251
|
Perinajová R, Juffermans JF, Westenberg JJM, van der Palen RLF, van den Boogaard PJ, Lamb HJ, Kenjereš S. Geometrically induced wall shear stress variability in CFD-MRI coupled simulations of blood flow in the thoracic aortas. Comput Biol Med 2021; 133:104385. [PMID: 33894502 DOI: 10.1016/j.compbiomed.2021.104385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/16/2023]
Abstract
Aortic aneurysm is associated with aberrant blood flow and wall shear stress (WSS). This can be studied by coupling magnetic resonance imaging (MRI) with computational fluid dynamics (CFD). For patient-specific simulations, extra attention should be given to the variation in segmentation of the MRI data-set and its effect on WSS. We performed CFD simulations of blood flow in the aorta for ten different volunteers and provided corresponding WSS distributions. The aorta of each volunteer was segmented four times. The same inlet and outlet boundary conditions were applied for all segmentation variations of each volunteer. Steady-state CFD simulations were performed with inlet flow based on phase-contrast MRI during peak systole. We show that the commonly used comparison of mean and maximal values of WSS, based on CFD in the different segments of the thoracic aorta, yields good to excellent correlation (0.78-0.95) for rescan and moderate to excellent correlation (0.64-1.00) for intra- and interobserver reproducibility. However, the effect of geometrical variations is higher for the voxel-to-voxel comparison of WSS. With this analysis method, the correlation for different segments of the whole aorta is poor to moderate (0.43-0.66) for rescan and poor to good (0.48-0.73) for intra- and interobserver reproducibility. Therefore, we advise being critical about the CFD results based on the MRI segmentations to avoid possible misinterpretation. While the global values of WSS are similar for different modalities, the variation of results is high when considering the local distributions.
Collapse
Affiliation(s)
- Romana Perinajová
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology and J.M. Burgerscentrum Research School for Fluid Mechanics, Delft, the Netherlands.
| | - Joe F Juffermans
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roel L F van der Palen
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Saša Kenjereš
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology and J.M. Burgerscentrum Research School for Fluid Mechanics, Delft, the Netherlands.
| |
Collapse
|
252
|
Casciaro ME, Pascaner AF, Guilenea FN, Alcibar J, Gencer U, Soulat G, Mousseaux E, Craiem D. 4D flow MRI: impact of region of interest size, angulation and spatial resolution on aortic flow assessment. Physiol Meas 2021; 42. [PMID: 33567412 DOI: 10.1088/1361-6579/abe525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/10/2021] [Indexed: 12/31/2022]
Abstract
Objectives.In cardiovascular magnetic resonance, the 3D time-resolved phase-contrast technique, also known as 4D flow, is gaining increasing attention due to applications that exploit three-directional velocity encoding throughout the cardiac cycle. Blood flow volume assessment usually requires an expert to draw regions of interest (ROI) around the vessel cross section, whereas the errors involved in this estimation have not been thoroughly investigated. Our objective is to quantify the influence of ROI sizing, angulation and spatial resolution of the reconstructed plane employed in blood flow measurements using 4D flow.Approach.Three circular ROIs were drawn around the ascending, arch and descending aorta of healthy volunteers (n= 27) and patients with a dilated ascending aorta or bicuspid valve (n= 37). We applied systematic changes of ROI diameter (up to ±10%), tilt angle (up to ±25°) and spatial resolution (from 0.25 to 2 mm) of the reconstructed oblique planes, calculating the effects on net, forward and backward blood flow volumes.Main results.Patients had a larger ascending aorta than healthy volunteers with similar ages and male sex proportion (60 ± 15 y.o. vs 58 ± 16 y.o. and 84% vs 70%, respectively). Higher forward and backward flow volumes were observed in the ascending aorta and the aortic arch of the patients with respect to controls (p< 0.001), whereas net volumes were similar: 74.0 ± 20.8 ml versus 75.7 ± 21.8 ml (p= 0.37), respectively. The ascending aorta was the most sensitive to ROI modifications. Changes of ±10% in the ROI diameter and ±25° in tilt angles produced flow volume differences of up to 9 ml (10%) and 18 ml (15%) in controls and patients, respectively. Modifying the reconstructed planes spatial resolution produced flow volume changes below 2 ml.Significance.Since the setting of the ROI size and plane angle could produce errors that represent up to 20% of the forward and/or backward aortic flow volume, a good standardization for vessel segmentation and plane positioning is desirable.
Collapse
Affiliation(s)
- M E Casciaro
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, CP 1078 Buenos Aires, Argentina
| | - A F Pascaner
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, CP 1078 Buenos Aires, Argentina
| | - F N Guilenea
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, CP 1078 Buenos Aires, Argentina
| | - J Alcibar
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, CP 1078 Buenos Aires, Argentina
| | - U Gencer
- Cardiovascular Imaging Unit, Hôpital Européen Georges Pompidou, INSERM U970, Paris, France
| | - G Soulat
- Cardiovascular Imaging Unit, Hôpital Européen Georges Pompidou, INSERM U970, Paris, France
| | - E Mousseaux
- Cardiovascular Imaging Unit, Hôpital Européen Georges Pompidou, INSERM U970, Paris, France
| | - D Craiem
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, CP 1078 Buenos Aires, Argentina
| |
Collapse
|
253
|
Shokina N, Teschner G, Bauer A, Tropea C, Egger H, Hennig J, Krafft AJ. Parametric Sequential Method for MRI-Based Wall Shear Stress Quantification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1105-1112. [PMID: 33347405 DOI: 10.1109/tmi.2020.3046331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wall shear stress (WSS) has been suggested as a potential biomarker in various cardiovascular diseases and it can be estimated from phase-contrast Magnetic Resonance Imaging (PC-MRI) velocity measurements. We present a parametric sequential method for MRI-based WSS quantification consisting of a geometry identification and a subsequent approximation of the velocity field. This work focuses on its validation, investigating well controlled high-resolution in vitro measurements of turbulent stationary flows and physiological pulsatile flows in phantoms. Initial tests for in vivo 2D PC-MRI data of the ascending aorta of three volunteers demonstrate basic applicability of the method to in vivo.
Collapse
|
254
|
Callaghan FM, Burkhardt B, Valsangiacomo Buechel ER, Kellenberger CJ, Geiger J. Assessment of ventricular flow dynamics by 4D-flow MRI in patients following surgical repair of d-transposition of the great arteries. Eur Radiol 2021; 31:7231-7241. [PMID: 33783570 PMCID: PMC8452555 DOI: 10.1007/s00330-021-07813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/18/2021] [Accepted: 02/18/2021] [Indexed: 11/13/2022]
Abstract
Objectives To use 4D-flow MRI to describe systemic and non-systemic ventricular flow organisation and energy loss in patients with repaired d-transposition of the great arteries (d-TGA) and normal subjects. Methods Pathline tracking of ventricular volumes was performed using 4D-flow MRI data from a 1.5-T GE Discovery MR450 scanner. D-TGA patients following arterial switch (n = 17, mean age 14 ± 5 years) and atrial switch (n = 15, 35 ± 6 years) procedures were examined and compared with subjects with normal cardiac anatomy and ventricular function (n = 12, 12 ± 3 years). Pathlines were classified by their passage through the ventricles as direct flow, retained inflow, delayed ejection flow, and residual volume and visually and quantitatively assessed. Additionally, viscous energy losses (ELv) were calculated. Results In normal subjects, the ventricular flow paths were well ordered following similar trajectories through the ventricles with very little mixing of flow components. The flow paths in all atrial and some arterial switch patients were more irregular with high mixing. Direct flow and delayed ejection flow were decreased in atrial switch patients’ systemic ventricles with a corresponding increase in residual volume compared with normal subjects (p = 0.003 and p < 0.001 respectively) and arterial switch patients (p < 0.0001 and p < 0.001 respectively). In non-systemic ventricles, arterial switch patients had increased direct flow and decreased delayed ejection fractions compared to normal (p = 0.007 and p < 0.001 respectively) and atrial switch patients (p = 0.01 and p < 0.001 respectively). Regions of high levels of mixing of ventricular flow components showed elevated ELv. Conclusions 4D-flow MRI pathline tracking reveals disordered ventricular flow patterns and associated ELv in d-TGA patients. Key Points • 4D-flow MRI can be used to assess intraventricular flow dynamics in d-TGA patients. • d-TGA arterial switch patients mostly show intraventricular flow dynamics representative of normal subjects, while atrial switch patients show increased flow disorder and different proportions of intraventricular flow volumes. • Flow disruption and disorder increase viscous energy losses. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-07813-0.
Collapse
Affiliation(s)
- Fraser M Callaghan
- University of Zurich, Zurich, Switzerland. .,Center for MR-Research, University Children's Hospital, Steinwiesstrasse 75, 8032, Zurich, Switzerland. .,Children's Research Center, University Children's Hospital, Zurich, Switzerland.
| | - Barbara Burkhardt
- Children's Research Center, University Children's Hospital, Zurich, Switzerland.,Division of Pediatric Cardiology, University Children's Hospital, Zurich, Switzerland
| | - Emanuela R Valsangiacomo Buechel
- Children's Research Center, University Children's Hospital, Zurich, Switzerland.,Division of Pediatric Cardiology, University Children's Hospital, Zurich, Switzerland
| | - Christian J Kellenberger
- Children's Research Center, University Children's Hospital, Zurich, Switzerland.,Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland
| | - Julia Geiger
- Children's Research Center, University Children's Hospital, Zurich, Switzerland.,Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
255
|
Markl M. How Well Does an Automated Approach Calculate and Visualize Blood Flow Vorticity at 4D Flow MRI? Radiol Cardiothorac Imaging 2021; 2:e190233. [PMID: 33778539 DOI: 10.1148/ryct.2020190233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Michael Markl
- Department of Radiology, Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
| |
Collapse
|
256
|
Ngo MT, Lee UY, Ha H, Jin N, Chung GH, Kwak YG, Jung J, Kwak HS. Comparison of Hemodynamic Visualization in Cerebral Arteries: Can Magnetic Resonance Imaging Replace Computational Fluid Dynamics? J Pers Med 2021; 11:jpm11040253. [PMID: 33808514 PMCID: PMC8066205 DOI: 10.3390/jpm11040253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 01/04/2023] Open
Abstract
A multimodality approach was applied using four-dimensional flow magnetic resonance imaging (4D flow MRI), time-of-flight magnetic resonance angiography (TOF-MRA) signal intensity gradient (SIG), and computational fluid dynamics (CFD) to investigate the 3D blood flow characteristics and wall shear stress (WSS) of the cerebral arteries. TOF-MRA and 4D flow MRI were performed on the major cerebral arteries in 16 healthy volunteers (mean age 34.7 ± 7.6 years). The flow rate measured with 4D flow MRI in the internal carotid artery, middle cerebral artery, and anterior cerebral artery were 3.8, 2.5, and 1.2 mL/s, respectively. The 3D blood flow pattern obtained through CFD and 4D flow MRI on the cerebral arteries showed reasonable consensus. CFD delivered much greater resolution than 4D flow MRI. TOF-MRA SIG and CFD WSS of the major cerebral arteries showed reasonable consensus with the locations where the WSS was relatively high. However, the visualizations were very different between TOF-MRA SIG and CFD WSS at the internal carotid artery bifurcations, the anterior cerebral arteries, and the anterior communicating arteries. 4D flow MRI, TOF-MRA SIG, and CFD are complementary methods that can provide additional insight into the hemodynamics of the human cerebral artery.
Collapse
Affiliation(s)
- Minh Tri Ngo
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeon-ju 54907, Korea; (M.T.N.); (G.H.C.); (Y.G.K.)
| | - Ui Yun Lee
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeon-ju 54896, Korea;
| | - Hojin Ha
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Korea;
| | - Ning Jin
- Siemens Medical Solutions USA, Inc., Chicago, IL 60089, USA;
| | - Gyung Ho Chung
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeon-ju 54907, Korea; (M.T.N.); (G.H.C.); (Y.G.K.)
| | - Yeong Gon Kwak
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeon-ju 54907, Korea; (M.T.N.); (G.H.C.); (Y.G.K.)
| | - Jinmu Jung
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeon-ju 54896, Korea;
- Hemorheology Research Institute, Jeonbuk National University, Jeon-ju 54896, Korea
- Correspondence: (J.J.); (H.S.K.); Tel.: +82-63-270-3998 (J.J.); +82-63-250-2582 (H.S.K.)
| | - Hyo Sung Kwak
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeon-ju 54907, Korea; (M.T.N.); (G.H.C.); (Y.G.K.)
- Correspondence: (J.J.); (H.S.K.); Tel.: +82-63-270-3998 (J.J.); +82-63-250-2582 (H.S.K.)
| |
Collapse
|
257
|
Cave DGW, Panayiotou H, Bissell MM. Hemodynamic Profiles Before and After Surgery in Bicuspid Aortic Valve Disease-A Systematic Review of the Literature. Front Cardiovasc Med 2021; 8:629227. [PMID: 33842561 PMCID: PMC8024488 DOI: 10.3389/fcvm.2021.629227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/02/2021] [Indexed: 11/25/2022] Open
Abstract
Bicuspid aortic valve (BAV) disease presents a unique management challenge both pre- and post-operatively. 4D flow MRI offers multiple tools for the assessment of the thoracic aorta in aortic valve disease. In particular, its assessment of flow patterns and wall shear stress have led to new understandings around the mechanisms of aneurysm development in BAV disease. Novel parameters have now been developed that have the potential to predict pathological aortic dilatation and may help to risk stratify BAV patients in future. This systematic review analyses the current 4D flow MRI literature after aortic valve and/or ascending aortic replacement in bicuspid aortic valve disease. 4D flow MRI has also identified distinct challenges posed by this cohort at the time of valve replacement compared to standard management of tri-leaflet disorders, and may help tailor the type and timing of replacement. Eccentric pathological flow patterns seen after bioprosthetic valve implantation, but not with mechanical prostheses, might be an important future consideration in intervention planning. 4D flow MRI also has promising potential in supporting the development of artificial valve prostheses and aortic conduits with more physiological flow patterns.
Collapse
Affiliation(s)
- Daniel G W Cave
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Hannah Panayiotou
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Malenka M Bissell
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
258
|
Spartera M, Pessoa-Amorim G, Stracquadanio A, Von Ende A, Fletcher A, Manley P, Neubauer S, Ferreira VM, Casadei B, Hess AT, Wijesurendra RS. Left atrial 4D flow cardiovascular magnetic resonance: a reproducibility study in sinus rhythm and atrial fibrillation. J Cardiovasc Magn Reson 2021; 23:29. [PMID: 33745457 PMCID: PMC7983287 DOI: 10.1186/s12968-021-00729-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/03/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) allows sophisticated quantification of left atrial (LA) blood flow, and could yield novel biomarkers of propensity for intra-cardiac thrombus formation and embolic stroke. As reproducibility is critically important to diagnostic performance, we systematically investigated technical and temporal variation of LA 4D flow in atrial fibrillation (AF) and sinus rhythm (SR). METHODS Eighty-six subjects (SR, n = 64; AF, n = 22) with wide-ranging stroke risk (CHA2DS2VASc 0-6) underwent LA 4D flow assessment of peak and mean velocity, vorticity, vortex volume, and stasis. Eighty-five (99%) underwent a second acquisition within the same session, and 74 (86%) also returned at 30 (27-35) days for an interval scan. We assessed variability attributable to manual contouring (intra- and inter-observer), and subject repositioning and reacquisition of data, both within the same session (same-day scan-rescan), and over time (interval scan). Within-subject coefficients of variation (CV) and bootstrapped 95% CIs were calculated and compared. RESULTS Same-day scan-rescan CVs were 6% for peak velocity, 5% for mean velocity, 7% for vorticity, 9% for vortex volume, and 10% for stasis, and were similar between SR and AF subjects (all p > 0.05). Interval-scan variability was similar to same-day scan-rescan variability for peak velocity, vorticity, and vortex volume (all p > 0.05), and higher for stasis and mean velocity (interval scan CVs of 14% and 8%, respectively, both p < 0.05). Longitudinal changes in heart rate and blood pressure at the interval scan in the same subjects were associated with significantly higher variability for LA stasis (p = 0.024), but not for the remaining flow parameters (all p > 0.05). SR subjects showed significantly greater interval-scan variability than AF patients for mean velocity, vortex volume, and stasis (all p < 0.05), but not peak velocity or vorticity (both p > 0.05). CONCLUSIONS LA peak velocity and vorticity are the most reproducible and temporally stable novel LA 4D flow biomarkers, and are robust to changes in heart rate, blood pressure, and differences in heart rhythm.
Collapse
Affiliation(s)
- Marco Spartera
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, West Wing, Headley Way, Oxford, UK.
- The University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Oxford, UK.
| | - Guilherme Pessoa-Amorim
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, West Wing, Headley Way, Oxford, UK
- The University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Oxford, UK
| | - Antonio Stracquadanio
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, West Wing, Headley Way, Oxford, UK
- The University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Oxford, UK
| | - Adam Von Ende
- Department of Population Health, CTSU Nuffield University of Oxford, Oxford, UK
| | - Alison Fletcher
- The University of Oxford Acute Vascular Imaging Centre (AVIC), Oxford, UK
| | - Peter Manley
- The University of Oxford Acute Vascular Imaging Centre (AVIC), Oxford, UK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, West Wing, Headley Way, Oxford, UK
- The University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Oxford, UK
| | - Vanessa M Ferreira
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, West Wing, Headley Way, Oxford, UK
- The University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Oxford, UK
| | - Barbara Casadei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, West Wing, Headley Way, Oxford, UK
| | - Aaron T Hess
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, West Wing, Headley Way, Oxford, UK
- The University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Oxford, UK
| | - Rohan S Wijesurendra
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, West Wing, Headley Way, Oxford, UK
- The University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Oxford, UK
| |
Collapse
|
259
|
Gbinigie H, Coats L, Parikh JD, Hollingsworth KG, Gan L. A 4D flow cardiovascular magnetic resonance study of flow asymmetry and haemodynamic quantity correlations in the pulmonary artery. Physiol Meas 2021; 42:025005. [PMID: 33482652 DOI: 10.1088/1361-6579/abdf3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE In this paper we elucidate the asymmetric flow pattern and the haemodynamic quantity distributions and correlations in the pulmonary artery (PA) vasculature in healthy adults having structurally normal hearts, to provide reference on the flow characteristics in the PA and the right ventricle. APPROACH Velocity data are acquired non-invasively from 18 healthy volunteers by 4D flow magnetic resonance imaging, resolved to 20 phases with spatial resolution 3 × 3 × 3 mm3. Interpolation is applied to improve the accuracy in quantifying haemodynamic quantities including kinetic energy, rotational energy, helicity and energy dissipation rate. These quantities are volumetrically normalised to remove size dependency, representing densities or local intensity. MAIN RESULTS Flow asymmetry in the PA is quantified in terms of all the flow dynamic quantities and their correlations. The right PA has larger diameter and higher peak stroke velocity than the left PA. It also has the highest rotational energy intensity. Counter-rotating helical streams in the main PA appear to be associated with the unidirectional helical flow noticed in the left and the right PA near the peak systole. SIGNIFICANCE This study provides a fundamental basis of normal flow in the PA. It implies the validity to use these flow pattern-related quantitative measures to aid with the identification of abnormal PA flow non-invasively, specifically for detecting abnormalities in the pulmonary circulation and response to therapy, where haemodynamic flow is commonly characterised by increased vortical and helical formations.
Collapse
Affiliation(s)
- Henrike Gbinigie
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| | | | | | | | | |
Collapse
|
260
|
Gottwald LM, Blanken CPS, Tourais J, Smink J, Planken RN, Boekholdt SM, Meijboom LJ, Coolen BF, Strijkers GJ, Nederveen AJ, van Ooij P. Retrospective Camera-Based Respiratory Gating in Clinical Whole-Heart 4D Flow MRI. J Magn Reson Imaging 2021; 54:440-451. [PMID: 33694310 PMCID: PMC8359364 DOI: 10.1002/jmri.27564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Background Respiratory gating is generally recommended in 4D flow MRI of the heart to avoid blurring and motion artifacts. Recently, a novel automated contact‐less camera‐based respiratory motion sensor has been introduced. Purpose To compare camera‐based respiratory gating (CAM) with liver‐lung‐navigator‐based gating (NAV) and no gating (NO) for whole‐heart 4D flow MRI. Study Type Retrospective. Subjects Thirty two patients with a spectrum of cardiovascular diseases. Field Strength/Sequence A 3T, 3D‐cine spoiled‐gradient‐echo‐T1‐weighted‐sequence with flow‐encoding in three spatial directions. Assessment Respiratory phases were derived and compared against each other by cross‐correlation. Three radiologists/cardiologist scored images reconstructed with camera‐based, navigator‐based, and no respiratory gating with a 4‐point Likert scale (qualitative analysis). Quantitative image quality analysis, in form of signal‐to‐noise ratio (SNR) and liver‐lung‐edge (LLE) for sharpness and quantitative flow analysis of the valves were performed semi‐automatically. Statistical Tests One‐way repeated measured analysis of variance (ANOVA) with Wilks's lambda testing and follow‐up pairwise comparisons. Significance level of P ≤ 0.05. Krippendorff's‐alpha‐test for inter‐rater reliability. Results The respiratory signal analysis revealed that CAM and NAV phases were highly correlated (C = 0.93 ± 0.09, P < 0.01). Image scoring showed poor inter‐rater reliability and no significant differences were observed (P ≥ 0.16). The image quality comparison showed that NAV and CAM were superior to NO with higher SNR (P = 0.02) and smaller LLE (P < 0.01). The quantitative flow analysis showed significant differences between the three respiratory‐gated reconstructions in the tricuspid and pulmonary valves (P ≤ 0.05), but not in the mitral and aortic valves (P > 0.05). Pairwise comparisons showed that reconstructions without respiratory gating were different in flow measurements to either CAM or NAV or both, but no differences were found between CAM and NAV reconstructions. Data Conclusion Camera‐based respiratory gating performed as well as conventional liver‐lung‐navigator‐based respiratory gating. Quantitative image quality analysis showed that both techniques were equivalent and superior to no‐gating‐reconstructions. Quantitative flow analysis revealed local flow differences (tricuspid/pulmonary valves) in images of no‐gating‐reconstructions, but no differences were found between images reconstructed with camera‐based and navigator‐based respiratory gating. Level of Evidence 3 Technical Efficacy Stage 2
Collapse
Affiliation(s)
- Lukas M Gottwald
- Radiology and Nuclear Medicine, Amsterdam, Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Carmen P S Blanken
- Radiology and Nuclear Medicine, Amsterdam, Amsterdam University Medical Centers, location AMC, The Netherlands
| | - João Tourais
- MR R&D-Clinical Science, Philips Healthcare, Best, The Netherlands.,Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Magnetic Resonance Systems Lab, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Jouke Smink
- MR R&D-Clinical Science, Philips Healthcare, Best, The Netherlands
| | - R Nils Planken
- Cardiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | - Lilian J Meijboom
- Radiology and Nuclear Medicine, Amsterdam, Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Bram F Coolen
- Biomedical Engineering and Physics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Biomedical Engineering and Physics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Radiology and Nuclear Medicine, Amsterdam, Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Pim van Ooij
- Radiology and Nuclear Medicine, Amsterdam, Amsterdam University Medical Centers, location AMC, The Netherlands
| |
Collapse
|
261
|
Zhang M, Peng F, Tong X, Feng X, Li Y, Chen H, Niu H, Zhang B, Song G, Li Y, Liu P, Liu A, Li R. Associations between haemodynamics and wall enhancement of intracranial aneurysm. Stroke Vasc Neurol 2021; 6:467-475. [PMID: 33637615 PMCID: PMC8485248 DOI: 10.1136/svn-2020-000636] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous studies have reported about inflammation processes (IPs) that play important roles in aneurysm formation and rupture, which could be driven by blood flow. IPs can be identified using aneurysmal wall enhancement (AWE) on high-resolution black-blood MRI (BB-MRI) and blood flow haemodynamics can be demonstrated by four-dimensional-flow MRI (4D-flow MRI). Thus, this study investigated the associations between AWE and haemodynamics in unruptured intracranial aneurysms (IA) by combining 4D-flow MRI and high-resolution BB-MRI. MATERIALS AND METHODS Between April 2014 and October 2017, 48 patients with 49 unruptured IA who underwent both 4D-flow MRI and high-resolution BB-MRI were retrospectively included in this study. The haemodynamic parameters demonstrated using 4D-flow MRI were compared between different AWE patterns using the Kruskal-Wallis test and ordinal regression. RESULTS The results of Kruskal-Wallis test showed that the average wall shear stress in the IA (WSSavg-IA), maximum through-plane velocity in the adjacent parent artery, inflow jet patterns and the average vorticity in IA (vorticityavg-IA) were significantly associated with the AWE patterns. Ordinal regression analysis identified WSSavg-IA (p=0.002) and vorticityavg-IA (p=0.033) as independent predictors of AWE patterns. CONCLUSION A low WSS and low average vorticity were independently associated with a high AWE grade for IAs larger than 4 mm. Therefore, WSS and average vorticity could predict AWE and circumferential AWE.
Collapse
Affiliation(s)
- Miaoqi Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Fei Peng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Xin Tong
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Xin Feng
- Department of Neurosurgery, Beijing Hospital, Beijing, China
| | - Yunduo Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Hao Niu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Baorui Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Guangrong Song
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Youxiang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Peng Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Aihua Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
262
|
Nikolou E, Bilkhu R, Kafil TS, Demetrescu C, Kotta PA, Lucchese G, Tzemos N, Grapsa J. Multimodality Imaging in Transcatheter Mitral Interventions. Front Cardiovasc Med 2021; 8:638399. [PMID: 33718458 PMCID: PMC7950542 DOI: 10.3389/fcvm.2021.638399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/29/2021] [Indexed: 11/21/2022] Open
Abstract
Multimodality imaging is of imperative value for the planning and guidance of transcatheter mitral valve interventions. This review employs the value of different imaging modalities and future implications for clinical practice.
Collapse
Affiliation(s)
- Evgenia Nikolou
- Department of Cardiology, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Rajdeep Bilkhu
- Department of Cardiothoracic Surgery, Guys and St Thomas NHS Hospitals Trust, London, United Kingdom
| | - Tahir S. Kafil
- Department of Cardiology, Western University, London, ON, Canada
| | - Camelia Demetrescu
- Department of Cardiology, Guys and St Thomas NHS Hospitals Trust, London, United Kingdom
| | - Prasanti Alekhya Kotta
- Department of Cardiology, Guys and St Thomas NHS Hospitals Trust, London, United Kingdom
| | - Gianluca Lucchese
- Department of Cardiothoracic Surgery, Guys and St Thomas NHS Hospitals Trust, London, United Kingdom
| | - Nikolaos Tzemos
- Department of Cardiology, Western University, London, ON, Canada
| | - Julia Grapsa
- Department of Cardiology, Guys and St Thomas NHS Hospitals Trust, London, United Kingdom
| |
Collapse
|
263
|
Castagna M, Levilly S, Paul-Gilloteaux P, Moussaoui S, Rousset JM, Bonnefoy F, Idier J, Serfaty JM, Le Touzé D. An LDV based method to quantify the error of PC-MRI derived Wall Shear Stress measurement. Sci Rep 2021; 11:4112. [PMID: 33603139 PMCID: PMC7892875 DOI: 10.1038/s41598-021-83633-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/02/2021] [Indexed: 11/14/2022] Open
Abstract
Wall Shear Stress (WSS) has been demonstrated to be a biomarker of the development of atherosclerosis. In vivo assessment of WSS is still challenging, but 4D Flow MRI represents a promising tool to provide 3D velocity data from which WSS can be calculated. In this study, a system based on Laser Doppler Velocimetry (LDV) was developed to validate new improvements of 4D Flow MRI acquisitions and derived WSS computing. A hydraulic circuit was manufactured to allow both 4D Flow MRI and LDV velocity measurements. WSS profiles were calculated with one 2D and one 3D method. Results indicated an excellent agreement between MRI and LDV velocity data, and thus the set-up enabled the evaluation of the improved performances of 3D with respect to the 2D-WSS computation method. To provide a concrete example of the efficacy of this method, the influence of the spatial resolution of MRI data on derived 3D-WSS profiles was investigated. This investigation showed that, with acquisition times compatible with standard clinical conditions, a refined MRI resolution does not improve WSS assessment, if the impact of noise is unreduced. This study represents a reliable basis to validate with LDV WSS calculation methods based on 4D Flow MRI.
Collapse
Affiliation(s)
- Marco Castagna
- LHEEA Lab, École Centrale Nantes, CNRS UMR 6598, 1 rue de la Noë, 44321, Nantes, France.,Université de Nantes, CHU Nantes, CNRS UMR 6291, INSERM UMR 1087, L'institut du thorax, 8 quai Moncousu, 44035, Nantes, France
| | - Sébastien Levilly
- LS2N, École Centrale Nantes, CNRS UMR 6004, 1 rue de la Noë, 44321, Nantes, France
| | - Perrine Paul-Gilloteaux
- Université de Nantes, CHU Nantes, CNRS UMR 6291, INSERM UMR 1087, L'institut du thorax, 8 quai Moncousu, 44035, Nantes, France.,Université de Nantes, CHU Nantes, CNRS UMS 3556, INSERM UMS 016, SFR Santé, 8 quai Moncousu, 44035, Nantes, France
| | - Saïd Moussaoui
- LS2N, École Centrale Nantes, CNRS UMR 6004, 1 rue de la Noë, 44321, Nantes, France
| | - Jean-Marc Rousset
- LHEEA Lab, École Centrale Nantes, CNRS UMR 6598, 1 rue de la Noë, 44321, Nantes, France
| | - Félicien Bonnefoy
- LHEEA Lab, École Centrale Nantes, CNRS UMR 6598, 1 rue de la Noë, 44321, Nantes, France
| | - Jérôme Idier
- LS2N, École Centrale Nantes, CNRS UMR 6004, 1 rue de la Noë, 44321, Nantes, France
| | - Jean-Michel Serfaty
- Université de Nantes, CHU Nantes, CNRS UMR 6291, INSERM UMR 1087, L'institut du thorax, 8 quai Moncousu, 44035, Nantes, France
| | - David Le Touzé
- LHEEA Lab, École Centrale Nantes, CNRS UMR 6598, 1 rue de la Noë, 44321, Nantes, France.
| |
Collapse
|
264
|
Arslan F, Akdim F, Ten Berg JM. Reverse remodeling after percutaneous transluminal septal myocardial ablation in severe but asymptomatic LVOT obstruction (RASTA) study: Rationale and design of transcatheter septal reduction in asymptomatic patients with severe hypertrophic obstructive cardiomyopathy. Catheter Cardiovasc Interv 2021; 97:488-492. [PMID: 32808736 DOI: 10.1002/ccd.29178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/05/2020] [Accepted: 07/19/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The aim of this study is to evaluate the impact of percutaneous transluminal septal myocardial ablation (PTSMA) on remodeling in asymptomatic patients with hypertrophic obstructive cardiomyopathy (HOCM) and severe left ventricular outflow tract (LVOT) obstruction. BACKGROUND Symptoms justify invasive treatment in HOCM patients with LVOT obstruction. Adverse structural and functional changes (remodeling) in the heart occur preceding heart failure and sudden cardiac death. Early invasive treatment in asymptomatic patients may reverse adverse remodeling to the same extent as in symptomatic patients. METHODS Reverse remodeling after PTSMA in severe but asymptomatic LVOT obstruction (RASTA) study is a prospective single-blind randomized trial (ClinicalTrials.gov number: NCT04230551). Ten asymptomatic HOCM patients with an exertional LVOT gradient ≥50 mmHg (or >30 mmHg in rest) are randomized 1:1 to PTSMA versus conservative therapy, in the absence of mitral valve disease or other indications for cardiac surgery. Five symptomatic (reference group) will undergo PTSMA according to the current guidelines. RESULTS Remodeling is assessed using extensive cardiac imaging with transthoracic echocardiography and late gadolinium enhancement cardiac magnetic resonance at baseline and during follow-up at 1, 12, and 24 months. Extracellular volume fraction, global, and regional strain analysis, geometry, pressure gradients and changes in four-dimensional velocity mapping are primary parameters to study (reversal of) adverse remodeling. CONCLUSIONS The RASTA study gives insight in cardiac remodeling that may occur in asymptomatic patients after PTSMA. It will provide arguments whether to pursue (or not) a larger trial with clinical endpoints in asymptomatic HOCM patients with severe LVOT obstruction.
Collapse
Affiliation(s)
- Fatih Arslan
- Department of Cardiology, St. Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
| | - Fatima Akdim
- Department of Cardiology, St. Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
| | - Jurriën M Ten Berg
- Department of Cardiology, St. Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
| |
Collapse
|
265
|
Juffermans JF, Minderhoud SCS, Wittgren J, Kilburg A, Ese A, Fidock B, Zheng YC, Zhang JM, Blanken CPS, Lamb HJ, Goeman JJ, Carlsson M, Zhao S, Planken RN, van Ooij P, Zhong L, Chen X, Garg P, Emrich T, Hirsch A, Töger J, Westenberg JJM. Multicenter Consistency Assessment of Valvular Flow Quantification With Automated Valve Tracking in 4D Flow CMR. JACC Cardiovasc Imaging 2021; 14:1354-1366. [PMID: 33582060 DOI: 10.1016/j.jcmg.2020.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES This study determined: 1) the interobserver agreement; 2) valvular flow variation; and 3) which variables independently predicted the variation of valvular flow quantification from 4-dimensional (4D) flow cardiac magnetic resonance (CMR) with automated retrospective valve tracking at multiple sites. BACKGROUND Automated retrospective valve tracking in 4D flow CMR allows consistent assessment of valvular flow through all intracardiac valves. However, due to the variance of CMR scanners and protocols, it remains uncertain if the published consistency holds for other clinical centers. METHODS Seven sites each retrospectively or prospectively selected 20 subjects who underwent whole heart 4D flow CMR (64 patients and 76 healthy volunteers; aged 32 years [range 24 to 48 years], 47% men, from 2014 to 2020), which was acquired with locally used CMR scanners (scanners from 3 vendors; 2 1.5-T and 5 3-T scanners) and protocols. Automated retrospective valve tracking was locally performed at each site to quantify the valvular flow and repeated by 1 central site. Interobserver agreement was evaluated with intraclass correlation coefficients (ICCs). Net forward volume (NFV) consistency among the valves was evaluated by calculating the intervalvular variation. Multiple regression analysis was performed to assess the predicting effect of local CMR scanners and protocols on the intervalvular inconsistency. RESULTS The interobserver analysis demonstrated strong-to-excellent agreement for NFV (ICC: 0.85 to 0.96) and moderate-to-excellent agreement for regurgitation fraction (ICC: 0.53 to 0.97) for all sites and valves. In addition, all observers established a low intervalvular variation (≤10.5%) in their analysis. The availability of 2 cine images per valve for valve tracking compared with 1 cine image predicted a decreasing variation in NFV among the 4 valves (beta = -1.3; p = 0.01). CONCLUSIONS Independently of locally used CMR scanners and protocols, valvular flow quantification can be performed consistently with automated retrospective valve tracking in 4D flow CMR.
Collapse
Affiliation(s)
- Joe F Juffermans
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Savine C S Minderhoud
- Department of Cardiology and Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Johan Wittgren
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skane University Hospital, Lund, Sweden
| | - Anton Kilburg
- Department of Radiology, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Amir Ese
- Department of Radiology, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Benjamin Fidock
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Yu-Cong Zheng
- Department of MRI, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Mei Zhang
- National Heart Centre Singapore; Duke-NUS Medical School Singapore, National University of Singapore, Singapore
| | - Carmen P S Blanken
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jelle J Goeman
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Marcus Carlsson
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skane University Hospital, Lund, Sweden
| | - Shihua Zhao
- Department of MRI, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - R Nils Planken
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands
| | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands
| | - Liang Zhong
- National Heart Centre Singapore; Duke-NUS Medical School Singapore, National University of Singapore, Singapore
| | - Xiuyu Chen
- Department of MRI, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pankaj Garg
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Tilman Emrich
- Department of Radiology, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| | - Alexander Hirsch
- Department of Cardiology and Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Johannes Töger
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skane University Hospital, Lund, Sweden
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
266
|
Riva A, Sturla F, Caimi A, Pica S, Giese D, Milani P, Palladini G, Lombardi M, Redaelli A, Votta E. 4D flow evaluation of blood non-Newtonian behavior in left ventricle flow analysis. J Biomech 2021; 119:110308. [PMID: 33631666 DOI: 10.1016/j.jbiomech.2021.110308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/03/2021] [Indexed: 12/31/2022]
Abstract
Blood is generally modeled as a Newtonian fluid, assuming a standard and constant viscosity; however, this assumption may not hold for the highly pulsatile and recirculating intracavitary flow in the left ventricle (LV), hampering the quantification of fluid dynamic indices of potential clinical relevance. Herein, we investigated the effect of three viscosity models on the patient-specific quantification of LV blood energetics, namely on viscous energy loss (EL), from 4D Flow magnetic resonance imaging: I) Newtonian with standard viscosity (3.7 cP), II) Newtonian with subject-specific hematocrit-dependent viscosity, III) non-Newtonian accounting for the effect of hematocrit and shear rate. Analyses were performed on 5 controls and 5 patients with cardiac light-chain amyloidosis. In Model II, viscosity ranged between 3.0 (-19%) and 4.3 cP (+16%), mildly deviating from the standard value. In the non-Newtonian model, this effect was emphasized: viscosity ranged from 3.2 to 6.0 cP, deviating maximally from the standard value in low shear rate (i.e., <100 s-1) regions. This effect reflected on EL quantifications: in particular, as compared to Model I, Model III yielded markedly higher EL values (up to +40%) or markedly lower (down to -21%) for subjects with hematocrit higher than 39.5% and lower than 30%, respectively. Accounting for non-Newtonian blood behavior on a patient-specific basis may enhance the accuracy of intracardiac energetics assessment by 4D Flow, which may be explored as non-invasive index to discriminate between healthy and pathologic LV.
Collapse
Affiliation(s)
- Alessandra Riva
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy; 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Francesco Sturla
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Alessandro Caimi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Silvia Pica
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | | | - Paolo Milani
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Massimo Lombardi
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Emiliano Votta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy; 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
267
|
Secinaro A, Milano EG, Ciancarella P, Trezzi M, Capelli C, Ciliberti P, Cetrano E, Curione D, Santangelo TP, Napolitano C, Albanese SB, Carotti A. Blood flow characteristics after aortic valve neocuspidization in paediatric patients: a comparison with the Ross procedure. Eur Heart J Cardiovasc Imaging 2021; 23:275-282. [PMID: 33550364 PMCID: PMC8787994 DOI: 10.1093/ehjci/jeab009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 01/13/2021] [Indexed: 12/25/2022] Open
Abstract
Aims The aortic valve (AV) neocuspidization (Ozaki procedure) is a novel surgical technique for AV disease that preserves the natural motion and cardiodynamics of the aortic root. In this study, we sought to evaluate, by 4D-flow magnetic resonance imaging, the aortic blood flow characteristics after AV neocuspidization in paediatric patients. Methods and results Aortic root and ascending aorta haemodynamics were evaluated in a population of patients treated with the Ozaki procedure; results were compared with those of a group of patients operated with the Ross technique. Cardiovascular magnetic resonance studies were performed at 1.5 T using a 4D flow-sensitive sequence acquired with retrospective electrocardiogram-gating and respiratory navigator. Post-processing of 4D-flow analysis was performed to calculate flow eccentricity and wall shear stress. Twenty children were included in this study, 10 after Ozaki and 10 after Ross procedure. Median age at surgery was 10.7 years (range 3.9–16.5 years). No significant differences were observed in wall shear stress values measured at the level of the proximal ascending aorta between the two groups. The analysis of flow patterns showed no clear association between eccentric flow and the procedure performed. The Ozaki group showed just a slightly increased transvalvular maximum velocity. Conclusion Proximal aorta flow dynamics of children treated with the Ozaki and the Ross procedure are comparable. Similarly to the Ross, Ozaki technique restores a physiological laminar flow pattern in the short-term follow-up, with the advantage of not inducing a bivalvular disease, although further studies are warranted to evaluate its long-term results.
Collapse
Affiliation(s)
- Aurelio Secinaro
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Elena Giulia Milano
- University College London, Institute of Cardiovascular Science, London, UK.,Great Ormond Street Hospital for Children, Department of Cardiology, London, UK
| | - Paolo Ciancarella
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Matteo Trezzi
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudio Capelli
- University College London, Institute of Cardiovascular Science, London, UK
| | - Paolo Ciliberti
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Enrico Cetrano
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Davide Curione
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Teresa Pia Santangelo
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Carmela Napolitano
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Sonia B Albanese
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Adriano Carotti
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
268
|
Abstract
This review describes the current role and potential future applications of cardiac magnetic resonance (CMR) for the management of heart failure (HF). CMR allows noninvasive morphologic and functional assessment, tissue characterization, blood flow, and perfusion evaluation. CMR overcomes echocardiography limitations (geometric assumptions, interobserver variability and poor acoustic window) and provides incremental information in relation to cause, prognosis, and treatment monitoring of patients with HF.
Collapse
|
269
|
Ziegler M, Alfraeus J, Good E, Engvall J, de Muinck E, Dyverfeldt P. Exploring the Relationships Between Hemodynamic Stresses in the Carotid Arteries. Front Cardiovasc Med 2021; 7:617755. [PMID: 33614742 PMCID: PMC7886794 DOI: 10.3389/fcvm.2020.617755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/31/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Atherosclerosis manifests as a focal disease, often affecting areas with complex hemodynamics such as the carotid bifurcation. The magnitude and regularity of the hemodynamic shear stresses acting on the vessel wall are thought to generate risk patterns unique to each patient and play a role in the pathogenesis of atherosclerosis. The involvement of different expressions of shear stress in the pathogenesis of carotid atherosclerosis highlights the need to characterize and compare the differential impact of the various expressions of shear stress in the atherosclerotic carotid bifurcation. Therefore, the aim of this study is to characterize and compare hemodynamic wall shear stresses (WSS) in the carotid arteries of subjects with asymptomatic atherosclerotic plaques. Shear stresses were also compared against vessel diameter and bifurcation angle to examine the relationships with the geometry of the carotid bifurcation. Methods: 4D Flow MRI and contrast-enhanced MRA data were acquired for 245 subjects with atherosclerotic plaques of at least 2.7 mm in conjunction with the Swedish CArdioPulmonary bioImage Study (SCAPIS). Following automatic segmentation and geometric analysis, time-resolved WSS and near-wall turbulent kinetic energy (nwTKE) were derived from the 4D Flow data. Whole-cycle parameters including time-averaged WSS and nwTKE, and the oscillatory shear index (OSI) were calculated. Pairwise Spearman rank-correlation analyses were used to investigate relationships among the hemodynamic as well as geometric parameters. Results: One hundred and seventy nine subjects were successfully segmented using automated tools and subsequently geometric and hemodynamic analyses were performed. Temporally resolved WSS and nwTKE were strongly correlated, ρ = 0.64. Cycle-averaged WSS and nwTKE were moderately correlated, ρ = 0.57. Cycle-average nwTKE was weakly correlated to OSI (ρ = -0.273), revealing that nwTKE provides information about disturbed flow on the vessel wall that OSI does not. In this cohort, there was large inter-individual variation for both WSS and nwTKE. Both WSS and nwTKE varied most within the external carotid artery. WSS, nwTKE, and OSI were weakly correlated to vessel diameter and bifurcation angle. Conclusion: The turbulent and mean component of WSS were examined together in vivo for the first time, and a strong correlation was found between them. nwTKE presents the opportunity to quantify turbulent wall stresses in vivo and gain insight into the effects of disturbed flow on the vessel wall. Neither vessel diameter nor bifurcation angle were found to be strongly correlated to the turbulent or mean component of WSS in this cohort.
Collapse
Affiliation(s)
- Magnus Ziegler
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Jesper Alfraeus
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Elin Good
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Cardiology, Linköping University, Linköping, Sweden
| | - Jan Engvall
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Ebo de Muinck
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Cardiology, Linköping University, Linköping, Sweden
| | - Petter Dyverfeldt
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
270
|
Wolf K, Reisert M, Beltrán SF, Klingler JH, Hubbe U, Krafft AJ, Egger K, Hohenhaus M. Focal cervical spinal stenosis causes mechanical strain on the entire cervical spinal cord tissue - A prospective controlled, matched-pair analysis based on phase-contrast MRI. NEUROIMAGE-CLINICAL 2021; 30:102580. [PMID: 33578322 PMCID: PMC7875814 DOI: 10.1016/j.nicl.2021.102580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Focally increased spinal cord motion at the level of cervical spinal stenosis has been revealed by phase-contrast MRI (PC-MRI). OBJECTIVE To investigate spinal cord motion among patients suffering of degenerative cervical myelopathy (DCM) across the entire cervical spine applying automated segmentation and standardized PC-MRI post-processing protocols. METHODS Prospective, matched-pair controlled trial on 29 patients with stenosis at C5/C6. MRI-protocol covering all cervical segments: 3D T2-SPACE, prospectively ECG-triggered sagittal PC-MRI. Segmentation by trained 3D hierarchical deep convolutional neural network and data processing were conducted via in-house software pipeline. Parameters per segment: maximum velocity, peak-to-peak (PTP)-amplitude, total displacement, PTP-amplitudeHB (PTP-amplitude per duration of heartbeat), and, for characterization of intraindividual alterations, the PTP-amplitude index between the cervical segments C3/C4-C7/T1 and C2/C3. RESULTS Spinal cord motion was increased at C4/C5, C5/C6 and C6/C7 among patients (all parameters, p < 0.001-0.025). The PTP-amplitude index revealed an increase from C3/C4 to C4/C5 (p = 0.002), C4/C5 to C5/C6 (p = 0.037) and a decrease from C5/C6 to C6/C7 and C6/C7 to C7/T1 (p < 0.001, each). This implied an up-building stretch on spinal cord tissue cranial and a mechanical compression caudal of the stenotic level. Furthermore, significant far range effects across the entire cervical spinal cord were observed (e.g. PTP-amplitude C2/C3 vs. C6/C7, p = 0.026) in contrast to controls (p = 1.00). CONCLUSION This study revealed the nature and extends of mechanical stress on the entire cervical spinal cord tissue due to focal stenosis. These pathophysiological alterations of spinal cord motion can be expected to be clinically relevant.
Collapse
Affiliation(s)
- Katharina Wolf
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Marco Reisert
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Saúl Felipe Beltrán
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jan-Helge Klingler
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Ulrich Hubbe
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Axel J Krafft
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Karl Egger
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Radiology, Tauernklinikum Zell am See/Mittersill, Salzburg, Austria
| | - Marc Hohenhaus
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
271
|
Rivera-Rivera LA, Cody KA, Eisenmenger L, Cary P, Rowley HA, Carlsson CM, Johnson SC, Johnson KM. Assessment of vascular stiffness in the internal carotid artery proximal to the carotid canal in Alzheimer's disease using pulse wave velocity from low rank reconstructed 4D flow MRI. J Cereb Blood Flow Metab 2021; 41:298-311. [PMID: 32169012 PMCID: PMC8370001 DOI: 10.1177/0271678x20910302] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/27/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022]
Abstract
Clinical evidence shows vascular factors may co-occur and complicate the expression of Alzheimer's disease (AD); yet, the pathologic mechanisms and involvement of different compartments of the vascular network are not well understood. Diseases such as arteriosclerosis diminish vascular compliance and will lead to arterial stiffness, a well-established risk factor for cardiovascular morbidity. Arterial stiffness can be assessed using pulse wave velocity (PWV); however, this is usually done from carotid-to-femoral artery ratios. To probe the brain vasculature, intracranial PWV measures would be ideal. In this study, high temporal resolution 4D flow MRI was used to assess transcranial PWV in 160 subjects including AD, mild cognitive impairment (MCI), healthy controls, and healthy subjects with apolipoprotein ɛ4 positivity (APOE4+) and parental history of AD dementia (FH+). High temporal resolution imaging was achieved by high temporal binning of retrospectively gated data using a local-low rank approach. Significantly higher transcranial PWV in AD dementia and MCI subjects was found when compared to old-age-matched controls (AD vs. old-age-matched controls: P <0.001, AD vs. MCI: P = 0.029, MCI vs. old-age-matched controls P = 0.013). Furthermore, vascular changes were found in clinically healthy middle-age adults with APOE4+ and FH+ indicating significantly higher transcranial PWV compared to controls (P <0.001).
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of
Medicine and Public Health, Madison, WI, USA
| | - Karly A Cody
- Alzheimer’s Disease Research Center, University of Wisconsin School
of Medicine and Public Health, Madison, WI, USA
| | - Laura Eisenmenger
- Department of Radiology, University of Wisconsin School of Medicine
and Public Health, Madison, WI, USA
| | - Paul Cary
- Alzheimer’s Disease Research Center, University of Wisconsin School
of Medicine and Public Health, Madison, WI, USA
| | - Howard A Rowley
- Alzheimer’s Disease Research Center, University of Wisconsin School
of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine
and Public Health, Madison, WI, USA
| | - Cynthia M Carlsson
- Alzheimer’s Disease Research Center, University of Wisconsin School
of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S.
Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sterling C Johnson
- Alzheimer’s Disease Research Center, University of Wisconsin School
of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S.
Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of
Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine
and Public Health, Madison, WI, USA
| |
Collapse
|
272
|
Zhang M, Peng F, Li Y, He L, Liu A, Li R. Associations between morphology and hemodynamics of intracranial aneurysms based on 4D flow and black-blood magnetic resonance imaging. Quant Imaging Med Surg 2021; 11:597-607. [PMID: 33532260 DOI: 10.21037/qims-20-440] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Previous studies have hypothesized that intracranial aneurysm (IA) morphology interacts with hemodynamic conditions. Magnetic resonance imaging (MRI) provides a single image modality solution for both morphological and hemodynamic measurements for IA. This study aimed to explore the interaction between the morphology and hemodynamics of IA using black-blood MRI (BB-MRI) and 4D flow MRI. Methods A total of 97 patients with unruptured IA were recruited for this study. The IA size, size ratio (SR), and minimum wall thickness (mWT) were measured using BB-MRI. Velocity, blood flow, pulsatility index (PI), and wall shear stress (WSS) were measured with 4D flow MRI. The relationship between hemodynamic parameters and morphological indices was investigated by linear regression analysis and unpaired two-sample t-test. To determine the independent interaction, multiple linear regression analysis was further performed. Results The findings showed that mWT was negatively correlated with IA size (r=-0.665, P<0.001). Maximum blood flow in IA (FlowIA) was positively correlated with IA size (r=0.458, P<0.001). The average WSS (WSSavg) was negatively correlated with IA size (r=-0.650, P<0.001). The relationships remained the same after the multivariate analysis was adjusted for hemodynamic, morphologic, and demographic confounding factors. The WSSavg was positively correlated with mWT (r=0.528, P<0.001). In the unpaired two-sample t-test, mWT, WSSavg, and FlowIA were statistically significantly associated with the size and SR of IAs. Conclusions There is potential for BB-MRI and 4D flow MRI to provide morphological and hemodynamic information regarding IA. Blood flow, WSS, and mWT may serve as non-invasive biomarkers for IA assessments, and may contribute to a more comprehensive understanding of the mechanism of IA.
Collapse
Affiliation(s)
- Miaoqi Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Fei Peng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yunduo Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Le He
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Aihua Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
273
|
Kroeger JR, Pavesio FC, Mörsdorf R, Weiss K, Bunck AC, Baeßler B, Maintz D, Giese D. Velocity quantification in 44 healthy volunteers using accelerated multi-VENC 4D flow CMR. Eur J Radiol 2021; 137:109570. [PMID: 33596498 DOI: 10.1016/j.ejrad.2021.109570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/25/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND To evaluate the feasibility of a k-t accelerated multi-VENC 4D phase contrast flow MRI acquisition of the main heart-surrounding vessels, its benefits over a traditional single-VENC acquisition and to present reference flow and velocity values in a large cohort of volunteers. METHODS 44 healthy volunteers were examined on a 3 T MRI scanner (Ingenia, Philips, Best, The Netherlands). 4D flow measurements were obtained with a FOV including the aorta and the pulmonary arteries. VENC values were set to 40, 100 and 200 cm/s and unfolded based on an MRI signal model. Unfolded multi-VENC data was compared to the single-VENC with VENC 200 cm/s. Flow and velocity quantification was performed in several regions of interest (ROI) placed in the ascending aorta and in the main pulmonary artery. Conservation of mass analysis was performed for single- and multi-VENC datasets. Values for mean and maximal flow velocity and stroke volume were calculated and compared to the literature. RESULTS Mean scan time was 13.8 ± 4 min. Differences between stroke volumes between the ascending aorta and the main pulmonary artery were significantly lower in multi-VENC datasets compared to single-VENC datasets (9.6 ± 7.8 mL vs. 25.4 ± 26.4 mL, p < 0.001). This was also true for differences in stroke volume between up- and downstream ROIs in the ascending aorta and pulmonary artery. Values for mean and maximal velocities and stroke volume were in-line with previous studies. To highlight potential clinical applications two exemplary 4D flow measurements in patients with different pathologies are shown and compared to single-VENC datasets. CONCLUSIONS k-t accelerated multi-VENC 4D phase contrast flow MRI acquisition of the great vessels is feasible in a clinically acceptable scan duration. It offers improvements over traditional single-VENC 4D flow, expectedly being valuable when vessels with different flow velocities or complex flow phenomena are evaluated.
Collapse
Affiliation(s)
- Jan Robert Kroeger
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Germany.
| | - Francesca Claudia Pavesio
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Richard Mörsdorf
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Kilian Weiss
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Philips GmbH, Hamburg, Germany.
| | - Alexander Christian Bunck
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Bettina Baeßler
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland.
| | - David Maintz
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Daniel Giese
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
274
|
Intracardiac and Vascular Hemodynamics with Cardiovascular Magnetic Resonance in Heart Failure. Heart Fail Clin 2021; 17:135-147. [PMID: 33220882 DOI: 10.1016/j.hfc.2020.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In heart failure (HF), the impaired heart loses its ability to competently eject blood during systole or fill with blood during diastole, manifesting in multifaceted abnormal intracardiac or intravascular flow dynamics. Conventional imaging techniques are limited in their ability to evaluate multidirectional multidimensional flow alterations in HF. Four-dimensional (4-D) flow magnetic resonance imaging (MRI) has emerged as a promising technique to comprehensively visualize and quantify changes in 3-dimensional blood flow dynamics in complex cardiovascular diseases. This article reviews emerging applications of 4-D flow MRI hemodynamic markers in HF and etiologies at risk of progressing to HF.
Collapse
|
275
|
Li X, Qiu X, Ding H, Lv H, Zhao P, Yang Z, Gong S, Wang Z. Effects of different morphologic abnormalities on hemodynamics in patients with venous pulsatile tinnitus: A four-dimensional flow magnetic resonance imaging study. J Magn Reson Imaging 2021; 53:1744-1751. [PMID: 33491233 PMCID: PMC8248416 DOI: 10.1002/jmri.27503] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
The effects of morphologic abnormalities, including sigmoid sinus wall dehiscence (SSWD), transverse sinus stenosis (TSS), and sigmoid sinus diverticulum (SSD), on hemodynamics in venous pulsatile tinnitus (PT) patients have not been established. The aim of this study was to evaluate the effects of SSWD, TSS, and SSD on the hemodynamics of transverse‐sigmoid sinus in venous PT patients. This was a prospective study with 44 venous PT patients and 12 healthy controls. A 3 T/four‐dimensional (4D) flow magnetic resonance imaging with fast field echo was used. Computed tomography arteriography/venography was used to assess ipsilateral SSWD, TSS, and SSD. Maximum velocity (Vmax), average velocity (Vavg), and average flow (Flowavg) were measured. Blood flow patterns were independently assessed by three neuroradiologists. One‐way analysis of variance or Kruskal–Wallis test was also used. On the symptomatic side, all patients had SSWD, 33 patients had TSS, and 22 patients had SSD. Compared with healthy controls, patients with TSS, without TSS, with SSD, and without SSD all showed higher Vmax (all p < 0.050), Vavg (all p < 0.050), and Flowavg (all p < 0.050). Patients with TSS showed higher Vmax (p < 0.050) and Vavg (p < 0.050) than those without TSS, and no significant difference in Flowavg was found between the two groups (p = 0.408). No significant differences in Vmax, Vavg, and Flowavg were found between patients with and without SSD (all p = 1.000). Jet‐like flow in the stenosis and downstream of the stenosis was observed in all patients with TSS. Vortex in SSD was observed in 15 patients with SSD (68%). High blood velocity and flow may be characteristic markers of venous PT. SSWD may be a necessary condition for venous PT. TSS may further increase the blood velocity and form a jet‐like flow. SSD may be related to vortex formation but had no significant effect on blood velocity and flow. Level of Evidence 2 Technical Efficacy Stage 3
Collapse
Affiliation(s)
- Xiaoshuai Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Qiu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Heyu Ding
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
276
|
Sekine T, Nakaza M, Kumita S. Careful consideration should be paid in the new imaging modality evaluation. J Thorac Dis 2021; 13:422-424. [PMID: 33569225 PMCID: PMC7867812 DOI: 10.21037/jtd-20-3229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Tetsuro Sekine
- Department of Radiology, Nippon Medical School Musashi-Kosugi Hospital, Kanagawa, Japan
| | - Masatoki Nakaza
- Department of Radiology, Nippon Medical School, Tokyo, Japan
| | | |
Collapse
|
277
|
Settecase F, Rayz VL. Advanced vascular imaging techniques. HANDBOOK OF CLINICAL NEUROLOGY 2021; 176:81-105. [DOI: 10.1016/b978-0-444-64034-5.00016-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
278
|
Aortic Vorticity, Helicity, and Aortopathy in Adult Patients with Tetralogy of Fallot: Pilot Study Using Four-Dimensional Flow Magnetic Resonance Images. Pediatr Cardiol 2021; 42:169-177. [PMID: 32978672 DOI: 10.1007/s00246-020-02466-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
To employ quantitative analysis in the vorticity and helicity of the aortic root and the ascending aorta (AAo) in adults with tetralogy of Fallot (TOF), and to evaluate aortopathy and the relevant factors. Prospectively, 51 consecutive adults with TOF underwent 4 dimensional flow magnetic resonance imaging study for the assessment of vorticity and helicity of the aortic root and AAo, wall shear stress (WSS), viscous energy loss (EL), and the left ventricular outflow tract - aortic root (LVOT-Ao) angle. Patients were divided into the two groups: dilated aortic root and/or AAo (indexed diameter > 25 mm/cm2), Group A (15 patients); non-dilated aortic patients, Group B (36 patients). Ten age-matched controls were also enrolled. Group A showed more acute LVOT-Ao angle, higher incidence of aortic regurgitation, and initial anatomy of pulmonary atresia, compared to Group B (P < 0.0001, 0.02, 0.043). Group A showed greater clockwise vorticity at the level of Valsalva, AAo, and proximal arch, sagittal vorticity, AAo helicity, WSS, and EL than in Group B (P < 0.001, < 0.001, < 0.001, 0.045, 0.049, 0.02, 0.026). More acute LVOT-Ao angle correlated with the diameter of the aortic root and AAo, AAo vorticity, helicity, WSS, and EL (P = 0.004, 0.023, 0.045, 0.004, 0.0004, 0.017). On a univariate logistic analysis, more acute LVOT-Ao angle, AAo vorticity, AAo helicity, and maximum WSS were relevant factors of AAo dilatation (P = 0.02, 0.02, 0.045, 0.03, 0.046). On a multivariate logistic analysis, more acute LVOT-Ao angle was the most important factor of AAo dilatation (odds ratio 0.66, 95% CI 0.46-0.95, P < 0.024). TOF adults presenting dilated AAo have greater vorticity, helicity, and acute LVOT-Ao angle. Flow eccentricity and these flow hemodynamic parameters may be adjunctive predictions of aortopathy in this population.
Collapse
|
279
|
Geiger J, Callaghan FM, Burkhardt BEU, Valsangiacomo Buechel ER, Kellenberger CJ. Additional value and new insights by four-dimensional flow magnetic resonance imaging in congenital heart disease: application in neonates and young children. Pediatr Radiol 2021; 51:1503-1517. [PMID: 33313980 PMCID: PMC8266722 DOI: 10.1007/s00247-020-04885-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
Cardiovascular MRI has become an essential imaging modality in children with congenital heart disease (CHD) in the last 15-20 years. With use of appropriate sequences, it provides important information on cardiovascular anatomy, blood flow and function for initial diagnosis and post-surgical or -interventional monitoring in children. Although considered as more sophisticated and challenging than CT, in particular in neonates and infants, MRI is able to provide information on intra- and extracardiac haemodynamics, in contrast to CT. In recent years, four-dimensional (4-D) flow MRI has emerged as an additional MR technique for retrospective assessment and visualisation of blood flow within the heart and any vessel of interest within the acquired three-dimensional (3-D) volume. Its application in young children requires special adaptations for the smaller vessel size and faster heart rate compared to adolescents or adults. In this article, we provide an overview of 4-D flow MRI in various types of complex CHD in neonates and infants to demonstrate its potential indications and beneficial application for optimised individual cardiovascular assessment. We focus on its application in clinical routine cardiovascular workup and, in addition, show some examples with pathologies other than CHD to highlight that 4-D flow MRI yields new insights in disease understanding and therapy planning. We shortly review the essentials of 4-D flow data acquisition, pre- and post-processing techniques in neonates, infants and young children. Finally, we conclude with some details on accuracy, limitations and pitfalls of the technique.
Collapse
Affiliation(s)
- Julia Geiger
- Department of Diagnostic Imaging, University Children's Hospital Zürich, Steinwiesstr 75, 8032, Zürich, Switzerland. .,Children's Research Centre, University Children's Hospital Zürich, Zürich, Switzerland.
| | - Fraser M. Callaghan
- Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland ,Center for MR research, University Children’s Hospital Zürich, Zürich, Switzerland
| | - Barbara E. U. Burkhardt
- Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland ,Department of Pediatric Cardiology, University Hospital Zürich, Zürich, Switzerland
| | - Emanuela R. Valsangiacomo Buechel
- Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland ,Department of Pediatric Cardiology, University Hospital Zürich, Zürich, Switzerland
| | - Christian J. Kellenberger
- Department of Diagnostic Imaging, University Children’s Hospital Zürich, Steinwiesstr 75, 8032 Zürich, Switzerland ,Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
280
|
Model Verification and Error Sensitivity of Turbulence-Related Tensor Characteristics in Pulsatile Blood Flow Simulations. FLUIDS 2020. [DOI: 10.3390/fluids6010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Model verification, validation, and uncertainty quantification are essential procedures to estimate errors within cardiovascular flow modeling, where acceptable confidence levels are needed for clinical reliability. While more turbulent-like studies are frequently observed within the biofluid community, practical modeling guidelines are scarce. Verification procedures determine the agreement between the conceptual model and its numerical solution by comparing for example, discretization and phase-averaging-related errors of specific output parameters. This computational fluid dynamics (CFD) study presents a comprehensive and practical verification approach for pulsatile turbulent-like blood flow predictions by considering the amplitude and shape of the turbulence-related tensor field using anisotropic invariant mapping. These procedures were demonstrated by investigating the Reynolds stress tensor characteristics in a patient-specific aortic coarctation model, focusing on modeling-related errors associated with the spatiotemporal resolution and phase-averaging sampling size. Findings in this work suggest that attention should also be put on reducing phase-averaging related errors, as these could easily outweigh the errors associated with the spatiotemporal resolution when including too few cardiac cycles. Also, substantially more cycles are likely needed than typically reported for these flow regimes to sufficiently converge the phase-instant tensor characteristics. Here, higher degrees of active fluctuating directions, especially of lower amplitudes, appeared to be the most sensitive turbulence characteristics.
Collapse
|
281
|
Lantz J, Bäck S, Carlhäll CJ, Bolger A, Persson A, Karlsson M, Ebbers T. Impact of prosthetic mitral valve orientation on the ventricular flow field: Comparison using patient-specific computational fluid dynamics. J Biomech 2020; 116:110209. [PMID: 33422725 DOI: 10.1016/j.jbiomech.2020.110209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022]
Abstract
Significant mitral valve regurgitation creates progressive adverse remodeling of the left ventricle (LV). Replacement of the failing valve with a prosthesis generally improves patient outcomes but leaves the patient with non-physiological intracardiac flow patterns that might contribute to their future risk of thrombus formation and embolism. It has been suggested that the angular orientation of the implanted valve might modify the postoperative distortion of the intraventricular flow field. In this study, we investigated the effect of prosthetic valve orientation on LV flow patterns by using heart geometry from a patient with LV dysfunction and a competent native mitral valve to calculate intracardiac flow fields with computational fluid dynamics (CFD). Results were validated using in vivo 4D Flow MRI. The computed flow fields were compared to calculations following virtual implantation of a mechanical heart valve oriented in four different angles to assess the effect of leaflet position. Flow patterns were visualized in long- and short-axes and quantified with flow component analysis. In comparison to a native valve, valve implantation increased the proportion of the mitral inflow remaining in the basal region and further increased the residual volume in the apical area. Only slight changes due to valve orientation were observed. Using our numerical framework, we demonstrated quantitative changes in left ventricular blood flow due to prosthetic mitral replacement. This framework may be used to improve design of prosthetic heart valves and implantation procedures to minimize the potential for apical flow stasis, and potentially assist personalized treatment planning.
Collapse
Affiliation(s)
- Jonas Lantz
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Sophia Bäck
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Carl-Johan Carlhäll
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Department of Clinical Physiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Ann Bolger
- Department of Clinical Physiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Department of Medicine, University of California, San Francisco, United States
| | - Anders Persson
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Division of Radiology, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Matts Karlsson
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Division of Applied Thermodynamics and Fluid Mechanics, Department of Management and Engineering, Linköping University, Sweden
| | - Tino Ebbers
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
| |
Collapse
|
282
|
Stone ML, Schäfer M, von Alvensleben JC, Browne LP, Di Maria M, Campbell DN, Jaggers J, Mitchell MB. Increased Aortic Stiffness and Left Ventricular Dysfunction Exist After Truncus Arteriosus Repair. Ann Thorac Surg 2020; 112:809-815. [PMID: 33307069 DOI: 10.1016/j.athoracsur.2020.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND The purpose of this study was to determine whether aortic biomechanical properties are abnormal in children with repaired truncus arteriosus (TA) and to concurrently evaluate left ventricular (LV) function post-repair utilizing a novel platform for regional ventricular function. METHODS Cardiac magnetic resonance (CMR) studies from 26 children (mean age: 15.6 ± 7.2 years) post-TA repair were compared with 20 normal controls (mean age: 14.7 ± 2.6 years). Parameters of aortic stiffness (pulse wave velocity and relative area change) were measured. Flow hemodynamic metrics (aortic regurgitant fraction, peak systolic flow, and peak systolic velocity) and LV function (volumetric data, ejection fraction, regional wall strain) were also compared. RESULTS Ascending aortic pulse wave velocity was elevated and relative area change was decreased in TA patients compared with controls. Patients post-TA repair demonstrated elevated end diastolic and end systolic volumes in addition to decreased regional wall strain and increased mechanical dyssynchrony. LV functional changes were independent of aortic biomechanical properties. CONCLUSIONS Children with repaired TA have increased ascending aortic stiffness and altered LV function as measured by CMR imaging. Longitudinal studies and advanced CMR assessments are warranted to better determine the long-term potential for late aortic complications and to optimize both the medical and surgical management of these patients after TA repair.
Collapse
Affiliation(s)
- Matthew L Stone
- Division of Pediatric Cardiothoracic Surgery, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado.
| | - Michal Schäfer
- Department of Pediatric Cardiology, Children's Hospital Colorado, Aurora, Colorado
| | | | - Lorna P Browne
- Department of Pediatric Radiology, Children's Hospital Colorado, Aurora, Colorado
| | - Michael Di Maria
- Department of Pediatric Cardiology, Children's Hospital Colorado, Aurora, Colorado
| | - David N Campbell
- Division of Pediatric Cardiothoracic Surgery, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| | - James Jaggers
- Division of Pediatric Cardiothoracic Surgery, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| | - Max B Mitchell
- Division of Pediatric Cardiothoracic Surgery, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
283
|
Gajjar K, Kashyap K, Badlani J, Williams RB, Biederman RWW. A review of the pivotal role of cardiac MRI in mitral valve regurgitation. Echocardiography 2020; 38:128-141. [PMID: 33270944 DOI: 10.1111/echo.14941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/21/2023] Open
Abstract
Cardiac imaging is the cornerstone of defining the etiology, quantification, and management of mitral regurgitation (MR). This continues to be even more so the case with emerging transcatheter techniques to manage MR. Transthoracic echocardiography remains the first-line imaging modality to assess MR but has limitations. Cardiac MRI(CMR) provides the advantages of quantitative nonvisual estimation, 3D volumetric data, late gadolinium, T1, and extracellular volume measurements to comprehensively assess mitral valvular pathology, cardiac remodeling, and the prognostic impact of therapies. This review describes the superiority, technical aspects and growing evidence behind CMR, and lays the roadmap for the future of CMR in MR.
Collapse
Affiliation(s)
- Kushani Gajjar
- Department of Cardiology, Allegheny General Hospital- Allegheny Health Network, Pittsburgh, PA, USA
| | - Kartikeya Kashyap
- Department of Cardiology, Allegheny General Hospital- Allegheny Health Network, Pittsburgh, PA, USA
| | - Jayshiv Badlani
- Department of Cardiovascular Magnetic Resonance Imaging, Allegheny General Hospital- Allegheny Health Network, Pittsburgh, PA, USA
| | - Ronald B Williams
- Department of Cardiovascular Magnetic Resonance Imaging, Allegheny General Hospital- Allegheny Health Network, Pittsburgh, PA, USA
| | - Robert W W Biederman
- Department of Cardiology, Allegheny General Hospital- Allegheny Health Network, Pittsburgh, PA, USA.,Department of Cardiovascular Magnetic Resonance Imaging, Allegheny General Hospital- Allegheny Health Network, Pittsburgh, PA, USA.,Drexel University, Philadelphia, PA, USA.,Bioengineering Department, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
284
|
Riedel C, Lenz A, Fischer L, Li J, Piecha F, Kluwe J, Adam G, Bannas P. Abdominal Applications of 4D Flow MRI. ROFO-FORTSCHR RONTG 2020; 193:388-398. [PMID: 33264806 DOI: 10.1055/a-1271-7405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Four-dimensional flow magnetic resonance imaging (4D flow MRI) provides volumetric and time-resolved visualization and quantification of blood flow. This review presents an overview of possible applications of 4D flow MRI for non-invasive assessment of abdominal hemodynamics. METHOD This review is based on the authors' experience and the current literature. A PubMed database literature research was performed in December 2019 focusing on abdominal applications of 4D flow MRI. We illustrated the review with exemplary figures and movies of clinical cases from our institution. RESULTS AND CONCLUSION 4D flow MRI offers the possibility of comprehensive assessment of abdominal blood flows in different vascular territories and organ systems. Results of recent studies indicate that 4D flow MRI improves understanding of altered hemodynamics in patients with abdominal disease and may be useful for monitoring therapeutic response. Future studies with larger cohorts aiming to integrate 4D flow MRI in the clinical routine setting are needed. KEY POINTS · 4D flow MRI enables comprehensive visualization of the complex abdominal vasculature. · 4D flow MRI enables quantification of abdominal blood flow velocities and flow rates. · 4D flow MRI may enable deeper understanding of altered hemodynamics in abdominal disease. · Further validation studies are needed prior to broad distribution of abdominal 4D flow MRI. CITATION FORMAT · Riedel C, Lenz A, Fischer L et al. Abdominal Applications of 4D Flow MRI. Fortschr Röntgenstr 2021; 193: 388 - 398.
Collapse
Affiliation(s)
- Christoph Riedel
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Lenz
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lutz Fischer
- Department of Visceral Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jun Li
- Department of Visceral Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Feilix Piecha
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Kluwe
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
285
|
Isorni MA, Moisson L, Moussa NB, Monnot S, Raimondi F, Roussin R, Boet A, van Aerschot I, Fournier E, Cohen S, Kara M, Hascoet S. 4D flow cardiac magnetic resonance in children and adults with congenital heart disease: Clinical experience in a high volume center. Int J Cardiol 2020; 320:168-177. [DOI: 10.1016/j.ijcard.2020.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/29/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022]
|
286
|
Fathi MF, Perez-Raya I, Baghaie A, Berg P, Janiga G, Arzani A, D'Souza RM. Super-resolution and denoising of 4D-Flow MRI using physics-Informed deep neural nets. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 197:105729. [PMID: 33007592 DOI: 10.1016/j.cmpb.2020.105729] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Time resolved three-dimensional phase contrast magnetic resonance imaging (4D-Flow MRI) has been used to non-invasively measure blood velocities in the human vascular system. However, issues such as low spatio-temporal resolution, acquisition noise, velocity aliasing, and phase-offset artifacts have hampered its clinical application. In this research, we developed a purely data-driven method for super-resolution and denoising of 4D-Flow MRI. METHODS The flow velocities, pressure, and the MRI image magnitude are modeled as a patient-specific deep neural net (DNN). For training, 4D-Flow MRI images in the complex Cartesian space are used to impose data-fidelity. Physics of fluid flow is imposed through regularization. Creative loss function terms have been introduced to handle noise and super-resolution. The trained patient-specific DNN can be sampled to generate noise-free high-resolution flow images. The proposed method has been implemented using the TensorFlow DNN library and tested on numerical phantoms and validated in-vitro using high-resolution particle image velocitmetry (PIV) and 4D-Flow MRI experiments on transparent models subjected to pulsatile flow conditions. RESULTS In case of numerical phantoms, we were able to increase spatial resolution by a factor of 100 and temporal resolution by a factor of 5 compared to the simulated 4D-Flow MRI. There is an order of magnitude reduction of velocity normalized root mean square error (vNRMSE). In case of the in-vitro validation tests with PIV as reference, there is similar improvement in spatio-temporal resolution. Although the vNRMSE is reduced by 50%, the method is unable to negate a systematic bias with respect to the reference PIV that is introduced by the 4D-Flow MRI measurement. CONCLUSIONS This work has demonstrated the feasibility of using the readily available machinery of deep learning to enhance 4D-Flow MRI using a purely data-driven method. Unlike current state-of-the-art methods, the proposed method is agnostic to geometry and boundary conditions and therefore eliminates the need for tedious tasks such as accurate image segmentation for geometry, image registration, and estimation of boundary flow conditions. Arbitrary regions of interest can be selected for processing. This work will lead to user-friendly analysis tools that will enable quantitative hemodynamic analysis of vascular diseases in a clinical setting.
Collapse
Affiliation(s)
- Mojtaba F Fathi
- Dept. of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Isaac Perez-Raya
- Dept. of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ahmadreza Baghaie
- Dept. of Electrical and Computer Engineering, New York Institute of Technology, Long Island, NY, USA
| | - Philipp Berg
- Lab. of Fluid Dynamics and Technical Flows, University of Magdeburg, Germany; Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Gabor Janiga
- Lab. of Fluid Dynamics and Technical Flows, University of Magdeburg, Germany; Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Amirhossein Arzani
- Dept. of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, USA
| | - Roshan M D'Souza
- Dept. of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
287
|
Abstract
BACKGROUND In its almost 25 years of clinical use, cardiac magnetic resonance imaging (CMR) has been developed for a wide range of indications due to the development of robust techniques and their comprehensive validation. CMR-based assessment of cardiac volumes and systolic ventricular function as well as the characterization of focal myocardial scars belongs today to standard cardiac imaging. More recently, the introduction of accelerated acquisition techniques, quantitative myocardial T1- and T2-mapping methods and 4‑dimensional (4D) flow measurements as well as new postprocessing techniques such as myocardial feature tracking have attracted attention. METHODS This review is based on a comprehensive literature search in the PubMed database on new CMR techniques and their clinical application. RESULTS AND CONCLUSION This article provides an overview of the latest technical developments in the field of CMR and their possible applications based on the most important clinical MR issues.
Collapse
Affiliation(s)
- A. Mayr
- Universitätsklinik für Radiologie, Medizinische Universität Innsbruck, Anichstraße 35, 6020 Innsbruck, Österreich
| | - G. Reiter
- Research and Development, Siemens Healthcare Diagnostics GmbH, Straßgangerstraße 315, 8054 Graz, Österreich
| | - D. Beitzke
- Universitätsklinik für Radiologie und Nuklearmedizin, Medizinische Universität Wien, Währinger Gürtel 18–20, 1090 Wien, Österreich
| |
Collapse
|
288
|
Sundin J, Engvall J, Nylander E, Ebbers T, Bolger AF, Carlhäll CJ. Improved Efficiency of Intraventricular Blood Flow Transit Under Cardiac Stress: A 4D Flow Dobutamine CMR Study. Front Cardiovasc Med 2020; 7:581495. [PMID: 33324686 PMCID: PMC7724031 DOI: 10.3389/fcvm.2020.581495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/16/2020] [Indexed: 12/04/2022] Open
Abstract
Introduction: The effects of heart rate, inotropy, and lusitropy on multidimensional flow patterns and energetics within the human heart remain undefined. Recently, reduced volume and end-diastolic kinetic energy (KE) of the portion of left ventricular (LV) inflow passing directly to outflow, Direct flow (DF), have been shown to reflect inefficient LV pumping and to be a marker of LV dysfunction in heart failure patients. In this study, we hypothesized that increasing heart rate, inotropy, and lusitropy would result in an increased efficiency of intraventricular blood flow transit. Therefore, we sought to investigate LV 4D blood flow patterns and energetics with dobutamine infusion. Methods: 4D flow and morphological cardiovascular magnetic resonance (CMR) data were acquired in twelve healthy subjects: at rest and with dobutamine infusion to achieve a target heart rate ~60% higher than the resting heart rate. A previously validated method was used for flow analysis: pathlines were emitted from the end-diastolic (ED) LV blood volume and traced forward and backward in time to separate four functional LV flow components. For each flow component, KE/mL blood volume at ED was calculated. Results: With dobutamine infusion there was an increase in heart rate (64%, p < 0.001), systolic blood pressure (p = 0.02) and stroke volume (p = 0.01). Of the 4D flow parameters, the most efficient flow component (DF), increased its proportion of EDV (p < 0.001). The EDV proportion of Residual volume, the blood residing in the ventricle over at least two cardiac cycles, decreased (p < 0.001). The KE/mL at ED for all flow components increased (p < 0.001). DF had the largest absolute and relative increase while Residual volume had the smallest absolute and relative increase. Conclusions: This study demonstrates that it is feasible to compare 4D flow patterns within the normal human heart at rest and with stress. At higher heart rate, inotropy and lusitropy, elicited by dobutamine infusion, the efficiency of intraventricular blood flow transit improves, as quantified by an increased relative volume and pre-systolic KE of the most efficient DF component of the LV volume. The change in these markers may allow a novel assessment of LV function and LV dysfunction over a range of stress.
Collapse
Affiliation(s)
- Jonathan Sundin
- Unit of Cardiovascular Sciences and Center for Medical Image Science and Visualization, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Jan Engvall
- Unit of Cardiovascular Sciences and Center for Medical Image Science and Visualization, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Department of Clinical Physiology in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Eva Nylander
- Unit of Cardiovascular Sciences and Center for Medical Image Science and Visualization, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Department of Clinical Physiology in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Tino Ebbers
- Unit of Cardiovascular Sciences and Center for Medical Image Science and Visualization, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Ann F Bolger
- Unit of Cardiovascular Sciences and Center for Medical Image Science and Visualization, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Carl-Johan Carlhäll
- Unit of Cardiovascular Sciences and Center for Medical Image Science and Visualization, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Department of Clinical Physiology in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
289
|
Richter JAJ, Wech T, Weng AM, Stich M, Jin N, Kosmala A, Bley TA, Köstler H. Accelerated aortic 4D flow MRI with wave-CAIPI. Magn Reson Med 2020; 85:2595-2607. [PMID: 33231886 DOI: 10.1002/mrm.28605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 11/10/2022]
Abstract
PURPOSE The aim of this study was to investigate the acceleration potential of wave-CAIPI (controlled aliasing in parallel imaging) for 4D flow MRI, provided that image quality and precision of flow parameters are maintained. METHODS The 4D flow MRIs with acceleration factor R = 2 were performed on 10 healthy volunteers, using both wave-CAIPI and standard Cartesian/2D-CAIPI sampling for reference. In addition, 1 patient with known aortic valve stenosis was examined. The flow rate ( Q ), net flow ( Q net ), peak velocity v max , and net average through-plane velocity ( v ¯ ⊥ ) were calculated in eight analysis planes in the ascending and descending aorta. The acquisitions were retrospectively undersampled (R = 6), and deviations of flow parameters and hemodynamic flow patterns were evaluated. RESULTS Flow parameters measured with an undersampled wave-CAIPI trajectory showed considerably smaller deviations to the references than the 2D-CAIPI images. For v max , the mean absolute differences were 6.02 ± 2.08 cm/s versus 14.36 ± 5.68 cm/s; for Q net , the mean absolute differences were 3.67 ± 1.40 ml versus 5.87 ± 1.91 ml for wave-CAIPI versus 2D-CAIPI, respectively. Noise calculations indicate that the 2D-CAIPI sampling exhibits a 43 ± 38 % higher average noise level than the wave-CAIPI technique. Qualitative discrepancies in hemodynamic flow patterns, visualized through streamlines, particle traces and flow velocity vectors, could be reduced by using the undersampled wave-CAIPI trajectory. CONCLUSION Use of wave-CAIPI instead of 2D-CAIPI sampling in retrospectively 6-fold accelerated 4D flow MRI enhances the precision of flow parameters. The acquisition time of 4D flow measurements could be reduced by a factor of 3, with minimal differences in flow parameters.
Collapse
Affiliation(s)
- Julian A J Richter
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, Würzburg, Germany.,Siemens Healthcare, Erlangen, Germany
| | - Tobias Wech
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas M Weng
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Manuel Stich
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.,Siemens Healthcare, Erlangen, Germany
| | - Ning Jin
- Siemens Medical Solutions USA, Chicago, Illinois, USA
| | - Aleksander Kosmala
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
290
|
Juffermans JF, Westenberg JJM, van den Boogaard PJ, Roest AAW, van Assen HC, van der Palen RLF, Lamb HJ. Reproducibility of Aorta Segmentation on 4D Flow MRI in Healthy Volunteers. J Magn Reson Imaging 2020; 53:1268-1279. [PMID: 33179389 PMCID: PMC7984392 DOI: 10.1002/jmri.27431] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background Hemodynamic aorta parameters can be derived from 4D flow MRI, but this requires lumen segmentation. In both commercially available and research 4D flow MRI software tools, lumen segmentation is mostly (semi‐)automatically performed and subsequently manually improved by an observer. Since the segmentation variability, together with 4D flow MRI data and image processing algorithms, will contribute to the reproducibility of patient‐specific flow properties, the observer's lumen segmentation reproducibility and repeatability needs to be assessed. Purpose To determine the interexamination, interobserver reproducibility, and intraobserver repeatability of aortic lumen segmentation on 4D flow MRI. Study Type Prospective and retrospective. Population A healthy volunteer cohort of 10 subjects who underwent 4D flow MRI twice. Also, a clinical cohort of six subjects who underwent 4D flow MRI once. Field Strength/Sequence 3T; time‐resolved three‐directional and 3D velocity‐encoded sequence (4D flow MRI). Assessment The thoracic aorta was segmented on the 4D flow MRI in five systolic phases. By positioning six planes perpendicular to a segmentation's centerline, the aorta was divided into five segments. The volume, surface area, centerline length, maximal diameter, and curvature radius were determined for each segment. Statistical Tests To assess the reproducibility, the coefficient of variation (COV), Pearson correlation coefficient (r), and intraclass correlation coefficient (ICC) were calculated. Results The interexamination and interobserver reproducibility and intraobserver repeatability were comparable for each parameter. For both cohorts there was very good reproducibility and repeatability for volume, surface area, and centerline length (COV = 10–32%, r = 0.54–0.95 and ICC = 0.65–0.99), excellent reproducibility and repeatability for maximal diameter (COV = 3–11%, r = 0.94–0.99, ICC = 0.94–0.99), and good reproducibility and repeatability for curvature radius (COV = 25–62%, r = 0.73–0.95, ICC = 0.84–0.97). Data Conclusion This study demonstrated no major reproducibility and repeatability limitations for 4D flow MRI aortic lumen segmentation. Level of Evidence 3 Technical Efficacy Stage 2
Collapse
Affiliation(s)
- Joe F Juffermans
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Arno A W Roest
- Department of Paediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans C van Assen
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roel L F van der Palen
- Department of Paediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
291
|
Wentland AL. Editorial for "Reproducibility of Aorta Segmentation on 4D Flow MRI in Healthy Volunteers". J Magn Reson Imaging 2020; 53:1280-1281. [PMID: 33135303 DOI: 10.1002/jmri.27432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Andrew L Wentland
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
| |
Collapse
|
292
|
Hong Q, Li Q, Wang B, Tian J, Xu F, Liu K, Cheng X. High-quality vascular modeling and modification with implicit extrusion surfaces for blood flow computations. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105598. [PMID: 32599337 DOI: 10.1016/j.cmpb.2020.105598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE High-quality vascular modeling is crucial for blood flow simulations, i.e., computational fluid dynamics (CFD). As without an accurate geometric representation of the smooth vascular surface, it is impossible to make meaningful blood flow simulations. The purpose of this work is to develop high-quality vascular modeling and modification method for blood flow computations. METHODS We develop a new technique for the accurate geometric modeling and modification of vasculatures using implicit extrusion surfaces (IES). In the proposed method, the skeleton of the vascular structure is subdivided into short curve segments, each of which is then represented implicitly locally as the intersection of two mutually orthogonal implicit surfaces defined by distance functions. A set of contour points is extracted and fitted with an implicit curve for accurately specifying the vessel cross-section profile, which is then extruded locally along the skeleton to fill the gaps between two vascular tube cross sections. We also present a new implicit geometric editing technique to modify the constructed vascular model with pathology for virtual stenting. RESULTS Experimental results and validations show that accurate vascular models with highly smooth surfaces can be generated by the proposed method. In addition, we conduct some blood flow simulations to indicate the effectiveness of proposed method for hemodynamic simulations. CONCLUSIONS The proposed technique can achieve precise geometric models of vasculatures with any required degree of smoothness for reliable blood flow simulations.
Collapse
Affiliation(s)
- Qingqi Hong
- School of Informatics, Xiamen University, Xiamen, China.
| | - Qingde Li
- School of Engineering and Computer Science, University of Hull, UK.
| | - Beizhan Wang
- School of Informatics, Xiamen University, Xiamen, China
| | - Jie Tian
- Institute of Automation, CAS, Beijing, 100190, China
| | - Fei Xu
- School of Informatics, Xiamen University, Xiamen, China
| | - Kunhong Liu
- School of Informatics, Xiamen University, Xiamen, China.
| | - Xuan Cheng
- School of Informatics, Xiamen University, Xiamen, China.
| |
Collapse
|
293
|
Braig M, Menza M, Leupold J, LeVan P, Feng L, Ko CW, von Zur Mühlen C, Krafft AJ, Hennig J, von Elverfeldt D. Analysis of accelerated 4D flow MRI in the murine aorta by radial acquisition and compressed sensing reconstruction. NMR IN BIOMEDICINE 2020; 33:e4394. [PMID: 32815236 DOI: 10.1002/nbm.4394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/15/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Preclinical 4D flow MRI remains challenging and is restricted for parallel imaging acceleration due to the limited number of available receive channels. A radial acquisition with combined parallel imaging and temporal compressed sensing reconstruction was implemented to achieve accelerated preclinical 4D flow MRI. In order to increase the accuracy of the measured velocities, a quantitative evaluation of different temporal regularization weights for the compressed sensing reconstruction based on velocity instead of magnitude data is performed. A 3D radial retrospectively triggered phase contrast sequence with a combined parallel imaging and compressed sensing reconstruction with temporal regularization was developed. It was validated in a phantom and in vivo (C57BL/6 J mice), against an established fully sampled Cartesian sequence. Different undersampling factors (USFs [12, 15, 20, 30, 60]) were evaluated, and the effect of undersampling was analyzed in detail for magnitude and velocity data. Temporal regularization weights λ were evaluated for different USFs. Acceleration factors of up to 20 compared with full Nyquist sampling were achieved. The peak flow differences compared with the Cartesian measurement were the following: USF 12, 3.38%; USF 15, 4.68%; USF 20, 0.95%. The combination of 3D radial center-out trajectories and compressed sensing reconstruction is robust against motion and flow artifacts and can significantly reduce measurement time to 30 min at a resolution of 180 μm3 . Concisely, radial acquisition with combined compressed sensing and parallel imaging proved to be an excellent method for analyzing complex flow patterns in mice.
Collapse
Affiliation(s)
- Moritz Braig
- Department of Radiology Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marius Menza
- Department of Radiology Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jochen Leupold
- Department of Radiology Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pierre LeVan
- Departments of Radiology and Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Li Feng
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York
| | - Cheng-Wen Ko
- Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Constantin von Zur Mühlen
- Department of Cardiology and Angiology I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Axel J Krafft
- Department of Radiology Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Juergen Hennig
- Department of Radiology Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik von Elverfeldt
- Department of Radiology Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
294
|
Concannon J, Hynes N, McMullen M, Smyth E, Moerman K, McHugh PE, Sultan S, Karmonik C, McGarry JP. A Dual-VENC Four-Dimensional Flow MRI Framework for Analysis of Subject-Specific Heterogeneous Nonlinear Vessel Deformation. J Biomech Eng 2020; 142:114502. [PMID: 33006370 DOI: 10.1115/1.4048649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 07/25/2024]
Abstract
Advancement of subject-specific in silico medicine requires new imaging protocols tailored to specific anatomical features, paired with new constitutive model development based on structure/function relationships. In this study, we develop a new dual-velocity encoding coefficient (VENC) 4D flow MRI protocol that provides unprecedented spatial and temporal resolution of in vivo aortic deformation. All previous dual-VENC 4D flow MRI studies in the literature focus on an isolated segment of the aorta, which fail to capture the full spectrum of aortic heterogeneity that exists along the vessel length. The imaging protocol developed provides high sensitivity to all blood flow velocities throughout the entire cardiac cycle, overcoming the challenge of accurately measuring the highly unsteady nonuniform flow field in the aorta. Cross-sectional area change, volumetric flow rate, and compliance are observed to decrease with distance from the heart, while pulse wave velocity (PWV) is observed to increase. A nonlinear aortic lumen pressure-area relationship is observed throughout the aorta such that a high vessel compliance occurs during diastole, and a low vessel compliance occurs during systole. This suggests that a single value of compliance may not accurately represent vessel behavior during a cardiac cycle in vivo. This high-resolution MRI data provide key information on the spatial variation in nonlinear aortic compliance, which can significantly advance the state-of-the-art of in-silico diagnostic techniques for the human aorta.
Collapse
Affiliation(s)
- J Concannon
- Biomedical Engineering, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - N Hynes
- Department of Vascular and Endovascular Surgery, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - M McMullen
- Department of Radiology, Galway Clinic, Doughiska, Galway H91 HHT0, Ireland
| | - E Smyth
- Department of Radiology, Galway Clinic, Doughiska, Galway H91 HHT0, Ireland
| | - K Moerman
- Biomedical Engineering, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - P E McHugh
- Biomedical Engineering, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - S Sultan
- Department of Vascular and Endovascular Surgery, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - C Karmonik
- MRI Core, Houston Methodist Debakey Heart and Vascular Center, Houston, TX 77030
| | - J P McGarry
- Biomedical Engineering, National University of Ireland Galway, Galway H91 TK33, Ireland
| |
Collapse
|
295
|
Gutierrez MA. Computational Analysis of Fluid Dynamics in the Transcatheter Aortic Valve Replacement. Arq Bras Cardiol 2020; 115:688-689. [PMID: 33111870 PMCID: PMC8386972 DOI: 10.36660/abc.20201002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Marco A Gutierrez
- Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| |
Collapse
|
296
|
Abstract
Classification of heart failure is based on the left ventricular ejection fraction (EF): preserved EF, midrange EF, and reduced EF. There remains an unmet need for further heart failure phenotyping of ventricular structure-function relationships. Because of high spatiotemporal resolution, cardiac magnetic resonance (CMR) remains the reference modality for quantification of ventricular contractile function. The authors aim to highlight novel frameworks, including theranostic use of ferumoxytol, to enable more efficient evaluation of ventricular function in heart failure patients who are also frequently anemic, and to discuss emerging quantitative CMR approaches for evaluation of ventricular structure-function relationships in heart failure.
Collapse
|
297
|
Characterization of anisotropic turbulence behavior in pulsatile blood flow. Biomech Model Mechanobiol 2020; 20:491-506. [PMID: 33090334 PMCID: PMC7979666 DOI: 10.1007/s10237-020-01396-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/07/2020] [Indexed: 11/10/2022]
Abstract
Turbulent-like hemodynamics with prominent cycle-to-cycle flow variations have received increased attention as a potential stimulus for cardiovascular diseases. These turbulent conditions are typically evaluated in a statistical sense from single scalars extracted from ensemble-averaged tensors (such as the Reynolds stress tensor), limiting the amount of information that can be used for physical interpretations and quality assessments of numerical models. In this study, barycentric anisotropy invariant mapping was used to demonstrate an efficient and comprehensive approach to characterize turbulence-related tensor fields in patient-specific cardiovascular flows, obtained from scale-resolving large eddy simulations. These techniques were also used to analyze some common modeling compromises as well as MRI turbulence measurements through an idealized constriction. The proposed method found explicit sites of elevated turbulence anisotropy, including a broad but time-varying spectrum of characteristics over the flow deceleration phase, which was different for both the steady inflow and Reynolds-averaged Navier–Stokes modeling assumptions. Qualitatively, the MRI results showed overall expected post-stenotic turbulence characteristics, however, also with apparent regions of unrealizable or conceivably physically unrealistic conditions, including the highest turbulence intensity ranges. These findings suggest that more detailed studies of MRI-measured turbulence fields are needed, which hopefully can be assisted by more comprehensive evaluation tools such as the once described herein.
Collapse
|
298
|
A test-retest multisite reproducibility study of cardiovascular four-dimensional flow MRI without respiratory gating. Clin Radiol 2020; 76:236.e1-236.e8. [PMID: 33077153 DOI: 10.1016/j.crad.2020.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022]
Abstract
AIM To systematically investigate the multisite reproducibility, test-retest reliability, and observer variability of non-respiratory-gated four-dimensional (4D) flow magnetic resonance imaging (MRI) in the thoracic great vessels for the assessment of blood flow and peak velocity. MATERIALS AND METHODS Electrocardiogram (ECG)-gated 4D flow MRI data were acquired without respiratory gating in 10 healthy volunteers. To analyse multisite reproducibility, 4D flow was scanned at three different sites using a 3 T GE MRI machine with identical protocols for the group of participants. In addition, to evaluate test-retest reliability, the same volunteers were scanned in each centre during a second visit. Data analysis included calculation of peak systolic velocity and time-resolved and total flow of both the ascending aorta and pulmonary artery. Two observers conducted the above measurements to assess the interobserver variability. RESULTS Multisite, test-retest, interobserver agreement were good for the calculation of total flow and peak systolic velocity (mean differences <10% of the average flow parameter). CONCLUSION Non-respiratory-gated 4D MRI-based assessment of aortic and pulmonary blood flow can be performed with good reproducibility. It may facilitate the potential clinical application of this technique.
Collapse
|
299
|
Validation of non-contrast multiple overlapping thin-slab 4D-flow cardiac magnetic resonance imaging. Magn Reson Imaging 2020; 74:223-231. [PMID: 33035638 DOI: 10.1016/j.mri.2020.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/31/2020] [Accepted: 10/04/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cardiac magnetic resonance (CMR) flow quantification is typically performed using 2D phase-contrast (PC) imaging of a plane perpendicular to flow. 3D-PC imaging (4D-flow) allows offline quantification anywhere in a thick slab, but is often limited by suboptimal signal, potentially alleviated by contrast enhancement. We developed a non-contrast 4D-flow sequence, which acquires multiple overlapping thin slabs (MOTS) to minimize signal loss, and hypothesized that it could improve image quality, diagnostic accuracy, and aortic flow measurements compared to non-contrast single-slab approach. METHODS We prospectively studied 20 patients referred for transesophageal echocardiography (TEE), who underwent CMR (GE, 3 T). 2D-PC images of the aortic valve and three 4D-flow datasets covering the heart were acquired, including single-slab, pre- and post-contrast, and non-contrast MOTS. Each 4D-flow dataset was interpreted blindly for ≥moderate valve disease and compared to TEE. Flow visualization through each valve was scored (0 to 4), and aortic-valve flow measured on each 4D-flow dataset and compared to 2D-PC reference. RESULTS Diagnostic quality visualization was achieved with the pre- and post-contrast 4D-flow acquisitions in 25% and 100% valves, respectively (scores 0.9 ± 1.1 and 3.8 ± 0.5), and in 58% with the non-contrast MOTS (1.6 ± 1.1). Accuracy of detection of valve disease was 75%, 92% and 82%, respectively. Aortic flow measurements were possible in 53%, 95% and in 89% patients, respectively. The correlation between pre-contrast single-slab measurements and 2D-PC reference was weak (r = 0.21), but improved with both contrast enhancement (r = 0.71) and with MOTS (r = 0.67). CONCLUSIONS Although non-contrast MOTS 4D-flow improves valve function visualization and diagnostic accuracy, a significant proportion of valves cannot be accurately assessed. However, aortic flow measurements using non-contrast MOTS is feasible and reaches similar accuracy to that of contrast-enhanced 4D-flow.
Collapse
|
300
|
Roberts TA, van Amerom JFP, Uus A, Lloyd DFA, van Poppel MPM, Price AN, Tournier JD, Mohanadass CA, Jackson LH, Malik SJ, Pushparajah K, Rutherford MA, Razavi R, Deprez M, Hajnal JV. Fetal whole heart blood flow imaging using 4D cine MRI. Nat Commun 2020; 11:4992. [PMID: 33020487 PMCID: PMC7536221 DOI: 10.1038/s41467-020-18790-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/10/2020] [Indexed: 12/26/2022] Open
Abstract
Prenatal detection of congenital heart disease facilitates the opportunity for potentially life-saving care immediately after the baby is born. Echocardiography is routinely used for screening of morphological malformations, but functional measurements of blood flow are scarcely used in fetal echocardiography due to technical assumptions and issues of reliability. Magnetic resonance imaging (MRI) is readily used for quantification of abnormal blood flow in adult hearts, however, existing in utero approaches are compromised by spontaneous fetal motion. Here, we present and validate a novel method of MRI velocity-encoding combined with a motion-robust reconstruction framework for four-dimensional visualization and quantification of blood flow in the human fetal heart and major vessels. We demonstrate simultaneous 4D visualization of the anatomy and circulation, which we use to quantify flow rates through various major vessels. The framework introduced here could enable new clinical opportunities for assessment of the fetal cardiovascular system in both health and disease.
Collapse
Affiliation(s)
- Thomas A Roberts
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK.
| | - Joshua F P van Amerom
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Alena Uus
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - David F A Lloyd
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Congenital Heart Disease, Evelina Children's Hospital, London, SE1 7EH, UK
| | - Milou P M van Poppel
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Congenital Heart Disease, Evelina Children's Hospital, London, SE1 7EH, UK
| | - Anthony N Price
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Jacques-Donald Tournier
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Chloe A Mohanadass
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Laurence H Jackson
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Shaihan J Malik
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Kuberan Pushparajah
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Congenital Heart Disease, Evelina Children's Hospital, London, SE1 7EH, UK
| | - Mary A Rutherford
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Reza Razavi
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
- Department of Congenital Heart Disease, Evelina Children's Hospital, London, SE1 7EH, UK
| | - Maria Deprez
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Joseph V Hajnal
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, SE1 7EH, UK
| |
Collapse
|