251
|
Abstract
Cathelicidins comprise a family of mammalian proteins containing a C-terminal cationic antimicrobial domain that becomes active after being freed from the N-terminal cathelin portion of the holoprotein. Many other members of this family have been identified since the first cathelicidin sequences were reported 10 years ago. The mature peptides generally show a wide spectrum of antimicrobial activity and, more recently, some of them have also been found to exert other biological activities. The human cathelicidin peptide LL-37 is chemotactic for neutrophils, monocytes, mast cells, and T cells; induces degranulation of mast cells; alters transcriptional responses in macrophages; stimulates wound vascularization and re-epithelialization of healing skin. The porcine PR-39 has also been involved in a variety of processes, including promotion of wound repair, induction of angiogenesis, neutrophils chemotaxis, and inhibition of the phagocyte NADPH oxidase activity, whereas the bovine BMAP-28 induces apoptosis in transformed cell lines and activated lymphocytes and may thus help with clearance of unwanted cells at inflammation sites. These multiple actions provide evidence for active participation of cathelicidin peptides in the regulation of the antimicrobial host defenses.
Collapse
Affiliation(s)
- Margherita Zanetti
- Department of Biomedical Sciences and Technology, University of Udine, I-33100 Udine, Italy.
| |
Collapse
|
252
|
Hase K, Murakami M, Iimura M, Cole SP, Horibe Y, Ohtake T, Obonyo M, Gallo RL, Eckmann L, Kagnoff MF. Expression of LL-37 by human gastric epithelial cells as a potential host defense mechanism against Helicobacter pylori. Gastroenterology 2003; 125:1613-25. [PMID: 14724813 DOI: 10.1053/j.gastro.2003.08.028] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS LL-37/human cationic antimicrobial peptide 18 (hCAP18) is a human cathelicidin with broad-spectrum antimicrobial, lipopolysaccharide binding, and chemotactic activities. This study examined the role of LL-37/hCAP18 in gastric innate immune defense by characterizing its constitutive and regulated expression by human gastric mucosa and its bactericidal activity against the gastric pathogen Helicobacter pylori. METHODS LL-37/hCAP18 messenger RNA expression in normal and H. pylori -infected gastric mucosa and gastric epithelial cells was determined by in situ hybridization, real-time polymerase chain reaction, immunostaining, and immunoblot analysis. Bactericidal activity was measured by using a colony-forming unit assay. RESULTS LL-37/hCAP18 messenger RNA and protein were expressed in a distinct distribution by surface epithelial cells as well as chief and parietal cells in the fundic glands of normal gastric mucosa. LL-37/hCAP18 was significantly increased in the epithelium and gastric secretions of H. pylori -infected patients, but not in individuals with non-H. pylori -induced gastric inflammation. Infection of cultured gastric epithelial cells with a wild-type but not an isogenic Delta cagE mutant strain of H. pylori increased LL-37/hCAP18 expression, indicating that H. pylori -induced regulation of LL-37/hCAP18 production required an intact type IV secretion system. LL-37, the C-terminal peptide of LL-37/hCAP18, alone or in synergy with human beta-defensin 1, was bactericidal for several H. pylori strains. CONCLUSIONS These data indicate that H. pylori up-regulates production of LL-37/hCAP18 by gastric epithelium and suggest this cathelicidin contributes to determining the balance between host mucosal defense and H. pylori survival mechanisms that govern chronic infection with this gastric pathogen.
Collapse
Affiliation(s)
- Koji Hase
- Department of Medicine, University of California at san Diego, La Jolla, 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Cazzola M, Sanduzzi A, Matera MG. Novelties in the field of antimicrobial compounds for the treatment of lower respiratory tract infections. Pulm Pharmacol Ther 2003; 16:131-45. [PMID: 12749829 DOI: 10.1016/s1094-5539(03)00050-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Emergence of antimicrobial resistance is a growing problem and a public health threat. New drugs must be designed with emerging needs in mind: specific resistant and hard-to-treat organisms. But the difficulty to find real new drugs is a major problem. Only the oxazolidinones, the cationic peptides and the lipopeptide antibiotics can be truly regarded as structurally novel drugs, although the peptide deformylase inhibitors and, possibly, the pleuromutilins can be considered a potential advancement in the field. Obviously, these antibiotics must be reserved only to cases of documented ineffectiveness of the common antimicrobial agents.
Collapse
Affiliation(s)
- Mario Cazzola
- Department of Respiratory Medicine, Unit of Pneumology and Allergology, A. Cardarelli Hospital, Via del Parco Margherita 24, 80121 Naples, Italy.
| | | | | |
Collapse
|
254
|
Phadke SM, Islam K, Deslouches B, Kapoor SA, Beer Stolz D, Watkins SC, Montelaro RC, Pilewski JM, Mietzner TA. Selective toxicity of engineered lentivirus lytic peptides in a CF airway cell model. Peptides 2003; 24:1099-107. [PMID: 14612179 DOI: 10.1016/j.peptides.2003.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lentivirus lytic peptides (LLPs) are derived from HIV-1 and have antibacterial properties. LLP derivatives (eLLPs) were engineered for greater potency against Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA). Minimum bactericidal concentration (MBC) was determined in low and physiologic salt concentrations. MBC was decreased against SA and equivalent against PA in physiologic salt when compared to the parent compound LLP1. In a novel cystic fibrosis (CF) airway cell model, one derivative, WLSA5, reduced the number of adherent PA and only moderately affected CF cell viability. Overall, eLLPs are selectively toxic to bacteria and may be useful against CF airway infections.
Collapse
Affiliation(s)
- Shruti M Phadke
- Division of Pediatric Pulmonology, The Children's Hospital of Pittsburgh, 3705 Fifth Avenue, 15213, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
255
|
|
256
|
Yenugu S, Hamil KG, Birse CE, Ruben SM, French FS, Hall SH. Antibacterial properties of the sperm-binding proteins and peptides of human epididymis 2 (HE2) family; salt sensitivity, structural dependence and their interaction with outer and cytoplasmic membranes of Escherichia coli. Biochem J 2003; 372:473-83. [PMID: 12628001 PMCID: PMC1223422 DOI: 10.1042/bj20030225] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2003] [Revised: 03/06/2003] [Accepted: 03/11/2003] [Indexed: 11/17/2022]
Abstract
During passage through the epididymis, sperm interact with secreted epididymal proteins that promote maturation, including the acquisition of motility and fertilization competence. Viewed previously as distinct from sperm maturation, host defence capabilities are now recognized functions of the human epididymis 2 (HE2) family of sperm-binding proteins. We analysed the potent dose and time-dependent bactericidal activity of recombinant HE2alpha, HE2beta1 and HE2beta2 and found that the full-length proteins (10 microg/ml or approximately 1 microM) caused more than a 50% decrease in Escherichia coli colony forming units within 15 min. By contrast, human beta-defensin-1, at a similar concentration, required more than 90 min to exhibit similar antibacterial activity. The epididymis-specific lipocalin, LCN6, failed to kill bacteria. Higher concentrations (25-100 microg/ml) of HE2 proteins and a longer duration of treatment resulted in near total inhibition of bacterial growth. The C-terminal peptides of HE2alpha, HEbeta1 and HEbeta2 proteins exhibited antibacterial activity similar to their full-length counterparts, indicating that the antibacterial activity of HE2 proteins resides in these C-terminal regions. Antibacterial activities of HE2 proteins and peptides were slightly inhibited by NaCl concentrations of up to 150 mM, while human beta-defensin-1 activity was nearly eliminated. Reduction and alkylation of disulphide bonds in HE2 proteins and their C-terminal peptides abolished their antibacterial activity. Consistent with the ability to kill bacteria, full-length HE2 proteins and C-terminal peptides caused rapid dose-dependent permeabilization of outer and cytoplasmic E. coli membranes. A much longer exposure time was required for human beta-defensin-1-mediated permeabilization of membranes, suggesting a possible difference in mode of action compared with the HE2 antibacterial peptides.
Collapse
Affiliation(s)
- Suresh Yenugu
- Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina, Chapel Hill 27599-7500, USA
| | | | | | | | | | | |
Collapse
|
257
|
Spann CT, Tutrone WD, Weinberg JM, Scheinfeld N, Ross B. Topical antibacterial agents for wound care: a primer. Dermatol Surg 2003; 29:620-6. [PMID: 12786706 DOI: 10.1046/j.1524-4725.2003.29143.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although often overlooked, topical antibiotic agents play an important role in dermatology. Their many uses include prophylaxis against cutaneous infections, treatment of minor wounds and infections, and elimination of nasal carriage of Staphylococcus aureus. For these indications, they are advantageous over their systemic counterparts because they deliver a higher concentration of medication directly to the desired area and are less frequently implicated in causing bacterial resistance. The ideal topical antibiotic has a broad spectrum of activity, has persistent antibacterial effects, and has minimal toxicity or incidence of allergy.
Collapse
Affiliation(s)
- Candace Thornton Spann
- Department of Dermatology, St. Luke's-Roosevelt Hospital Center and Beth Israel Medical Center, New York, New York 10025, USA
| | | | | | | | | |
Collapse
|
258
|
Ciornei CD, Egesten A, Bodelsson M. Effects of human cathelicidin antimicrobial peptide LL-37 on lipopolysaccharide-induced nitric oxide release from rat aorta in vitro. Acta Anaesthesiol Scand 2003; 47:213-20. [PMID: 12631052 DOI: 10.1034/j.1399-6576.2003.00045.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Lipopolysaccharides (LPS), released by Gram-negative bacteria, cause vascular expression of inducible nitric oxide synthase (iNOS) leading to nitric oxide (NO) production and septic shock. Human cathelicidin antimicrobial peptide (LL-37) can bind and neutralize LPS. We wanted to study whether LL-37 affects LPS or interleukin-1beta (IL-1beta)-induced production, release and function of NO in intact rat aorta rings and cultured rat aorta smooth muscle cells. METHODS Isolated segments of thoracic aorta and cultured cells were incubated in the presence of LPS, LL-37, LPS + IL-37, IL-1beta, IL-1beta + IL-37 or in medium alone. Smooth muscle contraction in response to phenylephrine and accumulation of the sdegradation products of NO, nitrate and nitrite, were measured on aorta segments. Levels of iNOS were assessed by Western blot and cytotoxic effects were detected by measurement of DNA fragmentation in cultured cells. Number of viable cells were determined after Trypan blue treatment. RESULTS Both LPS and IL-1beta reduced contractility in response to phenylephrine and increased NO production as well as iNOS expression. LL-37 inhibited the LPS depression of vascular contractility induced only by LPS. LL-37 reduced both the LPS- and IL-1beta-induced NO production and iNOS expression. LL-37 at high concentrations induced DNA fragmentation and decreased the number of living cells. CONCLUSION IL-37 reduces NO production induced by LPS and IL-1beta. The reduction does not seem to result only from neutralization of LPS but also from a cytotoxic effect, possibly via induction of apoptosis.
Collapse
Affiliation(s)
- C D Ciornei
- Department of Anaesthesiology and Intensive Care, Lund University, Lund, Sweden
| | | | | |
Collapse
|
259
|
|
260
|
Lupp C, Hancock REW, Ruby EG. The Vibrio fischeri sapABCDF locus is required for normal growth, both in culture and in symbiosis. Arch Microbiol 2002; 179:57-65. [PMID: 12471505 DOI: 10.1007/s00203-002-0502-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2002] [Revised: 10/02/2002] [Accepted: 10/14/2002] [Indexed: 11/24/2022]
Abstract
Inactivation of the sapABCDF genes results in a loss of virulence in several bacterial pathogens of animals and plants. The role of this locus in the growth physiology of Vibrio fischeri, and in the symbiotic colonization of the squid Euprymna scolopes was investigated. In rich medium, a V. fischeri sapA insertion mutant grew at only 85% the rate of its wild-type parent. While a similar effect has been attributed to a potassium-transport defect in sap mutants of enteric bacteria, the V. fischeri mutant grew more slowly regardless of the potassium concentration of the medium. Similarly, the growth-rate defect was independent of the source of either carbon, nitrogen, or phosphorous, indicating that the V. fischeri sap genes do not encode functions required for the transport of a specific form of any of these nutrients. Finally, while a delay in colonizing the nascent light organ of the squid could be accounted for by the lower growth rate of the mutant, a small but statistically significant reduction in its final population size in the host, but not in medium, suggests that the sap genes play another role in the symbiosis. All of these phenotypic defects could be genetically complemented in trans by the sapABCDF genes, but not by the sapA gene alone, indicating that the insertion in sapA is polar to the four downstream genes in the locus. Thus, while the sap locus is important to the normal growth of V. fischeri, it plays different physiological roles in growth and tissue colonization than it does in enteric pathogens.
Collapse
Affiliation(s)
- Claudia Lupp
- University of Hawaii, Kewalo Marine Laboratory, 41 Ahui Street, Honolulu, HI 96813, USA
| | | | | |
Collapse
|
261
|
Conner K, Nern K, Rudisill J, O'Grady T, Gallo RL. The antimicrobial peptide LL-37 is expressed by keratinocytes in condyloma acuminatum and verruca vulgaris. J Am Acad Dermatol 2002; 47:347-50. [PMID: 12196742 DOI: 10.1067/mjd.2002.122190] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND LL-37 is a peptide belonging to the cathelicidin family of antimicrobial peptides. Recent investigations have suggested that the expression of antimicrobial peptides is an important mechanism for resistance to microbial infection. OBJECTIVE The aim of this study was to determine whether LL-37 is expressed in papillomavirus-infected epidermis from patients with condyloma acuminatum or verruca vulgaris. METHODS Biopsy specimens from 3 patients with condyloma and 2 patients with verruca vulgaris and 6 normal skin samples were studied by immunostaining with an antibody specific to LL-37 and control rabbit serum. Western blots were performed on skin extracts from normal skin and verrucae. RESULTS A large increase in the expression of LL-37 was seen within keratinocytes of all involved samples and in the extracts of verrucae analyzed by Western blot. CONCLUSION This study shows the antimicrobial peptide LL-37 is induced within the epidermis during the development of verruca vulgaris. This expression represents a previously unknown immunologic response to papillomavirus infection and may represent an important step in the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Kimberly Conner
- Division of Dermatology, University of California San Diego, and Veterans Affairs San Diego Healthcare System, USA
| | | | | | | | | |
Collapse
|
262
|
Kisich KO, Higgins M, Diamond G, Heifets L. Tumor necrosis factor alpha stimulates killing of Mycobacterium tuberculosis by human neutrophils. Infect Immun 2002; 70:4591-9. [PMID: 12117972 PMCID: PMC128192 DOI: 10.1128/iai.70.8.4591-4599.2002] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of human neutrophils to aid in defense against pulmonary infection with Mycobacterium tuberculosis is controversial. In this study, we have shown that neutrophils respond to and phagocytose M. tuberculosis in human lesions. Neutrophils from healthy individuals were able to kill significant fractions of an inoculum of M. tuberculosis within 1 h of phagocytosis, and this ability was enhanced by tumor necrosis factor alpha but not by gamma interferon. The mycobactericidal mechanism was nonoxidative, as inhibitors of reactive oxygen or reactive nitrogen intermediates did not interfere with killing. However, the mycobactericidal mechanism was associated with increased exposure of intracellular M. tuberculosis to neutrophil defensins. In vitro, human neutrophil peptides 1 to 3 were not able to kill the bacilli even at much higher levels. These studies support the concept that human neutrophils are directly involved in defense against infection with M. tuberculosis.
Collapse
Affiliation(s)
- Kevin O Kisich
- Department of Immunology, National Jewish Medical and Research Center, Denver, Colorado 80206, USA.
| | | | | | | |
Collapse
|
263
|
Steinstraesser L, Tack BF, Waring AJ, Hong T, Boo LM, Fan MH, Remick DI, Su GL, Lehrer RI, Wang SC. Activity of novispirin G10 against Pseudomonas aeruginosa in vitro and in infected burns. Antimicrob Agents Chemother 2002; 46:1837-44. [PMID: 12019098 PMCID: PMC127209 DOI: 10.1128/aac.46.6.1837-1844.2002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of multidrug-resistant microbes has serious implications for managing infection and sepsis and has stimulated efforts to develop alternative treatments, such as antimicrobial peptides. The objective of this study was to test a designer peptide, novispirin G10, against multidrug-resistant microorganisms. By two-stage radial diffusion assays, its activity against such organisms compared favorably with that of standard antibiotics and other antimicrobial peptides. It killed bacteria very rapidly, was nonhemolytic, and was relatively noncytotoxic. The peptide induced an immediate, massive efflux of potassium from Pseudomonas aeruginosa, suggesting that it altered the permeability of its inner membrane. The presence of human serum reduced but did not eliminate its activity. We tested the in vivo activity of novispirin G10 in rats with an infected, partial-thickness burn that covered 20% of their total body surface area. The burned area was seeded with 10(6) CFU of a Silvadene-resistant P. aeruginosa strain, and 24 h later a single treatment with 0, 1, 3, or 6 mg of synthetic novispirin G10 (n = 16 at each concentration) per kg was given intradermally. Significant bacterial killing (P < 0.0001) was evident within 4 h in each peptide group compared to controls receiving vehicle. Antimicrobial peptides such as novispirin G10 may provide a useful alternative or adjunct to standard antibiotic agents in treating burns or other wound infections.
Collapse
|
264
|
Morassutti C, De Amicis F, Skerlavaj B, Zanetti M, Marchetti S. Production of a recombinant antimicrobial peptide in transgenic plants using a modified VMA intein expression system. FEBS Lett 2002; 519:141-6. [PMID: 12023033 DOI: 10.1016/s0014-5793(02)02741-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Tobacco plants were engineered to express SMAP-29, a mammalian antimicrobial peptide of innate immunity, as fusion protein with modified vacuolar membrane ATPase intein. The peptide was purified taking advantage of the intein-mediated self-cleaving mechanism. SMAP-29 was immunologically detected in the chromatographic eluate and appeared tightly bound to copurified plant proteins. Electrophoretic separation under disaggregating conditions indicated that the recombinant peptide was cleaved off by intein at the expected site and an overlay gel assay demonstrated that the peptide retained antimicrobial activity. These results indicate that a modified intein expression system can be used to produce pharmaceutical peptides in transgenic plants.
Collapse
|
265
|
Abstract
Host defenses at the mucosal surface of the airways evolved to present many layers of protection against inhaled microbes. Normally, the intrapulmonary airways are sterile. Airway secretions contain numerous factors with antimicrobial activity that contribute to innate defenses. Many protein and peptide components exert bacteriostatic or bacteriocidal effects against a wide variety of organisms and may act in synergistic or additive combinations. The beta-defensins are a relatively recently described family of peptide antimicrobials that are widely expressed at mucosal surfaces, including airway and submucosal gland epithelia. These small cationic peptides are products of individual genes that exhibit broad-spectrum activity against bacteria, fungi, and some enveloped viruses. Their expression in airway epithelia may be constitutive or inducible by bacterial products or pro-inflammatory cytokines. beta-defensins also act as chemokines for adaptive immune cells, including immature dendritic cells and T cells via the CCR6 receptor, and provide a link between innate and adaptive immunity. Alterations in the function of the beta-defensins may contribute to disease states. Here we review much of the biology of the beta-defensins, including gene discovery, genomic organization, molecular structure, regulation of expression, and function.
Collapse
Affiliation(s)
- Brian C Schutte
- Department of Pediatrics, Genetics Ph.D. Program, University of Iowa College of Medicine, Iowa City, Iowa, USA
| | | |
Collapse
|
266
|
Yamaguchi S, Hong M. Determination of membrane Peptide orientation by 1H-detected 2H NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 155:244-250. [PMID: 12036335 DOI: 10.1006/jmre.2002.2517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We demonstrate the application of the proton inverse detected deuteron (PRIDE) NMR technique to the measurement of the orientation of membrane-bound peptides with enhanced sensitivity. Gramicidin D, a transmembrane peptide, and ovispirin, a surface-bound peptide, were used as model systems. The peptides were 2H-labeled by 1H/2H exchange and oriented uniaxially on glass plates. The directly detected 2H spectra of both peptides showed only a strong D(2)O signal and no large quadrupolar splittings. In contrast, the PRIDE spectrum of gramicidin exhibited quadrupolar splittings as large as 281 kHz, consistent with its transmembrane orientation. Moreover, the large D(2)O signal in the directly detected 2H spectra was cleanly suppressed in the PRIDE spectrum. For ovispirin, the 1H indirectly detected 2H spectrum revealed a 104 kHz splitting and a zero-frequency peak. The former reflects the in-plane orientation of most of the helix axis, while the latter results from residues with a magic-angle orientation of the N-D bonds. These are consistent with previous 15N NMR results on ovispirin. The combination of PRIDE and exchange labeling provides an economical and sensitive method of studying membrane peptide orientations in lipid bilayers without the influence of D(2)O and with the ability to detect N-D bonds at the magic angle from the bilayer normal.
Collapse
|
267
|
Ramanathan B, Davis EG, Ross CR, Blecha F. Cathelicidins: microbicidal activity, mechanisms of action, and roles in innate immunity. Microbes Infect 2002; 4:361-72. [PMID: 11909747 DOI: 10.1016/s1286-4579(02)01549-6] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antimicrobial peptides are important host-defense molecules of innate immunity. Cathelicidins are a diverse family of potent, rapidly acting and broadly effective antimicrobial peptides, which are produced by a variety of cells. This review examines the classification, antimicrobial spectrum, mechanism of action, and regulation of cathelicidins.
Collapse
Affiliation(s)
- Balaji Ramanathan
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5802, USA
| | | | | | | |
Collapse
|
268
|
Sawai MV, Waring AJ, Kearney WR, McCray PB, Forsyth WR, Lehrer RI, Tack BF. Impact of single-residue mutations on the structure and function of ovispirin/novispirin antimicrobial peptides. Protein Eng Des Sel 2002; 15:225-32. [PMID: 11932493 DOI: 10.1093/protein/15.3.225] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We studied three model antibacterial peptides that resembled the N-terminal 18 amino acids of SMAP-29, an alpha-helical, antimicrobial peptide of sheep. Although the parent compound, ovispirin-1 (KNLRR IIRKI IHIIK KYG), was potently antimicrobial, it was also highly cytotoxic to human epithelial cells and hemolytic for human erythrocytes. Single residue substitutions to ovispirin-1 yielded two substantially less cytotoxic peptides (novispirins), with intact antimicrobial properties. One of these, novispirin G-10, differed from ovispirin-1 only by containing glycine at position 10, instead of isoleucine. The other, novispirin T-7, contained threonine instead of isoleucine at position 7. We determined the three-dimensional solution structures of all three peptides by circular dichroism spectroscopy and two-dimensional nuclear magnetic resonance spectroscopy. Although all retained an amphipathic helical structure in 2,2,2-trifluoroethanol, they manifested subtle fine-structural changes that evidently impacted their activities greatly. These findings show that simple structural modifications can 'fine-tune' an antimicrobial peptide to minimize unwanted cytotoxicity while retaining its desired activity.
Collapse
Affiliation(s)
- Monali V Sawai
- Department of Microbiology, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | | | | | | | |
Collapse
|
269
|
Zarember KA, Katz SS, Tack BF, Doukhan L, Weiss J, Elsbach P. Host defense functions of proteolytically processed and parent (unprocessed) cathelicidins of rabbit granulocytes. Infect Immun 2002; 70:569-76. [PMID: 11796584 PMCID: PMC127701 DOI: 10.1128/iai.70.2.569-576.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2001] [Revised: 09/20/2001] [Accepted: 11/05/2001] [Indexed: 11/20/2022] Open
Abstract
Members of the cathelicidin family are present in all mammals studied. Generally, these proteins contain a conserved N-terminal domain and a structurally and functionally divergent C-terminal region that expresses antibacterial or other activities when proteolytically released. Rabbit granulocytes produce CAP18, a cathelicidin that conforms to this structural and functional organization, and also 15-kDa protein isoforms (p15s) that share several key structural features with other cathelicidins but apparently do not undergo processing with release of an active peptide. To further define the importance of proteolysis in the antibacterial activities of these proteins, we have purified from granulocytes proCAP18, its C-terminal peptide (CAP18p), and two p15 isoforms to apparent homogeneity. Of these four polypeptides, only CAP18p was independently cytotoxic to encapsulated Escherichia coli (90% inhibitory concentration, approximately 600 nM) but it was approximately 50-fold less potent on a molar basis than the bactericidal/permeability-increasing protein (BPI). However, all four cathelicidin species, notably including proCAP18, exhibited antibacterial synergy with BPI, and the p15s also displayed synergy with CAP18p in the absence of BPI. Subnanomolar concentrations of proCAP18 blocked lipopolysaccharide-induced chemiluminescence of human leukocytes, showing a molar potency more than 100-fold greater than that of CAP18p ( approximately 20 nM) or BPI ( approximately 50 nM). Thus, while independent bactericidal activity of cathelicidins requires processing, other host-defense functions do not and are more potently expressed by the unprocessed protein than by the C-terminal peptide.
Collapse
Affiliation(s)
- Kol A Zarember
- Department of Microbiology, School of Medicine New York University, New York, New York 10016, USA.
| | | | | | | | | | | |
Collapse
|
270
|
Hase K, Eckmann L, Leopard JD, Varki N, Kagnoff MF. Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect Immun 2002; 70:953-63. [PMID: 11796631 PMCID: PMC127717 DOI: 10.1128/iai.70.2.953-963.2002] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides are highly conserved evolutionarily and are thought to play an important role in innate immunity at intestinal mucosal surfaces. To better understand the role of the antimicrobial peptide human cathelicidin LL-37/human cationic antimicrobial protein 18 (hCAP18) in intestinal mucosal defense, we characterized the regulated expression and production of this peptide by human intestinal epithelium. LL-37/hCAP18 is shown to be expressed within epithelial cells located at the surface and upper crypts of normal human colon. Little or no expression was seen within the deeper colon crypts or within epithelial cells of the small intestine. Paralleling its expression in more differentiated epithelial cells in vivo, LL-37/hCAP18 mRNA and protein expression was upregulated in spontaneously differentiating Caco-2 human colon epithelial cells and in HCA-7 human colon epithelial cells treated with the cell differentiation-inducing agent sodium butyrate. LL-37/hCAP18 expression by colon epithelium does not require commensal bacteria, since LL-37/hCAP18 is produced with a similar expression pattern by epithelial cells in human colon xenografts that lack a luminal microflora. LL-37/hCAP18 mRNA was not upregulated in response to tumor necrosis factor alpha, interleukin 1alpha (IL-1alpha), gamma interferon, lipopolysaccharide, or IL-6, nor did the expression patterns and levels of LL-37/hCAP18 in the epithelium of the normal and inflamed colon differ. On the other hand, infection of HCA-7 cells with Salmonella enterica serovar Dublin or enteroinvasive Escherichia coli modestly upregulated LL-37/hCAP18 mRNA expression. We conclude that differentiated human colon epithelium expresses LL-37/hCAP18 as part of its repertoire of innate defense molecules and that the distribution and regulated expression of LL-37/hCAP18 in the colon differs markedly from that of other enteric antimicrobial peptides, such as defensins.
Collapse
Affiliation(s)
- Koji Hase
- Laboratory of Mucosal Immunology. Histology Shared Resources, Department of Medicine, University of California, San Diego, La Jolla, California 92093-0623, USA
| | | | | | | | | |
Collapse
|
271
|
Tack BF, Sawai MV, Kearney WR, Robertson AD, Sherman MA, Wang W, Hong T, Boo LM, Wu H, Waring AJ, Lehrer RI. SMAP-29 has two LPS-binding sites and a central hinge. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1181-9. [PMID: 11856344 DOI: 10.1046/j.0014-2956.2002.02751.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The CD spectra of SMAP-29, an antimicrobial peptide from sheep, showed disordered structure in aqueous buffers, and significant helicity in membrane-like environments, including SDS micelles, lipopolysaccharide (LPS) dispersions, and trifluoroethanol buffer systems. A structure determined by NMR in 40% perdeuterated trifluoroethanol indicated that residues 8-17 were helical, residues 18-19 formed a hinge, and residues 20-28 formed an ordered, hydrophobic segment. SMAP-29 was flexible in 40% trifluoroethanol, forming two sets of conformers that differed in the relative orientation of the N-terminal domain. We used a chromogenic Limulus assay to determine the EC50 of the peptide (the concentration that bound 50% of the added LPS). Studies with full-length and truncated SMAP-29 molecules revealed that each end of the holopeptide contained an LPS-binding domain. The higher affinity LPS-binding domain was situated in the flexible N-terminal portion. LPS binding to full-length SMAP-29 showed positive cooperativity, so the EC50 of the peptide (2.6 microm) was considerably lower than that of the individual LPS-binding domains. LPS-binding studies with a mixture of truncated peptides revealed that this cooperativity was primarily intramolecular (i.e. involving the N- and C-terminal LPS-binding sites of the same peptide molecule). CAP-18[106 -142], an antimicrobial cathelicidin peptide of rabbits, resembled SMAP-29 in that it contained N- and C-terminal LPS-binding domains, had an EC50 of 2.5 microm, and bound LPS with positive cooperativity. We conclude that the presence of multiple binding sites that function cooperatively allow peptides such as SMAP-29 and CAP-18 to bind LPS with high affinity.
Collapse
Affiliation(s)
- Brian F Tack
- Department of Microbiology, College of Medicine NMR Facility and Biochemistry, University of Iowa, IA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 2001; 414:454-7. [PMID: 11719807 DOI: 10.1038/35106587] [Citation(s) in RCA: 894] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammals, several gene families encode peptides with antibacterial activity, such as the beta-defensins and cathelicidins. These peptides are expressed on epithelial surfaces and in neutrophils, and have been proposed to provide a first line of defence against infection by acting as 'natural antibiotics'. The protective effect of antimicrobial peptides is brought into question by observations that several of these peptides are easily inactivated and have diverse cellular effects that are distinct from antimicrobial activity demonstrated in vitro. To investigate the function of a specific antimicrobial peptide in a mouse model of cutaneous infection, we applied a combined mammalian and bacterial genetic approach to the cathelicidin antimicrobial gene family. The mature human (LL-37) and mouse (CRAMP) peptides are encoded by similar genes (CAMP and Cnlp, respectively), and have similar alpha-helical structures, spectra of antimicrobial activity and tissue distribution. Here we show that cathelicidins are an important native component of innate host defence in mice and provide protection against necrotic skin infection caused by Group A Streptococcus (GAS).
Collapse
Affiliation(s)
- V Nizet
- Department of Pediatrics, University of California, San Diego, California 92161, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Guthmiller JM, Vargas KG, Srikantha R, Schomberg LL, Weistroffer PL, McCray PB, Tack BF. Susceptibilities of oral bacteria and yeast to mammalian cathelicidins. Antimicrob Agents Chemother 2001; 45:3216-9. [PMID: 11600383 PMCID: PMC90809 DOI: 10.1128/aac.45.11.3216-3219.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The effects of cathelicidins against oral bacteria and clinically important oral yeasts are not known. We tested the susceptibilities of Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus sanguis, Candida krusei, Candida tropicalis and Candida albicans to the following cathelicidins: FALL39, SMAP29, and CAP18. SMAP29 and CAP18 were antimicrobial, whereas FALL39 did not exhibit antimicrobial activity. Future studies are needed to determine the potential use of these antimicrobial peptides in prevention and treatment of oral infections.
Collapse
Affiliation(s)
- J M Guthmiller
- Department of Periodontics, College of Dentistry, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
274
|
Kalfa VC, Jia HP, Kunkle RA, McCray PB, Tack BF, Brogden KA. Congeners of SMAP29 kill ovine pathogens and induce ultrastructural damage in bacterial cells. Antimicrob Agents Chemother 2001; 45:3256-61. [PMID: 11600395 PMCID: PMC90821 DOI: 10.1128/aac.45.11.3256-3261.2001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SMAP29, an ovine cathelicidin, was systematically altered to create a family of 23 related peptides for MIC and minimum bactericidal concentration determinations. SMAP28, SMAP29, and a derivative of SMAP29 called ovispirin were all antimicrobial. However, many congeners of SMAP29 and ovispirin were not as active as the parent molecules. With immunoelectron microscopy, SMAP29 was seen on membranes and within the cytoplasm of Pseudomonas aeruginosa PAO1.
Collapse
Affiliation(s)
- V C Kalfa
- Respiratory Diseases of Livestock Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, Iowa 50010, USA
| | | | | | | | | | | |
Collapse
|
275
|
Abstract
Antimicrobial host defense peptides, such as defensins, protegrins, and platelet microbicidal proteins are deployed by mammalian skin, epithelia, phagocytes, and platelets in response to Staphylococcus aureus infection. In addition, staphylococcal products with similar structures and activities, called bacteriocins, inhibit competing microorganisms. Staphylococci have developed resistance mechanisms, which are either highly specific for certain host defense peptides or bacteriocins or which broadly protect against a range of cationic antimicrobial peptides. Experimental infection models can be used to study the molecular mechanisms of antimicrobial peptides, the peptide resistance strategies of S. aureus, and the therapeutic potential of peptides in staphylococcal diseases.
Collapse
Affiliation(s)
- A Peschel
- Microbial Genetics, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | | |
Collapse
|
276
|
Zhao C, Nguyen T, Boo LM, Hong T, Espiritu C, Orlov D, Wang W, Waring A, Lehrer RI. RL-37, an alpha-helical antimicrobial peptide of the rhesus monkey. Antimicrob Agents Chemother 2001; 45:2695-702. [PMID: 11557457 PMCID: PMC90719 DOI: 10.1128/aac.45.10.2695-2702.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhesus monkey bone marrow expresses a cathelicidin whose C-terminal domain comprises a 37-residue alpha-helical peptide (RL-37) that resembles human LL-37. Like its human counterpart, RL-37 rapidly permeabilized the membranes of Escherichia coli ML-35p and lysed liposomes that simulated bacterial membranes. When tested in media whose NaCl concentrations approximated those of extracellular fluids, RL-37 was considerably more active than LL-37 against staphylococci. Whereas human LL-37 contains five acidic residues and has a net charge of +6, rhesus RL-37 has only two acidic residues and a net charge of +8. Speculating that the multiple acidic residues of human LL-37 reduced its efficacy against staphylococci, we made a peptide (LL-37 pentamide) in which each aspartic acid of LL-37 was replaced by an asparagine and each glutamic acid was replaced by a glutamine. LL-37 pentamide's antistaphylococcal activity was substantially greater than that of LL-37. Thus, although the precursor of LL-37 is induced in human skin keratinocytes by injury or inflammation, its insufficiently cationic antimicrobial domain may contribute to the success of staphylococci in colonizing and infecting human skin.
Collapse
Affiliation(s)
- C Zhao
- Department of Medicine, UCLA School of Medicine, 10833 LeConte Ave., Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
277
|
O'Keefe BR. Biologically active proteins from natural product extracts. JOURNAL OF NATURAL PRODUCTS 2001; 64:1373-1381. [PMID: 11678673 DOI: 10.1021/np0103362] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The term "biologically active proteins" is almost redundant. All proteins produced by living creatures are, by their very nature, biologically active to some extent in their homologous species. In this review, a subset of these proteins will be discussed that are biologically active in heterologous systems. The isolation and characterization of novel proteins from natural product extracts including those derived from microorganisms, plants, insects, terrestrial vertebrates, and marine organisms will be reviewed and grouped into several distinct classes based on their biological activity and their structure.
Collapse
Affiliation(s)
- B R O'Keefe
- Molecular Targets Drug Discovery Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA.
| |
Collapse
|
278
|
Saiman L, Tabibi S, Starner TD, San Gabriel P, Winokur PL, Jia HP, McCray PB, Tack BF. Cathelicidin peptides inhibit multiply antibiotic-resistant pathogens from patients with cystic fibrosis. Antimicrob Agents Chemother 2001; 45:2838-44. [PMID: 11557478 PMCID: PMC90740 DOI: 10.1128/aac.45.10.2838-2844.2001] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2000] [Accepted: 07/19/2001] [Indexed: 11/20/2022] Open
Abstract
Endogenous peptide antibiotics are under investigation as inhaled therapeutic agents for cystic fibrosis (CF) lung disease. The bactericidal activities of five cathelicidin peptides (LL37 [human], CAP18 [rabbit], mCRAMP [mouse], rCRAMP [rat], and SMAP29 [sheep]), three novel alpha-helical peptides derived from SMAP29 and termed ovispirins (OV-1, OV-2, and OV-3), and two derivatives of CAP18 were tested by broth microdilution assays. Their MICs were determined for multiply antibiotic-resistant Pseudomonas aeruginosa (n = 24), Burkholderia cepacia (n = 5), Achromobacter xylosoxidans (n = 5), and Stenotrophomonas maltophilia (n = 5) strains isolated from CF patients. SMAP29 was most active and inhibited mucoid and nonmucoid P. aeruginosa strains (MIC, 0.06 to 8 microg/ml). OV-1, OV-2, and OV-3 were nearly as active (MIC, 0.03 to 16 microg/ml), but CAP18 (MIC, 1.0 to 32 microg/ml), CAP18-18 (MIC, 1.0 to >32 microg/ml), and CAP18-22 (MIC, 0.5 to 32 microg/ml) had variable activities. LL37, mCRAMP, and rCRAMP were least active against the clinical isolates studied (MIC, 1.0 to >32 microg/ml). Peptides had modest activities against S. maltophilia and A. xylosoxidans (MIC range, 1.0 to > 32 microg/ml), but none inhibited B. cepacia. However, CF sputum inhibited the activity of SMAP29 substantially. The effects of peptides on bacterial cell membranes and eukaryotic cells were examined by scanning electron microscopy and by measuring transepithelial cell resistance, respectively. SMAP29 caused the appearance of bacterial membrane blebs within 1 min, killed P. aeruginosa within 1 h, and caused a dose-dependent, reversible decrease in transepithelial resistance within 5 h. The tested cathelicidin-derived peptides represent a novel class of antimicrobial agents and warrant further development as prophylactic or therapeutic agents for CF lung disease.
Collapse
Affiliation(s)
- L Saiman
- Department of Pediatrics, Columbia University, 650 West 168th St., New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
279
|
Yamaguchi S, Huster D, Waring A, Lehrer RI, Kearney W, Tack BF, Hong M. Orientation and dynamics of an antimicrobial peptide in the lipid bilayer by solid-state NMR spectroscopy. Biophys J 2001; 81:2203-14. [PMID: 11566791 PMCID: PMC1301692 DOI: 10.1016/s0006-3495(01)75868-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The orientation and dynamics of an 18-residue antimicrobial peptide, ovispirin, has been investigated using solid-state NMR spectroscopy. Ovispirin is a cathelicidin-like model peptide (NH(2)-KNLRRIIRKIIHIIKKYG-COOH) with potent, broad-spectrum bactericidal activity. (15)N NMR spectra of oriented ovispirin reconstituted into synthetic phospholipids show that the helical peptide is predominantly oriented in the plane of the lipid bilayer, except for a small portion of the helix, possibly at the C-terminus, which deviates from the surface orientation. This suggests differential insertion of the peptide backbone into the lipid bilayer. (15)N spectra of both oriented and unoriented peptides show a reduced (15)N chemical shift anisotropy at room temperature compared with that of rigid proteins, indicating that the peptide undergoes uniaxial rotational diffusion around the bilayer normal with correlation times shorter than 10(-4) s. This motion is frozen below the gel-to-liquid crystalline transition temperature of the lipids. Ovispirin interacts strongly with the lipid bilayer, as manifested by the significantly reduced (2)H quadrupolar splittings of perdeuterated palmitoyloleoylphosphatidylcholine acyl chains upon peptide binding. Therefore, ovispirin is a curved helix residing in the membrane-water interface that executes rapid uniaxial rotation. These structural and dynamic features are important for understanding the antimicrobial function of this peptide.
Collapse
Affiliation(s)
- S Yamaguchi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | |
Collapse
|
280
|
Gutsmann T, Hagge SO, Larrick JW, Seydel U, Wiese A. Interaction of CAP18-derived peptides with membranes made from endotoxins or phospholipids. Biophys J 2001; 80:2935-45. [PMID: 11371466 PMCID: PMC1301477 DOI: 10.1016/s0006-3495(01)76259-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antimicrobial peptides with alpha-helical structures and positive net charges are in the focus of interest with regard to the development of new antibiotic agents, in particular against Gram-negative bacteria. Interaction between seven polycationic alpha-helical CAP18-derived peptides and different types of artificial membranes composed of phosphatidylcholine or lipopolysaccharide of the Gram-negative bacterium Escherichia coli were investigated using different biophysical techniques. Results obtained from fluorescence energy transfer spectroscopy with liposomes, monolayer measurements on a Langmuir trough, and electrophysiological measurements on planar reconstituted asymmetric bilayer membranes including the lipid matrix of the outer membrane of E. coli were correlated, and these data were, furthermore, correlated with structural parameters of the peptides (net charge, alpha-helical content, hydrophobic moment, and hydrophobicity). All peptides induced current fluctuations in planar membranes due to the formation of transient lesions above a peptide- and lipid-specific minimal clamp voltage. Antibacterial activity was exhibited only by those peptides that induced lesion formation in the reconstituted outer membrane at clamp voltages below the transmembrane potential of the natural membrane. Thus, we propose that the physicochemical properties of both the peptides as well as of the target membranes are important for antibacterial activity.
Collapse
Affiliation(s)
- T Gutsmann
- Research Center Borstel, Department of Immunochemistry and Biochemical Microbiology, D-23845 Borstel, Germany
| | | | | | | | | |
Collapse
|
281
|
Dorschner RA, Pestonjamasp VK, Tamakuwala S, Ohtake T, Rudisill J, Nizet V, Agerberth B, Gudmundsson GH, Gallo RL. Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J Invest Dermatol 2001; 117:91-7. [PMID: 11442754 DOI: 10.1046/j.1523-1747.2001.01340.x] [Citation(s) in RCA: 413] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cathelicidins are a family of peptides thought to provide an innate defensive barrier against a variety of potential microbial pathogens. The human and mouse cathelicidins (LL-37 and CRAMP, respectively) are expressed at select epithelial interfaces where they have been proposed to kill a number of gram-negative and gram-positive bacteria. To determine if these peptides play a part in the protection of skin against wound infections, the anti-microbial activity of LL-37 and CRAMP was determined against the common wound pathogen group A Streptococcus, and their expression was examined after cutaneous injury. We observed a large increase in the expression of cathelicidins in human and murine skin after sterile incision, or in mouse following infection by group A Streptococcus. The appearance of cathelicidins in skin was due to both synthesis within epidermal keratinocytes and deposition from granulocyctes that migrate to the site of injury. Synthesis and deposition in the wound was accompanied by processing from the inactive prostorage form to the mature C-terminal peptide. Analysis of anti-microbial activity of this C-terminal peptide against group A Streptococcus revealed that both LL-37 and CRAMP potently inhibited bacterial growth. Action against group A Streptococcus occurred in conditions that typically abolish the activity of anti-microbial peptides against other organisms. Thus, cathelicidins are well suited to provide defense against infections due to group A Streptococcus, and represent an important element of cutaneous innate immunity.
Collapse
Affiliation(s)
- R A Dorschner
- Division of Dermatology, University of California San Diego, and VA San Diego Healthcare Center, San Diego, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Steinstraesser L, Klein RD, Aminlari A, Fan MH, Khilanani V, Remick DG, Su GL, Wang SC. Protegrin-1 enhances bacterial killing in thermally injured skin. Crit Care Med 2001; 29:1431-7. [PMID: 11445704 DOI: 10.1097/00003246-200107000-00022] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Septic complications and the emergence of drug-resistant microbes represent serious risks to patients. Recently, naturally occurring peptides have been discovered that possess potent and broad-spectrum antimicrobial activity. Protegrin-1 is particularly attractive for clinical use in human wounds because, unlike defensins, protegrin-1 retains broad antimicrobial and antifungal activity at physiologic salt concentration and in the presence of serum. The objective of this study was to examine the efficacy of protegrin-1 in killing multiple drug-resistant microbes isolated from human burn patients. DESIGN For thein vitroexperiment, bilayer radial diffusion was performed comparing standard antibiotics with protegrin-1 on multiple-drug-resistant microbial organisms isolated from infected burn wounds. In vivo, rats received a 20% total body surface area partial-thickness burn by immersion in 60 degrees C water for 20 secs followed by wound seeding with 106 colony forming units of Silvadene-resistant Pseudomonas aeruginosa. SETTING University of Michigan research laboratory. SUBJECTS Adult, male Sprague-Dawley rats. INTERVENTIONS Rats were randomized into three groups: those receiving synthetic protegrin-1, acetic acid (carrier), or gentamicin (positive control). Protegrin-1 was administered by topical application or intradermal injection. Wound tissues were harvested aseptically at different time points for quantitative bacterial counts. MEASUREMENTS AND MAIN RESULTS In vivo and in vitro experiments revealed rapid and significant decreases in bacterial counts for protegrin-1-treated groups compared with controls. CONCLUSIONS This study shows that protegrin-1 potentially may be used as an alternative or adjunct therapy to standard agents used to treat wound infections.
Collapse
Affiliation(s)
- L Steinstraesser
- Departments of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
283
|
Travis SM, Singh PK, Welsh MJ. Antimicrobial peptides and proteins in the innate defense of the airway surface. Curr Opin Immunol 2001; 13:89-95. [PMID: 11154923 DOI: 10.1016/s0952-7915(00)00187-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies have advanced our understanding of innate immune mechanisms that protect the airways and maintain a sterile lung. Multiple antimicrobial peptides and proteins have been identified in airway secretions and their roles are beginning to be established in animal models. Moreover, evidence for coupling between the innate and adaptive immune systems is beginning to emerge. The understanding of the innate airway defense system offers the opportunity for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- S M Travis
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, 500 Eckstein Medical Research Building, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
284
|
Brogden KA, Kalfa VC, Ackermann MR, Palmquist DE, McCray PB, Tack BF. The ovine cathelicidin SMAP29 kills ovine respiratory pathogens in vitro and in an ovine model of pulmonary infection. Antimicrob Agents Chemother 2001; 45:331-4. [PMID: 11120991 PMCID: PMC90286 DOI: 10.1128/aac.45.1.331-334.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cathelicidins are antimicrobial peptides from sheep (SMAP29 and SMAP34), rabbits (CAP11 and CAP18), rodents (CRAMP), and humans (FALL39, LL37, and h/CAP18). In a broth microdilution assay against nine ovine pathogens, SMAP29, SMAP34, mouse CRAMP, CAP18, CAP18(31), CAP18(28), CAP18(22), and CAP18(21a) were the most active, with MICs as low as 0.6 microg/ml. Other cathelicidins were less active. In lambs with pneumonia, 0.5 mg of SMAP29 reduced the concentration of bacteria in both bronchoalveolar lavage fluid and consolidated pulmonary tissues. Hence, the antimicrobial activity of SMAP29 suggests that it has applications in the treatment of respiratory tract infections.
Collapse
Affiliation(s)
- K A Brogden
- Respiratory Diseases of Livestock Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, Iowa 50010, USA.
| | | | | | | | | | | |
Collapse
|
285
|
Risso A. Leukocyte antimicrobial peptides: multifunctional effector molecules of innate immunity. J Leukoc Biol 2000. [DOI: 10.1189/jlb.68.6.785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Angela Risso
- Department of Biomedical Science and Biotechnology, University of Udine, Italy
| |
Collapse
|