251
|
Oleuropein and hydroxytyrosol inhibit the N-formyl-methionyl-leucyl-phenylalanine-induced neutrophil degranulation and chemotaxis via AKT, p38, and ERK1/2 MAP-Kinase inhibition. Inflammopharmacology 2017; 25:673-680. [PMID: 28711992 DOI: 10.1007/s10787-017-0367-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/29/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE Oleuropein and hydroxytyrosol are polyphenols that are extracted from olives and are major biological active components of olives and olive oil. Oleuropein and hydroxytyrosol exhibit interesting pharmacological effects on cells, and have been shown to have many health benefits such as anti-inflammatory effects. These effects were mainly attributed to their ability to scavenge the reactive oxygen species (ROS) produced by phagocytes such as neutrophils. The aim of this study was to investigate the effect of oleuropein and hydroxytyrosol on other neutrophil functions. METHODS Human neutrophils were isolated from healthy donors. ROS production was measured by luminol-amplified chemiluminescence. Degranulation was assessed by measuring myeloperoxidase activity and Western blots. Chemotaxis was assessed by the under-agarose chemotaxis assay. Phosphorylated proteins were assessed by gel electrophoresis and Western blots. RESULTS We show that in addition to their ROS scavenging effect, oleuropein and hydroxytyrosol significantly inhibited the bacterial peptide N-formyl-methionyl-leucyl-phenylalanine (fMLF)-induced degranulation of azurophilic and specific granules as measured by myeloperoxidase and lactoferrin release, respectively. We also show that oleuropein and hydroxytyrosol reduced fMLF-induced neutrophil chemotaxis. Interestingly, both agents impaired the fMLF-induced AKT, p38MAPKinase, and ERK1/2 phosphorylation, signaling molecules that are involved in pathways regulating neutrophil functions. CONCLUSION Our data suggest that the anti-inflammatory properties of oleuropein and hydroxytyrosol are not only restricted to their ROS scavenging effect, but also involve the inhibition of two other major pro-inflammatory neutrophil functions.
Collapse
|
252
|
Rodriguez-Rodrigues N, Castillo LA, Landoni VI, Martire-Greco D, Milillo MA, Barrionuevo P, Fernández GC. Prokaryotic RNA Associated to Bacterial Viability Induces Polymorphonuclear Neutrophil Activation. Front Cell Infect Microbiol 2017; 7:306. [PMID: 28730145 PMCID: PMC5498479 DOI: 10.3389/fcimb.2017.00306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/20/2017] [Indexed: 11/13/2022] Open
Abstract
Polymorphonuclear neutrophils (PMN) are the first cellular line of antibacterial host defense. They sense pathogens through recognition of pathogen-associated molecular patterns (PAMPs) by innate pattern recognition receptors, such as Toll-like receptors (TLR). The aim of this study was to investigate whether PMN sense bacterial viability and explore which viability factor could be involved in this phenomenon. For this purpose, different functions were evaluated in isolated human PMN using live Escherichia coli (Ec) and heat-killed Ec (HK-Ec). We found that bacterial viability was indispensable to induce PMN activation, as measured by forward-scatter (FSC) increase, CD11b surface expression, chemotaxis, reactive oxygen species (ROS) generation and neutrophil extracellular trap (NET) formation. As uncapped non-polyadenylated prokaryotic mRNA has been recognized as a PAMP associated to bacterial viability by macrophages and dendritic cells, total prokaryotic RNA (pRNA) from live Ec was purified and used as a stimulus for PMN. pRNA triggered similar responses to those observed with live bacteria. No RNA could be isolated from HK-Ec, explaining the lack of effect of dead bacteria. Moreover, the supernatant of dead bacteria was able to induce PMN activation, and this was associated with the presence of pRNA in this supernatant, which is released in the killing process. The induction of bactericidal functions (ROS and NETosis) by pRNA were abolished when the supernatant of dead bacteria or isolated pRNA were treated with RNAse. Moreover, endocytosis was necessary for pRNA-induced ROS generation and NETosis, and priming was required for the induction of pRNA-induced ROS in whole blood. However, responses related to movement and degranulation (FSC increase, CD11b up-regulation, and chemotaxis) were still triggered when pRNA was digested with RNase, and were not dependent on pRNA endocytosis or PMN priming. In conclusion, our results indicate that PMN sense live bacteria through recognition of pRNA, and this sensing triggers potent bactericidal mechanisms.
Collapse
Affiliation(s)
- Nahuel Rodriguez-Rodrigues
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental CONICET, Academia Nacional de MedicinaBuenos Aires, Argentina
| | - Luis A Castillo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental CONICET, Academia Nacional de MedicinaBuenos Aires, Argentina
| | - Verónica I Landoni
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental CONICET, Academia Nacional de MedicinaBuenos Aires, Argentina
| | - Daiana Martire-Greco
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental CONICET, Academia Nacional de MedicinaBuenos Aires, Argentina
| | - M Ayelén Milillo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental CONICET, Academia Nacional de MedicinaBuenos Aires, Argentina
| | - Paula Barrionuevo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental CONICET, Academia Nacional de MedicinaBuenos Aires, Argentina
| | - Gabriela C Fernández
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental CONICET, Academia Nacional de MedicinaBuenos Aires, Argentina
| |
Collapse
|
253
|
Abstract
During an innate immune response, myeloid cells undergo complex morphological adaptations in response to inflammatory cues, which allow them to exit the vasculature, enter the tissues, and destroy invading pathogens. The actin and microtubule cytoskeletons are central to many of the most essential cellular functions including cell division, cell morphology, migration, intracellular trafficking, and signaling. Cytoskeletal structure and regulation are crucial for many myeloid cell functions, which require rapid and dynamic responses to extracellular signals. In this chapter, we review the roles of the actin and microtubule cytoskeletons in myeloid cells, focusing primarily on their roles in chemotaxis and phagocytosis. The role of myeloid cell cytoskeletal defects in hematological disorders is highlighted throughout.
Collapse
|
254
|
Shi Y, Yang S, Luo M, Zhang WD, Ke ZP. Systematic analysis of coronary artery disease datasets revealed the potential biomarker and treatment target. Oncotarget 2017; 8:54583-54591. [PMID: 28903366 PMCID: PMC5589605 DOI: 10.18632/oncotarget.17426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/29/2017] [Indexed: 01/08/2023] Open
Abstract
Coronary artery disease caused about 1 of every 7 deaths in the United States and early prevention was potential to decrease the incidence and mortality. We aimed to figure the genes involving in the coronary artery disease using meta-anlaysis. Five datasets of coronary heart disease from GEO series were retrieved and data preprocessing and quality control were carried out. Moderated t-test was used to decide the differentially expressed genes for a single dataset. And the combined p-value using systematic-analysis methods were conducted using MetaDE. The pathway enrichment was carried out using Reactome database. Protein-protein interactions of the identified differentially expressed genes were also analyzed using STRING v10.0 online tool. After removing unidentified or intermediate samples and a total of 238 cases and 189 matched or partially matched control from five microarray datasets were retrieved from GEO. Six different quality control measures were calculated and PCA biplots were plotted in order to visualize the quantitative measure. The first two PCs captured 91% of the variance and we decided to include all of the datasets for systematic analysis. Using the FDR cut-off as 0.1, nine genes, including LFNG, ID3, PLA2G7, FOLR3, PADI4, ARG1, IL1R2, NFIL3 and MGAM, were differentially expressed according to maxP. Their protein-protein interactions showed that they were closely connected and 24 Reactome pathways were related to coronary artery disease. We concluded that pathways related to immune responses, especially neutrophil degranulation, were associated with coronary heart disease.
Collapse
Affiliation(s)
- Yan Shi
- Department of Emergency, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Sijin Yang
- Department of Heart Encephalopathy, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Man Luo
- Department of Emergency, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Wei-Dong Zhang
- Department of Cardiology, People's Hospital of Xuyi, Jiangsu, Xuyi, China
| | - Zun-Ping Ke
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
255
|
Vukman KV, Försönits A, Oszvald Á, Tóth EÁ, Buzás EI. Mast cell secretome: Soluble and vesicular components. Semin Cell Dev Biol 2017; 67:65-73. [PMID: 28189858 DOI: 10.1016/j.semcdb.2017.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/17/2017] [Accepted: 02/07/2017] [Indexed: 12/20/2022]
Abstract
Mast cells are multifunctional master cells implicated in both innate and adaptive immune responses. Their role has been best characterized in allergy and anaphylaxis; however, emerging evidences support their contribution to a wide variety of human diseases. Mast cells, being capable of both degranulation and subsequent recovery, have recently attracted substantial attention as also being rich sources of secreted extracellular vesicles (including exosomes and microvesicles). Along with secreted de novo synthesized soluble molecules and secreted preformed granules, the membrane-enclosed extracellular vesicles represent a previously unexplored part of the mast cell secretome. In this review article we summarize available data regarding the different soluble molecules and membrane-enclosed structures secreted by mast cells. Furthermore, we provide an overview of the release mechanisms including degranulation, piecemeal degranulation, transgranulation, and secretion of different types of extracellular vesicles. Finally, we aim to give a summary of the known biological functions associated with the different mast cell-derived secretion products. The increasingly recognized complexity of mast cell secretome may provide important novel clues to processes by which mast cells contribute to the development of different pathologies and are capable of orchestrating immune responses both in health and disease.
Collapse
Affiliation(s)
- Krisztina V Vukman
- Semmelweis University Department of Genetics, Cell- and Immunobiology, H-1089 Budapest, Hungary
| | - András Försönits
- Semmelweis University Department of Genetics, Cell- and Immunobiology, H-1089 Budapest, Hungary
| | - Ádám Oszvald
- Semmelweis University Department of Genetics, Cell- and Immunobiology, H-1089 Budapest, Hungary
| | - Eszter Á Tóth
- Semmelweis University Department of Genetics, Cell- and Immunobiology, H-1089 Budapest, Hungary
| | - Edit I Buzás
- Semmelweis University Department of Genetics, Cell- and Immunobiology, H-1089 Budapest, Hungary.
| |
Collapse
|
256
|
Sikora J, Smycz-Kubańska M, Mielczarek-Palacz A, Kondera-Anasz Z. Abnormal peritoneal regulation of chemokine activation-The role of IL-8 in pathogenesis of endometriosis. Am J Reprod Immunol 2017; 77. [DOI: 10.1111/aji.12622] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/21/2016] [Indexed: 02/03/2023] Open
Affiliation(s)
- Justyna Sikora
- Department of Immunology and Serology; Sosnowiec School of Pharmacy with the Division of Medical Analytics in Sosnowiec; Medical University of Silesia in Katowice; Sosnowiec Poland
| | - Marta Smycz-Kubańska
- Department of Immunology and Serology; Sosnowiec School of Pharmacy with the Division of Medical Analytics in Sosnowiec; Medical University of Silesia in Katowice; Sosnowiec Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology; Sosnowiec School of Pharmacy with the Division of Medical Analytics in Sosnowiec; Medical University of Silesia in Katowice; Sosnowiec Poland
| | - Zdzisława Kondera-Anasz
- Department of Immunology and Serology; Sosnowiec School of Pharmacy with the Division of Medical Analytics in Sosnowiec; Medical University of Silesia in Katowice; Sosnowiec Poland
| |
Collapse
|
257
|
Gorgojo J, Scharrig E, Gómez RM, Harvill ET, Rodríguez ME. Bordetella parapertussis Circumvents Neutrophil Extracellular Bactericidal Mechanisms. PLoS One 2017; 12:e0169936. [PMID: 28095485 PMCID: PMC5240980 DOI: 10.1371/journal.pone.0169936] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
B. parapertussis is a whooping cough etiological agent with the ability to evade the immune response induced by pertussis vaccines. We previously demonstrated that in the absence of opsonic antibodies B. parapertussis hampers phagocytosis by neutrophils and macrophages and, when phagocytosed, blocks intracellular killing by interfering with phagolysosomal fusion. But neutrophils can kill and/or immobilize extracellular bacteria through non-phagocytic mechanisms such as degranulation and neutrophil extracellular traps (NETs). In this study we demonstrated that B. parapertussis also has the ability to circumvent these two neutrophil extracellular bactericidal activities. The lack of neutrophil degranulation was found dependent on the O antigen that targets the bacteria to cell lipid rafts, eventually avoiding the fusion of nascent phagosomes with specific and azurophilic granules. IgG opsonization overcame this inhibition of neutrophil degranulation. We further observed that B. parapertussis did not induce NETs release in resting neutrophils and inhibited NETs formation in response to phorbol myristate acetate (PMA) stimulation by a mechanism dependent on adenylate cyclase toxin (CyaA)-mediated inhibition of reactive oxygen species (ROS) generation. Thus, B. parapertussis modulates neutrophil bactericidal activity through two different mechanisms, one related to the lack of proper NETs-inducer stimuli and the other one related to an active inhibitory mechanism. Together with previous results these data suggest that B. parapertussis has the ability to subvert the main neutrophil bactericidal functions, inhibiting efficient clearance in non-immune hosts.
Collapse
Affiliation(s)
- Juan Gorgojo
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Emilia Scharrig
- Institute of Biotechnology and Molecular Biology, CCT-La Plata, CONICET-UNLP, La Plata, Argentina
| | - Ricardo M. Gómez
- Institute of Biotechnology and Molecular Biology, CCT-La Plata, CONICET-UNLP, La Plata, Argentina
| | - Eric T. Harvill
- Center for Vaccines and Immunology, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia Athens, Georgia, United States of America
| | - Maria Eugenia Rodríguez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- * E-mail:
| |
Collapse
|
258
|
Yersinia pseudotuberculosis Blocks Neutrophil Degranulation. Infect Immun 2016; 84:3369-3378. [PMID: 27620724 DOI: 10.1128/iai.00760-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are essential components of immunity and are rapidly recruited to infected or injured tissue. Upon their activation, neutrophils release granules to the cell's exterior, through a process called degranulation. These granules contain proteins with antimicrobial properties that help combat infection. The enteropathogenic bacterium Yersinia pseudotuberculosis successfully persists as an extracellular bacterium during infection by virtue of its translocation of virulence effectors (Yersinia outer proteins [Yops]) that act in the cytosol of host immune cells to subvert phagocytosis and proinflammatory responses. Here, we investigated the effect of Y. pseudotuberculosis on neutrophil degranulation upon cell contact. We found that virulent Y. pseudotuberculosis was able to prevent secondary granule release. The blocking effect was general, as the release of primary and tertiary granules was also reduced. Degranulation of secondary granules was also blocked in primed neutrophils, suggesting that this mechanism could be an important element of immune evasion. Further, wild-type bacteria conferred a transient block on neutrophils that prevented their degranulation upon contact with plasmid-cured, avirulent Y. pseudotuberculosis and Escherichia coli Detailed analyses showed that the block was strictly dependent on the cooperative actions of the two antiphagocytic effectors, YopE and YopH, suggesting that the neutrophil target structures constituting signaling molecules needed to initiate both phagocytosis and general degranulation. Thus, via these virulence effectors, Yersinia can impair several mechanisms of the neutrophil's antimicrobial arsenal, which underscores the power of its virulence effector machinery.
Collapse
|
259
|
Boukemara H, Hurtado-Nedelec M, Marzaioli V, Bendjeddou D, El Benna J, Marie JC. Anvillea garcinii extract inhibits the oxidative burst of primary human neutrophils. Altern Ther Health Med 2016; 16:433. [PMID: 27809835 PMCID: PMC5095960 DOI: 10.1186/s12906-016-1411-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/20/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Anvillea garcinii Coss. & Durieu (Anv) plant is used as a traditional North African medicine against several diseases associated with inflammation. At inflammatory sites, reactive oxygen species (ROS) produced in excess by activated phagocyte NADPH oxidase (NOX2) can accentuate inflammatory responses. Thus, we investigated if Anv-water soluble polysaccharides could modulate primary human neutrophil oxidative burst in vitro. METHODS Human neutrophils were isolated from fresh whole blood and O2.- generation was measured by cytochrome c reduction assays. Western blots were used to analyse the translocation of PKC, p47phox (a key component of NOX2 activity) to neutrophil plasma membrane. Also, myeloperoxidase (MPO) release in the extracellular medium was studied by western blots. Flow cytometric analysis was used to detect CD11b membrane expression. RESULTS Water soluble polysaccharides from Anv dose-dependently inhibited N-formyl-methionyl-leucyl-phenylalanine (fMLF)- and phorbol myristate acetate (PMA)-induced O2.- generation by human neutrophils. Moreover, Anv-polysaccharides strongly inhibited PMA-induced PKCβ and p47phox translocation to membranes and p47phox phosphorylation on Ser328, a main PKC target. In contrast, polysaccharides extract from Zygophyllum gaetulum plant, which is also used as a traditional North African medicine against inflammatory diseases, was ineffective on this PKCβ-p47phox pathway. Further, Anv inhibited important neutrophil degranulation markers corresponding to myeloperoxidase (MPO) release and CD11b membrane expression. CONCLUSION The process of down-regulating NADPH oxidase by polysaccharides extracts from Anv provides new insights into the mechanism of Anv's anti-inflammatory actions.
Collapse
|
260
|
Jeon SJ, Cunha F, Ma X, Martinez N, Vieira-Neto A, Daetz R, Bicalho RC, Lima S, Santos JEP, Jeong KC, Galvão KN. Uterine Microbiota and Immune Parameters Associated with Fever in Dairy Cows with Metritis. PLoS One 2016; 11:e0165740. [PMID: 27802303 PMCID: PMC5089738 DOI: 10.1371/journal.pone.0165740] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE This study aimed to evaluate bacterial and host factors causing a fever in cows with metritis. For that, we investigated uterine microbiota using a metagenomic sequencing of the 16S rRNA gene (Study 1), and immune response parameters (Study 2) in metritic cows with and without a fever. PRINCIPAL FINDINGS (STUDY1) Bacterial communities were similar between the MNoFever and MFever groups based on distance metrics of relative abundance of bacteria. Metritic cows showed a greater prevalence of Bacteroidetes, and Bacteroides and Porphyromonas were the largest contributors to that difference. A comparison of relative abundance at the species level pointed to Bacteroides pyogenes as a fever-related species which was significantly abundant in the MFever than the MNoFever and Healthy groups; however, absolute abundance of Bacteroides pyogenes determined by droplet digital PCR (ddPCR) was similar between MFever and MNoFever groups, but higher than the Healthy group. The same trend was observed in the total number of bacteria. PRINCIPAL FINDINGS (STUDY2) The activity of polymorphonuclear leukocyte (PMN) and the production of TNFα, PGE2 metabolite, and PGE2 were evaluated in serum, before disease onset, at 0 and 3 DPP. Cows in the MNoFever had decreased proportion of PMN undergoing phagocytosis and oxidative burst compared with the MFever. The low PMN activity in the MNoFever was coupled with the low production of TNFα, but similar PGE2 metabolite and circulating PGE2. CONCLUSION/SIGNIFICANCE Our study is the first to show a similar microbiome between metritic cows with and without a fever, which indicates that the host response may be more important for fever development than the microbiome. Bacteroides pyogenes was identified as an important pathogen for the development of metritis but not fever. The decreased inflammatory response may explain the lack of a febrile response in the MNoFever group.
Collapse
Affiliation(s)
- Soo Jin Jeon
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Federico Cunha
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Xiaojie Ma
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Natalia Martinez
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Achilles Vieira-Neto
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Rodolfo Daetz
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Rodrigo C. Bicalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| | - Svetlana Lima
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, United States of America
| | - Jose E. P. Santos
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - K. Casey Jeong
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Klibs N. Galvão
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
261
|
Davis RE, Sharma S, Conceição J, Carneiro P, Novais F, Scott P, Sundar S, Bacellar O, Carvalho EM, Wilson ME. Phenotypic and functional characteristics of HLA-DR + neutrophils in Brazilians with cutaneous leishmaniasis. J Leukoc Biol 2016; 101:739-749. [PMID: 28076241 DOI: 10.1189/jlb.4a0915-442rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 09/08/2016] [Accepted: 09/25/2016] [Indexed: 11/24/2022] Open
Abstract
The protozoan Leishmania braziliensis causes cutaneous leishmaniasis (CL) in endemic regions. In murine models, neutrophils (PMNs) are recruited to the site of infection soon after parasite inoculation. However, the roles of neutrophils during chronic infection and in human disease remain undefined. We hypothesized that neutrophils help maintain a systemic inflammatory state in subjects with CL. Lesion biopsies from all patients with CL tested contained neutrophils expressing HLA-DR, a molecule thought to be restricted to professional antigen-presenting cells. Although CL is a localized disease, a subset of patients with CL also had circulating neutrophils expressing HLA-DR and the costimulatory molecules CD80, CD86, and CD40. PMNs isolated from a low-density leukocyte blood fraction (LD-PMNs) contained a higher percentage of HLA-DR+ PMNs than did normal-density PMNs. In vitro coculture experiments suggested LD-PMNs do not suppress T cell responses, differentiating them from MDSCs. Flow-sorted HLA-DR+ PMNs morphologically resembled conventional PMNs, and they exhibited functional properties of PMNs. Compared with conventional PMNs, HLA-DR+ PMNs showed increased activation, degranulation, DHR123 oxidation, and phagocytic capacity. A few HLA-DR+ PMNs were observed in healthy subjects, and that proportion could be increased by incubation in either inflammatory cytokines or in plasma from a patient with CL. This was accompanied by an increase in PMN hladrb1 mRNA, suggesting a possible connection between neutrophil "priming" and up-regulation of HLA-DR. These data suggest that PMNs that are primed for activation and that also express surface markers of antigen-presenting cells emerge in the circulation and infected tissue lesions of patients with CL.
Collapse
Affiliation(s)
- Richard E Davis
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Smriti Sharma
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jacilara Conceição
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais, INCT-DT (CNPq/MCT), Salvador, Bahia, Brazil
| | - Pedro Carneiro
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais, INCT-DT (CNPq/MCT), Salvador, Bahia, Brazil
| | - Fernanda Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Olivia Bacellar
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais, INCT-DT (CNPq/MCT), Salvador, Bahia, Brazil
| | - Edgar M Carvalho
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais, INCT-DT (CNPq/MCT), Salvador, Bahia, Brazil.,Fundação Gonçalo Muniz, Fiocruz-Bahia, Salvador, Bahia Brazil
| | - Mary E Wilson
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA; .,Departments of Internal Medicine and Microbiology, University of Iowa, Iowa City, Iowa, USA; and.,Research Service, Iowa City Veterans' Affairs Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
262
|
Grigorieva DV, Gorudko IV, Sokolov AV, Kostevich VA, Vasilyev VB, Cherenkevich SN, Panasenko OM. Myeloperoxidase Stimulates Neutrophil Degranulation. Bull Exp Biol Med 2016; 161:495-500. [PMID: 27597056 DOI: 10.1007/s10517-016-3446-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 11/26/2022]
Abstract
Myeloperoxidase, heme enzyme of azurophilic granules in neutrophils, is released into the extracellular space in the inflammation foci. In neutrophils, it stimulates a dose-dependent release of lactoferrin (a protein of specific granules), lysozyme (a protein of specific and azurophilic granules), and elastase (a protein of azurophilic granules). 4-Aminobenzoic acid hydrazide, a potent inhibitor of peroxidase activity of myeloperoxidase, produced no effect on neutrophil degranulation. Using signal transduction inhibitors (genistein, methoxyverapamil, wortmannin, and NiCl2), we demonstrated that myeloperoxidase-induced degranulation of neutrophils resulted from enzyme interaction with the plasma membrane and depends on activation of tyrosine kinases, phosphatidylinositol 3-kinases (PI3K), and calcium signaling. Myeloperoxidase modified by oxidative/halogenation stress (chlorinated and monomeric forms of the enzyme) lost the potency to activate neutrophil degranulation.
Collapse
Affiliation(s)
- D V Grigorieva
- Physics Faculty, Belarusian State University, Minsk, Belarus
| | - I V Gorudko
- Physics Faculty, Belarusian State University, Minsk, Belarus
| | - A V Sokolov
- Institute of Experimental Medicine, St. Petersburg, Russia
- Scientific Research Institute of Physical-Chemical Medicine, Russian Federal Medical-Biological Agency, Moscow, Russia
| | - V A Kostevich
- Institute of Experimental Medicine, St. Petersburg, Russia
- Scientific Research Institute of Physical-Chemical Medicine, Russian Federal Medical-Biological Agency, Moscow, Russia
| | - V B Vasilyev
- Institute of Experimental Medicine, St. Petersburg, Russia
| | | | - O M Panasenko
- Scientific Research Institute of Physical-Chemical Medicine, Russian Federal Medical-Biological Agency, Moscow, Russia.
| |
Collapse
|
263
|
Sumagin R, Brazil JC, Nava P, Nishio H, Alam A, Luissint AC, Weber DA, Neish AS, Nusrat A, Parkos CA. Neutrophil interactions with epithelial-expressed ICAM-1 enhances intestinal mucosal wound healing. Mucosal Immunol 2016; 9:1151-62. [PMID: 26732677 PMCID: PMC4935657 DOI: 10.1038/mi.2015.135] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/06/2015] [Indexed: 02/04/2023]
Abstract
A characteristic feature of gastrointestinal tract inflammatory disorders, such as inflammatory bowel disease, is polymorphonuclear neutrophil (PMN) transepithelial migration (TEM) and accumulation in the gut lumen. PMN accumulation within the intestinal mucosa contributes to tissue injury. Although epithelial infiltration by large numbers of PMNs results in mucosal injury, we found that PMN interactions with luminal epithelial membrane receptors may also play a role in wound healing. Intercellular adhesion molecule-1 (ICAM-1) is a PMN ligand that is upregulated on apical surfaces of intestinal epithelial cells under inflammatory conditions. In our study, increased expression of ICAM-1 resulted in enhanced PMN binding to the apical epithelium, which was associated with reduced PMN apoptosis. Following TEM, PMN adhesion to ICAM-1 resulted in activation of Akt and β-catenin signaling, increased epithelial-cell proliferation, and wound healing. Such responses were ICAM-1 dependent as engagement of epithelial ICAM-1 by antibody-mediated cross-linking yielded similar results. Furthermore, using an in-vivo biopsy-based, colonic-mucosal-injury model, we demonstrated epithelial ICAM-1 has an important role in activation of epithelial Akt and β-catenin signaling and wound healing. These findings suggest that post-migrated PMNs within the intestinal lumen can regulate epithelial homeostasis, thereby identifying ICAM-1 as a potential therapeutic target for promoting mucosal wound healing.
Collapse
Affiliation(s)
- R Sumagin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - J C Brazil
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - P Nava
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico, Mexico
| | - H Nishio
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - A Alam
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - A C Luissint
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - D A Weber
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - A S Neish
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - A Nusrat
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - C A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
264
|
Williams AE, Chambers RC. Neutrophils and tissue damage: is hypoxia the key to excessive degranulation? Thorax 2016; 71:977-978. [DOI: 10.1136/thoraxjnl-2016-208879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
265
|
Chen S, Xie W, Wu K, Li P, Ren Z, Li L, Yuan Y, Zhang C, Zheng Y, Lv Q, Jiang H, Jiang Y. Suilysin Stimulates the Release of Heparin Binding Protein from Neutrophils and Increases Vascular Permeability in Mice. Front Microbiol 2016; 7:1338. [PMID: 27617009 PMCID: PMC4999480 DOI: 10.3389/fmicb.2016.01338] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/15/2016] [Indexed: 11/13/2022] Open
Abstract
Most of the deaths that occurred during two large outbreaks of Streptococcus suis infections in 1998 and 2005 in China were caused by streptococcal toxic shock syndrome (STSS), which is characterized by increased vascular permeability. Heparin-binding protein (HBP) is thought to mediate the vascular leakage. The purpose of this study was to investigate the detailed mechanism underlying the release of HBP and the vascular leakage induced by S. suis. Significantly higher serum levels of HBP were detected in Chinese patients with STSS than in patients with meningitis or healthy controls. Suilysin (SLY) is an exotoxin secreted by the highly virulent strain 05ZYH33, and it stimulated the release of HBP from the polymorphonuclear neutrophils and mediated vascular leakage in mice. The release of HBP induced by SLY was caused by a calcium influx-dependent degranulation. Analyses using a pharmacological approach revealed that the release of HBP induced by SLY was related to Toll-like receptor 4, p38 mitogen-activated protein kinase, and the 1-phosphatidylinositol 3-kinase pathway. It was also dependent on a G protein-coupled seven-membrane spanning receptor. The results of this study provide new insights into the vascular leakage in STSS associated with non-Group A streptococci, which could lead to the discovery of potential therapeutic targets for STSS associated with S. suis.
Collapse
Affiliation(s)
- Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Wenlong Xie
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Kai Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Ping Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Zhiqiang Ren
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Yuan Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Chunmao Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| |
Collapse
|
266
|
Lisowska-Myjak B, Żytyńska-Daniluk J, Skarżyńska E. Concentrations of neutrophil-derived proteins in meconium and their correlations. Biomark Med 2016; 10:819-29. [PMID: 27414433 DOI: 10.2217/bmm-2016-0034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The aim was to measure concentrations of four neutrophil-derived proteins in meconium as biomarkers describing prenatal environment. METHODS Calprotectin, lactoferrin, myeloperoxidase and PMN-elastase concentrations were measured using ELISA kits in serial meconium portions (n = 81) from 20 healthy neonates. RESULTS The highest concentration was for calprotectin (286.5 ± 214.6 µg/g) with a positive correlation (r = 0.75, p < 0.0001) with myeloperoxidase (1.81 ± 1.72 µg/g). For PMN-elastase (1.70 ± 2.69 µg/g) a negative correlation was observed with calprotectin and myeloperoxidase (r = -0.51, p < 0.0001; r = -0.60, p < 0.0001, respectively). Concentration of lactoferrin (45.07 ± 78.53 µg/g) correlated only with that of myeloperoxidese (r = 0.36, p = 0.0009). CONCLUSION Calprotectin, lactoferrin, myeloperoxidase and PMN-elastase concentrations in meconium are interrelated. These proteins may serve as objective biomarkers describing and/or assessing the intrauterine environment.
Collapse
Affiliation(s)
- Barbara Lisowska-Myjak
- Department of Biochemistry & Clinical Chemistry, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Żytyńska-Daniluk
- Clinical Department of Obstetrics, Female Diseases & Gynecological Oncology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland
| | - Ewa Skarżyńska
- Department of Biochemistry & Clinical Chemistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
267
|
Li L, Pian Y, Chen S, Hao H, Zheng Y, Zhu L, Xu B, Liu K, Li M, Jiang H, Jiang Y. Phenol-soluble modulin α4 mediates Staphylococcus aureus-associated vascular leakage by stimulating heparin-binding protein release from neutrophils. Sci Rep 2016; 6:29373. [PMID: 27383625 PMCID: PMC4935938 DOI: 10.1038/srep29373] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/16/2016] [Indexed: 11/09/2022] Open
Abstract
Vascular leakage frequently occurs in patients with severe Staphylococcus aureus infection. However, the mechanism underlying S. aureus infection-induced vascular leakage remains unclear. Here, we identified the S. aureus virulence factor phenol-soluble modulin (PSM)α4 from the culture supernatant of strain USA300 as a stimulator of heparin-binding protein (HBP) release from polymorphonuclear neutrophils (PMNs) and demonstrated that PSMα4-induced HBP release from PMNs leads to vascular leakage. PSMα4 appeared less cytolytic than PSMα1-3 and was insensitive to lipoproteins; it significantly increased myeloperoxidase and elastase release from PMNs and cell surface CD63 expression in PMNs. PSMα4-induced HBP release required formyl peptide receptor 2 (FPR2) and phosphoinositide 3-kinase (PI3K) and depended on Ca(2+) influx and cytoskeleton rearrangement. Thus, PSMα4 may stimulate HBP release by activating FPR2 and PI3K to initiate PMN degranulation. PSMα4-induced HBP release from PMNs increased endothelial cell monolayer permeability in vitro and induced vascular leakage in mice. This novel function of PSMα4 may contribute to the pathogenesis of S. aureus and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yaya Pian
- Key Laboratory of infection and immunity, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Huaijie Hao
- Institution of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Bin Xu
- National Center of Biomedical Analysis, Beijing, China
| | - Keke Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Min Li
- Department of laboratory medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
268
|
Boussif A, Rolas L, Weiss E, Bouriche H, Moreau R, Périanin A. Impaired intracellular signaling, myeloperoxidase release and bactericidal activity of neutrophils from patients with alcoholic cirrhosis. J Hepatol 2016; 64:1041-1048. [PMID: 26719020 DOI: 10.1016/j.jhep.2015.12.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/13/2015] [Accepted: 12/08/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Myeloperoxidase exocytosis and production of hydrogen peroxide via the neutrophil superoxide-generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase contribute to efficient elimination of bacteria. Cirrhosis impairs immune functions and increases susceptibility to bacterial infection. We recently showed that neutrophils from patients with decompensated alcoholic cirrhosis exhibit a severe impairment of formylpeptide receptor (fPR)-mediated intracellular signaling and superoxide production. Here, we performed ex vivo studies with these patients' neutrophils to further investigate myeloperoxidase release, bactericidal capacity and signaling events following fPR stimulation by the formylpeptide formyl-met-leu-phe (fMLP). METHODS Myeloperoxidase release was studied by measuring extracellular myeloperoxidase activity. Activation of signaling effectors was studied by Western blot and their respective contribution to myeloperoxidase release studied using pharmacological antagonists. RESULTS fMLP-induced myeloperoxidase release was strongly impaired in patients' neutrophils whereas the intracellular myeloperoxidase stock was unaltered. The fMLP-induced phosphorylation of major signaling effectors, AKT, ERK1/2 and p38-MAP-Kinases, was also strongly deficient despite a similar expression of signaling effectors or fPR. However, based on effector inhibition in healthy neutrophils, AKT and p38-MAPK but not ERK1/2 upregulated fMLP-induced myeloperoxidase exocytosis. Interestingly, patients' neutrophils exhibited a defective bactericidal capacity that was reversed ex vivo by the TLR7/8 agonist CL097, through potentiation of the fMLP-induced AKT/p38-MAPK signaling axis and myeloperoxidase release. CONCLUSIONS We provide first evidence that neutrophils from patients with decompensated alcoholic cirrhosis exhibit a deficient AKT/p38-MAPK signaling, myeloperoxidase release and bactericidal activity, which can be reversed via TLR7/8 activation. These defects, together with the previously described severe deficient superoxide production, may increase cirrhotic patients' susceptibility to bacterial infections.
Collapse
Affiliation(s)
- Abdelali Boussif
- INSERM UMRS-1149, Faculté de Médécine X. Bichat, 75018 Paris, France; CNRS ERL 8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, 75018 Paris, France; Université de Batna, Faculté des Sciences, Département de Biologie, Algeria
| | - Loïc Rolas
- INSERM UMRS-1149, Faculté de Médécine X. Bichat, 75018 Paris, France; CNRS ERL 8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, 75018 Paris, France
| | - Emmanuel Weiss
- INSERM UMRS-1149, Faculté de Médécine X. Bichat, 75018 Paris, France; CNRS ERL 8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, 75018 Paris, France; Département d'Anesthésie Réanimation, Hôpital Beaujon, APHP, 92118 Clichy, France
| | - Hamama Bouriche
- Laboratoire de Biochimie Appliquée, Département de Biochimie, Faculté des Sciences de la Nature et de Vie, Université Ferhat Abbas, Sétif 1, Algeria
| | - Richard Moreau
- INSERM UMRS-1149, Faculté de Médécine X. Bichat, 75018 Paris, France; CNRS ERL 8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, 75018 Paris, France; Département Hospitalo-Universitaire (DHU) Unity, Service d'Hépatologie, Hôpital Beaujon, APHP, 92118 Clichy, France
| | - Axel Périanin
- INSERM UMRS-1149, Faculté de Médécine X. Bichat, 75018 Paris, France; CNRS ERL 8252, Centre de Recherche sur l'Inflammation, 75018 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, 75018 Paris, France.
| |
Collapse
|
269
|
Koro C, Hellvard A, Delaleu N, Binder V, Scavenius C, Bergum B, Główczyk I, Roberts HM, Chapple ILC, Grant MM, Rapala-Kozik M, Klaga K, Enghild JJ, Potempa J, Mydel P. Carbamylated LL-37 as a modulator of the immune response. Innate Immun 2016; 22:218-29. [PMID: 26878866 PMCID: PMC5143673 DOI: 10.1177/1753425916631404] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/13/2016] [Indexed: 12/21/2022] Open
Abstract
Carbamylation of lysine residues and protein N-termini is an ubiquitous, non-enzymatic post-translational modification. Carbamylation at sites of inflammation is due to cyanate formation during the neutrophil oxidative burst and may target lysine residues within the antimicrobial peptide LL-37. The bactericidal and immunomodulatory properties of LL-37 depend on its secondary structure and cationic nature, which are conferred by arginine and lysine residues. Therefore, carbamylation may affect the biological functions of LL-37. The present study examined the kinetics and pattern of LL-37 carbamylation to investigate how this modification affects the bactericidal, cytotoxic and immunomodulatory function of the peptide. The results indicated that LL-37 undergoes rapid modification in the presence of physiological concentrations of cyanate, yielding a spectrum of diverse carbamylated peptides. Mass spectrometry analyses revealed that theN-terminal amino group of Leu-1 was highly reactive and was modified almost instantly by cyanate to generate the predominant form of the modified peptide, named LL-37(C1) This was followed by the sequential carbamylation of Lys-8, Lys-12, and Lys-15 to yield LL-37(C8), and Lys-15 to yield LL-37(C12,15) Carbamylation had profound and diverse effects on the structure and biological properties of LL-37. In some cases, anti-inflammatory LL-37 was rapidly converted to pro-inflammatory LL-37.
Collapse
Affiliation(s)
- Catalin Koro
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Annelie Hellvard
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Nicolas Delaleu
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Veronika Binder
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Carsten Scavenius
- Interdisciplinary Nanoscience Center at the Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Brith Bergum
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Izabela Główczyk
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Helen M Roberts
- Periodontal Research Group MRC Centre for Immune Regulation, University of Birmingham, Birmingham, UK
| | - Iain L C Chapple
- Periodontal Research Group MRC Centre for Immune Regulation, University of Birmingham, Birmingham, UK
| | - Melissa M Grant
- Periodontal Research Group MRC Centre for Immune Regulation, University of Birmingham, Birmingham, UK
| | - Maria Rapala-Kozik
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kinga Klaga
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan J Enghild
- Interdisciplinary Nanoscience Center at the Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan Potempa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Piotr Mydel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
270
|
Leliefeld PHC, Wessels CM, Leenen LPH, Koenderman L, Pillay J. The role of neutrophils in immune dysfunction during severe inflammation. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:73. [PMID: 27005275 PMCID: PMC4804478 DOI: 10.1186/s13054-016-1250-4] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Critically ill post-surgical, post-trauma and/or septic patients are characterised by severe inflammation. This immune response consists of both a pro- and an anti-inflammatory component. The pro-inflammatory component contributes to (multiple) organ failure whereas occurrence of immune paralysis predisposes to infections. Strikingly, infectious complications arise in these patients despite the presence of a clear neutrophilia. We propose that dysfunction of neutrophils potentially increases the susceptibility to infections or can result in the inability to clear existing infections. Under homeostatic conditions these effector cells of the innate immune system circulate in a quiescent state and serve as the first line of defence against invading pathogens. In severe inflammation, however, neutrophils are rapidly activated, which affects their functional capacities, such as chemotaxis, phagocytosis, intra-cellular killing, NETosis, and their capacity to modulate adaptive immunity. This review provides an overview of the current understanding of neutrophil dysfunction in severe inflammation. We will discuss the possible mechanisms of downregulation of anti-microbial function, suppression of adaptive immunity by neutrophils and the contribution of neutrophil subsets to immune paralysis.
Collapse
Affiliation(s)
- Pieter H C Leliefeld
- Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands. .,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Catharina M Wessels
- Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Luke P H Leenen
- Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Koenderman
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Janesh Pillay
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Anesthesiology and Critical Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
271
|
Thymoquinone strongly inhibits fMLF-induced neutrophil functions and exhibits anti-inflammatory properties in vivo. Biochem Pharmacol 2016; 104:62-73. [PMID: 26774451 DOI: 10.1016/j.bcp.2016.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/06/2016] [Indexed: 11/21/2022]
Abstract
Polymorphonuclear neutrophils are key players in host defense against pathogens through the robust production of superoxide anion by the NADPH oxidase and the release of antibacterial proteins from granules. However, inappropriate release of these agents in the extracellular environment induces severe tissue injury, thereby contributing to the physiopathology of acute and chronic inflammatory disorders. Many studies have been carried out to identify molecules capable of inhibiting phagocyte functions, in particular superoxide anion production, for therapeutic purposes. In the present study, we show that thymoquinone (TQ), the major component of the volatile oil from Nigella sativa (black cumin) seeds strongly inhibits fMLF-induced superoxide production and granules exocytosis in neutrophils. The inhibition of superoxide anion was not due to a scavenger effect, as TQ did not inhibit superoxide anion produced by the xanthine/xanthine oxidase system. Interestingly, TQ impaired the phosphorylation on Ser-304 and Ser-328 of p47(PHOX), a cytosolic subunit of the NADPH oxidase. TQ also attenuated specific and azurophilic granule exocytosis in fMLF-stimulated neutrophils as evidenced by decreased cell surface expression of gp91(PHOX) and CD11b, and release of myeloperoxidase. Furthermore, both the PKC and MAPK pathways, which are involved in p47(PHOX) phosphorylation and granules exocytosis, respectively, were inhibited by TQ in fMLF-stimulated neutrophils. Finally, in a model of pleurisy induced by λ-carrageenan in rats, TQ reduced neutrophil accumulation in the pleural space, showing that it not only inhibits PMN functions in vitro, but also exhibits anti-inflammatory properties in vivo. Thus, TQ possesses promising anti-inflammatory therapeutic potential.
Collapse
|
272
|
An Acute Immune Response to Middle East Respiratory Syndrome Coronavirus Replication Contributes to Viral Pathogenicity. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:630-8. [PMID: 26724387 PMCID: PMC4816712 DOI: 10.1016/j.ajpath.2015.10.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/09/2015] [Accepted: 10/27/2015] [Indexed: 11/21/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in a human with severe pneumonia in 2012. Since then, infections have been detected in >1500 individuals, with disease severity ranging from asymptomatic to severe, fatal pneumonia. To elucidate the pathogenesis of this virus and investigate mechanisms underlying disease severity variation in the absence of autopsy data, a rhesus macaque and common marmoset model of MERS-CoV disease were analyzed. Rhesus macaques developed mild disease, and common marmosets exhibited moderate to severe, potentially lethal, disease. Both nonhuman primate species exhibited respiratory clinical signs after inoculation, which were more severe and of longer duration in the marmosets, and developed bronchointerstitial pneumonia. In marmosets, the pneumonia was more extensive, with development of severe airway lesions. Quantitative analysis showed significantly higher levels of pulmonary neutrophil infiltration and higher amounts of pulmonary viral antigen in marmosets. Pulmonary expression of the MERS-CoV receptor, dipeptidyl peptidase 4, was similar in marmosets and macaques. These results suggest that increased virus replication and the local immune response to MERS-CoV infection likely play a role in pulmonary pathology severity. Together, the rhesus macaque and common marmoset models of MERS-CoV span the wide range of disease severity reported in MERS-CoV–infected humans, which will aid in investigating MERS-CoV disease pathogenesis.
Collapse
|
273
|
Ling MR, Chapple ILC, Matthews JB. Peripheral blood neutrophil cytokine hyper-reactivity in chronic periodontitis. Innate Immun 2015; 21:714-25. [PMID: 26055820 DOI: 10.1177/1753425915589387] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/07/2015] [Indexed: 12/20/2022] Open
Abstract
Pro-inflammatory cytokine release (IL-8, IL-6, TNF-α, IL-1β) by peripheral blood neutrophils, isolated from periodontitis patients (before/after therapy) and matched controls, was determined after 18 h culture in the presence/absence of Escherichia coli LPS, opsonised Staphylococcus aureus, heat-killed Fusobacterium nucleatum and Porphyromonas gingivalis. All cultures demonstrated differences in the amounts of each cytokine detected (P < 0.0001), with a clear release pattern (IL-8 > IL-6 > TNF-α = IL-1β). Median cytokine release from unstimulated patient neutrophils was consistently, but non-significantly, higher than from control cells. Stimulated cytokine release from untreated patient neutrophils was also consistently higher than from control cells. This hyper-reactivity was significant for all tested cytokines when data for all stimuli were combined (P < 0.016). In terms of individual stimuli, significant hyper-reactivity was detected with LPS (IL-8), F. nucleatum (IL-8, TNF-α), opsonised S. aureus (IL-8, TNF-α, IL-1β) and P. gingivalis (IL-8, IL-1β). Cytokine production by patient neutrophils did not reduce following successful non-surgical periodontal therapy and, except for responses to F. nucleatum, the cytokine hyper-reactivity detected pre-therapy was retained. These data demonstrate that chronic periodontitis is characterised by neutrophils that constitutively exhibit cytokine hyper-reactivity, the effects of which could modulate local and systemic inflammatory-immune responses and influence the risk and severity of periodontitis-associated systemic inflammatory diseases.
Collapse
Affiliation(s)
- Martin R Ling
- Periodontal Research Group and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, The University of Birmingham, St Chad's Queensway, Birmingham B4 6NN, UK
| | - Iain L C Chapple
- Periodontal Research Group and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, The University of Birmingham, St Chad's Queensway, Birmingham B4 6NN, UK
| | - John B Matthews
- Periodontal Research Group and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, The University of Birmingham, St Chad's Queensway, Birmingham B4 6NN, UK
| |
Collapse
|
274
|
Okochi Y, Aratani Y, Adissu HA, Miyawaki N, Sasaki M, Suzuki K, Okamura Y. The voltage-gated proton channel Hv1/VSOP inhibits neutrophil granule release. J Leukoc Biol 2015; 99:7-19. [PMID: 25990245 DOI: 10.1189/jlb.3hi0814-393r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/19/2015] [Indexed: 01/09/2023] Open
Abstract
Neutrophil granule exocytosis is crucial for host defense and inflammation. Neutrophils contain 4 types of granules, the exocytotic release of which is differentially regulated. This exocytosis is known to be driven by diverse mediators, including calcium and nucleotides, but the precise molecular mechanism remains largely unknown. We show in the present study that voltage-gated proton (Hv) channels are necessary for the proper release of azurophilic granules in neutrophils. On activation of NADPH oxidase by PMA and IgG, neutrophils derived from Hvcn1 gene knockout mouse exhibited greater secretion of MPO and elastase than WT cells. In contrast, release of LTF enriched in specific granules was not enhanced in these cells. The excess release of azurophilic granules in Hv1/VSOP-deficient neutrophils was suppressed by inhibiting NADPH oxidase activity and, in part, by valinomycin, a potassium ionophore. In addition, Hv1/VSOP-deficient mice exhibited more severe lung inflammation after intranasal Candida albicans infection than WT mice. These findings suggest that the Hv channel acts to specifically dampen the release of azurophilic granules through, in part, the suppression of increased positive charges at the plasma membrane accompanied by the activation of NADPH oxidase in neutrophils.
Collapse
Affiliation(s)
- Yoshifumi Okochi
- *Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Kanagawa, Japan; Physiology & Experimental Medicine, Hospital for Sick Children, Ontario, Canada; Department of Bioactive Molecules and Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan; and Inflammation Program, Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan; and Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yasuaki Aratani
- *Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Kanagawa, Japan; Physiology & Experimental Medicine, Hospital for Sick Children, Ontario, Canada; Department of Bioactive Molecules and Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan; and Inflammation Program, Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan; and Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hibret A Adissu
- *Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Kanagawa, Japan; Physiology & Experimental Medicine, Hospital for Sick Children, Ontario, Canada; Department of Bioactive Molecules and Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan; and Inflammation Program, Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan; and Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Nana Miyawaki
- *Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Kanagawa, Japan; Physiology & Experimental Medicine, Hospital for Sick Children, Ontario, Canada; Department of Bioactive Molecules and Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan; and Inflammation Program, Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan; and Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Mari Sasaki
- *Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Kanagawa, Japan; Physiology & Experimental Medicine, Hospital for Sick Children, Ontario, Canada; Department of Bioactive Molecules and Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan; and Inflammation Program, Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan; and Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Kazuo Suzuki
- *Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Kanagawa, Japan; Physiology & Experimental Medicine, Hospital for Sick Children, Ontario, Canada; Department of Bioactive Molecules and Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan; and Inflammation Program, Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan; and Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yasushi Okamura
- *Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Kanagawa, Japan; Physiology & Experimental Medicine, Hospital for Sick Children, Ontario, Canada; Department of Bioactive Molecules and Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan; and Inflammation Program, Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan; and Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
275
|
Gilman-Sachs A, Tikoo A, Akman-Anderson L, Jaiswal M, Ntrivalas E, Beaman K. Expression and role of a2 vacuolar-ATPase (a2V) in trafficking of human neutrophil granules and exocytosis. J Leukoc Biol 2015; 97:1121-31. [PMID: 25877929 DOI: 10.1189/jlb.3a1214-620rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/20/2015] [Indexed: 12/22/2022] Open
Abstract
Neutrophils kill microorganisms by inducing exocytosis of granules with antibacterial properties. Four isoforms of the "a" subunit of V-ATPase-a1V, a2V, a3V, and a4V-have been identified. a2V is expressed in white blood cells, that is, on the surface of monocytes or activated lymphocytes. Neutrophil associated-a2V was found on membranes of primary (azurophilic) granules and less often on secondary (specific) granules, tertiary (gelatinase granules), and secretory vesicles. However, it was not found on the surface of resting neutrophils. Following stimulation of neutrophils, primary granules containing a2V as well as CD63 translocated to the surface of the cell because of exocytosis. a2V was also found on the cell surface when the neutrophils were incubated in ammonium chloride buffer (pH 7.4) a weak base. The intracellular pH (cytosol) became alkaline within 5 min after stimulation, and the pH increased from 7.2 to 7.8; this pH change correlated with intragranular acidification of the neutrophil granules. Upon translocation and exocytosis, a2V on the membrane of primary granules remained on the cell surface, but myeloperoxidase was secreted. V-ATPase may have a role in the fusion of the granule membrane with the cell surface membrane before exocytosis. These findings suggest that the granule-associated a2V isoform has a role in maintaining a pH gradient within the cell between the cytosol and granules in neutrophils and also in fusion between the surface and the granules before exocytosis. Because a2V is not found on the surface of resting neutrophils, surface a2V may be useful as a biomarker for activated neutrophils.
Collapse
Affiliation(s)
- Alice Gilman-Sachs
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Anjali Tikoo
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Leyla Akman-Anderson
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Mukesh Jaiswal
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Evangelos Ntrivalas
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Kenneth Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| |
Collapse
|
276
|
Thaysen-Andersen M, Venkatakrishnan V, Loke I, Laurini C, Diestel S, Parker BL, Packer NH. Human neutrophils secrete bioactive paucimannosidic proteins from azurophilic granules into pathogen-infected sputum. J Biol Chem 2015; 290:8789-802. [PMID: 25645918 DOI: 10.1074/jbc.m114.631622] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
Unlike plants and invertebrates, mammals reportedly lack proteins displaying asparagine (N)-linked paucimannosylation (mannose(1-3)fucose(0-1)N-acetylglucosamine(2)Asn). Enabled by technology advancements in system-wide biomolecular characterization, we document that protein paucimannosylation is a significant host-derived molecular signature of neutrophil-rich sputum from pathogen-infected human lungs and is negligible in pathogen-free sputum. Five types of paucimannosidic N-glycans were carried by compartment-specific and inflammation-associated proteins of the azurophilic granules of human neutrophils including myeloperoxidase (MPO), azurocidin, and neutrophil elastase. The timely expressed human azurophilic granule-resident β-hexosaminidase A displayed the capacity to generate paucimannosidic N-glycans by trimming hybrid/complex type N-glycan intermediates with relative broad substrate specificity. Paucimannosidic N-glycoepitopes showed significant co-localization with β-hexosaminidase A and the azurophilic marker MPO in human neutrophils using immunocytochemistry. Furthermore, promyelocyte stage-specific expression of genes coding for paucimannosidic proteins and biosynthetic enzymes indicated a novel spatio-temporal biosynthetic route in early neutrophil maturation. The absence of bacterial exoglycosidase activities and paucimannosidic N-glycans excluded exogenous origins of paucimannosylation. Paucimannosidic proteins from isolated and sputum neutrophils were preferentially secreted upon inoculation with virulent Pseudomonas aeruginosa. Finally, paucimannosidic proteins displayed affinities to mannose-binding lectin, suggesting immune-related functions of paucimannosylation in activated human neutrophils. In conclusion, we are the first to document that human neutrophils produce, store and, upon activation, selectively secrete bioactive paucimannosidic proteins into sputum of lungs undergoing pathogen-based inflammation.
Collapse
Affiliation(s)
- Morten Thaysen-Andersen
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales-2109, Australia,
| | - Vignesh Venkatakrishnan
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales-2109, Australia
| | - Ian Loke
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales-2109, Australia
| | - Christine Laurini
- the Institute of Nutrition and Food Sciences, University of Bonn, Bonn 53113, Germany, and
| | - Simone Diestel
- the Institute of Nutrition and Food Sciences, University of Bonn, Bonn 53113, Germany, and
| | - Benjamin L Parker
- the Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, New South Wales-2010, Australia
| | - Nicolle H Packer
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales-2109, Australia
| |
Collapse
|
277
|
Rtibi K, Jabri MA, Selmi S, Souli A, Sebai H, El-Benna J, Amri M, Marzouki L. Carob pods (Ceratonia siliqua L.) inhibit human neutrophils myeloperoxidase and in vitro ROS-scavenging activity. RSC Adv 2015. [DOI: 10.1039/c5ra14719k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chromatographic profiles of aqueous extract of carob pods ((A) pulp and (B) seeds).
Collapse
Affiliation(s)
- Kaïs Rtibi
- Laboratoire de Neurophysiologie Fonctionnelle et Pathologies
- Département des Sciences Biologiques
- Faculté des Sciences de Tunis
- Tunis
- Tunisia
| | - Mohamed Amine Jabri
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Resources
- Institut Supérieur de Biotechnologie de Béja
- Université de Jendouba
- 382-9000 Béja
- Tunisia
| | - Slimen Selmi
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Resources
- Institut Supérieur de Biotechnologie de Béja
- Université de Jendouba
- 382-9000 Béja
- Tunisia
| | - Abdelaziz Souli
- Laboratoire de Neurophysiologie Fonctionnelle et Pathologies
- Département des Sciences Biologiques
- Faculté des Sciences de Tunis
- Tunis
- Tunisia
| | - Hichem Sebai
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Resources
- Institut Supérieur de Biotechnologie de Béja
- Université de Jendouba
- 382-9000 Béja
- Tunisia
| | - Jamel El-Benna
- INSERM U773 Centre de Recherche Biomédicale
- Faculté de Médecine X. Bichat
- 75018 Paris
- France
| | - Mohamed Amri
- Laboratoire de Neurophysiologie Fonctionnelle et Pathologies
- Département des Sciences Biologiques
- Faculté des Sciences de Tunis
- Tunis
- Tunisia
| | - Lamjed Marzouki
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Resources
- Institut Supérieur de Biotechnologie de Béja
- Université de Jendouba
- 382-9000 Béja
- Tunisia
| |
Collapse
|
278
|
Abstract
Glucocorticoids (GCs) are steroid hormones with widespread effects. They control intermediate metabolism by stimulating gluconeogenesis in the liver, mobilize amino acids from extra hepatic tissues, inhibit glucose uptake in muscle and adipose tissue, and stimulate fat breakdown in adipose tissue. They also mediate stress response. They exert potent immune-suppressive and anti-inflammatory effects particularly when administered pharmacologically. Understanding these diverse effects of glucocorticoids requires a detailed knowledge of their mode of action. Research over the years has uncovered several details on the molecular action of this hormone, especially in immune cells. In this chapter, we have summarized the latest findings on the action of glucocorticoids in immune cells with a view of identifying important control points that may be relevant in glucocorticoid therapy.
Collapse
|
279
|
Hünniger K, Bieber K, Martin R, Lehnert T, Figge MT, Löffler J, Guo RF, Riedemann NC, Kurzai O. A second stimulus required for enhanced antifungal activity of human neutrophils in blood is provided by anaphylatoxin C5a. THE JOURNAL OF IMMUNOLOGY 2014; 194:1199-210. [PMID: 25539819 DOI: 10.4049/jimmunol.1401845] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polymorphonuclear neutrophilic granulocytes (PMN) as cellular components of innate immunity play a crucial role in the defense against systemic Candida albicans infection. To analyze stimuli that are required for PMN activity during C. albicans infection in a situation similar to in vivo, we used a human whole-blood infection model. In this model, PMN activation 10 min after C. albicans infection was largely dependent on the anaphylatoxin C5a. Most importantly, C5a enabled blood PMN to overcome filament-restricted recognition of C. albicans and allowed efficient elimination of nonfilamentous C. albicans cph1Δ/efg1Δ from blood. Major PMN effector mechanisms, including oxidative burst, release of secondary granule contents and initial fungal phagocytosis could be prevented by blocking C5a receptor signaling. Identical effects were achieved using a humanized Ab specifically targeting human C5a. Phagocytosis of C. albicans 10 min postinfection was mediated by C5a-dependent enhancement of CD11b surface expression on PMN, thus establishing the C5a-C5aR-CD11b axis as a major modulator of early anti-Candida immune responses in human blood. In contrast, phagocytosis of C. albicans by PMN 60 min postinfection occurred almost independently of C5a and mainly contributed to activation of phagocytically active PMN at later time points. Our results show that C5a is a critical mediator in human blood during C. albicans infection.
Collapse
Affiliation(s)
- Kerstin Hünniger
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany
| | - Kristin Bieber
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany
| | - Ronny Martin
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany
| | - Teresa Lehnert
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany; Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany; Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Jürgen Löffler
- Department of Internal Medicine II, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | | | - Niels C Riedemann
- InflaRx GmbH, 07745 Jena, Germany; Department of Anesthesiology and Intensive Care Therapy, Jena University Hospital, 07747 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany; and
| | - Oliver Kurzai
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany; and German National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, 07745 Jena, Germany
| |
Collapse
|
280
|
Hirschfeld J. Dynamic interactions of neutrophils and biofilms. J Oral Microbiol 2014; 6:26102. [PMID: 25523872 PMCID: PMC4270880 DOI: 10.3402/jom.v6.26102] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The majority of microbial infections in humans are biofilm-associated and difficult to treat, as biofilms are highly resistant to antimicrobial agents and protect themselves from external threats in various ways. Biofilms are tenaciously attached to surfaces and impede the ability of host defense molecules and cells to penetrate them. On the other hand, some biofilms are beneficial for the host and contain protective microorganisms. Microbes in biofilms express pathogen-associated molecular patterns and epitopes that can be recognized by innate immune cells and opsonins, leading to activation of neutrophils and other leukocytes. Neutrophils are part of the first line of defense and have multiple antimicrobial strategies allowing them to attack pathogenic biofilms. OBJECTIVE/DESIGN In this paper, interaction modes of neutrophils with biofilms are reviewed. Antimicrobial strategies of neutrophils and the counteractions of the biofilm communities, with special attention to oral biofilms, are presented. Moreover, possible adverse effects of neutrophil activity and their biofilm-promoting side effects are discussed. RESULTS/CONCLUSION Biofilms are partially, but not entirely, protected against neutrophil assault, which include the processes of phagocytosis, degranulation, and formation of neutrophil extracellular traps. However, virulence factors of microorganisms, microbial composition, and properties of the extracellular matrix determine whether a biofilm and subsequent microbial spread can be controlled by neutrophils and other host defense factors. Besides, neutrophils may inadvertently contribute to the physical and ecological stability of biofilms by promoting selection of more resistant strains. Moreover, neutrophil enzymes can degrade collagen and other proteins and, as a result, cause harm to the host tissues. These parameters could be crucial factors in the onset of periodontal inflammation and the subsequent tissue breakdown.
Collapse
Affiliation(s)
- Josefine Hirschfeld
- Center for Dental and Oral Medicine, Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Welschnonnenstraße, 17 D-53111 Bonn, Germany;
| |
Collapse
|
281
|
Johnson MB, Ball LM, Daily KP, Martin JN, Columbus L, Criss AK. Opa+ Neisseria gonorrhoeae exhibits reduced survival in human neutrophils via Src family kinase-mediated bacterial trafficking into mature phagolysosomes. Cell Microbiol 2014; 17:648-65. [PMID: 25346239 DOI: 10.1111/cmi.12389] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 10/01/2014] [Accepted: 10/22/2014] [Indexed: 01/05/2023]
Abstract
During gonorrhoeal infection, there is a heterogeneous population of Neisseria gonorrhoeae (Gc) varied in their expression of opacity-associated (Opa) proteins. While Opa proteins are important for bacterial attachment and invasion of epithelial cells, Opa+ Gc has a survival defect after exposure to neutrophils. Here, we use constitutively Opa- and OpaD+ Gc in strain background FA1090 to show that Opa+ Gc is more sensitive to killing inside adherent, chemokine-treated primary human neutrophils due to increased bacterial residence in mature, degradative phagolysosomes that contain primary and secondary granule antimicrobial contents. Although Opa+ Gc stimulates a potent oxidative burst, neutrophil killing of Opa+ Gc was instead attributable to non-oxidative components, particularly neutrophil proteases and the bactericidal/permeability-increasing protein. Blocking interaction of Opa+ Gc with carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) or inhibiting Src family kinase signalling, which is downstream of CEACAM activation, enhanced the survival of Opa+ Gc in neutrophils. Src family kinase signalling was required for fusion of Gc phagosomes with primary granules to generate mature phagolysosomes. Conversely, ectopic activation of Src family kinases or coinfection with Opa+ Gc resulted in decreased survival of Opa- Gc in neutrophils. From these results, we conclude that Opa protein expression is an important modulator of Gc survival characteristics in neutrophils by influencing phagosome dynamics and thus bacterial exposure to neutrophils' full antimicrobial arsenal.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | |
Collapse
|
282
|
Darling VR, Hauke RJ, Tarantolo S, Agrawal DK. Immunological effects and therapeutic role of C5a in cancer. Expert Rev Clin Immunol 2014; 11:255-63. [PMID: 25387724 DOI: 10.1586/1744666x.2015.983081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The specific role of C5a in cancer, especially in melanoma, has yet to be determined. Differential effects of C5a could be cancer specific. In the host defense system, C5a functions to protect the body from harmful entities via a plethora of mechanisms. Yet, C5a may also serve to potentiate cancerous process. C5a facilitates cellular proliferation and regeneration by attracting myeloid-derived suppressor cells and supporting tumor promotion. In this article, we critically reviewed the properties, mechanisms of action and functions of C5a, with particular emphasis on cancer inhibition and promotion, and clinical application of such knowledge in better management of patients with cancer. Outstanding questions and future directions in regard to the function of C5a in melanoma and other cancers are discussed.
Collapse
Affiliation(s)
- Victoria R Darling
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | | | | | | |
Collapse
|
283
|
Cunningham M, Marks N, Barnado A, Wirth JR, Gilkeson G, Markiewicz M. Are microparticles the missing link between thrombosis and autoimmune diseases? Involvement in selected rheumatologic diseases. Semin Thromb Hemost 2014; 40:675-81. [PMID: 25173498 DOI: 10.1055/s-0034-1387924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microparticles (MPs) are membrane-bound vesicles with important physiologic effects. MPs exchange information intercellularly, with each kind of MP carrying antigens and receptors of the cells from which they originated. They are biologic effectors in inflammation, angiogenesis, vascular injury, and thrombosis. Thrombosis is generally caused by abnormalities in blood flow, blood composition, and/or properties of the vessel wall. Thrombosis is a well-described feature of cardiovascular disease and cerebrovascular disease. Accumulating evidence suggests that increased risk of thrombosis is also characteristic of autoimmune disorders and immune-mediated diseases affecting all age groups, although the older adults are most vulnerable. Current research has also implicated MPs as a source of autoantigenic nuclear material that can form immune complexes, activate the innate immune system, and may lead to autoimmunity. This review focuses on the contribution of MPs to both the pathogenesis of autoimmune diseases and, as the immune and coagulation systems are tightly linked, their role in hypercoagulability in the setting of autoimmunity in an aging population.
Collapse
Affiliation(s)
- Melissa Cunningham
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Natalia Marks
- Department of Radiology, Maimonides Medical Center, Brooklyn, New York
| | - April Barnado
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Jena R Wirth
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Gary Gilkeson
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Margaret Markiewicz
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
284
|
P2X1 expressed on polymorphonuclear neutrophils and platelets is required for thrombosis in mice. Blood 2014; 124:2575-85. [PMID: 25150292 DOI: 10.1182/blood-2014-04-571679] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Adenosine triphosphate (ATP) and its metabolite, adenosine, are key regulators of polymorphonuclear neutrophil (PMN) functions. PMNs have recently been implicated in the initiation of thrombosis. We investigated the role of ATP and adenosine in PMN activation and recruitment at the site of endothelial injury. Following binding to the injured vessel wall, PMNs are activated and release elastase. The recruitment of PMNs and the subsequent fibrin generation and thrombus formation are strongly affected in mice deficient in the P2X1-ATP receptor and in wild-type (WT) mice treated with CGS 21680, an agonist of the A2A adenosine receptor or NF449, a P2X1 antagonist. Infusion of WT PMNs into P2X1-deficient mice increases fibrin generation but not thrombus formation. Restoration of thrombosis requires infusion of both platelets and PMNs from WT mice. In vitro, ATP activates PMNs, whereas CGS 21680 prevents their binding to activated endothelial cells. These data indicate that adenosine triphosphate (ATP) contributes to polymorphonuclear neutrophil (PMN) activation leading to their adhesion at the site of laser-induced endothelial injury, a necessary step leading to the generation of fibrin, and subsequent platelet-dependent thrombus formation. Altogether, our study identifies previously unknown mechanisms by which ATP and adenosine are key molecules involved in thrombosis by regulating the activation state of PMNs.
Collapse
|
285
|
Evaluation of genome-wide expression profiles of blood and sputum neutrophils in cystic fibrosis patients before and after antibiotic therapy. PLoS One 2014; 9:e104080. [PMID: 25084273 PMCID: PMC4118979 DOI: 10.1371/journal.pone.0104080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/06/2014] [Indexed: 02/05/2023] Open
Abstract
In seeking more specific biomarkers of the cystic fibrosis (CF) lung inflammatory disease that would be sensitive to antibiotic therapy, we sought to evaluate the gene expression profiles of neutrophils in CF patients before treatment in comparison with non-CF healthy individuals and after antibiotic treatment. Genes involved in neutrophil-mediated inflammation, i.e. chemotaxis, respiratory burst, apoptosis, and granule exocytosis, were the targets of this study. Microarray analysis was carried out in blood and airway neutrophils from CF patients and in control subjects. A fold change (log) threshold of 1.4 and a cut-off of p<0.05 were utilized to identify significant genes. Community networks and principal component analysis were used to distinguish the groups of controls, pre- and post-therapy patients. Control subjects and CF patients before therapy were readily separated, whereas a clear distinction between patients before and after antibiotic therapy was not possible. Blood neutrophils before therapy presented 269 genes down-regulated and 56 up-regulated as compared with control subjects. Comparison between the same patients before and after therapy showed instead 44 genes down-regulated and 72 up-regulated. Three genes appeared to be sensitive to therapy and returned to "healthy" condition: phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), hydrogen voltage-gated channel 1 (HVCN1), and β-arrestin 1 (ARRB1). The up-regulation of these genes after therapy were confirmed by real time PCR. In airway neutrophils, 1029 genes were differentially expressed post- vs pre-therapy. Of these, 30 genes were up-regulated and 75 down-regulated following antibiotic treatment. However, biological plausibility determined that only down-regulated genes belonged to the gene classes studied for blood neutrophils. Finally, it was observed that commonly expressed genes showed a greater variability in airway neutrophils than that found in blood neutrophils, both before and after therapy. These results indicate more specific targets for future interventions in CF patients involving respiratory burst, apoptosis, and granule exocytosis.
Collapse
|
286
|
Ganji SH, Kamanna VS, Kashyap ML. Niacin decreases leukocyte myeloperoxidase: mechanistic role of redox agents and Src/p38MAP kinase. Atherosclerosis 2014; 235:554-61. [PMID: 24956528 DOI: 10.1016/j.atherosclerosis.2014.05.948] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/15/2014] [Accepted: 05/24/2014] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Leukocyte myeloperoxidase (MPO) is a major player in the pathogenesis of various chronic diseases including atherosclerosis. This study proposes the novel concept that niacin, through reactive oxygen species (ROS)-mediated signaling, decreases neutrophil MPO release and its activity, protects apolipoprotein-AI (apo-AI) modification and improves HDL function. METHODS Human blood leukocytes and leukocytic cell line HL-60 cells were treated with niacin, and stimulated with phorbol myristate acetate (PMA). Cellular and released MPO activity in the medium was measured by assessing chlorination of MPO-specific substrate. MPO protein release in the medium and apo-AI degradation was measured by Western blot analysis. Monocyte adhesion to human aortic primary endothelial cells was measured to assess biological function of HDL/apo-AI. RESULTS PMA significantly increased leukocyte MPO activity in both intracellular extract and medium. Niacin (0.25-0.5 mM) decreased PMA-induced MPO activity (cellular and released in the media). Niacin also decreased MPO protein mass in the medium without affecting its mRNA expression. Increased NADPH oxidase and ROS production by PMA were also significantly inhibited by niacin. Studies with specific inhibitors suggest that ROS-dependent Src and p38MAP kinase mediate decreased MPO activity by niacin. Niacin blocked apo-AI degradation, and apo-AI from niacin treated cells decreased monocyte adhesion to aortic endothelial cells. CONCLUSIONS These findings identify niacin as a potent inhibitor of leukocyte MPO release and MPO-mediated formation of dysfunctional HDL. Niacin and niacin-related chemical entities may form important therapeutic agents for MPO-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Shobha H Ganji
- Atherosclerosis Research Center, Department of Veterans Affairs Healthcare System, Long Beach, CA, USA; The University of California, Irvine, CA, USA
| | - Vaijinath S Kamanna
- Atherosclerosis Research Center, Department of Veterans Affairs Healthcare System, Long Beach, CA, USA; The University of California, Irvine, CA, USA.
| | - Moti L Kashyap
- Atherosclerosis Research Center, Department of Veterans Affairs Healthcare System, Long Beach, CA, USA; The University of California, Irvine, CA, USA.
| |
Collapse
|
287
|
Functional genomic characterization of virulence factors from necrotizing fasciitis-causing strains of Aeromonas hydrophila. Appl Environ Microbiol 2014; 80:4162-83. [PMID: 24795370 DOI: 10.1128/aem.00486-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The genomes of 10 Aeromonas isolates identified and designated Aeromonas hydrophila WI, Riv3, and NF1 to NF4; A. dhakensis SSU; A. jandaei Riv2; and A. caviae NM22 and NM33 were sequenced and annotated. Isolates NF1 to NF4 were from a patient with necrotizing fasciitis (NF). Two environmental isolates (Riv2 and -3) were from the river water from which the NF patient acquired the infection. While isolates NF2 to NF4 were clonal, NF1 was genetically distinct. Outside the conserved core genomes of these 10 isolates, several unique genomic features were identified. The most virulent strains possessed one of the following four virulence factors or a combination of them: cytotoxic enterotoxin, exotoxin A, and type 3 and 6 secretion system effectors AexU and Hcp. In a septicemic-mouse model, SSU, NF1, and Riv2 were the most virulent, while NF2 was moderately virulent. These data correlated with high motility and biofilm formation by the former three isolates. Conversely, in a mouse model of intramuscular infection, NF2 was much more virulent than NF1. Isolates NF2, SSU, and Riv2 disseminated in high numbers from the muscular tissue to the visceral organs of mice, while NF1 reached the liver and spleen in relatively lower numbers on the basis of colony counting and tracking of bioluminescent strains in real time by in vivo imaging. Histopathologically, degeneration of myofibers with significant infiltration of polymorphonuclear cells due to the highly virulent strains was noted. Functional genomic analysis provided data that allowed us to correlate the highly infectious nature of Aeromonas pathotypes belonging to several different species with virulence signatures and their potential ability to cause NF.
Collapse
|
288
|
Involvement of neutrophils in thrombus formation in living mice. ACTA ACUST UNITED AC 2014; 62:1-9. [PMID: 24485849 DOI: 10.1016/j.patbio.2013.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/12/2013] [Indexed: 12/24/2022]
Abstract
Thrombosis is one of the major causes of human death worldwide. Identification of the cellular and molecular mechanisms leading to thrombus formation is thus crucial for the understanding of the thrombotic process. To examine thrombus formation in a living mouse, new technologies have been developed. Digital intravital microscopy allows to visualize the development of thrombosis and generation of fibrin in real-time within living animal in a physiological context. This specific system allowed the identification of new cellular partners involved in platelet adhesion and activation. Furthermore, it improved, especially, the knowledge of the early phase of thrombus formation and fibrin generation in vivo. Until now, platelets used to be considered the sole central player in thrombus generation. However, recently, it has been demonstrated that leukocytes, particularly neutrophils, play a crucial role in the activation of the blood coagulation cascade leading to thrombosis. In this review, we summarized the mechanisms leading to thrombus formation in the microcirculation according to the method of injury in mice with a special focus on the new identified roles of neutrophils in this process.
Collapse
|
289
|
Almaaytah A, Albalas Q. Scorpion venom peptides with no disulfide bridges: a review. Peptides 2014; 51:35-45. [PMID: 24184590 DOI: 10.1016/j.peptides.2013.10.021] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
Abstract
Scorpion venoms are rich sources of biologically active peptides that are classified into disulfide-bridged peptides (DBPs) and non-disulfide-bridged peptides (NDBPs). DBPs are the main scorpion venom components responsible for the neurotoxic effects observed during scorpion envenomation as they usually target membrane bound ion channels of excitable and non-excitable cells. Several hundred DBPs have been identified and functionally characterized in the past two decades. The NDBPs represent a novel group of molecules that have gained great interest only recently due to their high diversity both in their primary structures and bioactivities. This review provides an overview of scorpion NDBPs focusing on their therapeutic applications, modes of discovery, mechanisms of NDBPs genetic diversity and structural properties. It also provides a simple classification for NDBPs that could be adopted and applied to other NDBPs identified in future studies.
Collapse
Affiliation(s)
- Ammar Almaaytah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Qosay Albalas
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
290
|
Babin K, Antoine F, Goncalves DM, Girard D. TiO2, CeO2 and ZnO nanoparticles and modulation of the degranulation process in human neutrophils. Toxicol Lett 2013; 221:57-63. [DOI: 10.1016/j.toxlet.2013.05.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/15/2013] [Accepted: 05/18/2013] [Indexed: 01/02/2023]
|
291
|
Life of neutrophil: From stem cell to neutrophil extracellular trap. Respir Physiol Neurobiol 2013; 187:68-73. [DOI: 10.1016/j.resp.2013.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/23/2013] [Accepted: 02/25/2013] [Indexed: 12/16/2022]
|
292
|
Stow JL, Murray RZ. Intracellular trafficking and secretion of inflammatory cytokines. Cytokine Growth Factor Rev 2013; 24:227-39. [PMID: 23647915 DOI: 10.1016/j.cytogfr.2013.04.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The secretion of cytokines by immune cells plays a significant role in determining the course of an inflammatory response. The levels and timing of each cytokine released are critical for mounting an effective but confined response, whereas excessive or dysregulated inflammation contributes to many diseases. Cytokines are both culprits and targets for effective treatments in some diseases. The multiple points and mechanisms that have evolved for cellular control of cytokine secretion highlight the potency of these mediators and the fine tuning required to manage inflammation. Cytokine production in cells is regulated by cell signaling, and at mRNA and protein synthesis levels. Thereafter, the intracellular transport pathways and molecular trafficking machinery have intricate and essential roles in dictating the release and activity of cytokines. The trafficking machinery and secretory (exocytic) pathways are complex and highly regulated in many cells, involving specialized membranes, molecules and organelles that enable these cells to deliver cytokines to often-distinct areas of the cell surface, in a timely manner. This review provides an overview of secretory pathways - both conventional and unconventional - and key families of trafficking machinery. The prevailing knowledge about the trafficking and secretion of a number of individual cytokines is also summarized. In conclusion, we present emerging concepts about the functional plasticity of secretory pathways and their modulation for controlling cytokines and inflammation.
Collapse
Affiliation(s)
- Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| | | |
Collapse
|
293
|
Keshari RS, Verma A, Barthwal MK, Dikshit M. Reactive oxygen species-induced activation of ERK and p38 MAPK mediates PMA-induced NETs release from human neutrophils. J Cell Biochem 2013; 114:532-40. [DOI: 10.1002/jcb.24391] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 08/30/2012] [Indexed: 01/27/2023]
|
294
|
Abstract
The migration of neutrophils between tissue compartments is an important aspect of innate immune surveillance. This process is regulated by a cascade of cellular and molecular signals to avoid unnecessary crowding of neutrophils at the periphery, to allow rapid mobilization of neutrophils in response to inflammatory stimuli, and to return to a state of homeostasis after the response. Intravital microscopy approaches have been fundamental in unraveling many aspects of neutrophil behavior, providing important mechanistic information on the processes involved in basal and disease states. Here, we provide a broad overview of the current state of research on neutrophil biology, describing the processes in the typical life cycle of neutrophils, from their first appearance in the bone marrow until their eventual destruction. We will focus on novel aspects of neutrophil behavior, which had previously been elusive until their recent elucidation by advanced intravital microscopy techniques.
Collapse
Affiliation(s)
- Jackson LiangYao Li
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #03 Immunos, Biopolis, Singapore
| | | |
Collapse
|
295
|
Abstract
Leukocyte-derived microparticles (LMPs) may originate from neutrophils, monocytes/macrophages, and lymphocytes. They express markers from their parental cells and harbor membrane and cytoplasmic proteins as well as bioactive lipids implicated in a variety of mechanisms, maintaining or disrupting vascular homeostasis. When they carry tissue factor or coagulation inhibitors, they participate in hemostasis and pathological thrombosis. Both proinflammatory and anti-inflammatory processes can be affected by LMPs, thus ensuring an appropriate inflammatory response. LMPs also play a dual role in the endothelium by either improving the endothelial function or inducing an endothelial dysfunction. LMPs are implicated in all stages of atherosclerosis. They circulate at a high level in the bloodstream of patients with high atherothrombotic risk, such as smokers, diabetics, and subjects with obstructive sleep apnea, where their prolonged contact with the vessel wall may contribute to its overall deterioration. Numbering microparticles, including LMPs, might be useful in predicting cardiovascular events. LMPs modify the endothelial function and promote the recruitment of inflammatory cells in the vascular wall, necessary processes for the progression of the atherosclerotic lesion. In addition, LMPs favor the neovascularization within the vulnerable plaque and, in the ruptured plaque, they take part in coagulation and platelet activation. Finally, LMPs participate in angiogenesis. They might represent a novel therapeutic tool to reset the angiogenic switch in pathologies with altered angiogenesis. Additional studies are needed to further investigate the role of LMPs in cardiovascular diseases. However, large-scale studies are currently difficult to set up because microparticle measurement still requires elaborate techniques which lack standardization.
Collapse
Affiliation(s)
- Anne Angelillo-Scherrer
- Service and Central Laboratory of Hematology, Lausanne University Hospital, rue du Bugnon 46, CH-1011 Lausanne, Switzerland.
| |
Collapse
|
296
|
Abstract
G protein-coupled receptors (GPCRs) play important roles in inflammation. Inflammatory cells such as polymorphonuclear leukocytes (PMN), monocytes and macrophages express a large number of GPCRs for classic chemoattractants and chemokines. These receptors are critical to the migration of phagocytes and their accumulation at sites of inflammation, where these cells can exacerbate inflammation but also contribute to its resolution. Besides chemoattractant GPCRs, protease activated receptors (PARs) such as PAR1 are involved in the regulation of vascular endothelial permeability. Prostaglandin receptors play different roles in inflammatory cell activation, and can mediate both proinflammatory and anti-inflammatory functions. Many GPCRs present in inflammatory cells also mediate transcription factor activation, resulting in the synthesis and secretion of inflammatory factors and, in some cases, molecules that suppress inflammation. An understanding of the signaling paradigms of GPCRs in inflammatory cells is likely to facilitate translational research and development of improved anti-inflammatory therapies.
Collapse
|
297
|
Sim S, Yu JR, Lee YA, Shin MH. Involvement of Src family tyrosine kinase in apoptosis of human neutrophils induced by protozoan parasite Entamoeba histolytica. THE KOREAN JOURNAL OF PARASITOLOGY 2011; 48:285-90. [PMID: 21234229 PMCID: PMC3018576 DOI: 10.3347/kjp.2010.48.4.285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 10/13/2010] [Accepted: 10/13/2010] [Indexed: 11/23/2022]
Abstract
Tyrosine kinases are one of the most important regulators for intracellular signal transduction related to inflammatory responses. However, there are no reports describing the effects of tyrosine kinases on neutrophil apoptosis induced by Entamoeba histolytica. In this study, isolated human neutrophils from peripheral blood were incubated with live trophozoites in the presence or absence of tyrosine kinase inhibitors. Entamoeba-induced receptor shedding of CD16 and PS externalization in neutrophils were inhibited by pre-incubation of neutrophils with the broad-spectrum tyrosine kinase inhibitor genistein or the Src family kinase inhibitor PP2. Entamoeba-induced ROS production was also inhibited by genistein or PP2. Moreover, genistein and PP2 blocked the phosphorylation of ERK and p38 MAPK in neutrophils induced by E. histolytica. These results suggest that Src tyrosine kinases may participate in the signaling event for ROS-dependent activation of MAPKs during neutrophil apoptosis induced by E. histolytica.
Collapse
Affiliation(s)
- Seobo Sim
- Department of Environmental and Tropical Medicine, Konkuk University, Chungju 380-701, Korea
| | | | | | | |
Collapse
|