251
|
Neale PJ, Thomas BC. Solar Irradiance Changes and Phytoplankton Productivity in Earth's Ocean Following Astrophysical Ionizing Radiation Events. ASTROBIOLOGY 2016; 16:245-258. [PMID: 27027533 DOI: 10.1089/ast.2015.1360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Two atmospheric responses to simulated astrophysical ionizing radiation events significant to life on Earth are production of odd-nitrogen species, especially NO2, and subsequent depletion of stratospheric ozone. Ozone depletion increases incident short-wavelength ultraviolet radiation (UVB, 280-315 nm) and longer (>600 nm) wavelengths of photosynthetically available radiation (PAR, 400-700 nm). On the other hand, the NO2 haze decreases atmospheric transmission in the long-wavelength UVA (315-400 nm) and short-wavelength PAR. Here, we use the results of previous simulations of incident spectral irradiance following an ionizing radiation event to predict changes in terran productivity focusing on photosynthesis of marine phytoplankton. The prediction is based on a spectral model of photosynthetic response, which was developed for the dominant genera in central regions of the ocean (Synechococcus and Prochlorococcus), and on remote-sensing-based observations of spectral water transparency, temperature, wind speed, and mixed layer depth. Predicted productivity declined after a simulated ionizing event, but the effect integrated over the water column was small. For integrations taking into account the full depth range of PAR transmission (down to 0.1% of utilizable PAR), the decrease was at most 2-3% (depending on strain), with larger effects (5-7%) for integrations just to the depth of the surface mixed layer. The deeper integrations were most affected by the decreased utilizable PAR at depth due to the NO2 haze, whereas shallower integrations were most affected by the increased surface UV. Several factors tended to dampen the magnitude of productivity responses relative to increases in surface-damaging radiation, for example, most inhibition in the modeled strains is caused by UVA and PAR, and the greatest relative increase in damaging exposure is predicted to occur in the winter when UV and productivity are low.
Collapse
Affiliation(s)
- Patrick J Neale
- 1 Smithsonian Environmental Research Center , Edgewater, Maryland
| | - Brian C Thomas
- 2 Department of Physics and Astronomy, Washburn University , Topeka, Kansas
| |
Collapse
|
252
|
Pereira N, Shilova IN, Zehr JP. Molecular markers define progressing stages of phosphorus limitation in the nitrogen-fixing cyanobacterium, Crocosphaera. JOURNAL OF PHYCOLOGY 2016; 52:274-282. [PMID: 27037592 DOI: 10.1111/jpy.12396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
Crocosphaera watsonii is a marine cyanobacterium that frequently inhabits low phosphate environments in oligotrophic oceans. While C. watsonii has the ability to fix atmospheric nitrogen, its growth may be limited by availability of phosphorus. Biomarkers that indicate cellular phosphorus status give insight into how P-limitation can affect the distribution of nitrogen-fixing cyanobacterial populations. However, adaptation to phosphorus stress is complex and one marker may not be sufficient to determine when an organism is P-limited. In this study, we characterized the transcription of key genes, activated during phosphorus stress in C. watsonii WH8501, to determine how transcription changed during the phosphorus stress response. Transcription of pstS, which encodes a high-affinity phosphate binding protein, was discovered to be quickly up-regulated in phosphorus-depleted cells as an immediate stress response; however, its transcription declined after a period of phosphorus starvation. In addition, diel regulation of pstS in C. watsonii WH8501 complicates the interpretation of this marker in field applications. Transcription of the gene coding for the arsenite efflux protein, arsB, was upregulated after pstS in phosphorus limited cells, but it remained upregulated at later stages of phosphorus limitation. These results demonstrate that a single molecular marker does not adequately represent the entire phosphorus stress response in C. watsonii WH8501. Using both markers, the variations in transcriptional response over a range of degrees of phosphorus limitation may be a better approach for defining cellular phosphorus status.
Collapse
Affiliation(s)
- Nicole Pereira
- Ocean Science Department, University of California, Santa Cruz, California, 95064, USA
| | - Irina N Shilova
- Ocean Science Department, University of California, Santa Cruz, California, 95064, USA
| | - Jonathan P Zehr
- Ocean Science Department, University of California, Santa Cruz, California, 95064, USA
| |
Collapse
|
253
|
Helliwell KE, Lawrence AD, Holzer A, Kudahl UJ, Sasso S, Kräutler B, Scanlan DJ, Warren MJ, Smith AG. Cyanobacteria and Eukaryotic Algae Use Different Chemical Variants of Vitamin B12. Curr Biol 2016; 26:999-1008. [PMID: 27040778 PMCID: PMC4850488 DOI: 10.1016/j.cub.2016.02.041] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 01/04/2023]
Abstract
Eukaryotic microalgae and prokaryotic cyanobacteria are the major components of the phytoplankton. Determining factors that govern growth of these primary producers, and how they interact, is therefore essential to understanding aquatic ecosystem productivity. Over half of microalgal species representing marine and freshwater habitats require for growth the corrinoid cofactor B12, which is synthesized de novo only by certain prokaryotes, including the majority of cyanobacteria. There are several chemical variants of B12, which are not necessarily functionally interchangeable. Cobalamin, the form bioavailable to humans, has as its lower axial ligand 5,6-dimethylbenzimidazole (DMB). Here, we show that the abundant marine cyanobacterium Synechococcus synthesizes only pseudocobalamin, in which the lower axial ligand is adenine. Moreover, bioinformatic searches of over 100 sequenced cyanobacterial genomes for B12 biosynthesis genes, including those involved in nucleotide loop assembly, suggest this is the form synthesized by cyanobacteria more broadly. We further demonstrate that pseudocobalamin is several orders of magnitude less bioavailable than cobalamin to several B12-dependent microalgae representing diverse lineages. This indicates that the two major phytoplankton groups use a different B12 currency. However, in an intriguing twist, some microalgal species can use pseudocobalamin if DMB is provided, suggesting that they are able to remodel the cofactor, whereas Synechococcus cannot. This species-specific attribute implicates algal remodelers as novel and keystone players of the B12 cycle, transforming our perception of the dynamics and complexity of the flux of this nutrient in aquatic ecosystems. Dominant marine cyanobacteria synthesize only pseudocobalamin Pseudocobalamin is orders of magnitude less bioavailable to eukaryotic algae Certain algae can remodel pseudocobalamin to a bioavailable form This implies a complex B12 cycle between microbes in the photic zone
Collapse
Affiliation(s)
| | | | - Andre Holzer
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK; Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Ulrich Johan Kudahl
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Severin Sasso
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Centre of Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | | | | | - Alison Gail Smith
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| |
Collapse
|
254
|
Gutiérrez-Rodríguez A, Selph KE, Landry MR. Phytoplankton growth and microzooplankton grazing dynamics across vertical environmental gradients determined by transplant in situ dilution experiments. JOURNAL OF PLANKTON RESEARCH 2016; 38:271-289. [PMID: 27275030 PMCID: PMC4889981 DOI: 10.1093/plankt/fbv074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/09/2015] [Indexed: 05/25/2023]
Abstract
The Costa Rica Dome (CRD) represents a classic case of the bloom-forming capacity of small phytoplankton. Unlike other upwelling systems, autotrophic biomass in the CRD is dominated by picocyanobacteria and small eukaryotes that outcompete larger diatoms and reach extremely high biomass levels. We investigated responses of the subsurface phytoplankton community of the CRD to changes associated with vertical displacement of water masses, coupling in situ transplanted dilution experiments with flow cytometry and epifluorescence microscopy to assess group-specific dynamics. Growth rates of Synechococcus (SYN) and photosynthetic picoeukaryotes (PEUK) were positively correlated with light (Rpearson_SYN = 0.602 and Rpearson_PEUK = 0.588, P < 0.001). Growth rates of Prochlorococcus (PRO), likely affected by photoinhibition, were not light correlated (Rpearson_PRO = 0.101, P = 0.601). Overall, grazing and growth rates were closely coupled in all picophytoplankton groups (Rspearman_PRO = 0.572, Rspearman_SYN = 0.588, Rspearman_PEUK = 0.624), and net growth rates remained close to zero. Conversely, the abundance and biomass of larger phytoplankton, mainly diatoms, increased more than 10-fold in shallower transplant incubations indicating that, in addition to trace-metal chemistry, light also plays a significant role in controlling microphytoplankton populations in the CRD.
Collapse
Affiliation(s)
| | - Karen E Selph
- Department of Oceanography , University of Hawaii at Manoa , Honolulu, Hi 96822 , USA
| | - Michael R Landry
- Scripps Institution of Oceanography , 9500 Gilman Dr., La Jolla, CA 92093-0227 , USA
| |
Collapse
|
255
|
Kent AG, Dupont CL, Yooseph S, Martiny AC. Global biogeography of Prochlorococcus genome diversity in the surface ocean. ISME JOURNAL 2016; 10:1856-65. [PMID: 26836261 DOI: 10.1038/ismej.2015.265] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/05/2015] [Accepted: 12/15/2015] [Indexed: 01/08/2023]
Abstract
Prochlorococcus, the smallest known photosynthetic bacterium, is abundant in the ocean's surface layer despite large variation in environmental conditions. There are several genetically divergent lineages within Prochlorococcus and superimposed on this phylogenetic diversity is extensive gene gain and loss. The environmental role in shaping the global ocean distribution of genome diversity in Prochlorococcus is largely unknown, particularly in a framework that considers the vertical and lateral mechanisms of evolution. Here we show that Prochlorococcus field populations from a global circumnavigation harbor extensive genome diversity across the surface ocean, but this diversity is not randomly distributed. We observed a significant correspondence between phylogenetic and gene content diversity, including regional differences in both phylogenetic composition and gene content that were related to environmental factors. Several gene families were strongly associated with specific regions and environmental factors, including the identification of a set of genes related to lower nutrient and temperature regions. Metagenomic assemblies of natural Prochlorococcus genomes reinforced this association by providing linkage of genes across genomic backbones. Overall, our results show that the phylogeography in Prochlorococcus taxonomy is echoed in its genome content. Thus environmental variation shapes the functional capabilities and associated ecosystem role of the globally abundant Prochlorococcus.
Collapse
Affiliation(s)
- Alyssa G Kent
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Chris L Dupont
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, San Diego, CA, USA
| | - Shibu Yooseph
- Informatics Group, J. Craig Venter Institute, San Diego, CA, USA
| | - Adam C Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA.,Department of Earth System Science, University of California, Irvine, CA, USA
| |
Collapse
|
256
|
Hunter-Cevera KR, Post AF, Peacock EE, Sosik HM. Diversity of Synechococcus at the Martha's Vineyard Coastal Observatory: Insights from Culture Isolations, Clone Libraries, and Flow Cytometry. MICROBIAL ECOLOGY 2016; 71:276-289. [PMID: 26233669 PMCID: PMC4728178 DOI: 10.1007/s00248-015-0644-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 06/25/2015] [Indexed: 06/04/2023]
Abstract
The cyanobacterium Synechococcus is a ubiquitous, important phytoplankter across the world's oceans. A high degree of genetic diversity exists within the marine group, which likely contributes to its global success. Over 20 clades with different distribution patterns have been identified. However, we do not fully understand the environmental factors that control clade distributions. These factors are likely to change seasonally, especially in dynamic coastal systems. To investigate how coastal Synechococcus assemblages change temporally, we assessed the diversity of Synechococcus at the Martha's Vineyard Coastal Observatory (MVCO) over three annual cycles with culture-dependent and independent approaches. We further investigated the abundance of both phycoerythrin (PE)-containing and phycocyanin (PC)-only Synechococcus with a flow cytometric setup that distinguishes PC-only Synechococcus from picoeukaryotes. We found that the Synechococcus assemblage at MVCO is diverse (13 different clades identified), but dominated by clade I representatives. Many clades were only isolated during late summer and fall, suggesting more favorable conditions for isolation at this time. PC-only strains from four different clades were isolated, but these cells were only detected by flow cytometry in a few samples over the time series, suggesting they are rare at this site. Within clade I, we identified four distinct subclades. The relative abundances of each subclade varied over the seasonal cycle, and the high Synechococcus cell concentration at MVCO may be maintained by the diversity found within this clade. This study highlights the need to understand how temporal aspects of the environment affect Synechococcus community structure and cell abundance.
Collapse
Affiliation(s)
| | - Anton F Post
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882, USA
| | - Emily E Peacock
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Heidi M Sosik
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
257
|
Lin S, Litaker RW, Sunda WG. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. JOURNAL OF PHYCOLOGY 2016; 52:10-36. [PMID: 26987085 DOI: 10.1111/jpy.12365] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/26/2015] [Indexed: 05/24/2023]
Abstract
Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth-limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well-studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P-limitation of phytoplankton growth in oceanic and coastal waters, and the role of P-limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes).
Collapse
Affiliation(s)
- Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, 06340, USA
| | - Richard Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Fisheries and Habitat Research, Beaufort, North Carolina, 28516, USA
| | - William G Sunda
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Fisheries and Habitat Research, Beaufort, North Carolina, 28516, USA
| |
Collapse
|
258
|
Acharya C, Blindauer CA. Unexpected Interactions of the Cyanobacterial Metallothionein SmtA with Uranium. Inorg Chem 2016; 55:1505-15. [DOI: 10.1021/acs.inorgchem.5b02327] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Celin Acharya
- Molecular
Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | |
Collapse
|
259
|
Larkin AA, Blinebry SK, Howes C, Lin Y, Loftus SE, Schmaus CA, Zinser ER, Johnson ZI. Niche partitioning and biogeography of high light adapted Prochlorococcus across taxonomic ranks in the North Pacific. ISME JOURNAL 2016; 10:1555-67. [PMID: 26800235 DOI: 10.1038/ismej.2015.244] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/30/2015] [Accepted: 11/18/2015] [Indexed: 02/08/2023]
Abstract
The distribution of major clades of Prochlorococcus tracks light, temperature and other environmental variables; yet, the drivers of genomic diversity within these ecotypes and the net effect on biodiversity of the larger community are poorly understood. We examined high light (HL) adapted Prochlorococcus communities across spatial and temporal environmental gradients in the Pacific Ocean to determine the ecological drivers of population structure and diversity across taxonomic ranks. We show that the Prochlorococcus community has the highest diversity at low latitudes, but seasonality driven by temperature, day length and nutrients adds complexity. At finer taxonomic resolution, some 'sub-ecotype' clades have unique, cohesive responses to environmental variables and distinct biogeographies, suggesting that presently defined ecotypes can be further partitioned into ecologically meaningful units. Intriguingly, biogeographies of the HL-I sub-ecotypes are driven by unique combinations of environmental traits, rather than through trait hierarchy, while the HL-II sub-ecotypes appear ecologically similar, thus demonstrating differences among these dominant HL ecotypes. Examining biodiversity across taxonomic ranks reveals high-resolution dynamics of Prochlorococcus evolution and ecology that are masked at phylogenetically coarse resolution. Spatial and seasonal trends of Prochlorococcus communities suggest that the future ocean may be comprised of different populations, with implications for ecosystem structure and function.
Collapse
Affiliation(s)
- Alyse A Larkin
- Marine Laboratory, Nicholas School of the Environment, and Biology Department, Duke University, Beaufort, NC, USA
| | - Sara K Blinebry
- Marine Laboratory, Nicholas School of the Environment, and Biology Department, Duke University, Beaufort, NC, USA
| | - Caroline Howes
- Marine Laboratory, Nicholas School of the Environment, and Biology Department, Duke University, Beaufort, NC, USA
| | - Yajuan Lin
- Marine Laboratory, Nicholas School of the Environment, and Biology Department, Duke University, Beaufort, NC, USA
| | - Sarah E Loftus
- Marine Laboratory, Nicholas School of the Environment, and Biology Department, Duke University, Beaufort, NC, USA
| | - Carrie A Schmaus
- Marine Laboratory, Nicholas School of the Environment, and Biology Department, Duke University, Beaufort, NC, USA
| | - Erik R Zinser
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Zackary I Johnson
- Marine Laboratory, Nicholas School of the Environment, and Biology Department, Duke University, Beaufort, NC, USA
| |
Collapse
|
260
|
Shilova IN, Robidart JC, DeLong EF, Zehr JP. Genetic Diversity Affects the Daily Transcriptional Oscillations of Marine Microbial Populations. PLoS One 2016; 11:e0146706. [PMID: 26751368 PMCID: PMC4709009 DOI: 10.1371/journal.pone.0146706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/21/2015] [Indexed: 11/18/2022] Open
Abstract
Marine microbial communities are genetically diverse but have robust synchronized daily transcriptional patterns at the genus level that are similar across a wide variety of oceanic regions. We developed a microarray-inspired gene-centric approach to resolve transcription of closely-related but distinct strains/ecotypes in high-throughput sequence data. Applying this approach to the existing metatranscriptomics datasets collected from two different oceanic regions, we found unique and variable patterns of transcription by individual taxa within the abundant picocyanobacteria Prochlorococcus and Synechococcus, the alpha Proteobacterium Pelagibacter and the eukaryotic picophytoplankton Ostreococcus. The results demonstrate that marine microbial taxa respond differentially to variability in space and time in the ocean. These intra-genus individual transcriptional patterns underlie whole microbial community responses, and the approach developed here facilitates deeper insights into microbial population dynamics.
Collapse
Affiliation(s)
- Irina N. Shilova
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Julie C. Robidart
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Edward F. DeLong
- School of Ocean and Earth Science and Technology, University of Hawai’i at Manoa, Honolulu, Hawaii, United States of America
| | - Jonathan P. Zehr
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
261
|
Rodríguez F, Garrido JL, Sobrino C, Johnsen G, Riobó P, Franco J, Aamot I, Ramilo I, Sanz N, Kremp A. Divinyl chlorophyll a in the marine eukaryotic protist Alexandrium ostenfeldii (Dinophyceae). Environ Microbiol 2015; 18:627-43. [PMID: 26337730 DOI: 10.1111/1462-2920.13042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 02/01/2023]
Abstract
Here it is reported the first detection of DV-chl a together with the usual chl a in the marine dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. Growth response and photosynthetic parameters were examined at two irradiances (80 and 240 μmol photons m(-2) s(-1)) and temperatures (15 °C and 19 °C) in a divinylic strain (AOTV-OS20) versus a monovinylic one (AOTV-OS16), using in vivo chl a fluorescence kinetics of PSII to characterize photosynthetic parameters by pulse amplitude modulated fluorescence, (14)C assimilation rates and toxin analyses. The divinylic isolate exhibited slower growth and stronger sensitivity to high irradiance than normal chl a strain. DV-chl a : chl a ratios decreased along time (from 11.3 to < 0.5 after 10 months) and to restore them sub-cloning and selection of strains with highest DV-chl a content was required. A mutation and/or epigenetic changes in the expression of divinyl reductase gene/s in A. ostenfeldii may explain this altered pigment composition. Despite quite severe limitations (reduced fitness and gradual loss of DV-chl a content), the DV-chl a-containing line in A. ostenfeldii could provide a model organism in photosynthetic studies related with chl biosynthesis and evolution.
Collapse
Affiliation(s)
- Francisco Rodríguez
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Vigo, Spain
| | | | - Cristina Sobrino
- Departamento de Ecología y Biología Animal, Universidad de Vigo, Spain
| | - Geir Johnsen
- Trondhjem Biological Station, Norwegian University of Technology and Science (NTNU), Trondheim, Norway
| | - Pilar Riobó
- Instituto de Investigaciones Marinas (CSIC), Vigo, Spain
| | - José Franco
- Instituto de Investigaciones Marinas (CSIC), Vigo, Spain
| | - Inga Aamot
- Trondhjem Biological Station, Norwegian University of Technology and Science (NTNU), Trondheim, Norway
| | - Isabel Ramilo
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Vigo, Spain
| | - Noelia Sanz
- Instituto de Investigaciones Marinas (CSIC), Vigo, Spain
| | - Anke Kremp
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| |
Collapse
|
262
|
Sánchez-Baracaldo P. Origin of marine planktonic cyanobacteria. Sci Rep 2015; 5:17418. [PMID: 26621203 PMCID: PMC4665016 DOI: 10.1038/srep17418] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/29/2015] [Indexed: 11/09/2022] Open
Abstract
Marine planktonic cyanobacteria contributed to the widespread oxygenation of the oceans towards the end of the Pre-Cambrian and their evolutionary origin represents a key transition in the geochemical evolution of the Earth surface. Little is known, however, about the evolutionary events that led to the appearance of marine planktonic cyanobacteria. I present here phylogenomic (135 proteins and two ribosomal RNAs), Bayesian relaxed molecular clock (18 proteins, SSU and LSU) and Bayesian stochastic character mapping analyses from 131 cyanobacteria genomes with the aim to unravel key evolutionary steps involved in the origin of marine planktonic cyanobacteria. While filamentous cell types evolved early on at around 2,600-2,300 Mya and likely dominated microbial mats in benthic environments for most of the Proterozoic (2,500-542 Mya), marine planktonic cyanobacteria evolved towards the end of the Proterozoic and early Phanerozoic. Crown groups of modern terrestrial and/or benthic coastal cyanobacteria appeared during the late Paleoproterozoic to early Mesoproterozoic. Decrease in cell diameter and loss of filamentous forms contributed to the evolution of unicellular planktonic lineages during the middle of the Mesoproterozoic (1,600-1,000 Mya) in freshwater environments. This study shows that marine planktonic cyanobacteria evolved from benthic marine and some diverged from freshwater ancestors during the Neoproterozoic (1,000-542 Mya).
Collapse
|
263
|
Transcriptome dynamics of a broad host-range cyanophage and its hosts. ISME JOURNAL 2015; 10:1437-55. [PMID: 26623542 DOI: 10.1038/ismej.2015.210] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/17/2015] [Accepted: 10/07/2015] [Indexed: 01/21/2023]
Abstract
Cyanobacteria are highly abundant in the oceans and are constantly exposed to lytic viruses. The T4-like cyanomyoviruses are abundant in the marine environment and have broad host-ranges relative to other cyanophages. It is currently unknown whether broad host-range phages specifically tailor their infection program for each host, or employ the same program irrespective of the host infected. Also unknown is how different hosts respond to infection by the same phage. Here we used microarray and RNA-seq analyses to investigate the interaction between the Syn9 T4-like cyanophage and three phylogenetically, ecologically and genomically distinct marine Synechococcus strains: WH7803, WH8102 and WH8109. Strikingly, Syn9 led a nearly identical infection and transcriptional program in all three hosts. Different to previous assumptions for T4-like cyanophages, three temporally regulated gene expression classes were observed. Furthermore, a novel regulatory element controlled early-gene transcription, and host-like promoters drove middle gene transcription, different to the regulatory paradigm for T4. Similar results were found for the P-TIM40 phage during infection of Prochlorococcus NATL2A. Moreover, genomic and metagenomic analyses indicate that these regulatory elements are abundant and conserved among T4-like cyanophages. In contrast to the near-identical transcriptional program employed by Syn9, host responses to infection involved host-specific genes primarily located in hypervariable genomic islands, substantiating islands as a major axis of phage-cyanobacteria interactions. Our findings suggest that the ability of broad host-range phages to infect multiple hosts is more likely dependent on the effectiveness of host defense strategies than on differential tailoring of the infection process by the phage.
Collapse
|
264
|
Matyugina E, Belkova N. Distribution and diversity of microbial communities in meromictic soda Lake Doroninskoe (Transbaikalia, Russia) during winter. CHINESE JOURNAL OF OCEANOLOGY AND LIMNOLOGY 2015; 33:1378-1390. [DOI: 10.1007/s00343-015-4355-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
|
265
|
Roitman S, Flores-Uribe J, Philosof A, Knowles B, Rohwer F, Ignacio-Espinoza JC, Sullivan MB, Cornejo-Castillo FM, Sánchez P, Acinas SG, Dupont CL, Béjà O. Closing the gaps on the viral photosystem-I psaDCAB gene organization. Environ Microbiol 2015; 17:5100-8. [PMID: 26310718 PMCID: PMC5019241 DOI: 10.1111/1462-2920.13036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/20/2015] [Indexed: 11/30/2022]
Abstract
Marine photosynthesis is largely driven by cyanobacteria, namely Synechococcus and Prochlorococcus. Genes encoding for photosystem (PS) I and II reaction centre proteins are found in cyanophages and are believed to increase their fitness. Two viral PSI gene arrangements are known, psaJF→C→A→B→K→E→D and psaD→C→A→B. The shared genes between these gene cassettes and their encoded proteins are distinguished by %G + C and protein sequence respectively. The data on the psaD→C→A→B gene organization were reported from only two partial gene cassettes coming from Global Ocean Sampling stations in the Pacific and Indian oceans. Now we have extended our search to 370 marine stations from six metagenomic projects. Genes corresponding to both PSI gene arrangements were detected in the Pacific, Indian and Atlantic oceans, confined to a strip along the equator (30°N and 30°S). In addition, we found that the predicted structure of the viral PsaA protein from the psaD→C→A→B organization contains a lumenal loop conserved in PsaA proteins from Synechococcus, but is completely absent in viral PsaA proteins from the psaJF→C→A→B→K→E→D gene organization and most Prochlorococcus strains. This may indicate a co-evolutionary scenario where cyanophages containing either of these gene organizations infect cyanobacterial ecotypes biogeographically restricted to the 30°N and 30°S equatorial strip.
Collapse
Affiliation(s)
- Sheila Roitman
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - José Flores-Uribe
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alon Philosof
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ben Knowles
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, CA, USA
| | | | - Matthew B Sullivan
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | | | - Pablo Sánchez
- Departament of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Silvia G Acinas
- Departament of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Chris L Dupont
- Microbial and Environmental Genomics Group, J Craig Venter Institute, San Diego, CA, USA
| | - Oded Béjà
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
266
|
Xu T, Yu M, Lin H, Zhang Z, Liu J, Zhang XH. Genomic insight into Aquimarina longa SW024 T: its ultra-oligotrophic adapting mechanisms and biogeochemical functions. BMC Genomics 2015; 16:772. [PMID: 26459873 PMCID: PMC4603819 DOI: 10.1186/s12864-015-2005-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 10/03/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND South Pacific Gyre (SPG) is the largest and clearest gyre in the world, where the concentration of surface chlorophyll a and primary production are extremely low. Aquimarina longa SW024(T) was isolated from surface water of the SPG center. To understand how this bacterium could survive in this ultra-oligotrophic oceanic environment and its function in biogeochemical cycle, we sequenced the genome of A. longa SW024(T) and performed extensive genomic analyses. METHODS Genomic DNA was extracted and sequenced using Illumina Hiseq 2000 and Miseq platform. Genome annotation, genomic comparison and phylogenetic analyses were performed with the use of multiple bioinformatics tools like: BLAST+ 2.2.24, Glimmer3.0, RAST server, Geneious 4.8.5, ClustalW2 and MEGA5. Physiological and morphological features were tested by bacterial culture, electron microscopy, fluorescence microscopy and exopolysaccharides extraction. RESULTS Analysis of seven Aquimarina genomes and 30 other genomes of Flavobacteriaceae isolated from seawater showed that most of the strains had low DNA G + C contents, and Aquimarina had larger genomes than other strains. Genome comparison showed varying genomic properties among seven Aquimarina genomes, including genome sizes and gene contents, which may warrant their specific adaptive strategies. Genome of A. longa SW024(T) was further compared with the genomes of two other Aquimarina species which were also isolated from the SPG and A. longa SW024(T) appeared to have much more genes related to replication, recombination and repair. As a copiotroph, A. longa SW024(T) is long in length, and possesses large genome size and diverse transporters. However, it has also evolved many properties to survive in the oligotrophic marine environment. This bacterium grew better on solid medium than in liquid medium, suggesting it may be liable to attach to particle surfaces in order to survive in the nutrient-limiting environment. Gliding motility and the capacity to degrade various polymers possibly allow the bacterium to grow on detritus particles and use polymeric substances as carbon and energy sources. Moreover, genes related to carbon, nitrogen, and sulfur metabolisms were identified, which showed that A. longa SW024(T) might be involved in various elemental cycles. CONCLUSIONS Genomic comparison of Aquimarina genus exhibits comprehensive capabilities of the strains to adapt to diverse marine environments. The genomic characteristics of A. longa SW024(T) reveal that it evolves various strategies to cope with both copiotrophic and ultra-oligotrophic marine environment, which provides a better understanding of the survival abilities of bacteria in prevalent and even extreme oceanic environments. Furthermore, carbon, nitrogen and sulfur utilization of A. longa SW024(T) may represent its potential functions in the global biogeochemical cycle.
Collapse
Affiliation(s)
- Tingting Xu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China.
| | - Min Yu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China.
| | - Heyu Lin
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China.
| | - Zenghu Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China.
| | - Jiwen Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China.
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China. .,Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
267
|
Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc Natl Acad Sci U S A 2015; 112:13591-6. [PMID: 26438854 DOI: 10.1073/pnas.1507274112] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2-540 pg alkanes per mL per day, which translates into a global ocean yield of ∼ 308-771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities.
Collapse
|
268
|
Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Shedding new light on viral photosynthesis. PHOTOSYNTHESIS RESEARCH 2015; 126:71-97. [PMID: 25381655 DOI: 10.1007/s11120-014-0057-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
Viruses infecting the environmentally important marine cyanobacteria Prochlorococcus and Synechococcus encode 'auxiliary metabolic genes' (AMGs) involved in the light and dark reactions of photosynthesis. Here, we discuss progress on the inventory of such AMGs in the ever-increasing number of viral genome sequences as well as in metagenomic datasets. We contextualise these gene acquisitions with reference to a hypothesised fitness gain to the phage. We also report new evidence with regard to the sequence and predicted structural properties of viral petE genes encoding the soluble electron carrier plastocyanin. Viral copies of PetE exhibit extensive modifications to the N-terminal signal peptide and possess several novel residues in a region responsible for interaction with redox partners. We also highlight potential knowledge gaps in this field and discuss future opportunities to discover novel phage-host interactions involved in the photosynthetic process.
Collapse
Affiliation(s)
- Richard J Puxty
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Andrew D Millard
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - David J Evans
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
269
|
Davison M, Hall E, Zare R, Bhaya D. Challenges of metagenomics and single-cell genomics approaches for exploring cyanobacterial diversity. PHOTOSYNTHESIS RESEARCH 2015; 126:135-146. [PMID: 25515769 DOI: 10.1007/s11120-014-0066-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
Cyanobacteria have played a crucial role in the history of early earth and continue to be instrumental in shaping our planet, yet applications of cutting edge technology have not yet been widely used to explore cyanobacterial diversity. To provide adequate background, we briefly review current sequencing technologies and their innovative uses in genomics and metagenomics. Next, we focus on current cell capture technologies and the challenges of using them with cyanobacteria. We illustrate the utility in coupling breakthroughs in DNA amplification with cell capture platforms, with an example of microfluidic isolation and subsequent targeted amplicon sequencing from individual terrestrial thermophilic cyanobacteria. Single cells of thermophilic, unicellular Synechococcus sp. JA-2-3-B'a(2-13) (Syn OS-B') were sorted in a microfluidic device, lysed, and subjected to whole genome amplification by multiple displacement amplification. We amplified regions from specific CRISPR spacer arrays, which are known to be highly diverse, contain semi-palindromic repeats which form secondary structure, and can be difficult to amplify. Cell capture, lysis, and genome amplification on a microfluidic device have been optimized, setting a stage for further investigations of individual cyanobacterial cells isolated directly from natural populations.
Collapse
Affiliation(s)
- Michelle Davison
- Department of Plant Biology, Carnegie Institution of Science, 260 Panama Street, Stanford, CA, 94305, USA.
| | - Eric Hall
- SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA
| | - Richard Zare
- Department of Chemistry, Stanford University, 333 Campus Drive Mudd Building, Room 121, Stanford, CA, 94305-4401, USA
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution of Science, 260 Panama Street, Stanford, CA, 94305, USA
| |
Collapse
|
270
|
Bagby SC, Chisholm SW. Response of Prochlorococcus to varying CO2:O2 ratios. THE ISME JOURNAL 2015; 9:2232-45. [PMID: 25848872 PMCID: PMC4579476 DOI: 10.1038/ismej.2015.36] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 02/06/2015] [Accepted: 02/12/2015] [Indexed: 11/08/2022]
Abstract
Carbon fixation has a central role in determining cellular redox poise, increasingly understood to be a key parameter in cyanobacterial physiology. In the cyanobacterium Prochlorococcus-the most abundant phototroph in the oligotrophic oceans-the carbon-concentrating mechanism is reduced to the bare essentials. Given the ability of Prochlorococcus populations to grow under a wide range of oxygen concentrations in the ocean, we wondered how carbon and oxygen physiology intersect in this minimal phototroph. Thus, we examined how CO2:O2 gas balance influenced growth and chlorophyll fluorescence in Prochlorococcus strain MED4. Under O2 limitation, per-cell chlorophyll fluorescence fell at all CO2 levels, but still permitted substantial growth at moderate and high CO2. Under CO2 limitation, we observed little growth at any O2 level, although per-cell chlorophyll fluorescence fell less sharply when O2 was available. We explored this pattern further by monitoring genome-wide transcription in cells shocked with acute limitation of CO2, O2 or both. O2 limitation produced much smaller transcriptional changes than the broad suppression seen under CO2 limitation and CO2/O2 co-limitation. Strikingly, both CO2 limitation conditions initially evoked a transcriptional response that resembled the pattern previously seen in high-light stress, but at later timepoints we observed O2-dependent recovery of photosynthesis-related transcripts. These results suggest that oxygen has a protective role in Prochlorococcus when carbon fixation is not a sufficient sink for light energy.
Collapse
Affiliation(s)
- Sarah C Bagby
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sallie W Chisholm
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
271
|
Gaudana SB, Zarzycki J, Moparthi VK, Kerfeld CA. Bioinformatic analysis of the distribution of inorganic carbon transporters and prospective targets for bioengineering to increase Ci uptake by cyanobacteria. PHOTOSYNTHESIS RESEARCH 2015; 126:99-109. [PMID: 25399051 DOI: 10.1007/s11120-014-0059-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 11/07/2014] [Indexed: 06/04/2023]
Abstract
Cyanobacteria have evolved a carbon-concentrating mechanism (CCM) which has enabled them to inhabit diverse environments encompassing a range of inorganic carbon (Ci: [Formula: see text] and CO2) concentrations. Several uptake systems facilitate inorganic carbon accumulation in the cell, which can in turn be fixed by ribulose 1,5-bisphosphate carboxylase/oxygenase. Here we survey the distribution of genes encoding known Ci uptake systems in cyanobacterial genomes and, using a pfam- and gene context-based approach, identify in the marine (alpha) cyanobacteria a heretofore unrecognized number of putative counterparts to the well-known Ci transporters of beta cyanobacteria. In addition, our analysis shows that there is a huge repertoire of transport systems in cyanobacteria of unknown function, many with homology to characterized Ci transporters. These can be viewed as prospective targets for conversion into ancillary Ci transporters through bioengineering. Increasing intracellular Ci concentration coupled with efforts to increase carbon fixation will be beneficial for the downstream conversion of fixed carbon into value-added products including biofuels. In addition to CCM transporter homologs, we also survey the occurrence of rhodopsin homologs in cyanobacteria, including bacteriorhodopsin, a class of retinal-binding, light-activated proton pumps. Because they are light driven and because of the apparent ease of altering their ion selectivity, we use this as an example of re-purposing an endogenous transporter for the augmentation of Ci uptake by cyanobacteria and potentially chloroplasts.
Collapse
Affiliation(s)
- Sandeep B Gaudana
- DOE Plant Research Laboratories, Department of Biochemistry and Molecular Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, 48824, USA
| | - Jan Zarzycki
- DOE Plant Research Laboratories, Department of Biochemistry and Molecular Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, 48824, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vamsi K Moparthi
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Cheryl A Kerfeld
- DOE Plant Research Laboratories, Department of Biochemistry and Molecular Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, 48824, USA.
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
272
|
Villar E, Farrant GK, Follows M, Garczarek L, Speich S, Audic S, Bittner L, Blanke B, Brum JR, Brunet C, Casotti R, Chase A, Dolan JR, d'Ortenzio F, Gattuso JP, Grima N, Guidi L, Hill CN, Jahn O, Jamet JL, Le Goff H, Lepoivre C, Malviya S, Pelletier E, Romagnan JB, Roux S, Santini S, Scalco E, Schwenck SM, Tanaka A, Testor P, Vannier T, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Acinas SG, Bork P, Boss E, de Vargas C, Gorsky G, Ogata H, Pesant S, Sullivan MB, Sunagawa S, Wincker P, Karsenti E, Bowler C, Not F, Hingamp P, Iudicone D. Ocean plankton. Environmental characteristics of Agulhas rings affect interocean plankton transport. Science 2015; 348:1261447. [PMID: 25999514 DOI: 10.1126/science.1261447] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Agulhas rings provide the principal route for ocean waters to circulate from the Indo-Pacific to the Atlantic basin. Their influence on global ocean circulation is well known, but their role in plankton transport is largely unexplored. We show that, although the coarse taxonomic structure of plankton communities is continuous across the Agulhas choke point, South Atlantic plankton diversity is altered compared with Indian Ocean source populations. Modeling and in situ sampling of a young Agulhas ring indicate that strong vertical mixing drives complex nitrogen cycling, shaping community metabolism and biogeochemical signatures as the ring and associated plankton transit westward. The peculiar local environment inside Agulhas rings may provide a selective mechanism contributing to the limited dispersal of Indian Ocean plankton populations into the Atlantic.
Collapse
Affiliation(s)
- Emilie Villar
- Aix Marseille Université, CNRS, IGS UMR 7256, 13288 Marseille, France.
| | - Gregory K Farrant
- CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie UPMC, Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Michael Follows
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laurence Garczarek
- CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie UPMC, Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Sabrina Speich
- Laboratoire de Physique des Océans (LPO) UMR 6523 CNRS-Ifremer-IRD-UBO, Plouzané, France. Department of Geosciences, Laboratoire de Météorologie Dynamique (LMD) UMR 8539, Ecole Normale Supérieure, 24 Rue Lhomond, 75231 Paris Cedex 05, France
| | - Stéphane Audic
- CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie UPMC, Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Lucie Bittner
- CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie UPMC, Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, F-75005 Paris, France
| | - Bruno Blanke
- Laboratoire de Physique des Océans (LPO) UMR 6523 CNRS-Ifremer-IRD-UBO, Plouzané, France
| | - Jennifer R Brum
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | | | | | - Alison Chase
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - John R Dolan
- Sorbonne Universités, UPMC Université Paris 06, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France. INSU-CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France
| | - Fabrizio d'Ortenzio
- Sorbonne Universités, UPMC Université Paris 06, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France. INSU-CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France
| | - Jean-Pierre Gattuso
- Sorbonne Universités, UPMC Université Paris 06, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France. INSU-CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France
| | - Nicolas Grima
- Laboratoire de Physique des Océans (LPO) UMR 6523 CNRS-Ifremer-IRD-UBO, Plouzané, France
| | - Lionel Guidi
- Sorbonne Universités, UPMC Université Paris 06, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France. INSU-CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France
| | - Christopher N Hill
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Oliver Jahn
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jean-Louis Jamet
- Université de Toulon, Laboratoire PROTEE-EBMA E.A. 3819, BP 20132, 83957 La Garde Cedex, France
| | - Hervé Le Goff
- CNRS, UMR 7159, Laboratoire d'Océanographie et du Climat LOCEAN, 4 Place Jussieu, 75005 Paris, France
| | - Cyrille Lepoivre
- Aix Marseille Université, CNRS, IGS UMR 7256, 13288 Marseille, France
| | - Shruti Malviya
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, F-75005 Paris, France
| | - Eric Pelletier
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91057 Evry, France. CNRS, UMR 8030, CP5706, Evry, France. Université d'Evry, UMR 8030, CP5706, Evry, France
| | - Jean-Baptiste Romagnan
- Sorbonne Universités, UPMC Université Paris 06, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France. INSU-CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France
| | - Simon Roux
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Sébastien Santini
- Aix Marseille Université, CNRS, IGS UMR 7256, 13288 Marseille, France
| | - Eleonora Scalco
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Sarah M Schwenck
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Atsuko Tanaka
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, F-75005 Paris, France
| | - Pierre Testor
- CNRS, UMR 7159, Laboratoire d'Océanographie et du Climat LOCEAN, 4 Place Jussieu, 75005 Paris, France
| | - Thomas Vannier
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91057 Evry, France. CNRS, UMR 8030, CP5706, Evry, France. Université d'Evry, UMR 8030, CP5706, Evry, France
| | - Flora Vincent
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, F-75005 Paris, France
| | - Adriana Zingone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Céline Dimier
- CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie UPMC, Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, F-75005 Paris, France
| | - Marc Picheral
- Sorbonne Universités, UPMC Université Paris 06, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France. INSU-CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France
| | - Sarah Searson
- Sorbonne Universités, UPMC Université Paris 06, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France. INSU-CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France
| | - Stefanie Kandels-Lewis
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. Directors' Research, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, Barcelona E08003, Spain
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. Max-Delbrück-Centre for Molecular Medicine, 13092 Berlin, Germany
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Colomban de Vargas
- CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie UPMC, Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Gabriel Gorsky
- Sorbonne Universités, UPMC Université Paris 06, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France. INSU-CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230 Villefranche-sur-Mer, France
| | - Hiroyuki Ogata
- Aix Marseille Université, CNRS, IGS UMR 7256, 13288 Marseille, France
| | - Stéphane Pesant
- PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, Bremen, Germany. MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Matthew B Sullivan
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Shinichi Sunagawa
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Patrick Wincker
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Génomique, Genoscope, 2 Rue Gaston Crémieux, 91057 Evry, France. CNRS, UMR 8030, CP5706, Evry, France. Université d'Evry, UMR 8030, CP5706, Evry, France
| | - Eric Karsenti
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, F-75005 Paris, France. Directors' Research, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Chris Bowler
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, F-75005 Paris, France.
| | - Fabrice Not
- CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France. Sorbonne Universités, Université Pierre et Marie Curie UPMC, Université Paris 06, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France.
| | - Pascal Hingamp
- Aix Marseille Université, CNRS, IGS UMR 7256, 13288 Marseille, France.
| | - Daniele Iudicone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|
273
|
Comparison of the seasonal variations of Synechococcus assemblage structures in estuarine waters and coastal waters of Hong Kong. Appl Environ Microbiol 2015; 81:7644-55. [PMID: 26319880 DOI: 10.1128/aem.01895-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/18/2015] [Indexed: 01/08/2023] Open
Abstract
Seasonal variation in the phylogenetic composition of Synechococcus assemblages in estuarine and coastal waters of Hong Kong was examined through pyrosequencing of the rpoC1 gene. Sixteen samples were collected in 2009 from two stations representing estuarine and ocean-influenced coastal waters, respectively. Synechococcus abundance in coastal waters gradually increased from 3.6 × 10(3) cells ml(-1) in March, reaching a peak value of 5.7 × 10(5) cells ml(-1) in July, and then gradually decreased to 9.3 × 10(3) cells ml(-1) in December. The changes in Synechococcus abundance in estuarine waters followed a pattern similar to that in coastal waters, whereas its composition shifted from being dominated by phycoerythrin-rich (PE-type) strains in winter to phycocyanin-only (PC-type) strains in summer owing to the increase in freshwater discharge from the Pearl River and higher water temperature. The high abundance of PC-type Synechococcus was composed of subcluster 5.2 marine Synechococcus, freshwater Synechococcus (F-PC), and Cyanobium. The Synechococcus assemblage in the coastal waters, on the other hand, was dominated by marine PE-type Synechococcus, with subcluster 5.1 clades II and VI as the major lineages from April to September, when the summer monsoon prevailed. Besides these two clades, clade III cooccurred with clade V at relatively high abundance in summer. During winter, the Synechococcus assemblage compositions at the two sites were similar and were dominated by subcluster 5.1 clades II and IX and an undescribed clade (represented by Synechococcus sp. strain miyav). Clade IX Synechococcus was a relatively ubiquitous PE-type Synechococcus found at both sites, and our study demonstrates that some strains of the clade have the ability to deal with large variation of salinity in subtropical estuarine environments. Our study suggests that changes in seawater temperature and salinity caused by the seasonal variation of monsoonal forcing are two major determinants of the community composition and abundance of Synechococcus assemblages in Hong Kong waters.
Collapse
|
274
|
Lin X, Wang L, Shi X, Lin S. Rapidly diverging evolution of an atypical alkaline phosphatase (PhoA(aty)) in marine phytoplankton: insights from dinoflagellate alkaline phosphatases. Front Microbiol 2015; 6:868. [PMID: 26379645 PMCID: PMC4548154 DOI: 10.3389/fmicb.2015.00868] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/10/2015] [Indexed: 11/13/2022] Open
Abstract
Alkaline phosphatase (AP) is a key enzyme that enables marine phytoplankton to scavenge phosphorus (P) from dissolved organic phosphorus (DOP) when inorganic phosphate is scarce in the ocean. Yet how the AP gene has evolved in phytoplankton, particularly dinoflagellates, is poorly understood. We sequenced full-length AP genes and corresponding complementary DNA (cDNA) from 15 strains (10 species), representing four classes of the core dinoflagellate lineage, Gymnodiniales, Prorocentrales, Suessiales, and Gonyaulacales. Dinoflagellate AP gene sequences exhibited high variability, containing variable introns, pseudogenes, single nucleotide polymorphisms and consequent variations in amino acid sequence, indicative of gene duplication events and consistent with the “birth-and-death” model of gene evolution. Further sequence comparison showed that dinoflagellate APs likely belong to an atypical type AP (PhoAaty), which shares conserved motifs with counterparts in marine bacteria, cyanobacteria, green algae, haptophytes, and stramenopiles. Phylogenetic analysis suggested that PhoAaty probably originated from an ancestral gene in bacteria and evolved divergently in marine phytoplankton. Because variations in AP amino acid sequences may lead to differential subcellular localization and potentially different metal ion requirements, the multiple types of APs in algae may have resulted from selection for diversifying strategies to utilize DOP in the P variable marine environment.
Collapse
Affiliation(s)
- Xin Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University Xiamen, China
| | - Lu Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University Xiamen, China
| | - Xinguo Shi
- State Key Laboratory of Marine Environmental Science, Xiamen University Xiamen, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University Xiamen, China ; Department of Marine Sciences, University of Connecticut Groton, CT, USA
| |
Collapse
|
275
|
Belkin N, Rahav E, Elifantz H, Kress N, Berman-Frank I. Enhanced salinities, as a proxy of seawater desalination discharges, impact coastal microbial communities of the eastern Mediterranean Sea. Environ Microbiol 2015; 17:4105-20. [DOI: 10.1111/1462-2920.12979] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 07/02/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Natalia Belkin
- Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat Gan 52900 Israel
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research; National Institute of Oceanography; Haifa 31080 Israel
| | - Hila Elifantz
- Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat Gan 52900 Israel
| | - Nurit Kress
- Israel Oceanographic and Limnological Research; National Institute of Oceanography; Haifa 31080 Israel
| | - Ilana Berman-Frank
- Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat Gan 52900 Israel
| |
Collapse
|
276
|
Xu Y, Jiao N, Chen F. Novel psychrotolerant picocyanobacteria isolated from Chesapeake Bay in the winter. JOURNAL OF PHYCOLOGY 2015; 51:782-790. [PMID: 26986796 DOI: 10.1111/jpy.12318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/14/2015] [Indexed: 06/05/2023]
Abstract
Picocyanobacteria are major primary producers in the ocean, especially in the tropical or subtropical oceans or during warm seasons. Many "warm" picocyanobacterial species have been isolated and characterized. However, picocyanobacteria in cold environments or cold seasons are much less studied. In general, little is known about the taxonomy and ecophysiology of picocyanobacteria living in the winter. In this study, 17 strains of picocyanobacteria were isolated from Chesapeake Bay, a temperate estuarine ecosystem, during the winter months. These winter isolates belong to five distinct phylogenetic lineages, and are distinct from the picocyanobacteria previously isolated from the warm seasons. The vast majority of the winter isolates were closely related to picocyanobacteria isolated from other cold environments like Arctic or subalpine waters. The winter picocyanobacterial isolates were able to maintain slow growth or prolonged dormancy at 4°C. Interestingly, the phycoerythrin-rich strains outperformed the phycocyanin-rich strains at cold temperature. In addition, winter picocyanobacteria changed their morphology when cultivated at 4°C. The close phylogenetic relationship between the winter picocyanobacteria and the picocyanobacteria living in high latitude cold regions indicates that low temperature locations select specific ecotypes of picocyanobacteria.
Collapse
Affiliation(s)
- Yongle Xu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361005, China
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, 21202, USA
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361100, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, 21202, USA
| |
Collapse
|
277
|
Berry DL, Goleski JA, Koch F, Wall CC, Peterson BJ, Anderson OR, Gobler CJ. Shifts in Cyanobacterial Strain Dominance during the Onset of Harmful Algal Blooms in Florida Bay, USA. MICROBIAL ECOLOGY 2015; 70:361-371. [PMID: 25661475 DOI: 10.1007/s00248-014-0564-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 12/30/2014] [Indexed: 06/04/2023]
Abstract
Cyanobacteria are fundamental components of aquatic phytoplankton communities and some taxa can cause harmful blooms in coastal ecosystems. Harmful cyanobacterial blooms are typically comprised of multiple strains of a single genus or species that cannot be resolved microscopically. Florida Bay, USA, has experienced harmful cyanobacterial blooms that have been associated with the loss of eelgrass, spiny lobsters, and general food web disruption for more than two decades. To identify the strain or strains of cyanobacteria forming blooms in Florida Bay, samples were collected across the system over an annual cycle and analyzed via DNA sequencing using cyanobacterial-specific 16S rRNA gene primers, flow cytometry, and scanning electron microscopy. Analyses demonstrated that the onset of blooms in Florida Bay was coincident with a transformation of the cyanobacterial populations. When blooms were absent, the cyanobacterial population in Florida Bay was dominated by phycoerythrin-containing Synechococcus cells that were most similar to strains within Clade III. As blooms developed, the cyanobacterial community transitioned to dominance by phycocyanin-containing Synechococcus cells that were coated with mucilage, chain-forming, and genetically most similar to the coastal strains within Clade VIII. Clade VIII strains of Synechococcus are known to grow rapidly, utilize organic nutrients, and resist top-down control by protozoan grazers and viruses, all characteristics consistent with observations of cyanobacterial blooms in Florida Bay. Further, the strains of Synechococcus blooming in this system are genetically distinct from the species previously thought to cause blooms in Florida Bay, Synechococcus elongatus. Collectively, this study identified the causative organism of harmful cyanobacterial blooms in Florida Bay, demonstrates the dynamic nature of cyanobacterial stains within genera in an estuary, and affirms factors promoting Synechococcus blooms.
Collapse
Affiliation(s)
- Dianna L Berry
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, USA
| | | | | | | | | | | | | |
Collapse
|
278
|
Black Queen evolution: the role of leakiness in structuring microbial communities. Trends Genet 2015; 31:475-82. [DOI: 10.1016/j.tig.2015.05.004] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 11/21/2022]
|
279
|
Divergent responses of Atlantic coastal and oceanic Synechococcus to iron limitation. Proc Natl Acad Sci U S A 2015. [PMID: 26216989 DOI: 10.1073/pnas.1509448112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Marine Synechococcus are some of the most diverse and ubiquitous phytoplankton, and iron (Fe) is an essential micronutrient that limits productivity in many parts of the ocean. To investigate how coastal and oceanic Atlantic Synechococcus strains acclimate to Fe availability, we compared the growth, photophysiology, and quantitative proteomics of two Synechococcus strains from different Fe regimes. Synechococcus strain WH8102, from a region in the southern Sargasso Sea that receives substantial dust deposition, showed impaired growth and photophysiology as Fe declined, yet used few acclimation responses. Coastal WH8020, from the dynamic, seasonally variable New England shelf, displayed a multitiered, hierarchical cascade of acclimation responses with different Fe thresholds. The multitiered response included changes in Fe acquisition, storage, and photosynthetic proteins, substitution of flavodoxin for ferredoxin, and modified photophysiology, all while maintaining remarkably stable growth rates over a range of Fe concentrations. Modulation of two distinct ferric uptake regulator (Fur) proteins that coincided with the multitiered proteome response was found, implying the coastal strain has different regulatory threshold responses to low Fe availability. Low nitrogen (N) and phosphorus (P) availability in the open ocean may favor the loss of Fe response genes when Fe availability is consistent over time, whereas these genes are retained in dynamic environments where Fe availability fluctuates and N and P are more abundant.
Collapse
|
280
|
Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME JOURNAL 2015. [PMID: 26208139 DOI: 10.1038/ismej.2015.115] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Marine picocyanobacteria, comprised of the genera Synechococcus and Prochlorococcus, are the most abundant and widespread primary producers in the ocean. More than 20 genetically distinct clades of marine Synechococcus have been identified, but their physiology and biogeography are not as thoroughly characterized as those of Prochlorococcus. Using clade-specific qPCR primers, we measured the abundance of 10 Synechococcus clades at 92 locations in surface waters of the Atlantic and Pacific Oceans. We found that Synechococcus partition the ocean into four distinct regimes distinguished by temperature, macronutrients and iron availability. Clades I and IV were prevalent in colder, mesotrophic waters; clades II, III and X dominated in the warm, oligotrophic open ocean; clades CRD1 and CRD2 were restricted to sites with low iron availability; and clades XV and XVI were only found in transitional waters at the edges of the other biomes. Overall, clade II was the most ubiquitous clade investigated and was the dominant clade in the largest biome, the oligotrophic open ocean. Co-occurring clades that occupy the same regime belong to distinct evolutionary lineages within Synechococcus, indicating that multiple ecotypes have evolved independently to occupy similar niches and represent examples of parallel evolution. We speculate that parallel evolution of ecotypes may be a common feature of diverse marine microbial communities that contributes to functional redundancy and the potential for resiliency.
Collapse
|
281
|
Genomic potential for arsenic efflux and methylation varies among global Prochlorococcus populations. THE ISME JOURNAL 2015. [PMID: 26151644 DOI: 10.1038/ismej.2015.85.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The globally significant picocyanobacterium Prochlorococcus is the main primary producer in oligotrophic subtropical gyres. When phosphate concentrations are very low in the marine environment, the mol:mol availability of phosphate relative to the chemically similar arsenate molecule is reduced, potentially resulting in increased cellular arsenic exposure. To mediate accidental arsenate uptake, some Prochlorococcus isolates contain genes encoding a full or partial efflux detoxification pathway, consisting of an arsenate reductase (arsC), an arsenite-specific efflux pump (acr3) and an arsenic-related repressive regulator (arsR). This efflux pathway was the only previously known arsenic detox pathway in Prochlorococcus. We have identified an additional putative arsenic mediation strategy in Prochlorococcus driven by the enzyme arsenite S-adenosylmethionine methyltransferase (ArsM) which can convert inorganic arsenic into more innocuous organic forms and appears to be a more widespread mode of detoxification. We used a phylogenetically informed approach to identify Prochlorococcus linked arsenic genes from both pathways in the Global Ocean Sampling survey. The putative arsenic methylation pathway is nearly ubiquitously present in global Prochlorococcus populations. In contrast, the complete efflux pathway is only maintained in populations which experience extremely low PO4:AsO4, such as regions in the tropical and subtropical Atlantic. Thus, environmental exposure to arsenic appears to select for maintenance of the efflux detoxification pathway in Prochlorococcus. The differential distribution of these two pathways has implications for global arsenic cycling, as their associated end products, arsenite or organoarsenicals, have differing biochemical activities and residence times.
Collapse
|
282
|
Saunders JK, Rocap G. Genomic potential for arsenic efflux and methylation varies among global Prochlorococcus populations. ISME JOURNAL 2015; 10:197-209. [PMID: 26151644 DOI: 10.1038/ismej.2015.85] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/25/2015] [Accepted: 04/03/2015] [Indexed: 11/09/2022]
Abstract
The globally significant picocyanobacterium Prochlorococcus is the main primary producer in oligotrophic subtropical gyres. When phosphate concentrations are very low in the marine environment, the mol:mol availability of phosphate relative to the chemically similar arsenate molecule is reduced, potentially resulting in increased cellular arsenic exposure. To mediate accidental arsenate uptake, some Prochlorococcus isolates contain genes encoding a full or partial efflux detoxification pathway, consisting of an arsenate reductase (arsC), an arsenite-specific efflux pump (acr3) and an arsenic-related repressive regulator (arsR). This efflux pathway was the only previously known arsenic detox pathway in Prochlorococcus. We have identified an additional putative arsenic mediation strategy in Prochlorococcus driven by the enzyme arsenite S-adenosylmethionine methyltransferase (ArsM) which can convert inorganic arsenic into more innocuous organic forms and appears to be a more widespread mode of detoxification. We used a phylogenetically informed approach to identify Prochlorococcus linked arsenic genes from both pathways in the Global Ocean Sampling survey. The putative arsenic methylation pathway is nearly ubiquitously present in global Prochlorococcus populations. In contrast, the complete efflux pathway is only maintained in populations which experience extremely low PO4:AsO4, such as regions in the tropical and subtropical Atlantic. Thus, environmental exposure to arsenic appears to select for maintenance of the efflux detoxification pathway in Prochlorococcus. The differential distribution of these two pathways has implications for global arsenic cycling, as their associated end products, arsenite or organoarsenicals, have differing biochemical activities and residence times.
Collapse
Affiliation(s)
| | - Gabrielle Rocap
- University of Washington, School of Oceanography, Seattle, WA, USA
| |
Collapse
|
283
|
Al-Hosani S, Oudah MM, Henschel A, Yousef LF. Global transcriptome analysis of salt acclimated Prochlorococcus AS9601. Microbiol Res 2015; 176:21-8. [DOI: 10.1016/j.micres.2015.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 11/15/2022]
|
284
|
Coutinho FH, Meirelles PM, Moreira APB, Paranhos RP, Dutilh BE, Thompson FL. Niche distribution and influence of environmental parameters in marine microbial communities: a systematic review. PeerJ 2015; 3:e1008. [PMID: 26157601 PMCID: PMC4476133 DOI: 10.7717/peerj.1008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 05/19/2015] [Indexed: 12/14/2022] Open
Abstract
Associations between microorganisms occur extensively throughout Earth’s oceans. Understanding how microbial communities are assembled and how the presence or absence of species is related to that of others are central goals of microbial ecology. Here, we investigate co-occurrence associations between marine prokaryotes by combining 180 new and publicly available metagenomic datasets from different oceans in a large-scale meta-analysis. A co-occurrence network was created by calculating correlation scores between the abundances of microorganisms in metagenomes. A total of 1,906 correlations amongst 297 organisms were detected, segregating them into 11 major groups that occupy distinct ecological niches. Additionally, by analyzing the oceanographic parameters measured for a selected number of sampling sites, we characterized the influence of environmental variables over each of these 11 groups. Clustering organisms into groups of taxa that have similar ecology, allowed the detection of several significant correlations that could not be observed for the taxa individually.
Collapse
Affiliation(s)
- Felipe H Coutinho
- Universidade Federal do Rio de Janeiro (UFRJ)/Instituto de Biologia (IB) , Rio de Janeiro , Brazil ; Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics (CMBI) , Nijmegen , The Netherlands
| | - Pedro M Meirelles
- Universidade Federal do Rio de Janeiro (UFRJ)/Instituto de Biologia (IB) , Rio de Janeiro , Brazil
| | - Ana Paula B Moreira
- Universidade Federal do Rio de Janeiro (UFRJ)/Instituto de Biologia (IB) , Rio de Janeiro , Brazil
| | - Rodolfo P Paranhos
- Universidade Federal do Rio de Janeiro (UFRJ)/Instituto de Biologia (IB) , Rio de Janeiro , Brazil
| | - Bas E Dutilh
- Universidade Federal do Rio de Janeiro (UFRJ)/Instituto de Biologia (IB) , Rio de Janeiro , Brazil ; Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics (CMBI) , Nijmegen , The Netherlands ; University of Utrecht (UU), Theoretical Biology and Bioinformatics , Utrecht , The Netherlands
| | - Fabiano L Thompson
- Universidade Federal do Rio de Janeiro (UFRJ)/Instituto de Biologia (IB) , Rio de Janeiro , Brazil ; Universidade Federal do Rio de Janeiro (UFRJ)/COPPE, SAGE , Rio de Janeiro , Brazil
| |
Collapse
|
285
|
Ininbergs K, Bergman B, Larsson J, Ekman M. Microbial metagenomics in the Baltic Sea: Recent advancements and prospects for environmental monitoring. AMBIO 2015; 44 Suppl 3:439-50. [PMID: 26022326 PMCID: PMC4447691 DOI: 10.1007/s13280-015-0663-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Metagenomics refers to the analysis of DNA from a whole community. Metagenomic sequencing of environmental DNA has greatly improved our knowledge of the identity and function of microorganisms in aquatic, terrestrial, and human biomes. Although open oceans have been the primary focus of studies on aquatic microbes, coastal and brackish ecosystems are now being surveyed. Here, we review so far published studies on microbes in the Baltic Sea, one of the world's largest brackish water bodies, using high throughput sequencing of environmental DNA and RNA. Collectively the data illustrate that Baltic Sea microbes are unique and highly diverse, and well adapted to this brackish-water ecosystem, findings that represent a novel base-line knowledge necessary for monitoring purposes and a sustainable management. More specifically, the data relate to environmental drivers for microbial community composition and function, assessments of the microbial biodiversity, adaptations and role of microbes in the nitrogen cycle, and microbial genome assembly from metagenomic sequences. With these discoveries as background, prospects of using metagenomics for Baltic Sea environmental monitoring are discussed.
Collapse
Affiliation(s)
- Karolina Ininbergs
- Science for Life Laboratory, Department of Ecology, Environment and Plant Sciences, Stockholm University, Box 1031, 171 21, Solna, Sweden,
| | | | | | | |
Collapse
|
286
|
Transcriptomic and Proteomic Profiling of Anabaena sp. Strain 90 under Inorganic Phosphorus Stress. Appl Environ Microbiol 2015; 81:5212-22. [PMID: 26025890 DOI: 10.1128/aem.01062-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/18/2015] [Indexed: 01/06/2023] Open
Abstract
Inorganic phosphorus (Pi) is one of the main growth-limiting factors of diazotrophic cyanobacteria. Due to human activity, the availability of Pi has increased in water bodies, resulting in eutrophication and the formation of massive cyanobacterial blooms. In this study, we examined the molecular responses of the cyanobacterium Anabaena sp. strain 90 to phosphorus deprivation, aiming at the identification of candidate genes to monitor the Pi status in cyanobacteria. Furthermore, this study increased the basic understanding of how phosphorus affects diazotrophic and bloom-forming cyanobacteria as a major growth-limiting factor. Based on RNA sequencing data, we identified 246 differentially expressed genes after phosphorus starvation and 823 differentially expressed genes after prolonged Pi limitation, most of them related to central metabolism and cellular growth. The transcripts of the genes related to phosphorus transport and assimilation (pho regulon) were most upregulated during phosphorus depletion. One of the most increased transcripts encodes a giant protein of 1,869 amino acid residues, which contains, among others, a phytase-like domain. Our findings predict its crucial role in phosphorus starvation, but future studies are still needed. Using two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found 43 proteins that were differentially expressed after prolonged phosphorus stress. However, correlation analysis unraveled an association only to some extent between the transcriptomic and proteomic abundances. Based on the present results, we suggest that the method used for monitoring the Pi status in cyanobacterial bloom should contain wider combinations of pho regulon genes (e.g., PstABCS transport systems) in addition to the commonly used alkaline phosphatase gene alone.
Collapse
|
287
|
Pesant S, Not F, Picheral M, Kandels-Lewis S, Le Bescot N, Gorsky G, Iudicone D, Karsenti E, Speich S, Troublé R, Dimier C, Searson S. Open science resources for the discovery and analysis of Tara Oceans data. Sci Data 2015; 2:150023. [PMID: 26029378 PMCID: PMC4443879 DOI: 10.1038/sdata.2015.23] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/27/2015] [Indexed: 11/29/2022] Open
Abstract
The Tara Oceans expedition (2009–2013) sampled contrasting ecosystems of the world oceans, collecting environmental data and plankton, from viruses to metazoans, for later analysis using modern sequencing and state-of-the-art imaging technologies. It surveyed 210 ecosystems in 20 biogeographic provinces, collecting over 35,000 samples of seawater and plankton. The interpretation of such an extensive collection of samples in their ecological context requires means to explore, assess and access raw and validated data sets. To address this challenge, the Tara Oceans Consortium offers open science resources, including the use of open access archives for nucleotides (ENA) and for environmental, biogeochemical, taxonomic and morphological data (PANGAEA), and the development of on line discovery tools and collaborative annotation tools for sequences and images. Here, we present an overview of Tara Oceans Data, and we provide detailed registries (data sets) of all campaigns (from port-to-port), stations and sampling events.
Collapse
Affiliation(s)
- Stéphane Pesant
- PANGAEA, Data Publisher for Earth and Environmental Science , 28359 Bremen, Germany ; MARUM, Center for Marine Environmental Sciences, Universität Bremen , 28359 Bremen, Germany
| | - Fabrice Not
- CNRS, UMR 7144, Station Biologique de Roscoff , 29680 Roscoff, France ; Sorbonne Universités, UPMC Univ Paris 06, UMR 7144, Station Biologique de Roscoff , 29680 Roscoff, France
| | - Marc Picheral
- CNRS, UMR 7093, Observatoire Océanologique de Villefranche-sur-Mer (OOV) , 06230 Villefranche/mer, France ; Sorbonne Universités, UPMC Univ Paris 06, UMR 7093, Observatoire Océanologique de Villefranche-sur-Mer (OOV) , 06230, Villefranche/mer, France
| | - Stefanie Kandels-Lewis
- Structural and Computational Biology, European Molecular Biology Laboratory , Meyerhofstr. 1, 69117 Heidelberg, Germany ; Directors' Research, European Molecular Biology Laboratory Meyerhofstrasse 1 , 69117 Heidelberg, Germany
| | - Noan Le Bescot
- CNRS, UMR 7144, Station Biologique de Roscoff , 29680 Roscoff, France
| | - Gabriel Gorsky
- CNRS, UMR 7093, Observatoire Océanologique de Villefranche-sur-Mer (OOV) , 06230 Villefranche/mer, France ; Sorbonne Universités, UPMC Univ Paris 06, UMR 7093, Observatoire Océanologique de Villefranche-sur-Mer (OOV) , 06230, Villefranche/mer, France
| | - Daniele Iudicone
- Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn , 80121 Naples, Italy
| | - Eric Karsenti
- Directors' Research, European Molecular Biology Laboratory Meyerhofstrasse 1 , 69117 Heidelberg, Germany ; Environmental and Evolutionary Genomics Section, Institut de Biologie de l'Ecole Normale Supérieure, CNRS, UMR 8197, Institut National de la Santé et de la Recherche Médicale U1024, Ecole Normale Supérieure , 75005 Paris, France
| | - Sabrina Speich
- Department of Geosciences, Laboratoire de Météorologie Dynamique (LMD), Ecole Normale Supérieure , 75005, Paris, France ; Laboratoire de Physique des Océan, UBO-IUEM , 29280 Polouzané, France
| | - Romain Troublé
- Tara Expéditions, Base Tara , 11 boulevard Bourdon, 75004 Paris, France
| | - Céline Dimier
- CNRS, UMR 7144, Station Biologique de Roscoff , 29680 Roscoff, France
| | - Sarah Searson
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7144, Station Biologique de Roscoff , 29680 Roscoff, France ; Department of Oceanography, University of Hawaii at Manoa , Honolulu, HI 96822, USA
| | | |
Collapse
|
288
|
Berube PM, Biller SJ, Kent AG, Berta-Thompson JW, Roggensack SE, Roache-Johnson KH, Ackerman M, Moore LR, Meisel JD, Sher D, Thompson LR, Campbell L, Martiny AC, Chisholm SW. Physiology and evolution of nitrate acquisition in Prochlorococcus. THE ISME JOURNAL 2015; 9:1195-207. [PMID: 25350156 PMCID: PMC4409163 DOI: 10.1038/ismej.2014.211] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/08/2014] [Accepted: 09/23/2014] [Indexed: 01/01/2023]
Abstract
Prochlorococcus is the numerically dominant phototroph in the oligotrophic subtropical ocean and carries out a significant fraction of marine primary productivity. Although field studies have provided evidence for nitrate uptake by Prochlorococcus, little is known about this trait because axenic cultures capable of growth on nitrate have not been available. Additionally, all previously sequenced genomes lacked the genes necessary for nitrate assimilation. Here we introduce three Prochlorococcus strains capable of growth on nitrate and analyze their physiology and genome architecture. We show that the growth of high-light (HL) adapted strains on nitrate is ∼17% slower than their growth on ammonium. By analyzing 41 Prochlorococcus genomes, we find that genes for nitrate assimilation have been gained multiple times during the evolution of this group, and can be found in at least three lineages. In low-light adapted strains, nitrate assimilation genes are located in the same genomic context as in marine Synechococcus. These genes are located elsewhere in HL adapted strains and may often exist as a stable genetic acquisition as suggested by the striking degree of similarity in the order, phylogeny and location of these genes in one HL adapted strain and a consensus assembly of environmental Prochlorococcus metagenome sequences. In another HL adapted strain, nitrate utilization genes may have been independently acquired as indicated by adjacent phage mobility elements; these genes are also duplicated with each copy detected in separate genomic islands. These results provide direct evidence for nitrate utilization by Prochlorococcus and illuminate the complex evolutionary history of this trait.
Collapse
Affiliation(s)
- Paul M Berube
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven J Biller
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alyssa G Kent
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Jessie W Berta-Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sara E Roggensack
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kathryn H Roache-Johnson
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
- Department of Biological Sciences, University of Southern Maine, Portland, ME, USA
| | - Marcia Ackerman
- Department of Biological Sciences, University of Southern Maine, Portland, ME, USA
| | - Lisa R Moore
- Department of Biological Sciences, University of Southern Maine, Portland, ME, USA
| | - Joshua D Meisel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel Sher
- Department of Marine Biology, University of Haifa, Haifa, Israel
| | - Luke R Thompson
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - Lisa Campbell
- Department of Oceanography, Texas A&M University, College Station, TX, USA
| | - Adam C Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
- Department of Earth System Science, University of California, Irvine, Irvine, CA, USA
| | - Sallie W Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
289
|
Christie-Oleza JA, Scanlan DJ, Armengaud J. "You produce while I clean up", a strategy revealed by exoproteomics during Synechococcus-Roseobacter interactions. Proteomics 2015; 15:3454-62. [PMID: 25728650 PMCID: PMC4949626 DOI: 10.1002/pmic.201400562] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/15/2015] [Accepted: 02/24/2015] [Indexed: 11/06/2022]
Abstract
Most of the energy that is introduced into the oceans by photosynthetic primary producers is in the form of organic matter that then sustains the rest of the food web, from micro to macro-organisms. However, it is the interactions between phototrophs and heterotrophs that are vital to maintaining the nutrient balance of marine microbiomes that ultimately feed these higher trophic levels. The primary produced organic matter is mostly remineralized by heterotrophic microorganisms but, because most of the oceanic dissolved organic matter is in the form of biopolymers, and microbial membrane transport systems operate with molecules <0.6 kDa, it must be hydrolyzed outside the cell before a microorganism can acquire it. As a simili of the marine microbiome, we analyzed, using state-of-the-art proteomics, the exoproteomes obtained from synthetic communities combining specific Roseobacter (Ruegeria pomeroyi DSS-3, Roseobacter denitrificans OCh114, and Dinoroseobacter shibae DFL-12) and Synechococcus strains (WH7803 and WH8102). This approach identified the repertoire of hydrolytic enzymes secreted by Roseobacter, opening up the black box of heterotrophic transformation/remineralization of biopolymers generated by marine phytoplankton. As well as highlighting interesting exoenzymes this strategy also allowed us to infer clues on the molecular basis of niche partitioning.
Collapse
Affiliation(s)
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Jean Armengaud
- CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory "Technological Innovations for Detection and Diagnostic", Bagnols-sur-Cèze, France
| |
Collapse
|
290
|
Christie-Oleza JA, Armengaud J, Guerin P, Scanlan DJ. Functional distinctness in the exoproteomes of marine Synechococcus. Environ Microbiol 2015; 17:3781-94. [PMID: 25727668 PMCID: PMC4949707 DOI: 10.1111/1462-2920.12822] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 12/31/2022]
Abstract
The exported protein fraction of an organism may reflect its life strategy and, ultimately, the way it is perceived by the outside world. Bioinformatic prediction of the exported pan‐proteome of Prochlorococcus and Synechococcus lineages demonstrated that (i) this fraction of the encoded proteome had a much higher incidence of lineage‐specific proteins than the cytosolic fraction (57% and 73% homologue incidence respectively) and (ii) exported proteins are largely uncharacterized to date (54%) compared with proteins from the cytosolic fraction (35%). This suggests that the genomic and functional diversity of these organisms lies largely in the diverse pool of novel functions these organisms export to/through their membranes playing a key role in community diversification, e.g. for niche partitioning or evading predation. Experimental exoproteome analysis of marine Synechococcus showed transport systems for inorganic nutrients, an interesting array of strain‐specific exoproteins involved in mutualistic or hostile interactions (i.e. hemolysins, pilins, adhesins), and exoenzymes with a potential mixotrophic goal (i.e. exoproteases and chitinases). We also show how these organisms can remodel their exoproteome, i.e. by increasing the repertoire of interaction proteins when grown in the presence of a heterotroph or decrease exposure to prey when grown in the dark. Finally, our data indicate that heterotrophic bacteria can feed on the exoproteome of Synechococcus.
Collapse
Affiliation(s)
| | - Jean Armengaud
- CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory 'Technological Innovations for Detection and Diagnostic', Bagnols-sur-Cèze, F-30207, France
| | - Philippe Guerin
- CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory 'Technological Innovations for Detection and Diagnostic', Bagnols-sur-Cèze, F-30207, France
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
291
|
Convergent evolution toward an improved growth rate and a reduced resistance range in Prochlorococcus strains resistant to phage. Proc Natl Acad Sci U S A 2015; 112:E2191-200. [PMID: 25922520 DOI: 10.1073/pnas.1420347112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prochlorococcus is an abundant marine cyanobacterium that grows rapidly in the environment and contributes significantly to global primary production. This cyanobacterium coexists with many cyanophages in the oceans, likely aided by resistance to numerous co-occurring phages. Spontaneous resistance occurs frequently in Prochlorococcus and is often accompanied by a pleiotropic fitness cost manifested as either a reduced growth rate or enhanced infection by other phages. Here, we assessed the fate of a number of phage-resistant Prochlorococcus strains, focusing on those with a high fitness cost. We found that phage-resistant strains continued evolving toward an improved growth rate and a narrower resistance range, resulting in lineages with phenotypes intermediate between those of ancestral susceptible wild-type and initial resistant substrains. Changes in growth rate and resistance range often occurred in independent events, leading to a decoupling of the selection pressures acting on these phenotypes. These changes were largely the result of additional, compensatory mutations in noncore genes located in genomic islands, although genetic reversions were also observed. Additionally, a mutator strain was identified. The similarity of the evolutionary pathway followed by multiple independent resistant cultures and clones suggests they undergo a predictable evolutionary pathway. This process serves to increase both genetic diversity and infection permutations in Prochlorococcus populations, further augmenting the complexity of the interaction network between Prochlorococcus and its phages in nature. Last, our findings provide an explanation for the apparent paradox of a multitude of resistant Prochlorococcus cells in nature that are growing close to their maximal intrinsic growth rates.
Collapse
|
292
|
Trichodesmium genome maintains abundant, widespread noncoding DNA in situ, despite oligotrophic lifestyle. Proc Natl Acad Sci U S A 2015; 112:4251-6. [PMID: 25831533 DOI: 10.1073/pnas.1422332112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Understanding the evolution of the free-living, cyanobacterial, diazotroph Trichodesmium is of great importance because of its critical role in oceanic biogeochemistry and primary production. Unlike the other >150 available genomes of free-living cyanobacteria, only 63.8% of the Trichodesmium erythraeum (strain IMS101) genome is predicted to encode protein, which is 20-25% less than the average for other cyanobacteria and nonpathogenic, free-living bacteria. We use distinctive isolates and metagenomic data to show that low coding density observed in IMS101 is a common feature of the Trichodesmium genus, both in culture and in situ. Transcriptome analysis indicates that 86% of the noncoding space is expressed, although the function of these transcripts is unclear. The density of noncoding, possible regulatory elements predicted in Trichodesmium, when normalized per intergenic kilobase, was comparable and twofold higher than that found in the gene-dense genomes of the sympatric cyanobacterial genera Synechococcus and Prochlorococcus, respectively. Conserved Trichodesmium noncoding RNA secondary structures were predicted between most culture and metagenomic sequences, lending support to the structural conservation. Conservation of these intergenic regions in spatiotemporally separated Trichodesmium populations suggests possible genus-wide selection for their maintenance. These large intergenic spacers may have developed during intervals of strong genetic drift caused by periodic blooms of a subset of genotypes, which may have reduced effective population size. Our data suggest that transposition of selfish DNA, low effective population size, and high-fidelity replication allowed the unusual "inflation" of noncoding sequence observed in Trichodesmium despite its oligotrophic lifestyle.
Collapse
|
293
|
Sudek S, Everroad RC, Gehman ALM, Smith JM, Poirier CL, Chavez FP, Worden AZ. Cyanobacterial distributions along a physico-chemical gradient in the Northeastern Pacific Ocean. Environ Microbiol 2015; 17:3692-707. [PMID: 25522910 DOI: 10.1111/1462-2920.12742] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 12/11/2022]
Abstract
The cyanobacteria Prochlorococcus and Synechococcus are important marine primary producers. We explored their distributions and covariance along a physico-chemical gradient from coastal to open ocean waters in the Northeastern Pacific Ocean. An inter-annual pattern was delineated in the dynamic transition zone where upwelled and eastern boundary current waters mix, and two new Synechococcus clades, Eastern Pacific Clade (EPC) 1 and EPC2, were identified. By applying state-of-the-art phylogenetic analysis tools to bar-coded 16S amplicon datasets, we observed higher abundance of Prochlorococcus high-light I (HLI) and low-light I (LLI) in years when more oligotrophic water intruded farther inshore, while under stronger upwelling Synechococcus I and IV dominated. However, contributions of some cyanobacterial clades were proportionally relatively constant, e.g. Synechococcus EPC2. In addition to supporting observations that Prochlorococcus LLI thrive at higher irradiances than other LL taxa, the results suggest LLI tolerate lower temperatures than previously reported. The phylogenetic precision of our 16S rRNA gene analytical approach and depth of bar-coded sequencing also facilitated detection of clades at low abundance in unexpected places. These include Prochlorococcus at the coast and Cyanobium-related sequences offshore, although it remains unclear whether these came from resident or potentially advected cells. Our study enhances understanding of cyanobacterial distributions in an ecologically important eastern boundary system.
Collapse
Affiliation(s)
- Sebastian Sudek
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - R Craig Everroad
- Exobiology Branch, NASA Ames Research Center, MS 239-4, Moffett Field, CA, 94035, USA
| | - Alyssa-Lois M Gehman
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Jason M Smith
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Camille L Poirier
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Francisco P Chavez
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA.,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, ON, M5G 1Z8, Canada
| |
Collapse
|
294
|
Klemke F, Baier A, Knoop H, Kern R, Jablonsky J, Beyer G, Volkmer T, Steuer R, Lockau W, Hagemann M. Identification of the light-independent phosphoserine pathway as an additional source of serine in the cyanobacterium Synechocystis sp. PCC 6803. MICROBIOLOGY-SGM 2015; 161:1050-1060. [PMID: 25701735 DOI: 10.1099/mic.0.000055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/17/2015] [Indexed: 01/18/2023]
Abstract
L-serine is one of the proteinogenic amino acids and participates in several essential processes in all organisms. In plants, the light-dependent photorespiratory and the light-independent phosphoserine pathways contribute to serine biosynthesis. In cyanobacteria, the light-dependent photorespiratory pathway for serine synthesis is well characterized, but the phosphoserine pathway has not been identified. Here, we investigated three candidate genes for enzymes of the phosphoserine pathway in Synechocystis sp. PCC 6803. Only the gene for the D-3-phosphoglycerate dehydrogenase is correctly annotated in the genome database, whereas the 3-phosphoserine transaminase and 3-phosphoserine phosphatase (PSP) proteins are incorrectly annotated and were identified here. All enzymes were obtained as recombinant proteins and showed the activities necessary to catalyse the three-step phosphoserine pathway. The genes coding for the phosphoserine pathway were found in most cyanobacterial genomes listed in CyanoBase. The pathway seems to be essential for cyanobacteria, because it was impossible to mutate the gene coding for PSP in Synechocystis sp. PCC 6803 or in Synechococcus elongatus PCC 7942. A model approach indicates a 30-60% contribution of the phosphoserine pathway to the overall serine pool. Hence, this study verified that cyanobacteria, similar to plants, use the phosphoserine pathway in addition to photorespiration for serine biosynthesis.
Collapse
Affiliation(s)
| | - Antje Baier
- Plant Biochemistry, Humboldt University Berlin, Germany
| | - Henning Knoop
- Institute of Theoretical Biology, Humboldt University Berlin, Germany
| | - Ramona Kern
- Department of Plant Physiology, University of Rostock, Germany
| | - Jiri Jablonsky
- Laboratory of Experimental Complex Systems, FFPW, University of South Bohemia, Czech Republic
| | | | | | - Ralf Steuer
- Institute of Theoretical Biology, Humboldt University Berlin, Germany
| | | | - Martin Hagemann
- Department of Plant Physiology, University of Rostock, Germany
| |
Collapse
|
295
|
Kopf M, Möke F, Bauwe H, Hess WR, Hagemann M. Expression profiling of the bloom-forming cyanobacterium Nodularia CCY9414 under light and oxidative stress conditions. ISME JOURNAL 2015; 9:2139-52. [PMID: 25689027 DOI: 10.1038/ismej.2015.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 01/08/2015] [Indexed: 11/10/2022]
Abstract
Massive blooms of toxic cyanobacteria frequently occur in the central Baltic Sea during the summer. In the surface scum, cyanobacterial cells are exposed to high light (HL) intensity, high oxygen partial pressure and other stresses. To mimic these conditions, cultures of Nodularia spumigena CCY9414, which is a strain isolated from a cyanobacterial summer bloom in the Baltic Sea, were incubated at a HL intensity of 1200 μmol photons m(-2) s(-1) or a combination of HL and increased oxygen partial pressure. Using differential RNA sequencing, we compared the global primary transcriptomes of control and stressed cells. The combination of oxidative and light stresses induced the expression of twofold more genes compared with HL stress alone. In addition to the induction of known stress-responsive genes, such as psbA, ocp and sodB, Nodularia cells activated the expression of genes coding for many previously unknown light- and oxidative stress-related proteins. In addition, the expression of non-protein-coding RNAs was found to be stimulated by these stresses. Among them was an antisense RNA to the phycocyanin-encoding mRNA cpcBAC and the trans-encoded regulator of photosystem I, PsrR1. The large genome capacity allowed Nodularia to harbor more copies of stress-relevant genes such as psbA and small chlorophyll-binding protein genes, combined with the coordinated induction of these and many additional genes for stress acclimation. Our data provide a first insight on how N. spumigena became adapted to conditions relevant for a cyanobacterial bloom in the Baltic Sea.
Collapse
Affiliation(s)
- Matthias Kopf
- Albert-Ludwigs-Universität Freiburg, Fakultät für Biologie, Genetik und Experimentelle Bioinformatik, Freiburg, Germany
| | - Fred Möke
- Universität Rostock, Institut für Biowissenschaften, Pflanzenphysiologie, Rostock, Germany
| | - Hermann Bauwe
- Universität Rostock, Institut für Biowissenschaften, Pflanzenphysiologie, Rostock, Germany
| | - Wolfgang R Hess
- Albert-Ludwigs-Universität Freiburg, Fakultät für Biologie, Genetik und Experimentelle Bioinformatik, Freiburg, Germany
| | - Martin Hagemann
- Universität Rostock, Institut für Biowissenschaften, Pflanzenphysiologie, Rostock, Germany
| |
Collapse
|
296
|
Costa MS, Costa M, Ramos V, Leão PN, Barreiro A, Vasconcelos V, Martins R. Picocyanobacteria from a clade of marine Cyanobium revealed bioactive potential against microalgae, bacteria, and marine invertebrates. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:432-42. [PMID: 25785557 DOI: 10.1080/15287394.2014.991466] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The production of bioactive compounds either toxic or with pharmacological applications by cyanobacteria is well established. However, picoplanktonic forms within this group of organisms have rarely been studied in this context. In this study, the toxicological potential of picocyanobacteria from a clade of marine Cyanobium strains isolated from the Portuguese coast was examined using different biological models. First, strains were identified by applying morphological and molecular approaches and cultured under lab conditions. A crude extract and three fractions reflecting a preliminary segregation of lipophilic metabolites were tested for toxicity with the marine microalga Nannochloropsis sp., the bacteria Pseudomonas sp., the brine shrimp Artemia salina, and fertilized eggs of the sea urchin Paracentrotus lividus. No significant apparent adverse effects were noted against Artemia salina. However, significant adverse effects were found in all other assays, with an inhibition of Nannochloropsis sp. and Pseudomonas sp. growth and marked reduction in Paracentrotus lividus larvae length. The results obtained indicated that Cyanobium genus may serve as a potential source of interesting bioactive compounds and emphasize the importance of also studying smaller picoplanktonic fractions of marine cyanobacteria.
Collapse
Affiliation(s)
- Maria Sofia Costa
- a Interdisciplinary Centre of Marine and Environmental Research , Porto University , Porto , Portugal
| | | | | | | | | | | | | |
Collapse
|
297
|
Fortunato AE, Annunziata R, Jaubert M, Bouly JP, Falciatore A. Dealing with light: the widespread and multitasking cryptochrome/photolyase family in photosynthetic organisms. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:42-54. [PMID: 25087009 DOI: 10.1016/j.jplph.2014.06.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 05/19/2023]
Abstract
Light is essential for the life of photosynthetic organisms as it is a source of energy and information from the environment. Light excess or limitation can be a cause of stress however. Photosynthetic organisms exhibit sophisticated mechanisms to adjust their physiology and growth to the local environmental light conditions. The cryptochrome/photolyase family (CPF) is composed of flavoproteins with similar structures that display a variety of light-dependent functions. This family encompasses photolyases, blue-light activated enzymes that repair ultraviolet-light induced DNA damage, and cryptochromes, known for their photoreceptor functions in terrestrial plants. For this review, we searched extensively for CPFs in the available genome databases to trace the distribution and evolution of this protein family in photosynthetic organisms. By merging molecular data with current knowledge from the functional characterization of CPFs from terrestrial and aquatic organisms, we discuss their roles in (i) photoperception, (ii) biological rhythm regulation and (iii) light-induced stress responses. We also explore their possible implication in light-related physiological acclimation and their distribution in phototrophs living in different environments. The outcome of this structure-function analysis reconstructs the complex scenarios in which CPFs have evolved, as highlighted by the novel functions and biochemical properties of the most recently described family members in algae.
Collapse
Affiliation(s)
- Antonio Emidio Fortunato
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Rossella Annunziata
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Marianne Jaubert
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Jean-Pierre Bouly
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France.
| | - Angela Falciatore
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France.
| |
Collapse
|
298
|
Abstract
The biodiversity of phytoplankton is a core measurement of the state and activity of marine ecosystems. In the context of historical approaches, we review recent major advances in the technologies that have enabled deeper characterization of the biodiversity of phytoplankton. In particular, high-throughput sequencing of single loci/genes, genomes, and communities (metagenomics) has revealed exceptional phylogenetic and genomic diversity whose breadth is not fully constrained. Other molecular tools-such as fingerprinting, quantitative polymerase chain reaction, and fluorescence in situ hybridization-have provided additional insight into the dynamics of this diversity in the context of environmental variability. Techniques for characterizing the functional diversity of community structure through targeted or untargeted approaches based on RNA or protein have also greatly advanced. A wide range of techniques is now available for characterizing phytoplankton communities, and these tools will continue to advance through ongoing improvements in both technology and data interpretation.
Collapse
Affiliation(s)
- Zackary I Johnson
- Marine Laboratory (Nicholas School of the Environment) and Department of Biology, Duke University, Beaufort, North Carolina 28516;
| | | |
Collapse
|
299
|
Hevroni G, Enav H, Rohwer F, Béjà O. Diversity of viral photosystem-I psaA genes. ISME JOURNAL 2014; 9:1892-8. [PMID: 25535938 PMCID: PMC4511924 DOI: 10.1038/ismej.2014.244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/11/2014] [Accepted: 11/17/2014] [Indexed: 12/23/2022]
Abstract
Marine photosynthesis is one of the major contributors to the global carbon cycle and the world's oxygen supply. This process is largely driven by cyanobacteria, namely Synechococcus and Prochlorococcus. Genes encoding photosystem-II (PSII) reaction center proteins are found in many cyanophage genomes, and are expressed during the infection of their hosts. On the basis of metagenomics, cyanophage photosystem-I (PSI) gene cassettes were recently discovered with two gene arrangements psaJF→C→A→B→K→E→D and psaD→C→A→B. It was suggested that the horizontal transfer of PSII and PSI genes is increasing phage fitness. To better understand their diversity, we designed degenerate primers to cover a wide diversity of organisms, and using PCR we targeted the psaC→A arrangement, which is unique to cyanophages cassettes. We examined viral concentrates from four islands in the Pacific Ocean and found samples containing the psaC→A arrangement. Analyses of the amplified viral psaA gene revealed six subgroups varying in their level of similarity and %G+C content, suggesting that the diversity of cyanophage PSI genes is greater than originally thought.
Collapse
Affiliation(s)
- Gur Hevroni
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hagay Enav
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
300
|
Huertas MJ, López-Maury L, Giner-Lamia J, Sánchez-Riego AM, Florencio FJ. Metals in cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life (Basel) 2014; 4:865-86. [PMID: 25501581 PMCID: PMC4284471 DOI: 10.3390/life4040865] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/27/2014] [Accepted: 12/04/2014] [Indexed: 11/16/2022] Open
Abstract
Traces of metal are required for fundamental biochemical processes, such as photosynthesis and respiration. Cyanobacteria metal homeostasis acquires an important role because the photosynthetic machinery imposes a high demand for metals, making them a limiting factor for cyanobacteria, especially in the open oceans. On the other hand, in the last two centuries, the metal concentrations in marine environments and lake sediments have increased as a result of several industrial activities. In all cases, cells have to tightly regulate uptake to maintain their intracellular concentrations below toxic levels. Mechanisms to obtain metal under limiting conditions and to protect cells from an excess of metals are present in cyanobacteria. Understanding metal homeostasis in cyanobacteria and the proteins involved will help to evaluate the use of these microorganisms in metal bioremediation. Furthermore, it will also help to understand how metal availability impacts primary production in the oceans. In this review, we will focus on copper, nickel, cobalt and arsenic (a toxic metalloid) metabolism, which has been mainly analyzed in model cyanobacterium Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- María José Huertas
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, E-41092 Sevilla, Spain.
| | - Luis López-Maury
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, E-41092 Sevilla, Spain.
| | - Joaquín Giner-Lamia
- Systems Biology and Bioinformatics Laboratory, IBB-CBME, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Ana María Sánchez-Riego
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, E-41092 Sevilla, Spain.
| | - Francisco Javier Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, E-41092 Sevilla, Spain.
| |
Collapse
|