251
|
Fu L, Zhu W, Tian D, Tang Y, Ye Y, Wei Q, Zhang C, Qiu W, Qin D, Yang X, Huang Y. Dietary Supplement of Anoectochilus roxburghii (Wall.) Lindl. Polysaccharides Ameliorates Cognitive Dysfunction Induced by High Fat Diet via “Gut-Brain” Axis. Drug Des Devel Ther 2022; 16:1931-1945. [PMID: 35762015 PMCID: PMC9232844 DOI: 10.2147/dddt.s356934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/12/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Anoectochilus roxburghii (Wall.) Lindl. polysaccharides (ARPs) have been reported to exhibit multiple pharmacological activities including anti-inflammatory and anti-hyperglycemia. This study aims to investigate the effect of ARPs on cognitive dysfunction induced by high fat diet (HFD). Methods Six-week-old male mice were treated with ARPs by dietary supplementation for 14 weeks. The effect of ARPs on cognitive function was determined by assessing the changes in spatial learning and memory ability, neurotrophic factors in hippocampus, inflammatory parameters, intestinal barrier integrity, and gut microbiota. Results ARPs supplementation can effectively ameliorate cognitive dysfunction, decrease the phosphorylation levels of Tau protein in hippocampus. Meanwhile, the increased body weight, plasma glucose, total cholesterol, inflammatory factors induced by HFD were abolished by ARPs treatment. Furthermore, ARPs treatment restored the intestinal epithelial barrier as evidenced by upregulation of intestinal tight junction proteins. Additionally, ARPs supplementation significantly decreased the relative abundance of several bacteria genus such as Parabacteroides, which may play regulatory roles in cognitive function. Conclusion These results suggest that ARPs might be a promising strategy for the treatment of cognitive dysfunction induced by HFD. Mechanistically, alleviation of cognitive dysfunction by ARPs might be associated with the “gut-brain” axis.
Collapse
Affiliation(s)
- Liya Fu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Wanlong Zhu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Dongmei Tian
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yong Tang
- School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, People’s Republic of China
| | - Yun Ye
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Qiming Wei
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Chengbin Zhang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Wenqiao Qiu
- School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Xuping Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
- Correspondence: Xuping Yang; Yilan Huang, Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China, Email ;
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
252
|
Bonazzi E, Delaroque C, Chassaing B. Émulsifiants alimentaires et microbiote intestinal. Med Sci (Paris) 2022; 38:539-541. [DOI: 10.1051/medsci/2022068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
253
|
Cao H, Chen SF, Wang ZC, Dong XJ, Wang RR, Lin H, Wang Q, Zhao XJ. Intervention of 4% salmon phospholipid on metabolic syndrome in mice based on colonic lipidomics analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3088-3098. [PMID: 34775620 DOI: 10.1002/jsfa.11649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The incidence of metabolic syndrome (MetS) is increasing, and n-3 polyunsaturated fatty acids (PUFAs) in salmon (Oncorhynchus) phospholipids can effectively reduce the risk of MetS. RESULTS Under the intervention of 4% salmon phospholipid, the levels of fasting blood glucose (FBG), insulin, monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were significantly reduced in the plasma of MetS mice, whereas adiponectin was significantly increased. By screening, we found that the 18 differential metabolites, consisting of seven triglycerides (TGs), six diglycerides (DGs), one phosphatidylethanolamine (PE), three sphingomyelins (SMs) and one eicosanoid, could be the key differential metabolites, and two metabolic pathways were significantly affected: glycerolipid metabolism and glycerophospholipid metabolism. CONCLUSION 4% salmon phospholipids could affect MetS by inhibiting insulin resistance, reducing inflammatory factors and promoting the synthesis of PE, yet the mechanism required further study. Our results could help in the treatment of MetS. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Cao
- Team of Neonatal and Infant Development, Health and Nutrition (NDHN), School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Shu-Fen Chen
- Team of Neonatal and Infant Development, Health and Nutrition (NDHN), School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | | | - Xin-Jie Dong
- Team of Neonatal and Infant Development, Health and Nutrition (NDHN), School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Ran-Ran Wang
- School of Food Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Hong Lin
- School of Food Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Qi Wang
- School of Food Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Xiu-Ju Zhao
- Team of Neonatal and Infant Development, Health and Nutrition (NDHN), School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, PR China
| |
Collapse
|
254
|
Zhou Q, Deng J, Pan X, Meng D, Zhu Y, Bai Y, Shi C, Duan Y, Wang T, Li X, Sluijter JP, Xiao J. Gut microbiome mediates the protective effects of exercise after myocardial infarction. MICROBIOME 2022; 10:82. [PMID: 35637497 PMCID: PMC9153113 DOI: 10.1186/s40168-022-01271-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/11/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Gut microbiota plays important roles in health maintenance and diseases. Physical exercise has been demonstrated to be able to modulate gut microbiota. However, the potential role of gut microbiome in exercise protection to myocardial infarction (MI) remains unclear. RESULTS Here, we discovered exercise training ameliorated cardiac dysfunction and changed gut microbial richness and community structure post-MI. Moreover, gut microbiota pre-depletion abolished the protective effects of exercise training in MI mice. Furthermore, mice receiving microbiota transplants from exercised MI mice had better cardiac function compared to mice receiving microbiota transplants from non-exercised MI mice. Mechanistically, we analyzed metabolomics in fecal samples from exercised mice post-MI and identified 3-Hydroxyphenylacetic acid (3-HPA) and 4-Hydroxybenzoic acid (4-HBA), which could be applied individually to protect cardiac dysfunction post-MI and apoptosis through NRF2. CONCLUSIONS Together, our study provides new insights into the role of gut microbiome in exercise protection to MI, offers opportunities to modulate cardiovascular diseases by exercise, microbiome and gut microbiota-derived 3-HPA and 4-HBA. Video Abstract.
Collapse
Affiliation(s)
- Qiulian Zhou
- Institute of Geriatrics (Shanghai University), (The Sixth People's Hospital of Nantong), School of Medicine, Affiliated Nantong Hospital of Shanghai University, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, School of Life Science, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Jiali Deng
- Cardiac Regeneration and Ageing Lab, School of Life Science, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Xue Pan
- Institute of Geriatrics (Shanghai University), (The Sixth People's Hospital of Nantong), School of Medicine, Affiliated Nantong Hospital of Shanghai University, Shanghai University, Nantong, 226011, China
| | - Danni Meng
- Institute of Geriatrics (Shanghai University), (The Sixth People's Hospital of Nantong), School of Medicine, Affiliated Nantong Hospital of Shanghai University, Shanghai University, Nantong, 226011, China
| | - Yujiao Zhu
- Institute of Geriatrics (Shanghai University), (The Sixth People's Hospital of Nantong), School of Medicine, Affiliated Nantong Hospital of Shanghai University, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, School of Life Science, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Yuzheng Bai
- Cardiac Regeneration and Ageing Lab, School of Life Science, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Chao Shi
- Cardiac Regeneration and Ageing Lab, School of Life Science, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Yi Duan
- Cardiac Regeneration and Ageing Lab, School of Life Science, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Tianhui Wang
- Cardiac Regeneration and Ageing Lab, School of Life Science, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Joost Pg Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Utrecht, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
- UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), (The Sixth People's Hospital of Nantong), School of Medicine, Affiliated Nantong Hospital of Shanghai University, Shanghai University, Nantong, 226011, China.
- Cardiac Regeneration and Ageing Lab, School of Life Science, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
255
|
Panchal SK, John OD, Mathai ML, Brown L. Anthocyanins in Chronic Diseases: The Power of Purple. Nutrients 2022; 14:2161. [PMID: 35631301 PMCID: PMC9142943 DOI: 10.3390/nu14102161] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Anthocyanins are mainly purple-coloured phenolic compounds of plant origin that as secondary metabolites are important in plant survival. Understanding their health benefits in humans requires sourcing these unstable compounds in sufficient quantities at a reasonable cost, which has led to improved methods of extraction. Dark-coloured fruits, cereals and vegetables are current sources of these compounds. The range of potential sustainable sources is much larger and includes non-commercialised native plants from around the world and agri-waste containing anthocyanins. In the last 5 years, there have been significant advances in developing the therapeutic potential of anthocyanins in chronic human diseases. Anthocyanins exert their beneficial effects through improvements in gut microbiota, oxidative stress and inflammation, and modulation of neuropeptides such as insulin-like growth factor-1. Their health benefits in humans include reduced cognitive decline; protection of organs such as the liver, as well as the cardiovascular system, gastrointestinal tract and kidneys; improvements in bone health and obesity; and regulation of glucose and lipid metabolism. This review summarises some of the sources of anthocyanins and their mechanisms and benefits in the treatment of chronic human diseases.
Collapse
Affiliation(s)
- Sunil K. Panchal
- School of Science, Western Sydney University, Penrith, NSW 2753, Australia;
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW 2753, Australia
| | - Oliver D. John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; or
| | - Michael L. Mathai
- Institute of Health and Sport, College of Health and Biomedicine, Victoria University, Melbourne, VIC 3021, Australia;
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
256
|
Gan L, Bo T, Liu W, Wang D. The Gut Microbiota May Affect Personality in Mongolian Gerbils. Microorganisms 2022; 10:1054. [PMID: 35630496 PMCID: PMC9146877 DOI: 10.3390/microorganisms10051054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/22/2022] Open
Abstract
The "gut-microbiota-brain axis" reveals that gut microbiota plays a critical role in the orchestrating behavior of the host. However, the correlation between the host personalities and the gut microbiota is still rarely known. To investigate whether the gut microbiota of Mongolian gerbils (Meriones unguiculatus) differs between bold and shy personalities, we compared the gut microbiota of bold and shy gerbils, and then we transplanted the gut microbiota of bold and shy gerbils into middle group gerbils (individuals with less bold and shy personalities). We found a significant overall correlation between host boldness and gut microbiota. Even though there were no significant differences in alpha diversity and beta diversity of gut microbiota between bold and shy gerbils, the Firmicutes/Bacteroidetes phyla and Odoribacter and Blautia genus were higher in bold gerbils, and Escherichia_shigella genus was lower. Furthermore, the fecal microbiota transplantation showed that changes in gut microbiota could not evidently cause the increase or decrease in the gerbil's boldness score, but it increased the part of boldness behaviors by gavaging the "bold fecal microbiota". Overall, these data demonstrated that gut microbiota were significantly correlated with the personalities of the hosts, and alteration of microbiota could alter host boldness to a certain extent.
Collapse
Affiliation(s)
- Lin Gan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (L.G.); (T.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingbei Bo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (L.G.); (T.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (L.G.); (T.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dehua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (L.G.); (T.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
257
|
Chen L, Fan Z, Sun X, Qiu W, Chen Y, Zhou J, Lv G. Mendelian Randomization Rules Out Causation Between Inflammatory Bowel Disease and Non-Alcoholic Fatty Liver Disease. Front Pharmacol 2022; 13:891410. [PMID: 35662732 PMCID: PMC9161361 DOI: 10.3389/fphar.2022.891410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Inflammatory bowel disease (IBD) and non-alcoholic fatty liver disease (NAFLD) usually co-exist clinically. However, whether such association is causal is still unknown. Methods: Genetic variants were extracted as instrumental variables from the largest genome-wide association study (GWAS) of IBD, Crohn’s disease (CD) and ulcerative colitis (UC) with 25,042 cases and 34,915 controls (GWAS p-value < 5 × 10−8). Information of genetic variants in NAFLD was extracted from a GWAS with 1,483 cases and 17,781controls. Also, liver fat content (LFC) was included as the outcome. Then, a bi-direction Mendelian randomization (MR) was carried out to appraise the causal relationship between NAFLD on IBD. Besides, a multivariable MR (MVMR) design was carried to adjust for body mass index (BMI) and type 2 diabetes (T2D) as well. Results: Generally, IBD might not affect the risk of NAFLD (OR = 0.994 [0.970, 1.019]), together with its subtypes including UC and CD. However, genetically-elevated risk of IBD might cause liver fat accumulation (beta = 0.019, p-value = 0.016) while turning insignificant at Bonferroni correction. Besides, no causal effect of NAFLD on IBD was observed (OR = 0.968 [0.928, 1.009]), together with UC and CD. Also, genetically-elevated LFC could not impact IBD, UC and CD either. The MR CAUSE analysis supported these null associations and MVMR analysis also supported such null associations even after adjusting for BMI and T2D. Conclusion: This MR study ruled out the causal relationship between IBD and NAFLD, suggesting therapeutics targeting NAFLD might not work for IBD and vice versa.
Collapse
|
258
|
Vegas-Suárez S, Simón J, Martínez-Chantar ML, Moratalla R. Metabolic Diffusion in Neuropathologies: The Relevance of Brain-Liver Axis. Front Physiol 2022; 13:864263. [PMID: 35634148 PMCID: PMC9134112 DOI: 10.3389/fphys.2022.864263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Chronic liver diseases include a broad group of hepatic disorders from different etiologies and with varying degrees of progression and severity. Among them, non-alcoholic fatty (NAFLD) and alcoholic (ALD) liver diseases are the most frequent forms of expression, caused by either metabolic alterations or chronic alcohol consumption. The liver is the main regulator of energy homeostasis and metabolism of potentially toxic compounds in the organism, thus hepatic disorders often promote the release of harmful substances. In this context, there is an existing interconnection between liver and brain, with the well-named brain-liver axis, in which liver pathologies lead to the promotion of neurodegenerative disorders. Alzheimer's (AD) and Parkinson's (PD) diseases are the most relevant neurological disorders worldwide. The present work highlights the relevance of the liver-related promotion of these disorders. Liver-related hyperammonemia has been related to the promotion of perturbations in nervous systems, whereas the production of ketone bodies under certain conditions may protect from developing them. The capacity of the liver of amyloid-β (Aβ) clearance is reduced under liver pathologies, contributing to the development of AD. These perturbations are even aggravated by the pro-inflammatory state that often accompanies liver diseases, leading to the named neuroinflammation. The current nourishment habits, named as Western diet (WD) and alterations in the bile acid (BA) profile, whose homeostasis is controlled by the liver, have been also related to both AD and PD, whereas the supplementation with certain compounds, has been demonstrated to alleviate the pathologies.
Collapse
Affiliation(s)
- Sergio Vegas-Suárez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain,Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERned), Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - Jorge Simón
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III Institute of Health (ISCIII), Madrid, Spain,*Correspondence: María Luz Martínez-Chantar, ; Rosario Moratalla,
| | - Rosario Moratalla
- Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERned), Carlos III Institute of Health (ISCIII), Madrid, Spain,*Correspondence: María Luz Martínez-Chantar, ; Rosario Moratalla,
| |
Collapse
|
259
|
Cakebread J, Wallace OA, Henderson H, Jauregui R, Young W, Hodgkinson A. The impacts of bovine milk, soy beverage, or almond beverage on the growing rat microbiome. PeerJ 2022; 10:e13415. [PMID: 35573176 PMCID: PMC9104089 DOI: 10.7717/peerj.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/19/2022] [Indexed: 01/14/2023] Open
Abstract
Background Milk, the first food of mammals, helps to establish a baseline gut microbiota. In humans, milk and milk products are consumed beyond infancy, providing comprehensive nutritional value. Non-dairy beverages, produced from plant, are increasingly popular as alternatives to dairy milk. The nutritive value of some plant-based products continues to be debated, whilst investigations into impacts on the microbiome are rare. The aim of this study was to compare the impact of bovine milk, soy and almond beverages on the rat gut microbiome. We previously showed soy and milk supplemented rats had similar bone density whereas the almond supplemented group had compromised bone health. There is an established link between bone health and the microbiota, leading us to hypothesise that the microbiota of groups supplemented with soy and milk would be somewhat similar, whilst almond supplementation would be different. Methods Three-week-old male Sprague Dawley rats were randomly assigned to five groups (n = 10/group) and fed ad libitum for four weeks. Two control groups were fed either standard diet (AIN-93G food) or AIN-93G amino acids (AA, containing amino acids equivalent to casein but with no intact protein) and with water provided ad libitum. Three treatment groups were fed AIN-93G AA and supplemented with either bovine ultra-heat treatment (UHT) milk or soy or almond UHT beverages as their sole liquid source. At trial end, DNA was extracted from caecum contents, and microbial abundance and diversity assessed using high throughput sequencing of the V3 to V4 variable regions of the 16S ribosomal RNA gene. Results Almost all phyla (91%) differed significantly (FDR < 0.05) in relative abundance according to treatment and there were distinct differences seen in community structure between treatment groups at this level. At family level, forty taxa showed significantly different relative abundance (FDR < 0.05). Bacteroidetes (Bacteroidaceae) and Firmicutes populations (Lactobacillaceae, Clostridiaceae and Peptostreptococcaceae) increased in relative abundance in the AA almond supplemented group. Supplementation with milk resulted in increased abundance of Actinobacteria (Coriobacteriaceae and Bifidobacteriaceae) compared with other groups. Soy supplementation increased abundance of some Firmicutes (Lactobacilliaceae) but not Actinobacteria, as previously reported by others. Conclusion Supplementation with milk or plant-based drinks has broad impacts on the intestinal microbiome of young rats. Changes induced by cow milk were generally in line with previous reports showing increased relative abundance of Bifidobacteriacea, whilst soy and almond beverage did not. Changes induced by soy and almond drink supplementation were in taxa commonly associated with carbohydrate utilisation. This research provides new insight into effects on the microbiome of three commercially available products marketed for similar uses.
Collapse
Affiliation(s)
- Julie Cakebread
- Food and Biobased Products, AgResearch Ltd., Hamilton, New Zealand,Smart Foods Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
| | | | - Harold Henderson
- Food and Biobased Products, AgResearch Ltd., Hamilton, New Zealand
| | - Ruy Jauregui
- Digital Agriculture Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
| | - Wayne Young
- Smart Foods Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
| | | |
Collapse
|
260
|
Lee SHF, Ahmad SR, Lim YC, Zulkipli IN. The Use of Probiotic Therapy in Metabolic and Neurological Diseases. Front Nutr 2022; 9:887019. [PMID: 35592636 PMCID: PMC9110960 DOI: 10.3389/fnut.2022.887019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
The human gut is home to trillions of microbes that interact with host cells to influence and contribute to body functions. The number of scientific studies focusing on the gut microbiome has exponentially increased in recent years. Studies investigating factors that may potentially affect the gut microbiome and may be used for therapeutic purposes in diseases where dysbioses in the gut microbiome have been shown are of particular interest. This review compiles current evidence available in the scientific literature on the use of probiotics to treat metabolic diseases and autism spectrum disorders (ASDs) to analyze the efficacy of probiotics in these diseases. To do this, we must first define the healthy gut microbiome before looking at the interplay between the gut microbiome and diseases, and how probiotics affect this interaction. In metabolic diseases, such as obesity and diabetes, probiotic supplementation positively impacts pathological parameters. Conversely, the gut–brain axis significantly impacts neurodevelopmental disorders such as ASDs. However, manipulating the gut microbiome and disease symptoms using probiotics has less pronounced effects on neurodevelopmental diseases. This may be due to a more complex interplay between genetics and the environment in these diseases. In conclusion, the use of microbe-based probiotic therapy may potentially have beneficial effects in ameliorating the pathology of various diseases. Validation of available data for the development of personalized treatment regimens for affected patients is still required.
Collapse
|
261
|
Lin Y, Wang ZY, Wang MJ, Jiang ZM, Qin YQ, Huang TQ, Song Y, Liang HT, Liu EH. Baicalin attenuate diet-induced metabolic syndrome by improving abnormal metabolism and gut microbiota. Eur J Pharmacol 2022; 925:174996. [PMID: 35513018 DOI: 10.1016/j.ejphar.2022.174996] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
In this work, we examined whether baicalin (BC), a bioactive flavonoid in Scutellaria baicalensis Georgi, can reduce high-fat diet (HFD)-induced metabolic syndrome (MetS) in mice. The UPLC-QTOF/MS was used for metabolome profiles analysis, and an analysis of bacterial 16S rDNA in feces was used to examine the effects of BC on gut microbiota composition. Our results showed that BC (400 mg/kg) could reduce the body weight gain, decrease hepatic fat accumulation and abnormal blood lipids, and increase insulin sensitivity after 8 weeks of treatment. BC could reverse the alteration of 7 metabolites induced by HFD and the metabolic pathways responsive to BC intervention including citrate cycle, alanine, aspartate and glutamate metabolism, glycerophospholipid metabolism, and aminoacyl-tRNA biosynthesis. 16S rDNA analysis demonstrated that BC altered the composition and function of gut microbiota in MetS mice. Notably, we found that the change in succinic acid was negatively associated with the changes in Bacteroides and Sutterella, and positively associated with the change in Mucispirillum. Moreover, we confirmed that succinic acid displayed a metabolic protective effect on MetS mice. The antibiotic treatment verified that BC exerts metabolic protection through gut microbiota. Our findings suggested BC may be a potential therapeutic drug to ameliorate diet induced MetS and gut microbiome may be a novel mechanistic target of BC for treatment of MetS.
Collapse
Affiliation(s)
- Yang Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zi-Yuan Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; Public Experimental Platform, China Pharmaceutical University, Nanjing, China
| | - Ma-Jie Wang
- Public Experimental Platform, China Pharmaceutical University, Nanjing, China
| | - Zheng-Meng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ya-Qiu Qin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Tian-Qing Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yu Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hui-Ting Liang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
262
|
Wang M, Li J, Hu T, Zhao H. Metabolic fate of tea polyphenols and their crosstalk with gut microbiota. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
263
|
Shandilya S, Kumar S, Kumar Jha N, Kumar Kesari K, Ruokolainen J. Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection. J Adv Res 2022; 38:223-244. [PMID: 35572407 PMCID: PMC9091761 DOI: 10.1016/j.jare.2021.09.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/05/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background Recent research on the implications of gut microbiota on brain functions has helped to gather important information on the relationship between them. Pathogenesis of neurological disorders is found to be associated with dysregulation of gut-brain axis. Some gut bacteria metabolites are found to be directly associated with the increase in reactive oxygen species levels, one of the most important risk factors of neurodegeneration. Besides their morbid association, gut bacteria metabolites are also found to play a significant role in reducing the onset of these life-threatening brain disorders. Aim of Review Studies done in the recent past raises two most important link between gut microbiota and the brain: "gut microbiota-oxidative stress-neurodegeneration" and gut microbiota-antioxidant-neuroprotection. This review aims to gives a deep insight to our readers, of the collective studies done, focusing on the gut microbiota mediated oxidative stress involved in neurodegeneration along with a focus on those studies showing the involvement of gut microbiota and their metabolites in neuroprotection. Key Scientific Concepts of Review This review is focused on three main key concepts. Firstly, the mounting evidences from clinical and preclinical arenas shows the influence of gut microbiota mediated oxidative stress resulting in dysfunctional neurological processes. Therefore, we describe the potential role of gut microbiota influencing the vulnerability of brain to oxidative stress, and a budding causative in Alzheimer's and Parkinson's disease. Secondly, contributing roles of gut microbiota has been observed in attenuating oxidative stress and inflammation via its own metabolites or by producing secondary metabolites and, also modulation in gut microbiota population with antioxidative and anti-inflammatory probiotics have shown promising neuro resilience. Thirdly, high throughput in silico tools and databases also gives a correlation of gut microbiome, their metabolites and brain health, thus providing fascinating perspective and promising new avenues for therapeutic options.
Collapse
Affiliation(s)
- Shruti Shandilya
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Sandeep Kumar
- Department of Biochemistry, International Institute of Veterinary Education and Research, Haryana, India
- Clinical Science, Targovax Oy, Saukonpaadenranta 2, Helsinki 00180, Finland
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Plot no. 32–34, Knowledge Park III, Greater Noida 201310, India
| | | | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| |
Collapse
|
264
|
Gupta B, Rai R, Oertel M, Raeman R. Intestinal Barrier Dysfunction in Fatty Liver Disease: Roles of Microbiota, Mucosal Immune System, and Bile Acids. Semin Liver Dis 2022; 42:122-137. [PMID: 35738255 PMCID: PMC9307091 DOI: 10.1055/s-0042-1748037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of progressive liver diseases ranging from simple steatosis to steatohepatitis and fibrosis. Globally, NAFLD is the leading cause of morbidity and mortality associated with chronic liver disease, and NAFLD patients are at a higher risk of developing cirrhosis and hepatocellular carcinoma. While there is a consensus that inflammation plays a key role in promoting NAFLD progression, the underlying mechanisms are not well understood. Recent clinical and experimental evidence suggest that increased hepatic translocation of gut microbial antigens, secondary to diet-induced impairment of the intestinal barrier may be important in driving hepatic inflammation in NAFLD. Here, we briefly review various endogenous and exogenous factors influencing the intestinal barrier and present recent advances in our understanding of cellular and molecular mechanisms underlying intestinal barrier dysfunction in NAFLD.
Collapse
Affiliation(s)
- Biki Gupta
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ravi Rai
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Oertel
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Reben Raeman
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
265
|
Benech N, Rolhion N, Sokol H. Gut Microbiota Reprogramming of Tryptophan Metabolism During Pregnancy Shapes Host Insulin Resistance. Gastroenterology 2022; 162:1587-1589. [PMID: 35247461 DOI: 10.1053/j.gastro.2022.01.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Nicolas Benech
- Gastroenterology Department, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Saint-Antoine, Saint Antoine Hospital, Paris, France; French Group of Faecal Microbiota Transplantation, Paris, France; Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Nathalie Rolhion
- Gastroenterology Department, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Saint-Antoine, Saint Antoine Hospital, Paris, France; French Group of Faecal Microbiota Transplantation, Paris, France; Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Harry Sokol
- Gastroenterology Department, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Saint-Antoine, Saint Antoine Hospital, Paris, France; French Group of Faecal Microbiota Transplantation, Paris, France; Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France; Institut National de la Recherche Agronomique, UMR1319, Micalis & AgroParisTech, Jouy en Josas, France.
| |
Collapse
|
266
|
Su W, Du Y, Lian F, Wu H, Zhang X, Yang W, Duan Y, Pan Y, Liu W, Wu A, Zhao B, Wu C, Wu S. Standards for Collection, Preservation, and Transportation of Fecal Samples in TCM Clinical Trials. Front Cell Infect Microbiol 2022; 12:783682. [PMID: 35521221 PMCID: PMC9065286 DOI: 10.3389/fcimb.2022.783682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 03/28/2022] [Indexed: 12/21/2022] Open
Abstract
Background Unlike chemical drugs with a single or a few kinds of active compounds, traditional Chinese medicines (TCMs)uses herbal formulas composed of numerous kinds of chemical constituents. Therefore, TCM clinical trials require unique and stricter standards for collecting, preserving, and transporting fecal samples than those used for chemical drugs. Unfortunately, there are no special standards for processing fecal samples in TCM clinical trials. Methods We invited interdisciplinary experts within TCM clinical trials and gut microbiome research to help formulate this standard. After more than a year's in-depth discussion and amendments, we achieved a standard via expert interviews, literature research, questionnaire surveys, and public opinion solicitation. This standard has been reviewed and approved by the Standards Office of China of the Association of Chinese medicine. Results We established a sample information processing method prior to TCM clinical sample collection, which is adapted to the unique features of TCM. The method formulates detailed processing requirements for TCM information in addition to the factors that may disturb the gut microbiome. We also constructed a set of methods for collecting, preserving, and transporting fecal samples that meet the characteristics of TCM. These methods formulate detailed operating specifications on the collection approaches, storage conditions, transportation requirements, and management of fecal samples. Conclusions This standard guides the information processing prior to sample collection and the standard operating procedures for the collection, preservation, and transportation of fecal samples in TCM clinical trials, which also can be used as a reference by clinicians and researchers in modern medicines.
Collapse
Affiliation(s)
- Wenquan Su
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yawei Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fengmei Lian
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Wu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinrong Zhang
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenli Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yunfeng Duan
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuanming Pan
- The 7th Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Weijng Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Aiming Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bowen Zhao
- Beijing QuantiHealth Technology Co, Ltd, Beijing, China
| | - Chongming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shengxian Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
267
|
Niewiadomska J, Gajek-Marecka A, Gajek J, Noszczyk-Nowak A. Biological Potential of Polyphenols in the Context of Metabolic Syndrome: An Analysis of Studies on Animal Models. BIOLOGY 2022; 11:biology11040559. [PMID: 35453758 PMCID: PMC9029039 DOI: 10.3390/biology11040559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023]
Abstract
Metabolic syndrome (MetS) is a disease that has a complex etiology. It is defined as the co-occurrence of several pathophysiological disorders, including obesity, hyperglycemia, hypertension, and dyslipidemia. MetS is currently a severe problem in the public health care system. As its prevalence increases every year, it is now considered a global problem among adults and young populations. The treatment of choice comprises lifestyle changes based mainly on diet and physical activity. Therefore, researchers have been attempting to discover new substances that could help reduce or even reverse the symptoms when added to food. These attempts have resulted in numerous studies. Many of them have investigated the bioactive potential of polyphenols as a "possible remedy", stemming from their antioxidative and anti-inflammatory effects and properties normalizing carbohydrate and lipid metabolism. Polyphenols may be supportive in preventing or delaying the onset of MetS or its complications. Additionally, the consumption of food rich in polyphenols should be considered as a supplement for antidiabetic drugs. To ensure the relevance of the studies on polyphenols' properties, mechanisms of action, and potential human health benefits, researchers have used laboratory animals displaying pathophysiological changes specific to MetS. Polyphenols or their plant extracts were chosen according to the most advantageous mitigation of pathological changes in animal models best reflecting the components of MetS. The present paper comprises an overview of animal models of MetS, and promising polyphenolic compounds whose bioactive potential, effect on metabolic pathways, and supplementation-related benefits were analyzed based on in vivo animal models.
Collapse
Affiliation(s)
- Joanna Niewiadomska
- Doctoral School of Wroclaw, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- Correspondence:
| | | | - Jacek Gajek
- Department of Emergency Medical Service, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Agnieszka Noszczyk-Nowak
- Department of Internal and Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| |
Collapse
|
268
|
Dong Z, Lv W, Zhang C, Chen S. Correlation Analysis of Gut Microbiota and Serum Metabolome With Porphyromonas gingivalis-Induced Metabolic Disorders. Front Cell Infect Microbiol 2022; 12:858902. [PMID: 35463645 PMCID: PMC9022097 DOI: 10.3389/fcimb.2022.858902] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Periodontitis has been demonstrated to increase the risk of metabolic syndrome (MetS), but the underlying mechanism remains unclear. Recent studies have indicated periodontopathic bacteria such as Porphyromonas gingivalis could induce gut microbiota (GM) dysbiosis and aggravate metabolic disorders. However, the effects of microbial metabolites have barely been evaluated. Here, we investigated the alteration of serum metabolome with P. gingivalis-induced metabolic disorders, and explored the correlations of GM and serum metabolites. In this study, we orally administered P. gingivalis ATCC33277 to C57BL/6 mice and performed metagenomic sequencing and untargeted metabolomics with fecal samples and serum collection. In vivo experiments showed a higher proportion of fat mass and worse glucose tolerance in P. gingivalis-administered mice, accompanied with an increase of adipose inflammation and gut permeability, which was similar to HFD-induced obese mice. Metagenomic sequencing indicated a compositional and functional alteration of GM. Untargeted metabolomics revealed an alteration of metabolites in P. gingivalis-administered mice, and most of them were engaged in metabolic pathways, such as tryptophan metabolism and choline metabolism. Correlation analysis between GM and serum metabolome indicated strong relativity with P. gingivalis administration. These results demonstrated some specific microbiota-derived metabolites in the pathogenesis of P. gingivalis-induced metabolic disorders, providing promising targets for the development of novel treatment strategies for MetS.
Collapse
Affiliation(s)
- ZhengJie Dong
- Department of Implantology, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
| | - WanQi Lv
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - ChenYang Zhang
- Department of Implantology, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
- *Correspondence: ChenYang Zhang, ; Si Chen,
| | - Si Chen
- Department of Implantology, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
- State Key Laboratory of Molecular Engineering of Ploymers, Fudan University, Shanghai, China
- *Correspondence: ChenYang Zhang, ; Si Chen,
| |
Collapse
|
269
|
Sun CY, Zheng ZL, Chen CW, Lu BW, Liu D. Targeting Gut Microbiota With Natural Polysaccharides: Effective Interventions Against High-Fat Diet-Induced Metabolic Diseases. Front Microbiol 2022; 13:859206. [PMID: 35369480 PMCID: PMC8965082 DOI: 10.3389/fmicb.2022.859206] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Unhealthy diet, in particular high-fat diet (HFD) intake, can cause the development of several metabolic disorders, including obesity, hyperlipidemia, type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and metabolic syndrome (MetS). These popular metabolic diseases reduce the quality of life, and induce premature death worldwide. Evidence is accumulating that the gut microbiota is inextricably associated with HFD-induced metabolic disorders, and dietary intervention of gut microbiota is an effective therapeutic strategy for these metabolic dysfunctions. Polysaccharides are polymeric carbohydrate macromolecules and sources of fermentable dietary fiber that exhibit biological activities in the prevention and treatment of HFD-induced metabolic diseases. Of note, natural polysaccharides are among the most potent modulators of the gut microbiota composition. However, the prebiotics-like effects of polysaccharides in treating HFD-induced metabolic diseases remain elusive. In this review, we introduce the critical role of gut microbiota human health and HFD-induced metabolic disorders. Importantly, we review current knowledge about the role of natural polysaccharides in improving HFD-induced metabolic diseases by regulating gut microbiota.
Collapse
Affiliation(s)
- Chao-Yue Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | | | - Cun-Wu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Bao-Wei Lu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| |
Collapse
|
270
|
Burtscher J, Ticinesi A, Millet GP, Burtscher M, Strasser B. Exercise-microbiota interactions in aging-related sarcopenia. J Cachexia Sarcopenia Muscle 2022; 13:775-780. [PMID: 35142446 PMCID: PMC8978000 DOI: 10.1002/jcsm.12942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub (MRH), University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Parma University-Hospital, Parma, Italy
| | - Gregoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, Vienna, Austria
- JPI-HDHL Knowledge Platform on Food, Diet, Intestinal Microbiomics and Human Health, The Netherlands Organisation for Health Research and Development, Amsterdam, The Netherlands
| |
Collapse
|
271
|
Zhu L, Ye C, Hu B, Xia H, Bian Q, Liu Y, Kong M, Zhou S, Liu H. Regulation of gut microbiota and intestinal metabolites by Poria cocos oligosaccharides improves glycolipid metabolism disturbance in high-fat diet-fed mice. J Nutr Biochem 2022; 107:109019. [DOI: 10.1016/j.jnutbio.2022.109019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/04/2022] [Accepted: 03/18/2022] [Indexed: 01/03/2023]
|
272
|
Charitos IA, Topi S, Gagliano-Candela R, De Nitto E, Polimeno L, Montagnani M, Santacroce L. The toxic effects of endocrine disrupting chemicals (EDCs) on gut microbiota: Bisphenol A (BPA). A review. Endocr Metab Immune Disord Drug Targets 2022; 22:716-727. [PMID: 35339192 DOI: 10.2174/1871530322666220325114045] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/01/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bisphenol A (BPA), an important industrial material widely applied in daily products, is considered an endocrine-disrupting chemical that may adversely affect humans. Growing evidence have shown that intestinal bacterial alterations caused by BPA exposure play an important role in several local and systemic diseases. AIM OF THE STUDY finding evidence that BPA-induced alterations in gut microbiota composition and activity may perturb its role on human health. RESULTS evidence from several experimental settings show that both low and high doses of BPA, interfere with the hormonal, homeostatic and reproductive systems in both animals and human systems. Moreover, it has recently been classified as an environmental obesogenic, with metabolic-disrupting effects on lipid metabolism and pancreatic b-cell functions. Several evidence characterize PBA as an environmental contributor to type II diabetes, metabolic syndrome, and obesity. However, the highest estimates of the exposure derived from foods alone or in combination with other sources are 3 to 5 times below the new tolerable daily intake (TDI) value, today reduced by the European Food Safety Authority (EFSA) experts from 50 micrograms per kilogramme of bodyweight per day (µg/kg bw/day) to 4 µg/kg bw/day. CONCLUSIONS Considering estimates for the total amount of BPA that can be ingested daily over a lifetime, many International Health Authorities conclude that dietary exposure of adult humans to BPA does not represent a risk to consumers' health, declaring its safety due to very-low established levels in food and water and declare any appreciable health risk.
Collapse
Affiliation(s)
- Ioannis Alexandros Charitos
- National Poison Center, OO. RR. University Hospital of Foggia, Foggia, Italy
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (CEDICLO), University of Bari, Bari, Italy
- Department of Clinical Disciplines, University of Elbasan, Elbasan, Albania
| | - Skender Topi
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (CEDICLO), University of Bari, Bari, Italy
- Department of Clinical Disciplines, University of Elbasan, Elbasan, Albania
| | - Roberto Gagliano-Candela
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (CEDICLO), University of Bari, Bari, Italy
- Department of Interdisciplinary Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari, Bari, Italy
| | - Emanuele De Nitto
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, Section of Biochemistry, School of Medicine, University of Bari, Bari, Italy
| | - Lorenzo Polimeno
- Department of Clinical Disciplines, University of Elbasan, Elbasan, Albania
- Polypheno Academic Spin Off, University of Bari, Bari, Italy
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, School of Medicine, University of Bari, Bari, Italy
| | - Luigi Santacroce
- Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies (CEDICLO), University of Bari, Bari, Italy
- Department of Clinical Disciplines, University of Elbasan, Elbasan, Albania
- Department of Interdisciplinary Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari, Bari, Italy
- Polypheno Academic Spin Off, University of Bari, Bari, Italy
| |
Collapse
|
273
|
Zhang P, Kong L, Huang H, Pan Y, Zhang D, Jiang J, Shen Y, Xi C, Lai J, Ng CH, Hu S. Gut Microbiota – A Potential Contributor in the Pathogenesis of Bipolar Disorder. Front Neurosci 2022; 16:830748. [PMID: 35401095 PMCID: PMC8984199 DOI: 10.3389/fnins.2022.830748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Bipolar disorder (BD) is one of the major psychiatric disorders that is characterized by recurrent episodes of depression and mania (or hypomania), leading to seriously adverse outcomes with unclear pathogenesis. There is an underlying relationship between bacterial communities residing in the gut and brain function, which together form the gut-brain axis (GBA). Recent studies have shown that changes in the gut microbiota have been observed in a large number of BD patients, so the axis may play a role in the pathogenesis of BD. This review summarizes briefly the relationship between the GBA and brain function, the composition and changes of gut microbiota in patients with BD, and further explores the potential role of GBA-related pathway in the pathogenesis of BD as well as the limitations in this field at present in order to provide new ideas for the future etiology research and drug development.
Collapse
Affiliation(s)
- Peifen Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Lingzhuo Kong
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huimin Huang
- Department of Psychiatry, Wenzhou Medical University, Wenzhou, China
| | - Yanmeng Pan
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danhua Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajun Jiang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Shen
- Department of Psychiatry, Wenzhou Medical University, Wenzhou, China
| | - Caixi Xi
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
| | - Chee H. Ng
- Department of Psychiatry, The Melbourne Clinic and St Vincent’s Hospital, University of Melbourne, Richmond, VIC, Australia
- *Correspondence: Chee H. Ng,
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Shaohua Hu,
| |
Collapse
|
274
|
Tolonen AC, Beauchemin N, Bayne C, Li L, Tan J, Lee J, Meehan BM, Meisner J, Millet Y, LeBlanc G, Kottler R, Rapp E, Murphy C, Turnbaugh PJ, von Maltzahn G, Liu CM, van Hylckama Vlieg JET. Synthetic glycans control gut microbiome structure and mitigate colitis in mice. Nat Commun 2022; 13:1244. [PMID: 35273143 PMCID: PMC8913648 DOI: 10.1038/s41467-022-28856-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
Relative abundances of bacterial species in the gut microbiome have been linked to many diseases. Species of gut bacteria are ecologically differentiated by their abilities to metabolize different glycans, making glycan delivery a powerful way to alter the microbiome to promote health. Here, we study the properties and therapeutic potential of chemically diverse synthetic glycans (SGs). Fermentation of SGs by gut microbiome cultures results in compound-specific shifts in taxonomic and metabolite profiles not observed with reference glycans, including prebiotics. Model enteric pathogens grow poorly on most SGs, potentially increasing their safety for at-risk populations. SGs increase survival, reduce weight loss, and improve clinical scores in mouse models of colitis. Synthetic glycans are thus a promising modality to improve health through selective changes to the gut microbiome.
Collapse
Affiliation(s)
| | - Nicholas Beauchemin
- Kaleido Biosciences, Lexington, MA, 02421, USA.,Seres Therapeutics, Cambridge, MA, 02139, USA
| | | | - Lingyao Li
- Kaleido Biosciences, Lexington, MA, 02421, USA
| | - Jie Tan
- Kaleido Biosciences, Lexington, MA, 02421, USA
| | - Jackson Lee
- Kaleido Biosciences, Lexington, MA, 02421, USA
| | - Brian M Meehan
- Kaleido Biosciences, Lexington, MA, 02421, USA.,Pareto Bio, Cambridge, MA, 02140, USA
| | | | - Yves Millet
- Kaleido Biosciences, Lexington, MA, 02421, USA
| | | | | | - Erdmann Rapp
- glyXera GmbH, 39120, Magdeburg, Germany.,Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | - Chris Murphy
- Kaleido Biosciences, Lexington, MA, 02421, USA.,Bacainn Therapeutics, Inc and Morningside BioPharma Advisory, Concord, MA, 01742, USA
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Geoffrey von Maltzahn
- Kaleido Biosciences, Lexington, MA, 02421, USA.,Flagship Pioneering, Cambridge, MA, 02142, USA
| | - Christopher M Liu
- Kaleido Biosciences, Lexington, MA, 02421, USA.,Exo Therapeutics, Watertown, MA, 02472, USA
| | | |
Collapse
|
275
|
Guo J, Guo X, Sun Y, Li Z, Jia P. Application of omics in hypertension and resistant hypertension. Hypertens Res 2022; 45:775-788. [PMID: 35264783 DOI: 10.1038/s41440-022-00885-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022]
Abstract
Hypertension is a major modifiable risk factor that affects the global health burden. Despite the availability of multiple antihypertensive drugs, blood pressure is often not optimally controlled. The prevalence of true resistant hypertension in treated hypertensive patients is ~2-20%, and these patients are at higher risk for adverse events and poor clinical outcomes. Therefore, an in-depth dissection of the pathophysiological mechanisms of hypertension and resistant hypertension is needed to identify more effective targets for regulating blood pressure. Omics technologies, such as genomics, transcriptomics, proteomics, metabolomics, and microbiomics, can accurately present the characteristics of organisms at varying molecular levels. Integrative omics can further reveal the network of interactions between molecular levels and provide a complete dynamic view of the organism. In this review, we describe the applications, progress, and challenges of omics technologies in hypertension. Specifically, we discuss the application of omics in resistant hypertension. We believe that omics approaches will produce a better understanding of the pathogenesis of hypertension and resistant hypertension and improve diagnostic and therapeutic strategies, thus increasing rates of blood pressure control and reducing the public health burden of hypertension.
Collapse
Affiliation(s)
- Jiuqi Guo
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaofan Guo
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Zhao Li
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Pengyu Jia
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
276
|
Chassaing B, Compher C, Bonhomme B, Liu Q, Tian Y, Walters W, Nessel L, Delaroque C, Hao F, Gershuni V, Chau L, Ni J, Bewtra M, Albenberg L, Bretin A, McKeever L, Ley RE, Patterson AD, Wu GD, Gewirtz AT, Lewis JD. Randomized Controlled-Feeding Study of Dietary Emulsifier Carboxymethylcellulose Reveals Detrimental Impacts on the Gut Microbiota and Metabolome. Gastroenterology 2022; 162:743-756. [PMID: 34774538 PMCID: PMC9639366 DOI: 10.1053/j.gastro.2021.11.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Epidemiologic and murine studies suggest that dietary emulsifiers promote development of diseases associated with microbiota dysbiosis. Although the detrimental impact of these compounds on the intestinal microbiota and intestinal health have been demonstrated in animal and in vitro models, impact of these food additives in healthy humans remains poorly characterized. METHODS To examine this notion in humans, we performed a double-blind controlled-feeding study of the ubiquitous synthetic emulsifier carboxymethylcellulose (CMC) in which healthy adults consumed only emulsifier-free diets (n = 9) or an identical diet enriched with 15 g per day of CMC (n = 7) for 11 days. RESULTS Relative to control subjects, CMC consumption modestly increased postprandial abdominal discomfort and perturbed gut microbiota composition in a way that reduced its diversity. Moreover, CMC-fed subjects exhibited changes in the fecal metabolome, particularly reductions in short-chain fatty acids and free amino acids. Furthermore, we identified 2 subjects consuming CMC who exhibited increased microbiota encroachment into the normally sterile inner mucus layer, a central feature of gut inflammation, as well as stark alterations in microbiota composition. CONCLUSIONS These results support the notion that the broad use of CMC in processed foods may be contributing to increased prevalence of an array of chronic inflammatory diseases by altering the gut microbiome and metabolome (ClinicalTrials.gov, number NCT03440229).
Collapse
Affiliation(s)
- Benoit Chassaing
- INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases,'' CNRS UMR 8104, Université de Paris, Paris, France.
| | - Charlene Compher
- School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brittaney Bonhomme
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania,Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qing Liu
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania
| | - Yuan Tian
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania
| | - William Walters
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lisa Nessel
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Clara Delaroque
- INSERM U1016, team “Mucosal microbiota in chronic inflammatory diseases,” CNRS UMR 8104, Université de Paris, Paris, France
| | - Fuhua Hao
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania
| | - Victoria Gershuni
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lillian Chau
- Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Josephine Ni
- Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Meenakshi Bewtra
- Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania,Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lindsey Albenberg
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alexis Bretin
- Institute for Biomedical Sciences, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, Georgia
| | - Liam McKeever
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania,Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Andrew D. Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew T. Gewirtz
- Institute for Biomedical Sciences, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, Georgia
| | - James D. Lewis
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania,Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
277
|
Hsu CN, Yu HR, Chan JYH, Wu KLH, Lee WC, Tain YL. The Impact of Gut Microbiome on Maternal Fructose Intake-Induced Developmental Programming of Adult Disease. Nutrients 2022; 14:nu14051031. [PMID: 35268005 PMCID: PMC8912426 DOI: 10.3390/nu14051031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/11/2022] Open
Abstract
Excessive or insufficient maternal nutrition can influence fetal development and the susceptibility of offspring to adult disease. As eating a fructose-rich diet is becoming more common, the effects of maternal fructose intake on offspring health is of increasing relevance. The gut is required to process fructose, and a high-fructose diet can alter the gut microbiome, resulting in gut dysbiosis and metabolic disorders. Current evidence from animal models has revealed that maternal fructose consumption causes various components of metabolic syndrome in adult offspring, while little is known about how gut microbiome is implicated in fructose-induced developmental programming and the consequential risks for developing chronic disease in offspring. This review will first summarize the current evidence supporting the link between fructose and developmental programming of adult diseases. This will be followed by presenting how gut microbiota links to common mechanisms underlying fructose-induced developmental programming. We also provide an overview of the reprogramming effects of gut microbiota-targeted therapy on fructose-induced developmental programming and how this approach may prevent adult-onset disease. Using gut microbiota-targeted therapy to prevent maternal fructose diet-induced developmental programming, we have the potential to mitigate the global burden of fructose-related disorders.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Julie Y. H. Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.Y.H.C.); (K.L.H.W.)
| | - Kay L. H. Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.Y.H.C.); (K.L.H.W.)
| | - Wei-Chia Lee
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.Y.H.C.); (K.L.H.W.)
- Correspondence: ; Tel.: +886-975-056-995; Fax: +886-7733-8009
| |
Collapse
|
278
|
Vasileva SS, Tucker J, Siskind D, Eyles D. Does the gut microbiome mediate antipsychotic-induced metabolic side effects in schizophrenia? Expert Opin Drug Saf 2022; 21:625-639. [PMID: 35189774 DOI: 10.1080/14740338.2022.2042251] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Second-generation antipsychotics (SGAs) are the most effective treatment for people with schizophrenia. Despite their effectiveness in treating psychotic symptoms, they have been linked to metabolic, cardiovascular and gastrointestinal side-effects. The gut microbiome has been implicated in potentiating symptoms of schizophrenia, response to treatment and medication-induced side effects and thus presents a novel target mediating second-generation antipsychotic-induced side effects in patients. AREAS COVERED This narrative review presents evidence from clinical and pre-clinical studies exploring the relationship between the gut microbiome, schizophrenia, second-generation antipsychotics and antipsychotic-induced side-effects. It also covers evidence for psychobiotic treatment as a potential supplementary therapy for people with schizophrenia. EXPERT OPINION The gut microbiome has the potential to mediate antipsychotic-induced side-effects in people with schizophrenia. Microbiome-focused treatments should be considered in combination with standard therapy in order to ameliorate debilitating drug-induced side effects, increase quality of life and potentially improve psychotic symptoms. Future studies should aim to collect not only microbiome data, but also metabolomic measures, dietary information and behavioral data.
Collapse
Affiliation(s)
| | - Jack Tucker
- Metro South Addiction and Mental Health Service, Metro South Health, Brisbane, Australia.,University of Queensland School of Clinical Medicine, Brisbane, Australia
| | - Dan Siskind
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Metro South Addiction and Mental Health Service, Metro South Health, Brisbane, Australia.,University of Queensland School of Clinical Medicine, Brisbane, Australia.,Queensland Centre for Mental Health Research, Brisbane, Australia
| | - Darryl Eyles
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, Brisbane, Australia
| |
Collapse
|
279
|
Nozu T, Okumura T. Pathophysiological Commonality Between Irritable Bowel Syndrome and Metabolic Syndrome: Role of Corticotropin-releasing Factor-Toll-like Receptor 4-Proinflammatory Cytokine Signaling. J Neurogastroenterol Motil 2022; 28:173-184. [PMID: 35189599 PMCID: PMC8978123 DOI: 10.5056/jnm21002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
Irritable bowel syndrome (IBS) displays chronic abdominal pain with altered defecation. Most of the patients develop visceral hypersensitivity possibly resulting from impaired gut barrier and altered gut microbiota. We previously demonstrated that colonic hyperpermeability with visceral hypersensitivity in animal IBS models, which is mediated via corticotropin-releasing factor (CRF)-Toll-like receptor 4 (TLR4)-proinflammatory cytokine signaling. CRF impairs gut barrier via TLR4. Leaky gut induces bacterial translocation resulting in dysbiosis, and increases lipopolysaccharide (LPS). Activation of TLR4 by LPS increases the production of proinflammatory cytokines, which activate visceral sensory neurons to induce visceral hypersensitivity. LPS also activates CRF receptors to further increase gut permeability. Metabolic syndrome (MS) is a cluster of cardiovascular risk factors, including insulin resistance, obesity, dyslipidemia, and hypertension, and recently several researchers suggest the possibility that impaired gut barrier and dysbiosis with low-grade systemic inflammation are involved in MS. Moreover, TLR4-proinflammatory cytokine contributes to the development of insulin resistance and obesity. Thus, the existence of pathophysiological commonality between IBS and MS is expected. This review discusses the potential mechanisms of IBS and MS with reference to gut barrier and microbiota, and explores the possibility of existence of pathophysiological link between these diseases with a focus on CRF, TLR4, and proinflammatory cytokine signaling. We also review epidemiological data supporting this possibility, and discuss the potential of therapeutic application of the drugs used for MS to IBS treatment. This notion may pave the way for exploring novel therapeutic approaches for these disorders.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.,Center for Medical Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.,Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
280
|
Zhang M, Zhu Y, Zhu Z. Research advances in the influence of lipid metabolism on cognitive impairment. IBRAIN 2022; 10:83-92. [PMID: 38682015 PMCID: PMC11045198 DOI: 10.1002/ibra.12018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 05/01/2024]
Abstract
Cognitive impairment (CI) is a mental disorder related to cognition and understanding, which is mainly categorized into mild CI and senile dementia. This disease is associated with multiple factors, such as chronic brain injury, aging, chronic systemic disease, mental state, and psychological factors. However, the pathological mechanism of CI remains unclear; it is usually associated with such underlying diseases as diabetes and hyperlipidemia. It has been demonstrated that abundant lipid metabolism indexes in the human body are closely related to CI, including total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, apolipoprotein, and so forth. As a crucial risk factor for CI, hyperlipidemia is of great significance in the occurrence and development of CI. However, the specific correlation between dyslipidemia and CI is still not fully elucidated. Besides, the efficacy of lipid-lowering drugs in the prophylaxis and treatment of CI has not been clarified. In this study, relevant advances in the influence of lipid metabolism disorders in CI will be reviewed, in an attempt to explore the effect of mediating blood lipid levels on the prophylaxis and treatment of CI, thus providing a reference for its clinical management.
Collapse
Affiliation(s)
- Min Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Suining Central HospitalSuiningSichuanChina
| | - Yu‐Hang Zhu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhao‐Qiong Zhu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
281
|
Li J, Zhang AH, Wu FF, Wang XJ. Alterations in the Gut Microbiota and Their Metabolites in Colorectal Cancer: Recent Progress and Future Prospects. Front Oncol 2022; 12:841552. [PMID: 35223525 PMCID: PMC8875205 DOI: 10.3389/fonc.2022.841552] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer morbidity and mortality worldwide. The etiology and pathogenesis of CRC remain unclear. A growing body of evidence suggests dysbiosis of gut bacteria can contribute to the occurrence and development of CRC by generating harmful metabolites and changing host physiological processes. Metabolomics, a systems biology method, will systematically study the changes in metabolites in the physiological processes of the body, eventually playing a significant role in the detection of metabolic biomarkers and improving disease diagnosis and treatment. Metabolomics, in particular, has been highly beneficial in tracking microbially derived metabolites, which has substantially advanced our comprehension of host-microbiota metabolic interactions in CRC. This paper has briefly compiled recent research progress of the alterations of intestinal flora and its metabolites associated with CRC and the application of association analysis of metabolomics and gut microbiome in the diagnosis, prevention, and treatment of CRC; furthermore, we discuss the prospects for the problems and development direction of this association analysis in the study of CRC. Gut microbiota and their metabolites influence the progression and causation of CRC, and the association analysis of metabolomics and gut microbiome will provide novel strategies for the prevention, diagnosis, and therapy of CRC.
Collapse
Affiliation(s)
- Jing Li
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
- National Chinmedomics Research Center, National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ai-hua Zhang
- National Chinmedomics Research Center, National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang-fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Xi-jun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
- National Chinmedomics Research Center, National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
282
|
Tropical fruits from Australia as potential treatments for metabolic syndrome. Curr Opin Pharmacol 2022; 63:102182. [PMID: 35149297 DOI: 10.1016/j.coph.2022.102182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/16/2022]
Abstract
Australia has a unique and diverse flora, including indigenous fruits, used by Australian Aboriginals for food and medicines for up to 45,000 years as well as recently introduced fruits for commercial production. However, this range of fruits has not led to the development of functional foods, for example for chronic inflammatory diseases such as metabolic syndrome including obesity, hypertension, fatty liver and diabetes. This review examines the potential of tropical and subtropical fruits from Australia to be used as functional foods for metabolic syndrome, including Davidson's plum, Queen Garnet plum, durian, litchi, breadfruit, jackfruit, mangosteen, papaya, jabuticaba, coffee and seaweed. Preclinical studies have defined potential responses of these functional foods in metabolic syndrome but the usefulness in humans with metabolic syndrome requires clinical studies which are scarce in the relevant literature. Overall, these Australian examples show that tropical fruits can provide functional foods to decrease chronic inflammatory diseases.
Collapse
|
283
|
Mora-Janiszewska O, Faryniak-Zuzak A, Darmochwał-Kolarz D. Epigenetic Links between Microbiota and Gestational Diabetes. Int J Mol Sci 2022; 23:1831. [PMID: 35163753 PMCID: PMC8837149 DOI: 10.3390/ijms23031831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is considered a significant and increasing worldwide problem. The growing body of evidence on this topic has allowed us to point out that a hostile intrauterine environment in mothers with GDM via epigenetic mechanisms induces "diabetogenic" and "obesogenic" changes in an offspring's DNA. This sets a vicious intergenerational cycle of metabolic diseases in motion, gradually deteriorating the health of the human population. One of the most important participants of this process seems to be altered microbiota. There is a chance that the identification of specific epigenetic marks may provide a key for future diagnostic, prognostic and therapeutic solutions in the field of personalised medicine. Given the reversibility of most epigenetic changes, there is an opportunity to improve the long-term health of the human population. In this manuscript, we aim to summarise available data on epigenetic changes among women suffering from GDM and their progeny, in association with alterations in the microbiome.
Collapse
|
284
|
The Role of AGE-RAGE Signalling as a Modulator of Gut Permeability in Diabetes. Int J Mol Sci 2022; 23:ijms23031766. [PMID: 35163688 PMCID: PMC8836043 DOI: 10.3390/ijms23031766] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/11/2022] Open
Abstract
There is increasing evidence for the role of intestinal permeability as a contributing factor in the pathogenesis of diabetes; however, the molecular mechanisms are poorly understood. Advanced glycation endproducts, of both exogenous and endogenous origin, have been shown to play a role in diabetes pathophysiology, in part by their ligation to the receptor for advanced glycation endproducts (RAGE), leading to a proinflammatory signalling cascade. RAGE signalling has been demonstrated to play a role in the development of intestinal inflammation and permeability in Crohn's disease and ulcerative colitis. In this review, we explore the role of AGE-RAGE signalling and intestinal permeability and explore whether activation of RAGE on the intestinal epithelium may be a downstream event contributing to the pathogenesis of diabetes complications.
Collapse
|
285
|
Zhang H, Jiang F, Zhang J, Wang W, Li L, Yan J. Modulatory effects of polysaccharides from plants, marine algae and edible mushrooms on gut microbiota and related health benefits: A review. Int J Biol Macromol 2022; 204:169-192. [PMID: 35122806 DOI: 10.1016/j.ijbiomac.2022.01.166] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Naturally occurring carbohydrate polymers containing non-starch polysaccharides (NPs) are a class of biomacromolecules isolated from plants, marine algae, and edible mushrooms, and their biological activities has shown potential uses in the prevention and treatment of human diseases. Importantly, NPs serve as prebiotics to provide health benefits to the host through stimulating the proliferation of beneficial gut microbiota (GM) and enhancing the production of short-chain fatty acids (SCFAs). The composition and diversity of GM play a critical role in regulating host health and have been extensively studied in recent years. In this review, the extraction, isolation, purification, and structural characterization of NPs derived from plants, marine algae, and edible mushrooms are outlined. Importantly, the degradation and metabolism of these NPs in the intestinal tract, the effects of NPs on the microbial community and SCFAs generation, and the beneficial effects of NPs on host health by modulating GM are systematically highlighted. Overall, we hope that this review can provide some theoretical references and a new perspective for applications of NPs as prebiotics in functional food and drug development.
Collapse
Affiliation(s)
- Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China.
| | - Fuchun Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Jinsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Wenhan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Jingkun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
286
|
Lee MD, Ipharraguerre IR, Arsenault RJ, Lyte M, Lyte JM, Humphrey B, Angel R, Korver DR. Informal nutrition symposium: leveraging the microbiome (and the metabolome) for poultry production. Poult Sci 2022; 101:101588. [PMID: 34933222 PMCID: PMC8703059 DOI: 10.1016/j.psj.2021.101588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 01/07/2023] Open
Abstract
Knowledge of gut microbiology of poultry has advanced from a limited ability to culture relatively few microbial species, to attempting to understand the complex interactions between the bird and its microbiome. The Informal Nutrition Symposium 2021 was intended to help poultry scientists to make sense of the implications of the vast amounts of information being generated by researchers. This paper represents a compilation of the talks given at the symposium by leading international researchers in this field. The symposium began with an overview of the historical developments in the field of intestinal microbiology and microbiome research in poultry. Next, the systemic effects of the microbiome on health in the context of the interplay between the intestinal microbiota and the immune system were presented. Because the microbiome and the host communicate and influence each other, the novel field of kinomics (the study of protein phosphorylation) as used in the study of the poultry microbiome was discussed. Protein phosphorylation is a rapid response to the complex of signals among the microbiome, intestinal lumen metabolites, and the host. Then, a description of why an understanding of the role of microbial endocrinology in poultry production can lead to new understanding of the mechanisms by which the gut microbiota and the host can interact in defined mechanisms that ultimately determine health, pathogenesis of infectious disease, and behavior was given. Finally, a view forward was presented underscoring the importance of understanding mechanisms in microbiomes in other organ systems and other species. Additionally, the importance of the development of new -omics platforms and data management tools to more completely understand host microbiomes was stressed.
Collapse
Affiliation(s)
- Margie D Lee
- Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | | | - Ryan J Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA 19716
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Joshua M Lyte
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701, USA
| | | | - Roselina Angel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Douglas R Korver
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5.
| |
Collapse
|
287
|
Kim ES, Yoon BH, Lee SM, Choi M, Kim EH, Lee BW, Kim SY, Pack CG, Sung YH, Baek IJ, Jung CH, Kim TB, Jeong JY, Ha CH. Fecal microbiota transplantation ameliorates atherosclerosis in mice with C1q/TNF-related protein 9 genetic deficiency. Exp Mol Med 2022; 54:103-114. [PMID: 35115674 PMCID: PMC8894390 DOI: 10.1038/s12276-022-00728-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the strong influence of the gut microbiota on atherosclerosis, a causal relationship between atherosclerosis pathophysiology and gut microbiota is still unverified. This study was performed to determine the impact of the gut microbiota on the pathogenesis of atherosclerosis caused by genetic deficiency. To elucidate the influence of the gut microbiota on atherosclerosis pathogenesis, an atherosclerosis-prone mouse model (C1q/TNF-related protein 9-knockout (CTRP9-KO) mice) was generated. The gut microbial compositions of CTRP9-KO and WT control mice were compared. Fecal microbiota transplantation (FMT) was performed to confirm the association between gut microbial composition and the progression of atherosclerosis. FMT largely affected the gut microbiota in both CTRP9-KO and WT mice, and all transplanted mice acquired the gut microbiotas of the donor mice. Atherosclerotic lesions in the carotid arteries were decreased in transplanted CTRP9-KO mice compared to CTRP9-KO mice prior to transplantation. Conversely, WT mice transplanted with the gut microbiotas of CTRP9-KO mice showed the opposite effect as that of CTRP9-KO mice transplanted with the gut microbiotas of WT mice. Here, we show that CTRP9 gene deficiency is related to the distribution of the gut microbiota in subjects with atherosclerosis. Transplantation of WT microbiotas into CTRP9-KO mice protected against the progression of atherosclerosis. Conversely, the transplantation of CTRP9-KO microbiotas into WT mice promoted the progression of atherosclerosis. Treating atherosclerosis by restoring gut microbial homeostasis may be an effective therapeutic strategy.
Collapse
Affiliation(s)
- Eun Sil Kim
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Bo Hyun Yoon
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Min Lee
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min Choi
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Hye Kim
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Byong-Wook Lee
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Sang-Yeob Kim
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Chan-Gi Pack
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Young Hoon Sung
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - In-Jeoung Baek
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Chang Hee Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Jin-Yong Jeong
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Chang Hoon Ha
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
288
|
Zhang X, Yoshihara K, Miyata N, Hata T, Altaisaikhan A, Takakura S, Asano Y, Izuno S, Sudo N. Dietary tryptophan, tyrosine, and phenylalanine depletion induce reduced food intake and behavioral alterations in mice. Physiol Behav 2022; 244:113653. [PMID: 34800493 DOI: 10.1016/j.physbeh.2021.113653] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
Important precursors of monoaminergic neurotransmitters, dietary tryptophan (TRP), tyrosine, and phenylalanine (all referred to as TTP), play crucial roles in a wide range of behavioral and emotional functions. In the current study, we investigated whether diets devoid of TTP or diets deficient in TRP alone can affect body weight, behavioral characteristics, and gut microbiota, by comparing mice fed on these amino acids-depleted diets to mice fed on diets containing regular levels of amino acids. Both dietary TTP- and TRP-deprived animals showed a reduction in food intake and body weight. In behavioral analyses, the mice fed TTP-deprived diets were more active than mice fed diets containing regular levels of amino acids. The TRP-deprived group exhibited a reduction in serum TRP levels, concomitant with a decrease in serotonin and 5-hydroxyindoleacetic acid levels in some regions of the brain. The TTP-deprived group showed a reduction in TTP levels in the serum, concomitant with decreases in both phenylalanine and tyrosine levels in the hippocampus, as well as serotonin, norepinephrine, and dopamine concentrations in some regions of the brain. Regarding the effects of TRP or TTP deprivation on gut microbial ecology, the relative abundance of genus Roseburia was significantly reduced in the TTP-deprived group than in the dietary restriction control group. Interestingly, TTP was found even in the feces of mice fed TTP- and TRP-deficient diets, suggesting that TTP is produced by microbial or enzymatic digestion of the host-derived proteins. However, microbe generated TTP did not compensate for the systemic TTP deficiency induced by the lack of dietary TTP intake. Collectively, these results indicate that chronic dietary TTP deprivation induces decreased monoamines and their metabolites in a brain region-specific manner. The altered activities of the monoaminergic systems may contribute to increased locomotor activity.
Collapse
Affiliation(s)
- Xueting Zhang
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazufumi Yoshihara
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriyuki Miyata
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomokazu Hata
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Altanzul Altaisaikhan
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shu Takakura
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Asano
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Izuno
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuyuki Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
289
|
Barman PK, Goodridge HS. Microbial Sensing by Hematopoietic Stem and Progenitor Cells. Stem Cells 2022; 40:14-21. [PMID: 35511863 PMCID: PMC9072977 DOI: 10.1093/stmcls/sxab007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/09/2021] [Indexed: 01/21/2023]
Abstract
Balanced production of immune cells is critical for the maintenance of steady-state immune surveillance, and increased production of myeloid cells is sometimes necessary to eliminate pathogens. Hematopoietic stem and progenitor cell (HSPC) sensing of commensal microbes and invading pathogens has a notable impact on hematopoiesis. In this review, we examine how commensal microbes regulate bone marrow HSPC activity to maintain balanced hematopoiesis in the steady state, and how HSPCs proliferate and differentiate during emergency myelopoiesis in response to infection. HSPCs express a variety of pattern recognition receptors and cytokine receptors that they use to sense the presence of microbes, either directly via detection of microbial components and metabolites, or indirectly by responding to cytokines produced by other host cells. We describe direct and indirect mechanisms of microbial sensing by HSPCs and highlight evidence demonstrating long-term effects of acute and chronic microbial stimuli on HSPCs. We also discuss a possible connection between myeloid-biased hematopoiesis and elevated levels of circulating microbiome-derived components in the context of aging and metabolic stress. Finally, we highlight the prospect of trained immunity-based vaccines that could exploit microbial stimulation of HSPCs.
Collapse
Affiliation(s)
- Pijus K Barman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Helen S Goodridge
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Corresponding author: Helen S. Goodridge, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| |
Collapse
|
290
|
Huang R. Gut Microbiota: A Key Regulator in the Effects of Environmental Hazards on Modulates Insulin Resistance. Front Cell Infect Microbiol 2022; 11:800432. [PMID: 35111696 PMCID: PMC8801599 DOI: 10.3389/fcimb.2021.800432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Insulin resistance is a hallmark of Alzheimer’s disease (AD), type II diabetes (T2D), and Parkinson’s disease (PD). Emerging evidence indicates that these disorders are typically characterized by alterations in the gut microbiota composition, diversity, and their metabolites. Currently, it is understood that environmental hazards including ionizing radiation, toxic heavy metals, pesticides, particle matter, and polycyclic aromatic hydrocarbons are capable of interacting with gut microbiota and have a non-beneficial health effect. Based on the current study, we propose the hypothesis of “gut microenvironment baseline drift”. According to this “baseline drift” theory, gut microbiota is a temporarily combined cluster of species sharing the same environmental stresses for a short period, which would change quickly under the influence of different environmental factors. This indicates that the microbial species in the gut do not have a long-term relationship; any split, division, or recombination may occur in different environments. Nonetheless, the “baseline drift” theory considers the critical role of the response of the whole gut microbiome. Undoubtedly, this hypothesis implies that the gut microbiota response is not merely a “cross junction” switch; in contrast, the human health or disease is a result of a rich palette of gut-microbiota-driven multiple-pathway responses. In summary, environmental factors, including hazardous and normal factors, are critical to the biological impact of the gut microbiota responses and the dual effect of the gut microbiota on the regulation of biological functions. Novel appreciation of the role of gut microbiota and environmental hazards in the insulin resistance would shed new light on insulin resistance and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
|
291
|
Pu Z, Sun Y, Jiang H, Hou Q, Yan H, Wen H, Li G. Effects of Berberine on Gut Microbiota in Patients with Mild Metabolic Disorders Induced by Olanzapine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 49:1949-1963. [PMID: 34961418 DOI: 10.1142/s0192415x21500920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Secondary metabolic disturbances in patients with schizophrenia or bipolar disorder may be attributed to olanzapine. It is important to prevent mild metabolic disorders progressing to metabolic syndrome. This study aims to investigate the effects of berberine on intestinal flora in patients with mild metabolic disorders induced by olanzapine. A total of 132 patients with schizophrenia, bipolar disorder, or schizoaffective psychosis that had been treated with olanzapine for at least 9 months were randomly assigned ([Formula: see text] = 66 each) to receive berberine or placebo tablets for 12 weeks. Metabolic assessments and intestinal flora were quantified at baseline and after 4, 8, and 12 weeks of treatment. Incidence rates of adverse reactions were recorded. FPG, FPI, HOMA-IR, HbA1, TG, BMI, and WC were significantly lower in patients who received berberine compared to placebo after 12 weeks of treatment ([Formula: see text]< 0.05). The abundance of firmicutes and coliform were significantly lower and the abundance of bacteroides significantly higher in patients who received berberine compared to placebo after 12 weeks of treatment ([Formula: see text]< 0.05). In patients who received berberine, the abundance of firmicutes was significantly decreased, and the abundance of bacteroides was significantly increased, and in patients who received placebo, the abundance of firmicutes was significantly increased post-treatment, compared to baseline (both [Formula: see text]< 0.05). In conclusions, berberine may regulate intestinal flora and metabolism in patients with schizophrenia or bipolar disorder and mild metabolic disturbances induced by olanzapine.
Collapse
Affiliation(s)
- Zhengping Pu
- Shanghai Mental Health Center, Shanghai Jiao Tong, University School of Medicine, Xuhui 200030, Shanghai, P. R. China.,Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang 314500, Zhejiang, P. R. China
| | - Yunying Sun
- Endocrinology Department, First People's Hospital of Haining, Haining 314400, Zhejiang, P. R. China
| | - Hongxia Jiang
- Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang 314500, Zhejiang, P. R. China
| | - Qingmei Hou
- Department of Clinical Psychology, The Second Specialized Hospital of Hegang, Hegang 154102, Heilongjiang, P. R. China
| | - Hui Yan
- Department of Psychiatry, Second People's Hospital of Taizhou, Tiantai 317200, Zhejiang, P. R. China
| | - Hui Wen
- Department of Traditional Chinese Medicine, Second People's Hospital of Tongxiang, Tongxiang 314500, Zhejiang, P. R. China
| | - Guorong Li
- Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang 314500, Zhejiang, P. R. China
| |
Collapse
|
292
|
Manrique P, Zhu Y, van der Oost J, Herrema H, Nieuwdorp M, de Vos WM, Young M. Gut bacteriophage dynamics during fecal microbial transplantation in subjects with metabolic syndrome. Gut Microbes 2022; 13:1-15. [PMID: 33794724 PMCID: PMC8023239 DOI: 10.1080/19490976.2021.1897217] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metabolic Syndrome (MetS) is a growing public health concern worldwide. Individuals with MetS have an increased risk for cardiovascular (CV) disease and type 2 diabetes (T2D). These diseases - in part preventable with the treatment of MetS - increase the chances of premature death and pose a great economic burden to health systems. A healthy gut microbiota is associated with a reduction in MetS, T2D, and CV disease. Treatment of MetS with fecal microbiota transplantation (FMT) can be effective, however, its success rate is intermediate and difficult to predict. Because bacteriophages significantly affect the microbiota membership and function, the aim of this pilot study was to explore the dynamics of the gut bacteriophage community after FMT in MetS subjects. We performed a longitudinal study of stool bacteriophages from healthy donors and MetS subjects before and after FMT treatment. Subjects were assigned to either a control group (self-stool transplant, n = 3) or a treatment group (healthy-donor-stool transplant; n-recipients = 6, n-donors = 5). Stool samples were collected over an 18-week period and bacteriophage-like particles were purified and sequenced. We found that FMT from healthy donors significantly alters the gut bacteriophage community. Subjects with better clinical outcome clustered closer to the heathy donor group, suggesting that throughout the treatment, their bacteriophage community was more similar to healthy donors. Finally, we identified bacteriophage groups that could explain these differences and we examined their prevalence in individuals from a larger cohort of MetS FMT trial.Trial information- http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2705; NTR 2705.
Collapse
Affiliation(s)
- Pilar Manrique
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT, USA
| | - Yifan Zhu
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Hilde Herrema
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, AZ Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, AZ Amsterdam, The Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands,RPU Human Microbiology, University of Helsinki, Faculty of Medicine, Helsinki, Finland
| | - Mark Young
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, USA,CONTACT Mark Young Department of Plant Sciences & Plant Pathology, Montana State University, P.O. Box 173150, Bozeman, MT59717-3150, USA
| |
Collapse
|
293
|
The Intestinal Barrier and Its Dysfunction in Patients with Metabolic Diseases and Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23020662. [PMID: 35054847 PMCID: PMC8775587 DOI: 10.3390/ijms23020662] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents an increasing cause of liver disease worldwide, mirroring the epidemics of obesity and metabolic syndrome. As there are still no licensed medications for treating the disease, there is an ongoing effort to elucidate the pathophysiology and to discover new treatment pathways. An increasing body of evidence has demonstrated a crosstalk between the gut and the liver, which plays a crucial role in the development and progression of liver disease. Among other intestinal factors, gut permeability represents an interesting factor at the interface of the gut–liver axis. In this narrative review, we summarise the evidence from human studies showing the association between increased gut permeability and NAFLD, as well as with type-2 diabetes and obesity. We also discuss the manipulation of the gut permeability as a potential therapeutical target in patients with NAFLD.
Collapse
|
294
|
McMurdie PJ, Stoeva MK, Justice N, Nemchek M, Sieber CMK, Tyagi S, Gines J, Skennerton CT, Souza M, Kolterman O, Eid J. Increased circulating butyrate and ursodeoxycholate during probiotic intervention in humans with type 2 diabetes. BMC Microbiol 2022; 22:19. [PMID: 34996347 PMCID: PMC8742391 DOI: 10.1186/s12866-021-02415-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Background An increasing body of evidence implicates the resident gut microbiota as playing a critical role in type 2 diabetes (T2D) pathogenesis. We previously reported significant improvement in postprandial glucose control in human participants with T2D following 12-week administration of a 5-strain novel probiotic formulation (‘WBF-011’) in a double-blind, randomized, placebo controlled setting (NCT03893422). While the clinical endpoints were encouraging, additional exploratory measurements were needed in order to link the motivating mechanistic hypothesis - increased short-chain fatty acids - with markers of disease. Results Here we report targeted and untargeted metabolomic measurements on fasting plasma (n = 104) collected at baseline and end of intervention. Butyrate and ursodeoxycholate increased among participants randomized to WBF-011, along with compelling trends between butyrate and glycated haemoglobin (HbA1c). In vitro monoculture experiments demonstrated that the formulation’s C. butyricum strain efficiently synthesizes ursodeoxycholate from the primary bile acid chenodeoxycholate during butyrogenic growth. Untargeted metabolomics also revealed coordinated decreases in intermediates of fatty acid oxidation and bilirubin, potential secondary signatures for metabolic improvement. Finally, improvement in HbA1c was limited almost entirely to participants not using sulfonylurea drugs. We show that these drugs can inhibit growth of formulation strains in vitro. Conclusion To our knowledge, this is the first description of an increase in circulating butyrate or ursodeoxycholate following a probiotic intervention in humans with T2D, adding support for the possibility of a targeted microbiome-based approach to assist in the management of T2D. The efficient synthesis of UDCA by C. butyricum is also likely of interest to investigators of its use as a probiotic in other disease settings. The potential for inhibitory interaction between sulfonylurea drugs and gut microbiota should be considered carefully in the design of future studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02415-8.
Collapse
Affiliation(s)
- Paul J McMurdie
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA.
| | - Magdalena K Stoeva
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | - Nicholas Justice
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | - Madeleine Nemchek
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | | | - Surabhi Tyagi
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | - Jessica Gines
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | | | - Michael Souza
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | - Orville Kolterman
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | - John Eid
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| |
Collapse
|
295
|
Chen S, Yang M, Wang R, Fan X, Tang T, Li P, Zhou X, Qi K. Suppression of high-fat-diet-induced obesity in mice by dietary folic acid supplementation is linked to changes in gut microbiota. Eur J Nutr 2022; 61:2015-2031. [PMID: 34993642 DOI: 10.1007/s00394-021-02769-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE To investigate whether the effects of dietary folic acid supplementation on body weight gain are mediated by gut microbiota in obesity. METHODS Male C57 BL/6J conventional (CV) and germ-free (GF) mice both aged three to four weeks were fed a high-fat diet (HD), folic acid-deficient HD (FD-HD), folic acid-supplement HD (FS-HD) and a normal-fat diet (ND) for 25 weeks. Faecal microbiota were analyzed by 16S rRNA high-throughput sequencing, and the mRNA expression of genes was determined by the real-time RT-PCR. Short-chain fatty acids (SCFAs) in faeces and plasma were measured using gas chromatography-mass spectrometry. RESULTS In CV mice, HD-induced body weight gain was inhibited by FS-HD, accompanied by declined energy intake, smaller white adipocyte size, and less whitening of brown adipose tissue. Meanwhile, the HD-induced disturbance in the expression of fat and energy metabolism-associated genes (Fas, Atgl, Hsl, Ppar-α, adiponectin, resistin, Ucp2, etc.) in epididymal fat was diminished, and the dysbiosis in faecal microbiota was lessened, by FS-HD. However, in GF mice with HD feeding, dietary folic acid supplementation had almost no effect on body weight gain and the expression of fat- and energy-associated genes. Faecal or plasma SCFA concentrations in CV and GF mice were not altered by either FD-HD or FS-HD feeding. CONCLUSION Dietary folic acid supplementation differently affected body weight gain and associated genes' expression under HD feeding between CV and GF mice, suggesting that gut bacteria might partially share the responsibility for beneficial effects of dietary folate on obesity.
Collapse
Affiliation(s)
- Si Chen
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Mengyi Yang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Rui Wang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Xiuqin Fan
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Tiantian Tang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Ping Li
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Xinhui Zhou
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Kemin Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China.
| |
Collapse
|
296
|
Bandopadhyay P, Ganguly D. Gut dysbiosis and metabolic diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 191:153-174. [DOI: 10.1016/bs.pmbts.2022.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
297
|
Davis JA, Aslam H, Jacka FN, Marx W. Inflammatory potential of diet in mental disorders and psychosocial stress. DIET, INFLAMMATION, AND HEALTH 2022:531-563. [DOI: 10.1016/b978-0-12-822130-3.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
298
|
Chen H, Sun L, Feng L, Yin Y, Zhang W. Role of Innate lymphoid Cells in Obesity and Insulin Resistance. Front Endocrinol (Lausanne) 2022; 13:855197. [PMID: 35574038 PMCID: PMC9091334 DOI: 10.3389/fendo.2022.855197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity, a growing chronic metabolic disease, greatly increases the risk of metabolic syndrome which includes type 2 diabetes, fatty liver and cardiovascular diseases. Obesity-associated metabolic diseases significantly contribute to mortality and reduce life expectancy. Recently, innate lymphoid cells (ILCs) have emerged as crucial regulators of metabolic homeostasis and tissue inflammation. This review focuses on the roles of ILCs in different metabolic tissues, including adipose tissue, liver, pancreas, and intestine. We briefly outline the relationship between obesity, inflammation, and insulin resistance. We then discuss how ILCs in distinct metabolic organs may function to maintain metabolic homeostasis and contribute to obesity and its associated metabolic diseases. The potential of ILCs as the therapeutic target for obesity and insulin resistance is also addressed.
Collapse
Affiliation(s)
- Hong Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Lijun Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Lu Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- *Correspondence: Weizhen Zhang, ; Yue Yin,
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, United States
- *Correspondence: Weizhen Zhang, ; Yue Yin,
| |
Collapse
|
299
|
Shang H, Zhang L, Xiao T, Zhang L, Ruan J, Zhang Q, Liu K, Yu Z, Ni Y, Wang B. Study on the differences of gut microbiota composition between phlegm-dampness syndrome and qi-yin deficiency syndrome in patients with metabolic syndrome. Front Endocrinol (Lausanne) 2022; 13:1063579. [PMID: 36440222 PMCID: PMC9682026 DOI: 10.3389/fendo.2022.1063579] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Metabolic syndrome (MS) is a group of complex medical conditions that can lead to serious cardiovascular and cerebrovascular diseases. According to the theory of traditional Chinese medicine (TCM), MS can be divided into two main subtypes termed 'phlegm-dampness syndrome' (TSZE) and 'qi-yin deficiency syndrome' (QYLX). At present, the research into intestinal microbiota of different TCM syndromes of MS and its association with clinical manifestation is lacking. MATERIALS AND METHODS Using 16S rRNA sequencing, we performed a cross-sectional analysis of human gut microbiota between two different TCM syndromes (QYLX and TSZE, n=60) of MS, and their differences with healthy participants (n=30). RESULTS We found that the QYLX and TSZE groups differ from the healthy control group in the overall gut microbiota composition, and some specific microbial taxa and functional pathways. Moreover, significantly differentially abundant taxa and distinct BMI-correlated taxa were observed between QYLX and TSZE groups, suggesting the potential contribution of gut microbiota to the distinction between the two TCM syndromes. The predicted functional profiles also showed considerable differences, especially pathways related to amino acid metabolism and lipopolysaccharide synthesis. CONCLUSION Our study highlights the gut microbiota's contribution to the differentiation between two TCM syndromes of MS and may provide the rationale for adopting different microbiota-directed treatment strategies for different TCM syndromes of MS in the future.
Collapse
Affiliation(s)
- Haonan Shang
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Zhang
- Systems Biology & Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Tiegang Xiao
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ruan
- Shanghai municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiang Zhang
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaili Liu
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonghai Yu
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhonghai Yu, ; Yueqiong Ni, ; Bing Wang,
| | - Yueqiong Ni
- Systems Biology & Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
- *Correspondence: Zhonghai Yu, ; Yueqiong Ni, ; Bing Wang,
| | - Bing Wang
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhonghai Yu, ; Yueqiong Ni, ; Bing Wang,
| |
Collapse
|
300
|
Wang D, Ye J, Shi R, Zhao B, Liu Z, Lin W, Liu X. Dietary protein and amino acid restriction: Roles in metabolic health and aging-related diseases. Free Radic Biol Med 2022; 178:226-242. [PMID: 34890767 DOI: 10.1016/j.freeradbiomed.2021.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022]
Abstract
The prevalence of obesity is a worldwide phenomenon in all age groups and is associated with aging-related diseases such as type 2 diabetes, as well metabolic and cardiovascular diseases. The use of dietary restriction (DR) while avoiding malnutrition has many profound beneficial effects on aging and metabolic health, and dietary protein or specific amino acid (AA) restrictions, rather than overall calorie intake, are considered to play key roles in the effects of DR on host health. Whereas comprehensive reviews of the underlying mechanisms are limited, protein restriction and methionine (Met) restriction improve metabolic health and aging-related neurodegenerative diseases, and may be associated with FGF21, mTOR and autophagy, improved mitochondrial function and oxidative stress. Circulating branched-chain amino acids (BCAAs) are inversely correlated with metabolic health, and BCAAs and leucine (Leu) restriction promote metabolic homeostasis in rodents. Although tryptophan (Trp) restriction extends the lifespan of rodents, the Trp-restricted diet is reported to increase inflammation in aged mice, while severe Trp restriction has side effects such as anorexia. Furthermore, inadequate protein intake in the elderly increases the risk of muscle-centric health. Therefore, the restriction of specific AAs may be an effective and executable dietary manipulation for metabolic and aging-related health in humans, which warrants further investigation to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wei Lin
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, Shanxi, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| |
Collapse
|