effective and safer cancer immunotherapies.
Collapse
|
286
|
Arun G, Diermeier SD, Spector DL. Therapeutic Targeting of Long Non-Coding RNAs in Cancer. Trends Mol Med 2018; 24:257-277. [PMID: 29449148 PMCID: PMC5840027 DOI: 10.1016/j.molmed.2018.01.001] [Citation(s) in RCA: 431] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/09/2018] [Accepted: 01/14/2018] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) represent a significant population of the human transcriptome. Many lncRNAs exhibit cell- and/or tissue/tumor-specific expression, making them excellent candidates for therapeutic applications. In this review we discuss examples of lncRNAs that demonstrate the diversity of their function in various cancer types. We also discuss recent advances in nucleic acid drug development with a focus on oligonucleotide-based therapies as a novel approach to inhibit tumor progression. The increased success rates of nucleic acid therapeutics provide an outstanding opportunity to explore lncRNAs as viable therapeutic targets to combat various aspects of cancer progression.
Collapse
Affiliation(s)
- Gayatri Arun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; These authors contributed equally
| | - Sarah D Diermeier
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; These authors contributed equally
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
287
|
Terashima T, Ogawa N, Nakae Y, Sato T, Katagi M, Okano J, Maegawa H, Kojima H. Gene Therapy for Neuropathic Pain through siRNA-IRF5 Gene Delivery with Homing Peptides to Microglia. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:203-215. [PMID: 29858055 PMCID: PMC5992689 DOI: 10.1016/j.omtn.2018.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/02/2018] [Accepted: 02/21/2018] [Indexed: 01/01/2023]
Abstract
Astrocyte- and microglia-targeting peptides were identified and isolated using phage display technology. A series of procedures, including three cycles of both in vivo and in vitro biopanning, was performed separately in astrocytes and in M1 or M2 microglia, yielding 50–58 phage plaques in each cell type. Analyses of the sequences of this collection identified one candidate homing peptide targeting astrocytes (AS1[C-LNSSQPS-C]) and two candidate homing peptides targeting microglia (MG1[C-HHSSSAR-C] and MG2[C-NTGSPYE-C]). To determine peptide specificity for the target cell in vitro, each peptide was synthesized and introduced into the primary cultures of astrocytes or microglia. Those peptides could bind to the target cells and be selectively taken up by the corresponding cell, namely, astrocytes, M1 microglia, or M2 microglia. To confirm cell-specific gene delivery to M1 microglia, the complexes between peptide MG1 and siRNA-interferon regulatory factor 5 were prepared and intrathecally injected into a mouse model of neuropathic pain. The complexes successfully suppressed hyperalgesia with high efficiency in this neuropathic pain model. Here, we describe a novel gene therapy for the treatment neuropathic pain, which has a high potential to be of clinical relevance. This strategy will ensure the targeted delivery of therapeutic genes while minimizing side effects to non-target tissues or cells.
Collapse
Affiliation(s)
- Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan.
| | - Nobuhiro Ogawa
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Yuki Nakae
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Toshiyuki Sato
- Pain & Neuroscience Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Junko Okano
- Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
288
|
Soldevilla MM, Pastor F. Decoy-Based, Targeted Inhibition of STAT3: A New Step forward for B Cell Lymphoma Immunotherapy. Mol Ther 2018; 26:675-677. [PMID: 29475733 DOI: 10.1016/j.ymthe.2018.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Mario M Soldevilla
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Fernando Pastor
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain.
| |
Collapse
|
289
|
Vallejo-Díaz J, Olazabal-Morán M, Cariaga-Martínez AE, Pajares MJ, Flores JM, Pio R, Montuenga LM, Carrera AC. Targeted depletion of PIK3R2 induces regression of lung squamous cell carcinoma. Oncotarget 2018; 7:85063-85078. [PMID: 27835880 PMCID: PMC5356720 DOI: 10.18632/oncotarget.13195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 10/21/2016] [Indexed: 02/03/2023] Open
Abstract
Oncogenic mutations in the PI3K/AKT pathway are present in nearly half of human tumors. Nonetheless, inhibitory compounds of the pathway often induce pathway rebound and tumor resistance. We find that lung squamous cell carcinoma (SQCC), which accounts for ~20% of lung cancer, exhibits increased expression of the PI3K subunit PIK3R2, which is at low expression levels in normal tissues. We tested a new approach to interfere with PI3K/AKT pathway activation in lung SQCC. We generated tumor xenografts of SQCC cell lines and examined the consequences of targeting PIK3R2 expression. In tumors with high PIK3R2 expression, and independently of PIK3CA, KRAS, or PTEN mutations, PIK3R2 depletion induced lung SQCC xenograft regression without triggering PI3K/AKT pathway rebound. These results validate the use PIK3R2 interfering tools for the treatment of lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Jesús Vallejo-Díaz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid, Cantoblanco, Madrid
| | - Manuel Olazabal-Morán
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid, Cantoblanco, Madrid
| | - Ariel E Cariaga-Martínez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid, Cantoblanco, Madrid
| | - María J Pajares
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Health Research Institute (IDISNA), University of Navarra, Pamplona, Spain.,Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Juana M Flores
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, Spain
| | - Ruben Pio
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Health Research Institute (IDISNA), University of Navarra, Pamplona, Spain.,Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona, Spain
| | - Luis M Montuenga
- Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Health Research Institute (IDISNA), University of Navarra, Pamplona, Spain.,Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Ana Clara Carrera
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid, Cantoblanco, Madrid
| |
Collapse
|
290
|
Zhao X, Zhang Z, Moreira D, Su YL, Won H, Adamus T, Dong Z, Liang Y, Yin HH, Swiderski P, Pillai RK, Kwak L, Forman S, Kortylewski M. B Cell Lymphoma Immunotherapy Using TLR9-Targeted Oligonucleotide STAT3 Inhibitors. Mol Ther 2018; 26:695-707. [PMID: 29433938 PMCID: PMC5910676 DOI: 10.1016/j.ymthe.2018.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 01/22/2023] Open
Abstract
Growing evidence links the aggressiveness of non-Hodgkin’s lymphoma, especially the activated B cell-like type diffuse large B cell lymphomas (ABC-DLBCLs) to Toll-like receptor 9 (TLR9)/MyD88 and STAT3 transcription factor signaling. Here, we describe a dual-function molecule consisting of a clinically relevant TLR9 agonist (CpG7909) and a STAT3 inhibitor in the form of a high-affinity decoy oligodeoxynucleotide (dODN). The CpG-STAT3dODN blocked STAT3 DNA binding and activity, thus reducing expression of downstream target genes, such as MYC and BCL2L1, in human and mouse lymphoma cells. We further demonstrated that injections (i.v.) of CpG-STAT3dODN inhibited growth of human OCI-Ly3 lymphoma in immunodeficient mice. Moreover, systemic CpG-STAT3dODN administration induced complete regression of the syngeneic A20 lymphoma, resulting in long-term survival of immunocompetent mice. Both TLR9 stimulation and concurrent STAT3 inhibition were critical for immune-mediated therapeutic effects, since neither CpG7909 alone nor CpG7909 co-injected with unconjugated STAT3dODN extended mouse survival. The CpG-STAT3dODN induced expression of genes critical to antigen-processing/presentation and Th1 cell activation while suppressing survival signaling. These effects resulted in the generation of lymphoma cell-specific CD8/CD4-dependent T cell immunity protecting mice from tumor rechallenge. Our results suggest that CpG-STAT3dODN as a systemic/local monotherapy or in combination with PD1 blockade can provide an opportunity for treating patients with B cell NHL.
Collapse
Affiliation(s)
- Xingli Zhao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China
| | - Zhuoran Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Dayson Moreira
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yu-Lin Su
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Haejung Won
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Tomasz Adamus
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Zhenyuan Dong
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Yong Liang
- DNA/RNA Synthesis Core Facility, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Hongwei H Yin
- Molecular Pathology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Piotr Swiderski
- DNA/RNA Synthesis Core Facility, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Raju K Pillai
- Molecular Pathology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Larry Kwak
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Stephen Forman
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
291
|
Hagiwara K, Kurihara K, Honma M, Yamamoto J, Shinohara F. PEG-modification on the endo-position of an antisense oligonucleotide increases tumor accumulation via the EPR effect. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:448-459. [PMID: 29318941 DOI: 10.1080/09205063.2017.1422853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nucleic acid medicine is the next-generation therapeutic modality for refractory diseases with its unique mode of action as an alternative to traditional therapies. A nucleic acid delivery system targeted to liver was validated clinically; however, the delivery system of nucleic acids targeting solid tumors following systemic administration is not efficient enough for clinical use. In this study, we first utilized an antisense oligonucleotide (ASO) and polyethylene glycol (PEG) in one-to-one conjugation (PEG-ASO) at the endo-position of the ASO (endo-PEG-ASO). The effects of ASO modification position, PEG structure and molecular weight, and PEG-ASO tumor accumulation were evaluated in vivo. The endo-PEG-ASO showed prolonged pharmacokinetics and enhanced tumor accumulation compared with the conventional ASO and the PEG-ASO modified at the ASO exo-position (exo-PEG-ASO), indicating that the modification position of PEG is crucial for targeting tumors. We also observed that the endo-PEG-ASO indicated possibility of enhanced permeability inside the tumor. Further research is needed to optimize the linker in the endo-PEG-ASO for clinical application as a novel and promising therapeutic format for targeting solid tumors.
Collapse
Affiliation(s)
- Kenji Hagiwara
- a Innovative Technology Laboratories, Research Functions Unit, R&D Division , Kyowa Hakko Kirin Co., Ltd , Tokyo , Japan
| | - Kana Kurihara
- b Research Core Function Laboratories, Research Functions Unit, R&D Division , Kyowa Hakko Kirin Co., Ltd , Tokyo , Japan
| | - Masakazu Honma
- a Innovative Technology Laboratories, Research Functions Unit, R&D Division , Kyowa Hakko Kirin Co., Ltd , Tokyo , Japan
| | - Junichiro Yamamoto
- a Innovative Technology Laboratories, Research Functions Unit, R&D Division , Kyowa Hakko Kirin Co., Ltd , Tokyo , Japan
| | - Fumikazu Shinohara
- a Innovative Technology Laboratories, Research Functions Unit, R&D Division , Kyowa Hakko Kirin Co., Ltd , Tokyo , Japan
| |
Collapse
|
292
|
Therapeutic Applications of Targeted Alternative Splicing to Cancer Treatment. Int J Mol Sci 2017; 19:ijms19010075. [PMID: 29283381 PMCID: PMC5796025 DOI: 10.3390/ijms19010075] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/22/2017] [Accepted: 12/24/2017] [Indexed: 12/16/2022] Open
Abstract
A growing body of studies has documented the pathological influence of impaired alternative splicing (AS) events on numerous diseases, including cancer. In addition, the generation of alternatively spliced isoforms is frequently noted to result in drug resistance in many cancer therapies. To gain comprehensive insights into the impacts of AS events on cancer biology and therapeutic developments, this paper highlights recent findings regarding the therapeutic routes of targeting alternative-spliced isoforms and splicing regulators to treatment strategies for distinct cancers.
Collapse
|
293
|
Bosch-Barrera J, Sais E, Cañete N, Marruecos J, Cuyàs E, Izquierdo A, Porta R, Haro M, Brunet J, Pedraza S, Menendez JA. Response of brain metastasis from lung cancer patients to an oral nutraceutical product containing silibinin. Oncotarget 2017; 7:32006-14. [PMID: 26959886 PMCID: PMC5077992 DOI: 10.18632/oncotarget.7900] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/21/2016] [Indexed: 12/31/2022] Open
Abstract
Despite multimodal treatment approaches, the prognosis of brain metastases (BM) from non-small cell lung cancer (NSCLC) remains poor. Untreated patients with BM have a median survival of about 1 month, with almost all patients dying from neurological causes. We herein present the first report describing the response of BM from NSCLC patients to an oral nutraceutical product containing silibinin, a flavonoid extracted from the seeds of the milk thistle. We present evidence of how the use of the silibinin-based nutraceutical Legasil® resulted in significant clinical and radiological improvement of BM from NSCLC patients with poor performance status that progressed after whole brain radiotherapy and chemotherapy. The suppressive effects of silibinin on progressive BM, which involved a marked reduction of the peritumoral brain edema, occurred without affecting the primary lung tumor outgrowth in NSCLC patients. Because BM patients have an impaired survival prognosis and are in need for an immediate tumor control, the combination of brain radiotherapy with silibinin-based nutraceuticals might not only alleviate BM edema but also prove local control and time for either classical chemotherapeutics with immunostimulatory effects or new immunotherapeutic agents such as checkpoint blockers to reveal their full therapeutic potential in NSCLC BM patients. New studies aimed to illuminate the mechanistic aspects underlying the regulatory effects of silibinin on the cellular and molecular pathobiology of BM might expedite the entry of new formulations of silibinin into clinical testing for progressive BM from lung cancer patients.
Collapse
Affiliation(s)
- Joaquim Bosch-Barrera
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Girona, Spain.,Girona Biomedical Research Institute (IDIBGi), Girona, Spain.,Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Elia Sais
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Girona, Spain
| | - Noemí Cañete
- Girona Biomedical Research Institute (IDIBGi), Girona, Spain.,Department of Radiology, Diagnostic Imaging Institute, Doctor Josep Trueta University Hospital, Girona, Spain
| | - Jordi Marruecos
- Girona Biomedical Research Institute (IDIBGi), Girona, Spain.,Department of Radiotherapy, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Girona, Spain
| | - Elisabet Cuyàs
- Girona Biomedical Research Institute (IDIBGi), Girona, Spain.,ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
| | - Angel Izquierdo
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Girona, Spain.,Girona Biomedical Research Institute (IDIBGi), Girona, Spain.,Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Rut Porta
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Girona, Spain.,Girona Biomedical Research Institute (IDIBGi), Girona, Spain.,Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Manel Haro
- Girona Biomedical Research Institute (IDIBGi), Girona, Spain.,Department of Medical Sciences, Medical School, University of Girona, Girona, Spain.,Department of Pneumology, Doctor Josep Trueta University Hospital, Girona, Spain
| | - Joan Brunet
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Girona, Spain.,Girona Biomedical Research Institute (IDIBGi), Girona, Spain.,Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Salvador Pedraza
- Girona Biomedical Research Institute (IDIBGi), Girona, Spain.,Department of Medical Sciences, Medical School, University of Girona, Girona, Spain.,Department of Radiology, Diagnostic Imaging Institute, Doctor Josep Trueta University Hospital, Girona, Spain
| | - Javier A Menendez
- Girona Biomedical Research Institute (IDIBGi), Girona, Spain.,ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
| |
Collapse
|
294
|
Nuñez-Durán E, Aghajan M, Amrutkar M, Sütt S, Cansby E, Booten SL, Watt A, Ståhlman M, Stefan N, Häring HU, Staiger H, Borén J, Marschall HU, Mahlapuu M. Serine/threonine protein kinase 25 antisense oligonucleotide treatment reverses glucose intolerance, insulin resistance, and nonalcoholic fatty liver disease in mice. Hepatol Commun 2017; 2:69-83. [PMID: 29404514 PMCID: PMC5776874 DOI: 10.1002/hep4.1128] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/16/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) contributes to the pathogenesis of type 2 diabetes and cardiovascular disease, and patients with nonalcoholic steatohepatitis (NASH) are also at risk of developing cirrhosis, liver failure, and hepatocellular carcinoma. To date, no specific therapy exists for NAFLD/NASH, which has been recognized as one of the major unmet medical needs of the twenty‐first century. We recently identified serine/threonine protein kinase (STK)25 as a critical regulator of energy homeostasis and NAFLD progression. Here, we investigated the effect of antisense oligonucleotides (ASOs) targeting Stk25 on the metabolic and molecular phenotype of mice after chronic exposure to dietary lipids. We found that Stk25 ASOs efficiently reversed high‐fat diet‐induced systemic hyperglycemia and hyperinsulinemia, improved whole‐body glucose tolerance and insulin sensitivity, and ameliorated liver steatosis, inflammatory infiltration, apoptosis, hepatic stellate cell activation, and nutritional fibrosis in obese mice. Moreover, Stk25 ASOs suppressed the abundance of liver acetyl‐coenzyme A carboxylase (ACC) protein, a key regulator of both lipid oxidation and synthesis, revealing the likely mechanism underlying repression of hepatic fat accumulation by ASO treatment. We also found that STK25 protein levels correlate significantly and positively with NASH development in human liver biopsies, and several common nonlinked single‐nucleotide polymorphisms in the human STK25 gene are associated with altered liver fat, supporting a critical role of STK25 in the pathogenesis of NAFLD in humans. Conclusion: Preclinical validation for the metabolic benefit of pharmacologically inhibiting STK25 in the context of obesity is provided. Therapeutic intervention aimed at reducing STK25 function may provide a new strategy for the treatment of patients with NAFLD, type 2 diabetes, and related complex metabolic diseases. (Hepatology Communications 2018;2:69–83)
Collapse
Affiliation(s)
- Esther Nuñez-Durán
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Institute of Medicine University of Gothenburg, Sahlgrenska University Hospital Gothenburg Sweden
| | | | - Manoj Amrutkar
- Department of Gastrointestinal and Children Surgery University of Oslo Norway
| | - Silva Sütt
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Institute of Medicine University of Gothenburg, Sahlgrenska University Hospital Gothenburg Sweden
| | - Emmelie Cansby
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Institute of Medicine University of Gothenburg, Sahlgrenska University Hospital Gothenburg Sweden
| | | | | | - Marcus Ståhlman
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine University of Gothenburg, Sahlgrenska University Hospital Gothenburg Sweden
| | - Norbert Stefan
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich University of Tübingen Tübingen Germany.,German Center for Diabetes Research Tübingen Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich University of Tübingen Tübingen Germany.,German Center for Diabetes Research Tübingen Germany
| | - Harald Staiger
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich University of Tübingen Tübingen Germany.,German Center for Diabetes Research Tübingen Germany.,Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry Eberhard Karls University Tübingen Tübingen Germany
| | - Jan Borén
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine University of Gothenburg, Sahlgrenska University Hospital Gothenburg Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine University of Gothenburg, Sahlgrenska University Hospital Gothenburg Sweden
| | - Margit Mahlapuu
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Institute of Medicine University of Gothenburg, Sahlgrenska University Hospital Gothenburg Sweden
| |
Collapse
|
295
|
Agrawal AA, Yu L, Smith PG, Buonamici S. Targeting splicing abnormalities in cancer. Curr Opin Genet Dev 2017; 48:67-74. [PMID: 29136527 DOI: 10.1016/j.gde.2017.10.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/19/2017] [Accepted: 10/13/2017] [Indexed: 01/11/2023]
Abstract
Recently splicing has been recognized as a key pathway in cancer. Although aberrant splicing has been shown to be a consequence of mutations or the abnormal expression of splicing factors (trans-effect changes) or mutations in the splicing sequences (cis-effect mutations), the connections between aberrant splicing and cancer initiation or progression are still not well understood. Here we review the mutational landscape of splicing factors in cancer and associated splicing consequences, along with the most important examples of the therapeutic approaches targeting the spliceosome currently being investigated in oncology.
Collapse
Affiliation(s)
| | - Lihua Yu
- H3 Biomedicine, Inc., Cambridge, MA, USA
| | | | | |
Collapse
|
296
|
Abstract
PURPOSE OF REVIEW Once an obscure disease, recent studies have transformed our understanding of angioimmunoblastic T-cell lymphoma (AITL). In this review, we summarize new major advances in the genetics and biology of AITL. RECENT FINDINGS Genome wide sequencing studies have dissected the repertoire of the genetic alterations driving AITL uncovering a highly recurrent Gly17Val somatic mutation in the small GTPase RHOA and major role for mutations in epigenetic regulators, such as TET2, DNMT3A and IDH2, and signaling factors (e.g., FYN and CD28). These findings support a multistep model of follicular T helper cell transformation in AITL and pinpoint novel candidates for the development of targeted therapies in this disease. SUMMARY AITL originates from follicular T helper cells and is characterized by the presence of RHOA G17V mutation together with genetic alterations in TET2, DNMT3A, and IDH2. Research efforts now focus on the elucidation of the specific roles and interplay of these genetic alterations in the pathogenesis of AITL.
Collapse
|
297
|
Mustonen EK, Palomäki T, Pasanen M. Oligonucleotide-based pharmaceuticals: Non-clinical and clinical safety signals and non-clinical testing strategies. Regul Toxicol Pharmacol 2017; 90:328-341. [PMID: 28966105 DOI: 10.1016/j.yrtph.2017.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022]
Abstract
Antisense oligonucleotides, short interfering RNAs (siRNAs) and aptamers are oligonucleotide-based pharmaceuticals with a promising role in targeted therapies. Currently, five oligonucleotide-based pharmaceuticals have achieved marketing authorization in Europe or USA and many more are undergoing clinical testing. However, several safety concerns have been raised in non-clinical and clinical studies. Oligonucleotides share properties with both chemical and biological pharmaceuticals and therefore they pose challenges also from the regulatory point of view. We have analyzed the safety data of oligonucleotides and evaluated the applicability of current non-clinical toxicological guidelines for assessing the safety of oligonucleotide-based pharmaceuticals. Oligonucleotide-based pharmaceuticals display a similar toxicological profile, exerting adverse effects on liver and kidney, evoking hematological alterations, as well as causing immunostimulation and prolonging the coagulation time. It is possible to extrapolate some of these effects from non-clinical studies to humans. However, evaluation strategies for genotoxicity testing of "non-natural" oligonucleotides should be revised. Additionally, the selective use of surrogates and prediction of clinical endpoints for non-clinically observed immunostimulation is complicated by its multiple potential manifestations, demanding improvements in the testing strategies. Utilizing more relevant and mechanistic-based approaches and taking better account of species differences, could possibly improve the prediction of relevant immunological/proinflammatory effects in humans.
Collapse
Affiliation(s)
- Enni-Kaisa Mustonen
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy, P.O. Box 1627, 70211 Kuopio, Finland
| | | | - Markku Pasanen
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy, P.O. Box 1627, 70211 Kuopio, Finland.
| |
Collapse
|
298
|
Antisense Oligonucleotides Targeting Y-Box Binding Protein-1 Inhibit Tumor Angiogenesis by Downregulating Bcl-xL-VEGFR2/-Tie Axes. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:170-181. [PMID: 29246296 PMCID: PMC5633255 DOI: 10.1016/j.omtn.2017.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 09/09/2017] [Accepted: 09/10/2017] [Indexed: 12/16/2022]
Abstract
Y-box binding protein-1 (YB-1), involved in cancer progression and chemoradiation resistance, is overexpressed in not only cancer cells but also tumor blood vessels. In this study, we investigated the potential value of amido-bridged nucleic acid (AmNA)-modified antisense oligonucleotides (ASOs) targeting YB-1 (YB-1 ASOA) as an antiangiogenic cancer therapy. YB-1 ASOA was superior to natural DNA-based ASO or locked nucleic acid (LNA)-modified YB-1 ASO in both knockdown efficiency and safety, the latter assessed by liver function. YB-1 ASOA administered i.v. significantly inhibited YB-1 expression in CD31-positive angiogenic endothelial cells, but not in cancer cells, in the tumors. With regard to the mechanism of its antiangiogenic effects, YB-1 ASOA downregulated both Bcl-xL/VEGFR2 and Bcl-xL/Tie signal axes, which are key regulators of angiogenesis, and induced apoptosis in vascular endothelial cells. In the xenograft tumor model that had low sensitivity to anti-VEGF antibody, YB-1 ASOA significantly suppressed tumor growth; not only VEGFR2 but also Tie2 expression was decreased in tumor vessels. In conclusion, YB-1/Bcl-xL/VEGFR2 and YB-1/Bcl-xL/Tie signal axes play pivotal roles in tumor angiogenesis, and YB-1 ASOA may be feasible as an antiangiogenic therapy for solid tumors.
Collapse
|
299
|
Clay TD, Russell PA, Do H, Sundararajan V, Conron M, Wright GM, Solomon B, Dobrovic A, McLachlan SA, Moore MM. EGFR and KRAS mutations do not enrich for the activation of IL-6, JAK1 or phosphorylated STAT3 in resected lung adenocarcinoma. Med Oncol 2017; 34:175. [PMID: 28879441 DOI: 10.1007/s12032-017-1031-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 08/29/2017] [Indexed: 01/11/2023]
Abstract
Resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) against EGFR mutant lung adenocarcinoma develops after a median of nine to thirteen months. Upregulation of the interleukin-6 (IL-6)/Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway may be a potential source of resistance to EGFR TKIs. We undertook a detailed assessment of the IL-6/JAK1/phosphorylated STAT3 (pSTAT3) pathway in resected lung adenocarcinoma specimens, with special interest in whether the presence of an EGFR mutation enriched for pSTAT3 positivity. Tumours from 143 patients with resected lung adenocarcinoma were assessed. EGFR and KRAS mutation status were scanned for with high-resolution melting and confirmed by polymerase chain reaction. Immunohistochemisty (IHC) was performed for IL-6, gp130, JAK1 and pSTAT3. Two methods for assigning IHC positivity were assessed (the presence of any positivity, and the presence of positivity at an H score >40). We found statistically significant associations between IL-6, JAK1 and pSTAT3 measured by IHC, consistent with the activation of the pathway in clinical specimens. No relationship was demonstrated between members of this pathway and oncogenic mutations in EGFR or KRAS. However, a proportion of tumours with EGFR mutations showed staining for IL-6, JAK1 and pSTAT3. No correlations with clinicopathologic features or survival outcomes were found for IL-6, JAK1 or pSTAT3 staining. The presence of EGFR or KRAS mutations did not enrich for the activation of IL-6, JAK1 or pSTAT3. pSTAT3 may still play a role in resistance to EGFR TKIs in clinical practice.
Collapse
Affiliation(s)
- Timothy D Clay
- St John of God Hospital, Suite C202, 12 Salvado Road, Subiaco, 6008, Australia. .,Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Melbourne, Australia.
| | - Prudence A Russell
- Department of Pathology, St Vincent's Hospital, Melbourne, Melbourne, Australia.,Department of Pathology, University of Melbourne, Melbourne, Australia
| | - Hongdo Do
- Department of Pathology, University of Melbourne, Melbourne, Australia.,Translational Genomics and Epigenomics Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Vijaya Sundararajan
- Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Melbourne, Australia
| | - Matthew Conron
- Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Melbourne, Australia.,Department of Respiratory Medicine, St Vincent's Hospital, Melbourne, Melbourne, Australia
| | - Gavin M Wright
- Department of Thoracic Surgery, St Vincent's Hospital, Melbourne, Melbourne, Australia.,Department of Thoracic Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Benjamin Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Alexander Dobrovic
- Department of Pathology, University of Melbourne, Melbourne, Australia.,Translational Genomics and Epigenomics Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Sue-Anne McLachlan
- Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Melbourne, Australia.,Department of Medical Oncology, St Vincent's Hospital, Melbourne, Melbourne, Australia
| | - Melissa M Moore
- Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Melbourne, Australia.,Department of Medical Oncology, St Vincent's Hospital, Melbourne, Melbourne, Australia
| |
Collapse
|
300
|
Klingenberg M, Matsuda A, Diederichs S, Patel T. Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets. J Hepatol 2017; 67:603-618. [PMID: 28438689 DOI: 10.1016/j.jhep.2017.04.009] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023]
Abstract
The majority of the human genome is not translated into proteins but can be transcribed into RNA. Even though the resulting non-coding RNAs (ncRNAs) do not encode for proteins, they contribute to diseases such as cancer. Here, we review examples of the functions of ncRNAs in liver cancer and their potential use for the detection and treatment of liver cancer.
Collapse
Affiliation(s)
- Marcel Klingenberg
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany
| | - Akiko Matsuda
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|