251
|
Paddock S, Tsampasian V, Assadi H, Mota BC, Swift AJ, Chowdhary A, Swoboda P, Levelt E, Sammut E, Dastidar A, Broncano Cabrero J, Del Val JR, Malcolm P, Sun J, Ryding A, Sawh C, Greenwood R, Hewson D, Vassiliou V, Garg P. Clinical Translation of Three-Dimensional Scar, Diffusion Tensor Imaging, Four-Dimensional Flow, and Quantitative Perfusion in Cardiac MRI: A Comprehensive Review. Front Cardiovasc Med 2021; 8:682027. [PMID: 34307496 PMCID: PMC8292630 DOI: 10.3389/fcvm.2021.682027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/04/2021] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging is a versatile tool that has established itself as the reference method for functional assessment and tissue characterisation. CMR helps to diagnose, monitor disease course and sub-phenotype disease states. Several emerging CMR methods have the potential to offer a personalised medicine approach to treatment. CMR tissue characterisation is used to assess myocardial oedema, inflammation or thrombus in various disease conditions. CMR derived scar maps have the potential to inform ablation therapy—both in atrial and ventricular arrhythmias. Quantitative CMR is pushing boundaries with motion corrections in tissue characterisation and first-pass perfusion. Advanced tissue characterisation by imaging the myocardial fibre orientation using diffusion tensor imaging (DTI), has also demonstrated novel insights in patients with cardiomyopathies. Enhanced flow assessment using four-dimensional flow (4D flow) CMR, where time is the fourth dimension, allows quantification of transvalvular flow to a high degree of accuracy for all four-valves within the same cardiac cycle. This review discusses these emerging methods and others in detail and gives the reader a foresight of how CMR will evolve into a powerful clinical tool in offering a precision medicine approach to treatment, diagnosis, and detection of disease.
Collapse
Affiliation(s)
- Sophie Paddock
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Vasiliki Tsampasian
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Hosamadin Assadi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Bruno Calife Mota
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Amrit Chowdhary
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Peter Swoboda
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Eylem Levelt
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Eva Sammut
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, United Kingdom
| | - Amardeep Dastidar
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, United Kingdom
| | - Jordi Broncano Cabrero
- Cardiothoracic Imaging Unit, Hospital San Juan De Dios, Ressalta, HT Medica, Córdoba, Spain
| | - Javier Royuela Del Val
- Cardiothoracic Imaging Unit, Hospital San Juan De Dios, Ressalta, HT Medica, Córdoba, Spain
| | - Paul Malcolm
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Julia Sun
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Alisdair Ryding
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Chris Sawh
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Richard Greenwood
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - David Hewson
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Vassilios Vassiliou
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Pankaj Garg
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
252
|
Petersen J, Lenz A, Adam G, Reichenspurner H, Bannas P, Girdauskas E. Changes in transvalvular flow patterns after aortic valve repair: comparison of symmetric versus asymmetric aortic valve geometry. Eur J Cardiothorac Surg 2021; 59:1087-1094. [PMID: 33284970 DOI: 10.1093/ejcts/ezaa445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/28/2020] [Accepted: 11/10/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES The aim of this study was to compare the effect of asymmetric versus symmetric bicuspid aortic valve (BAV) repair on transvalvular flow patterns and aortic wall shear stress (WSS). METHODS Four-dimensional flow magnetic resonance imaging was prospectively and consecutively performed in patients with congenital aortic valve (AV) disease before and after AV repair. The following MRI-based parameters were assessed: (i) flow eccentricity index, (ii) backward flow across the AV, (iii) grading of vortical and helical flow, and (iv) WSS (N/m2) in the proximal aorta. MRI-derived flow parameters were compared between patients who underwent 'asymmetric BAV repair' (n = 13) and 'symmetric BAV repair' (n = 7). RESULTS A total of 20 patients (39 ± 12 years, 80% male), who underwent BAV repair, were included. In the asymmetric BAV repair group, circumferential WSS reduction was found at the level of the aortic arch (P = 0.015). In the symmetric BAV repair group, postoperative circumferential WSS was significantly reduced compared to baseline at all levels of the proximal aorta (all P < 0.05). Postoperative circumferential WSS was significantly higher in the asymmetric versus symmetric BAV repair group at the level of the sinotubular junction (0.45 ± 0.15 vs 0.30 ± 0.09 N/m2; P = 0.028), ascending aorta (0.59 ± 0.19 vs 0.44 ± 0.08 N/m2; P = 0.021) and aortic arch (0.59 ± 0.25 vs 0.40 ± 0.08 N/m2; P = 0.017). Segmental WSS analysis showed significantly higher postoperative WSS after asymmetric versus symmetric BAV repair, especially in the anterior aortic segment (P = 0.004). CONCLUSIONS Symmetric BAV repair results in more physiological flow patterns and significantly reduces WSS, as compared to asymmetric BAV repair. From a haemodynamic point of view, symmetric AV geometry should be attempted in every congenital AV repair.
Collapse
Affiliation(s)
- Johannes Petersen
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, UKE, Hamburg, Germany
| | - Alexander Lenz
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, UKE, Hamburg, Germany
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, UKE, Hamburg, Germany
| |
Collapse
|
253
|
Stone ML, Schäfer M, DiMaria MV, von Alvensleben JC, Campbell DN, Jaggers J, Mitchell MB. Diastolic inflow is associated with inefficient ventricular flow dynamics in Fontan patients. J Thorac Cardiovasc Surg 2021; 163:1195-1207. [DOI: 10.1016/j.jtcvs.2021.06.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022]
|
254
|
Corrado PA, Medero R, Johnson KM, François CJ, Roldán-Alzate A, Wieben O. A phantom study comparing radial trajectories for accelerated cardiac 4D flow MRI against a particle imaging velocimetry reference. Magn Reson Med 2021; 86:363-371. [PMID: 33547658 PMCID: PMC8109233 DOI: 10.1002/mrm.28698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE Radial sampling is one method to accelerate 4D flow MRI acquisition, making feasible dual-velocity encoding (Venc) assessment of slow flow in the left ventricle (LV). Here, two radial trajectories are compared in vitro for this application: 3D radial (phase-contrast vastly undersampled isotropic projection, PC-VIPR) versus stack of stars (phase-contrast stack of stars, PC-SOS), with benchtop particle imaging velocimetry (PIV) serving as a reference standard. METHODS The study contained three steps: (1) Construction of an MRI- and PIV-compatible LV model from a healthy adult's CT images. (2) In vitro PIV using a pulsatile flow pump. (3) In vitro dual-Venc 4D flow MRI using PC-VIPR and PC-SOS (two repeat experiments). Each MR image set was retrospectively undersampled to five effective scan durations and compared with the PIV reference. The root-mean-square velocity vector difference (RMSE) between MRI and PIV images was compared, along with kinetic energy (KE) and wall shear stress (WSS). RESULTS RMSE increased as scan time decreased for both MR acquisitions. RMSE was 3% lower in PC-SOS images than PC-VIPR images in 30-min scans (3.8 vs. 3.9 cm/s) but 98% higher in 2.5-min scans (9.5 vs. 4.8 cm/s). PIV intrasession repeatability showed a RMSE of 4.4 cm/s, reflecting beat-to-beat flow variation, while MRI had intersession RMSEs of 3.8/3.5 cm/s for VIPR/SOS, respectively. Speed, KE, and WSS were overestimated voxel-wise in 30-min MRI scans relative to PIV by 0.4/0.3 cm/s, 0.2/0.1 μJ/mL, and 36/43 mPa, respectively, for VIPR/SOS. CONCLUSIONS PIV is feasible for application-specific 4D flow MRI protocol optimization. PC-VIPR is better-suited to dual-Venc LV imaging with short scan times.
Collapse
Affiliation(s)
- Philip A Corrado
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rafael Medero
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin M Johnson
- Departments of Medical Physics and Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Alejandro Roldán-Alzate
- Departments of Mechanical and Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Oliver Wieben
- Departments of Medical Physics and Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
255
|
Annio G, Torii R, Ducci A, Muthurangu V, Tsang V, Burriesci G. Experimental Validation of Enhanced Magnetic Resonance Imaging (EMRI) Using Particle Image Velocimetry (PIV). Ann Biomed Eng 2021; 49:3481-3493. [PMID: 34181130 DOI: 10.1007/s10439-021-02811-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022]
Abstract
Flow-sensitive four-dimensional Cardiovascular Magnetic Resonance Imaging (4D Flow CMR) has increasingly been utilised to characterise patients' blood flow, in association with patiens' state of health and disease, even though spatial and temporal resolutions still constitute a limit. Computational fluid dynamics (CFD) is a powerful tool that could expand these information and, if integrated with experimentally-obtained velocity fields, would enable to derive a large variety of the flow descriptors of interest. However, the accuracy of the flow parameters is highly influenced by the quality of the input data such as the anatomical model and boundary conditions typically derived from medical images including 4D Flow CMR. We previously proposed a novel approach in which 4D Flow CMR and CFD velocity fields are integrated to obtain an Enhanced 4D Flow CMR (EMRI), allowing to overcome the spatial-resolution limitation of 4D Flow CMR, and enable an accurate quantification of flow. In this paper, the proposed approach is validated in a U bend channel, an idealised model of the human aortic arch. The flow patterns were studied with 4D Flow CMR, CFD and EMRI, and compared with high resolution 2D PIV experiments obtained in pulsatile conditions. The main strengths and limitations of 4D Flow CMR and CFD were illustrated by exploiting the accuracy of PIV by comparing against PIV velocity fields. EMRI flow patterns showed a better qualitative and quantitative agreement with PIV results than the other techniques. EMRI enables to overcome the experimental limitations of MRI-based velocity measurements and the modelling simplifications of CFD, allowing an accurate prediction of complex flow patterns observed experimentally, while satisfying mass and momentum balance equations.
Collapse
Affiliation(s)
- Giacomo Annio
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK.
| | - Andrea Ducci
- Department of Mechanical Engineering, University College London, London, UK
| | - Vivek Muthurangu
- Centre for Cardiovascular Imaging and Physics, University College London, London, UK
| | - Victor Tsang
- Cardiothoracic Surgery Unit, Great Ormond Street Hospital, London, UK
| | - Gaetano Burriesci
- Department of Mechanical Engineering, University College London, London, UK.
- Ri.MED Foundation, Palermo, Italy.
| |
Collapse
|
256
|
Komoriyama H, Kamiya K, Nagai T, Oyama-Manabe N, Tsuneta S, Kobayashi Y, Kato Y, Sarashina M, Omote K, Konishi T, Sato T, Tsujinaga S, Iwano H, Shingu Y, Wakasa S, Anzai T. Blood flow dynamics with four-dimensional flow cardiovascular magnetic resonance in patients with aortic stenosis before and after transcatheter aortic valve replacement. J Cardiovasc Magn Reson 2021; 23:81. [PMID: 34176516 PMCID: PMC8237445 DOI: 10.1186/s12968-021-00771-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pre- and post-procedural hemodynamic changes which could affect adverse outcomes in aortic stenosis (AS) patients who undergo transcatheter aortic valve replacement (TAVR) have not been well investigated. Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) enables accurate analysis of blood flow dynamics such as flow velocity, flow pattern, wall shear stress (WSS), and energy loss (EL). We sought to examine the changes in blood flow dynamics of patients with severe AS who underwent TAVR. METHODS We examined 32 consecutive severe AS patients who underwent TAVR between May 2018 and June 2019 (17 men, 82 ± 5 years, median left ventricular ejection fraction 61%, 6 self-expanding valve), after excluding those without CMR because of a contraindication or inadequate imaging from the analyses. We analyzed blood flow patterns, WSS and EL in the ascending aorta (AAo), and those changes before and after TAVR using 4D flow CMR. RESULTS After TAVR, semi-quantified helical flow in the AAo was significantly decreased (1.4 ± 0.6 vs. 1.9 ± 0.8, P = 0.002), whereas vortical flow and eccentricity showed no significant changes. WSS along the ascending aortic circumference was significantly decreased in the left (P = 0.038) and left anterior (P = 0.033) wall at the basal level, right posterior (P = 0.011) and left (P = 0.010) wall at the middle level, and right (P = 0.012), left posterior (P = 0.019) and left anterior (P = 0.028) wall at the upper level. EL in the AAo was significantly decreased (15.6 [10.8-25.1 vs. 25.8 [18.6-36.2]] mW, P = 0.012). Furthermore, a significant negative correlation was observed between EL and effective orifice area index after TAVR (r = - 0.38, P = 0.034). CONCLUSIONS In severe AS patients undergoing TAVR, 4D flow CMR demonstrates that TAVR improves blood flow dynamics, especially when a larger effective orifice area index is obtained.
Collapse
Affiliation(s)
- Hirokazu Komoriyama
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Kiwamu Kamiya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Toshiyuki Nagai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Noriko Oyama-Manabe
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Satonori Tsuneta
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Yuta Kobayashi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yoshiya Kato
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Miwa Sarashina
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Kazunori Omote
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Takao Konishi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Takuma Sato
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shingo Tsujinaga
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hiroyuki Iwano
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yasushige Shingu
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Satoru Wakasa
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
257
|
Ding H, Zhao P, Lv H, Li X, Qiu X, Zeng R, Wang G, Yang Z, Gong S, Jin L, Wang Z. Correlation Between Trans-Stenotic Blood Flow Velocity Differences and the Cerebral Venous Pressure Gradient in Transverse Sinus Stenosis: A Prospective 4-Dimensional Flow Magnetic Resonance Imaging Study. Neurosurgery 2021; 89:549-556. [PMID: 34171923 PMCID: PMC8440065 DOI: 10.1093/neuros/nyab222] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/29/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The relationship between trans-stenotic blood flow velocity differences and the cerebral venous pressure gradient (CVPG) in transverse sinus (TS) stenosis (TSS) has not been studied. OBJECTIVE To evaluate the hemodynamic manifestations of TSS and the relationship between trans-stenotic blood flow velocity differences and the CVPG. METHODS Thirty-three patients with idiopathic intracranial hypertension (IIH) or pulsatile tinnitus (PT) and TSS who had undergone diagnostic venography using venous manometry were included in the patient group. Thirty-three volunteers with no stenosis and symptoms were included in the control group. All the 2 groups underwent prospective venous sinus 4-dimensional (4D) flow magnetic resonance imaging (MRI). The average velocity (Vavg) difference and maximum velocity (Vmax) difference between downstream and upstream of the TS in 2 groups were measured and compared. Correlations between the CVPG and trans-stenotic Vavg difference/Vmax difference/index of transverse sinus stenosis (ITSS) were assessed in the patient group. RESULTS The differences in Vavg difference and Vmax difference between the patient and control groups showed a statistical significance (P < .001). The Vavg difference and Vmax difference had a strong correlation with CVPG (R = 0.675 and 0.701, respectively, P < .001) in the patient group. Multivariate linear regression using the stepwise method showed that the Vmax difference and ITSS were correlated with the CVPG (R = 0.752 and R2 = 0.537, respectively; P < .001). CONCLUSION The trans-stenotic blood flow velocity difference significantly correlates with the CVPG in TSS. As a noninvasive imaging modality, 4D flow MRI may be a suitable screening or complimentary tool to decide which TSS may benefit from invasive venous manometry.
Collapse
Affiliation(s)
| | | | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoshuai Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Qiu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rong Zeng
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guopeng Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Long Jin
- Long Jin, MD, Department of Intervention, Beijing Friendship Hospital, Capital Medical University, No. 95, Yongan Rd, Xicheng District, Beijing 100050, China.
| | - Zhenchang Wang
- Correspondence: Zhenchang Wang, MD, Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yongan Rd, Xicheng District, Beijing 100050, China.
| |
Collapse
|
258
|
Demir A, Wiesemann S, Erley J, Schmitter S, Trauzeddel RF, Pieske B, Hansmann J, Kelle S, Schulz-Menger J. Traveling Volunteers: A Multi-Vendor, Multi-Center Study on Reproducibility and Comparability of 4D Flow Derived Aortic Hemodynamics in Cardiovascular Magnetic Resonance. J Magn Reson Imaging 2021; 55:211-222. [PMID: 34173297 DOI: 10.1002/jmri.27804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Implementation of four-dimensional flow magnetic resonance (4D Flow MR) in clinical routine requires awareness of confounders. PURPOSE To investigate inter-vendor comparability of 4D Flow MR derived aortic hemodynamic parameters, assess scan-rescan repeatability, and intra- and interobserver reproducibility. STUDY TYPE Prospective multicenter study. POPULATION Fifteen healthy volunteers (age 24.5 ± 5.3 years, 8 females). FIELD STRENGTH/SEQUENCE 3 T, vendor-provided and clinically used 4D Flow MR sequences of each site. ASSESSMENT Forward flow volume, peak velocity, average, and maximum wall shear stress (WSS) were assessed via nine planes (P1-P9) throughout the thoracic aorta by a single observer (AD, 2 years of experience). Inter-vendor comparability as well as scan-rescan, intra- and interobserver reproducibility were examined. STATISTICAL TESTS Equivalence was tested setting the 95% confidence interval of intraobserver and scan-rescan difference as the limit of clinical acceptable disagreement. Intraclass correlation coefficient (ICC) and Bland-Altman plots were used for scan-rescan reproducibility and intra- and interobserver agreement. A P-value <0.05 was considered statistically significant. ICCs ≥ 0.75 indicated strong correlation (>0.9: excellent, 0.75-0.9: good). RESULTS Ten volunteers finished the complete study successfully. 4D flow derived hemodynamic parameters between scanners of three different vendors are not equivalent exceeding the equivalence range. P3-P9 differed significantly between all three scanners for forward flow (59.1 ± 13.1 mL vs. 68.1 ± 12.0 mL vs. 55.4 ± 13.1 mL), maximum WSS (1842.0 ± 190.5 mPa vs. 1969.5 ± 398.7 mPa vs. 1500.6 ± 247.2 mPa), average WSS (1400.0 ± 149.3 mPa vs. 1322.6 ± 211.8 mPa vs. 1142.0 ± 198.5 mPa), and peak velocity between scanners I vs. III (114.7 ± 12.6 cm/s vs. 101.3 ± 15.6 cm/s). Overall, the plane location at the sinotubular junction (P1) presented most inter-vendor stability (forward: 78.5 ± 15.1 mL vs. 80.3 ± 15.4 mL vs. 79.5 ± 19.9 mL [P = 0.368]; peak: 126.4 ± 16.7 cm/s vs. 119.7 ± 13.6 cm/s vs. 111.2 ± 22.6 cm/s [P = 0.097]). Scan-rescan reproducibility and intra- and interobserver variability were good to excellent (ICC ≥ 0.8) with best agreement for forward flow (ICC ≥ 0.98). DATA CONCLUSION The clinical protocol used at three different sites led to differences in hemodynamic parameters assessed by 4D flow. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Aylin Demir
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité-Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
| | - Stephanie Wiesemann
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité-Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Jennifer Erley
- Department of Internal Medicine/Cardiology, German Heart Institute Berlin, Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Ralf Felix Trauzeddel
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité-Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Burkert Pieske
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Internal Medicine/Cardiology, German Heart Institute Berlin, Berlin, Germany.,Department of Internal Medicine/Cardiology, Charité Campus Virchow Klinikum, Berlin, Germany
| | - Jochen Hansmann
- Department of Radiology, Theresienkrankenhaus und St. Hedwig-Klinik, Mannheim, Germany
| | - Sebastian Kelle
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Internal Medicine/Cardiology, German Heart Institute Berlin, Berlin, Germany.,Department of Internal Medicine/Cardiology, Charité Campus Virchow Klinikum, Berlin, Germany
| | - Jeanette Schulz-Menger
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité-Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
259
|
Pushparajah K. Non-invasive Imaging in the Evaluation of Cardiac Shunts for Interventional Closure. Front Cardiovasc Med 2021; 8:651726. [PMID: 34222361 PMCID: PMC8253251 DOI: 10.3389/fcvm.2021.651726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Multimodality imaging provides important information to guide patient selection and pre-procedural decision making for shunt lesions in CHD. While echocardiography, CT, and CMR are well-established, 3D printing and now virtual reality imaging are beginning to show promise.
Collapse
Affiliation(s)
- Kuberan Pushparajah
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom.,Department of Paediatric Cardiology, Evelina London Children's Hospital, London, United Kingdom
| |
Collapse
|
260
|
Demirkiran A, van Ooij P, Westenberg JJM, Hofman MBM, van Assen HC, Schoonmade LJ, Asim U, Blanken CPS, Nederveen AJ, van Rossum AC, Götte MJW. Clinical intra-cardiac 4D flow CMR: acquisition, analysis, and clinical applications. Eur Heart J Cardiovasc Imaging 2021; 23:154-165. [PMID: 34143872 PMCID: PMC8787996 DOI: 10.1093/ehjci/jeab112] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Identification of flow patterns within the heart has long been recognized as a potential contribution to the understanding of physiological and pathophysiological processes of cardiovascular diseases. Although the pulsatile flow itself is multi-dimensional and multi-directional, current available non-invasive imaging modalities in clinical practice provide calculation of flow in only 1-direction and lack 3-dimensional volumetric velocity information. Four-dimensional flow cardiovascular magnetic resonance imaging (4D flow CMR) has emerged as a novel tool that enables comprehensive and critical assessment of flow through encoding velocity in all 3 directions in a volume of interest resolved over time. Following technical developments, 4D flow CMR is not only capable of visualization and quantification of conventional flow parameters such as mean/peak velocity and stroke volume but also provides new hemodynamic parameters such as kinetic energy. As a result, 4D flow CMR is being extensively exploited in clinical research aiming to improve understanding of the impact of cardiovascular disease on flow and vice versa. Of note, the analysis of 4D flow data is still complex and accurate analysis tools that deliver comparable quantification of 4D flow values are a necessity for a more widespread adoption in clinic. In this article, the acquisition and analysis processes are summarized and clinical applications of 4D flow CMR on the heart including conventional and novel hemodynamic parameters are discussed. Finally, clinical potential of other emerging intra-cardiac 4D flow imaging modalities is explored and a near-future perspective on 4D flow CMR is provided.
Collapse
Affiliation(s)
- Ahmet Demirkiran
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Pim van Ooij
- Department of Radiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Mark B M Hofman
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Hans C van Assen
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Linda J Schoonmade
- Medical Library, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Usman Asim
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Carmen P S Blanken
- Department of Radiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Albert C van Rossum
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Marco J W Götte
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
261
|
Left Atrial Flow Stasis in Patients Undergoing Pulmonary Vein Isolation for Paroxysmal Atrial Fibrillation Using 4D-Flow Magnetic Resonance Imaging. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Atrial fibrillation (AF) is associated with systemic thrombo-embolism and stroke events, which do not appear significantly reduced following successful pulmonary vein (PV) ablation. Prior studies supported that thrombus formation is associated with left atrial (LA) flow alterations, particularly flow stasis. Recently, time-resolved three-dimensional phase-contrast (4D-flow) showed the ability to quantify LA stasis. This study aims to demonstrate that LA stasis, derived from 4D-flow, is a useful biomarker of LA recovery in patients with AF. Our hypothesis is that LA recovery will be associated with a reduction in LA stasis. We recruited 148 subjects with paroxysmal AF (40 following 3–4 months PV ablation and 108 pre-PV ablation) and 24 controls (CTL). All subjects underwent a cardiac magnetic resonance imaging (MRI) exam, inclusive of 4D-flow. LA was isolated within the 4D-flow dataset to constrain stasis maps. Control mean LA stasis was lower than in the pre-ablation cohort (30 ± 12% vs. 47 ± 18%, p < 0.001). In addition, mean LA stasis was reduced in the post-ablation cohort compared with pre-ablation (36 ± 15% vs. 47 ± 18%, p = 0.002). This study demonstrated that 4D flow-derived LA stasis mapping is clinically relevant and revealed stasis changes in the LA body pre- and post-pulmonary vein ablation.
Collapse
|
262
|
Editorial Comment: Toward Implementation of 4D Flow MRI in Clinical Workflow. AJR Am J Roentgenol 2021; 217:1333. [PMID: 34106759 DOI: 10.2214/ajr.21.26333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This Editorial Comment discusses the following AJR article: Structural Heart 4D Flow MRI for Hemodynamic Assessment: How We Do It.
Collapse
|
263
|
Circulation derived from 4D flow MRI correlates with right ventricular dysfunction in patients with tetralogy of Fallot. Sci Rep 2021; 11:11623. [PMID: 34079023 PMCID: PMC8172849 DOI: 10.1038/s41598-021-91125-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/21/2021] [Indexed: 11/28/2022] Open
Abstract
We used 4D-flow MRI to investigate circulation, an area integral of vorticity, in the main pulmonary artery (MPA) as a new hemodynamic parameter for assessing patients with a repaired Tetralogy of Fallot (TOF). We evaluated the relationship between circulation, right ventricular (RV) function and the pulmonary regurgitant fraction (PRF). Twenty patients with a repaired TOF underwent cardiac MRI. Flow-sensitive 3D-gradient sequences were used to obtain 4D-flow images. Vortex formation in the MPA was visualized, with short-axis and longitudinal vorticities calculated by software specialized for 4D flow. The RV indexed end-diastolic/end-systolic volumes (RVEDVi/RVESVi) and RV ejection fraction (RVEF) were measured by cine MRI. The PR fraction (PRF) and MPA area were measured by 2D phase-contrast MRI. Spearman ρ values were determined to assess the relationships between circulation, RV function, and PRF. Vortex formation in the MPA occurred in 15 of 20 patients (75%). The longitudinal circulation (11.7 ± 5.1 m2/s) was correlated with the RVEF (ρ = − 0.85, p = 0.0002), RVEDVi (ρ = 0.62, p = 0.03), and RVESVi (ρ = 0.76, p = 0.003) after adjusting for the MPA size. The short-axis circulation (9.4 ± 3.4 m2/s) in the proximal MPA was positively correlated with the MPA area (ρ = 0.61, p = 0.004). The relationships between the PRF and circulation or RV function were not significant. Increased longitudinal circulation in the MPA, as demonstrated by circulation analysis using 4D flow MRI, was related to RV dysfunction in patients with a repaired TOF.
Collapse
|
264
|
Abstract
MRI is an essential diagnostic tool in the anatomic and functional evaluation of cardiovascular disease. In many practices, 2D phase-contrast (2D-PC) has been used for blood flow quantification. 4D Flow MRI is a time-resolved volumetric acquisition that captures the vector field of blood flow along with anatomic images. 4D Flow MRI provides a simpler acquisition compared to 2D-PC and facilitates a more accurate and comprehensive hemodynamic assessment. Advancements in accelerated imaging have significantly shortened scan times of 4D Flow MRI while preserving image quality, enabling this technology to transition from the research arena to routine clinical practice. In this article, we review technical optimization based on our clinical experience of over 10 years with 4D Flow MRI. We also present pearls and pitfalls in the practical application of 4D Flow MRI, including how to quantify cardiovascular shunts, valvular or vascular stenosis, and valvular regurgitation. As experience increases, and as 4D Flow sequences and post-processing software become more broadly available, 4D Flow MRI will likely become an essential component of cardiac imaging for practices involved in the management of congenital and acquired structural heart disease.
Collapse
|
265
|
Corrado PA, Barton GP, Francois CJ, Wieben O, Goss KN. Sildenafil administration improves right ventricular function on 4D flow MRI in young adults born premature. Am J Physiol Heart Circ Physiol 2021; 320:H2295-H2304. [PMID: 33861148 PMCID: PMC8289359 DOI: 10.1152/ajpheart.00824.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
Extreme preterm birth conveys an elevated risk of heart failure by young adulthood. Smaller biventricular chamber size, diastolic dysfunction, and pulmonary hypertension may contribute to reduced ventricular-vascular coupling. However, how hemodynamic manipulations may affect right ventricular (RV) function and coupling remains unknown. As a pilot study, 4D flow MRI was used to assess the effect of afterload reduction and heart rate reduction on cardiac hemodynamics and function. Young adults born premature were administered sildenafil (a pulmonary vasodilator) and metoprolol (a β blocker) on separate days, and MRI with 4D flow completed before and after each drug administration. Endpoints include cardiac index (CI), direct flow fractions, and ventricular kinetic energy including E/A wave kinetic energy ratio. Sildenafil resulted in a median CI increase of 0.24 L/min/m2 (P = 0.02), mediated through both an increase in heart rate (HR) and stroke volume. Although RV ejection fraction improved only modestly, there was a significant increase (4% of end diastolic volume) in RV direct flow fraction (P = 0.04), consistent with hemodynamic improvement. Metoprolol administration resulted in a 5-beats/min median decrease in HR (P = 0.01), a 0.37 L/min/m2 median decrease in CI (P = 0.04), and a reduction in time-averaged kinetic energy (KE) in both ventricles (P < 0.01), despite increased RV diastolic E/A KE ratio (P = 0.04). Despite reduced right atrial workload, metoprolol significantly depressed overall cardiac systolic function. Sildenafil, however, increased CI and improved RV function, as quantified by the direct flow fraction. The preterm heart appears dependent on HR but sensitive to RV afterload manipulations.NEW & NOTEWORTHY We assessed the effect of right ventricular afterload reduction with sildenafil and heart rate reduction with metoprolol on cardiac hemodynamics and function in young adults born premature using 4D flow MRI. Metoprolol depressed cardiac function, whereas sildenafil improved cardiac function including right ventricular direct flow fraction by 4D flow, consistent with hemodynamic improvement. This suggests that the preterm heart is dependent on heart rate and sensitive to right ventricular afterload changes.
Collapse
Affiliation(s)
- Philip A Corrado
- Department of Medical Physics, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Gregory P Barton
- Department of Medical Physics, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
- Department of Medicine, University of Texas Southwestern, Dallas, Texas
| | - Christopher J Francois
- Department of Radiology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
- Department of Radiology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Kara N Goss
- Department of Medicine, University of Texas Southwestern, Dallas, Texas
- Department of Pediatrics, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
- Department of Medicine. University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
266
|
Zhao X, Tan RS, Garg P, Chai P, Leng S, Bryant J, Teo LLS, Ong CC, Geest RJVD, Allen JC, Yip JW, Tan JL, Plein S, Westenberg JJW, Zhong L. Impact of age, sex and ethnicity on intra-cardiac flow components and left ventricular kinetic energy derived from 4D flow CMR. Int J Cardiol 2021; 336:105-112. [PMID: 34044022 DOI: 10.1016/j.ijcard.2021.05.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/15/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Four-dimensional flow cardiovascular magnetic resonance (4D flow CMR) allows quantification of left ventricular (LV) blood flow. We aimed to 1) establish reference ranges for 4D flow CMR-derived LV relative flow components and kinetic energy parameters indexed to end-diastolic volume (KEiEDV) among healthy Asian subjects, 2) assess effects of age and sex on these parameters, and 3) compare these parameters between Asian and Caucasian subjects. METHODS 74 healthy Asian subjects underwent cine and 4D flow CMR. Relative flow components (direct flow, retained inflow, delayed ejection flow, residual volume) and multiple phasic KEiEDV (LV global, peak systolic, systolic, diastolic, peak E-wave, peak A-wave) were analyzed. Sex- and age-specific reference ranges were reported. RESULTS Relative flow components and systolic phase KEiEDV did not vary with age. Women had higher retained inflow and peak E-wave KEiEDV, lower residual volume, peak systolic and systolic KEiEDV than men. Peak A-wave KEiEDV increased significantly (r = 0.474) whereas peak E-wave KEiEDV (r = -0.458) and E-wave/A-wave ratio (r = -0.528) decreased with age. A sub-population (n = 44) was compared with 44 sex- and age-matched Caucasian subjects: no significant group differences were observed for all 4D flow CMR parameters. CONCLUSION Asian sex- and age-specific 4D flow CMR reference ranges were established. Sex differences in retained inflow, residual volume, peak systolic, systolic KEiEDV and peak E-wave KEiEDV were observed. Ageing influenced diastolic KEiEDV but not systolic phase KEiEDV or relative flow components. All studied parameters were similar between sex- and age-matched Asian and Caucasian subjects, implying generalizability of the ranges.
Collapse
Affiliation(s)
- Xiaodan Zhao
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore
| | - Ru-San Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore; Duke-NUS Medical School, National University of Singapore, 8 College Road, 169857, Singapore
| | - Pankaj Garg
- University of Sheffield, C Floor, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Ping Chai
- National University Hospital Singapore, 5 Lower Kent Ridge Rd, 119074, Singapore
| | - Shuang Leng
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore
| | - Jennifer Bryant
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore
| | - Lynette L S Teo
- National University Hospital Singapore, 5 Lower Kent Ridge Rd, 119074, Singapore
| | - Ching Ching Ong
- National University Hospital Singapore, 5 Lower Kent Ridge Rd, 119074, Singapore
| | - Rob J van der Geest
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - John C Allen
- Duke-NUS Medical School, National University of Singapore, 8 College Road, 169857, Singapore
| | - James W Yip
- National University Hospital Singapore, 5 Lower Kent Ridge Rd, 119074, Singapore
| | - Ju Le Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore; Duke-NUS Medical School, National University of Singapore, 8 College Road, 169857, Singapore
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Jos J W Westenberg
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Liang Zhong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore; Duke-NUS Medical School, National University of Singapore, 8 College Road, 169857, Singapore.
| |
Collapse
|
267
|
Abnormal pulmonary flow is associated with impaired right ventricular coupling in patients with COPD. Int J Cardiovasc Imaging 2021; 37:3039-3048. [PMID: 34021434 DOI: 10.1007/s10554-021-02285-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 01/31/2023]
Abstract
Cor Pulmonale or right ventricular (RV) dysfunction due to pulmonary disease is an expected complication of COPD resulting primarily from increased afterload mediated by chronic alveolar hypoxemia and resulting hypoxic pulmonary vasoconstriction. Early detection of elevated RV afterload has been previously demonstrated by visualization of abnormal flow patterns in the proximal pulmonary arteries. Prior analysis of helicity in the pulmonary arteries in pulmonary hypertension patients has demonstrated a strong association between helicity and increased RV afterload. However, these flow hemodynamics have yet to be fully explored in patients with COPD. We hypothesized that patients with COPD will have abnormal pulmonary flow as evaluated by 4D-Flow MRI and associated with RV function and pulmonary arterial stiffness. Patients with COPD (n = 15) (65 years ± 6) and controls (n = 10) (58 years ± 9) underwent 4D-Flow MRI to calculate helicity. The helicity was calculated in the main pulmonary artery (MPA) and along the RV outflow tract (RVOT)-MPA axis. Main pulmonary arterial stiffness was measured using the relative area change (RAC). We found COPD patients had decreased helicity relative to healthy controls in the MPA (19.4 ± 7.8vs 32.8 ± 15.9, P = 0.007) and reduced helicity along the RVOT-MPA axis (33.2 ± 9.0 vs 43.5 ± 8.3, P = 0.010). Our investigation indicates a strong association between helicity along the MPA-RV outflow tract axis and RV function and suggests that 4D-Flow MRI might be a sensitive tool in evaluating RV-pulmonary arterial coupling in COPD.
Collapse
|
268
|
Elsayed A, Gilbert K, Scadeng M, Cowan BR, Pushparajah K, Young AA. Four-dimensional flow cardiovascular magnetic resonance in tetralogy of Fallot: a systematic review. J Cardiovasc Magn Reson 2021; 23:59. [PMID: 34011372 PMCID: PMC8136126 DOI: 10.1186/s12968-021-00745-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients with repaired Tetralogy of Fallot (rTOF) often develop cardiovascular dysfunction and require regular imaging to evaluate deterioration and time interventions such as pulmonary valve replacement. Four-dimensional flow cardiovascular magnetic resonance (4D flow CMR) enables detailed assessment of flow characteristics in all chambers and great vessels. We performed a systematic review of intra-cardiac 4D flow applications in rTOF patients, to examine clinical utility and highlight optimal methods for evaluating rTOF patients. METHODS A comprehensive literature search was undertaken in March 2020 on Google Scholar and Scopus. A modified version of the Critical Appraisal Skills Programme (CASP) tool was used to assess and score the applicability of each study. Important clinical outcomes were assessed including similarities and differences. RESULTS Of the 635 articles identified, 26 studies met eligibility for systematic review. None of these were below 59% applicability on the modified CASP score. Studies could be broadly classified into four groups: (i) pilot studies, (ii) development of new acquisition methods, (iii) validation and (vi) identification of novel flow features. Quantitative comparison with other modalities included 2D phase contrast CMR (13 studies) and echocardiography (4 studies). The 4D flow study applications included stroke volume (18/26;69%), regurgitant fraction (16/26;62%), relative branch pulmonary artery flow(4/26;15%), systolic peak velocity (9/26;35%), systemic/pulmonary total flow ratio (6/26;23%), end diastolic and end systolic volume (5/26;19%), kinetic energy (5/26;19%) and vorticity (2/26;8%). CONCLUSIONS 4D flow CMR shows potential in rTOF assessment, particularly in retrospective valve tracking for flow evaluation, velocity profiling, intra-cardiac kinetic energy quantification, and vortex visualization. Protocols should be targeted to pathology. Prospective, randomized, multi-centered studies are required to validate these new characteristics and establish their clinical use.
Collapse
Affiliation(s)
- Ayah Elsayed
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Kathleen Gilbert
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Miriam Scadeng
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Brett R. Cowan
- Institute of Environmental Science and Research, Auckland, New Zealand
| | | | - Alistair A. Young
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Department of Biomedical Engineering, King’s College London, London, UK
| |
Collapse
|
269
|
Rutkowski DR, Roldán-Alzate A, Johnson KM. Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data. Sci Rep 2021; 11:10240. [PMID: 33986368 PMCID: PMC8119419 DOI: 10.1038/s41598-021-89636-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Blood flow metrics obtained with four-dimensional (4D) flow phase contrast (PC) magnetic resonance imaging (MRI) can be of great value in clinical and experimental cerebrovascular analysis. However, limitations in both quantitative and qualitative analyses can result from errors inherent to PC MRI. One method that excels in creating low-error, physics-based, velocity fields is computational fluid dynamics (CFD). Augmentation of cerebral 4D flow MRI data with CFD-informed neural networks may provide a method to produce highly accurate physiological flow fields. In this preliminary study, the potential utility of such a method was demonstrated by using high resolution patient-specific CFD data to train a convolutional neural network, and then using the trained network to enhance MRI-derived velocity fields in cerebral blood vessel data sets. Through testing on simulated images, phantom data, and cerebrovascular 4D flow data from 20 patients, the trained network successfully de-noised flow images, decreased velocity error, and enhanced near-vessel-wall velocity quantification and visualization. Such image enhancement can improve experimental and clinical qualitative and quantitative cerebrovascular PC MRI analysis.
Collapse
Affiliation(s)
- David R Rutkowski
- Mechanical Engineering, University of Wisconsin, Madison, WI, USA
- Radiology, University of Wisconsin, 1111 Highland Ave, Madison, WI, USA
| | - Alejandro Roldán-Alzate
- Mechanical Engineering, University of Wisconsin, Madison, WI, USA
- Radiology, University of Wisconsin, 1111 Highland Ave, Madison, WI, USA
| | - Kevin M Johnson
- Radiology, University of Wisconsin, 1111 Highland Ave, Madison, WI, USA.
- Medical Physics, University of Wisconsin, 1111 Highland Ave, Madison, WI, USA.
| |
Collapse
|
270
|
Chowdhary A, Garg P, Das A, Nazir MS, Plein S. Cardiovascular magnetic resonance imaging: emerging techniques and applications. Heart 2021; 107:697-704. [PMID: 33402364 PMCID: PMC7611390 DOI: 10.1136/heartjnl-2019-315669] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 01/15/2023] Open
Abstract
This review gives examples of emerging cardiovascular magnetic resonance (CMR) techniques and applications that have the potential to transition from research to clinical application in the near future. Four-dimensional flow CMR (4D-flow CMR) allows time-resolved three-directional, three-dimensional (3D) velocity-encoded phase-contrast imaging for 3D visualisation and quantification of valvular or intracavity flow. Acquisition times of under 10 min are achievable for a whole heart multidirectional data set and commercial software packages are now available for data analysis, making 4D-flow CMR feasible for inclusion in clinical imaging protocols. Diffusion tensor imaging (DTI) is based on the measurement of molecular water diffusion and uses contrasting behaviour in the presence and absence of boundaries to infer tissue structure. Cardiac DTI is capable of non-invasively phenotyping the 3D micro-architecture within a few minutes, facilitating transition of the method to clinical protocols. Hybrid positron emission tomography-magnetic resonance (PET-MR) provides quantitative PET measures of biological and pathological processes of the heart combined with anatomical, morphological and functional CMR imaging. Cardiac PET-MR offers opportunities in ischaemic, inflammatory and infiltrative heart disease.
Collapse
Affiliation(s)
- Amrit Chowdhary
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, West Yorkshire, UK
| | - Pankaj Garg
- Cardiovascular and Metabolic Medicine Group, University of East Anglia, Norwich, UK
| | - Arka Das
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, West Yorkshire, UK
| | - Muhummad Sohaib Nazir
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, West Yorkshire, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
271
|
Haarbye SO, Nielsen MB, Hansen AE, Lauridsen CA. Four-Dimensional Flow MRI of Abdominal Veins: A Systematic Review. Diagnostics (Basel) 2021; 11:767. [PMID: 33923366 PMCID: PMC8146887 DOI: 10.3390/diagnostics11050767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 11/25/2022] Open
Abstract
The aim of this systematic review is to provide an overview of the use of Four-Dimensional Magnetic Resonance Imaging of vector blood flow (4D Flow MRI) in the abdominal veins. This study was composed according to the PRISMA guidelines 2009. The literature search was conducted in MEDLINE, Cochrane Library, EMBASE, and Web of Science. Quality assessment of the included studies was performed using the QUADAS-2 tool. The initial search yielded 781 studies and 21 studies were included. All studies successfully applied 4D Flow MRI in abdominal veins. Four-Dimensional Flow MRI was capable of discerning between healthy subjects and patients with cirrhosis and/or portal hypertension. The visual quality and inter-observer agreement of 4D Flow MRI were rated as excellent and good to excellent, respectively, and the studies utilized several different MRI data sampling strategies. By applying spiral sampling with compressed sensing to 4D Flow MRI, the blood flow of several abdominal veins could be imaged simultaneously in 18-25 s, without a significant loss of visual quality. Four-Dimensional Flow MRI might be a useful alternative to Doppler sonography for the diagnosis of cirrhosis and portal hypertension. Further clinical studies need to establish consensus regarding MRI sampling strategies in patients and healthy subjects.
Collapse
Affiliation(s)
- Simon O. Haarbye
- Department of Diagnostic Radiology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; (M.B.N.); (A.E.H.); (C.A.L.)
- Department of Technology, Faculty of Health and Technology, Metropolitan University College, DK-2100 Copenhagen, Denmark
| | - Michael B. Nielsen
- Department of Diagnostic Radiology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; (M.B.N.); (A.E.H.); (C.A.L.)
- Department of Clinical Medicine, University of Copenhagen, DK-1165 Copenhagen, Denmark
| | - Adam E. Hansen
- Department of Diagnostic Radiology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; (M.B.N.); (A.E.H.); (C.A.L.)
- Department of Clinical Medicine, University of Copenhagen, DK-1165 Copenhagen, Denmark
| | - Carsten A. Lauridsen
- Department of Diagnostic Radiology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; (M.B.N.); (A.E.H.); (C.A.L.)
- Department of Technology, Faculty of Health and Technology, Metropolitan University College, DK-2100 Copenhagen, Denmark
| |
Collapse
|
272
|
Perinajová R, Juffermans JF, Westenberg JJM, van der Palen RLF, van den Boogaard PJ, Lamb HJ, Kenjereš S. Geometrically induced wall shear stress variability in CFD-MRI coupled simulations of blood flow in the thoracic aortas. Comput Biol Med 2021; 133:104385. [PMID: 33894502 DOI: 10.1016/j.compbiomed.2021.104385] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/16/2023]
Abstract
Aortic aneurysm is associated with aberrant blood flow and wall shear stress (WSS). This can be studied by coupling magnetic resonance imaging (MRI) with computational fluid dynamics (CFD). For patient-specific simulations, extra attention should be given to the variation in segmentation of the MRI data-set and its effect on WSS. We performed CFD simulations of blood flow in the aorta for ten different volunteers and provided corresponding WSS distributions. The aorta of each volunteer was segmented four times. The same inlet and outlet boundary conditions were applied for all segmentation variations of each volunteer. Steady-state CFD simulations were performed with inlet flow based on phase-contrast MRI during peak systole. We show that the commonly used comparison of mean and maximal values of WSS, based on CFD in the different segments of the thoracic aorta, yields good to excellent correlation (0.78-0.95) for rescan and moderate to excellent correlation (0.64-1.00) for intra- and interobserver reproducibility. However, the effect of geometrical variations is higher for the voxel-to-voxel comparison of WSS. With this analysis method, the correlation for different segments of the whole aorta is poor to moderate (0.43-0.66) for rescan and poor to good (0.48-0.73) for intra- and interobserver reproducibility. Therefore, we advise being critical about the CFD results based on the MRI segmentations to avoid possible misinterpretation. While the global values of WSS are similar for different modalities, the variation of results is high when considering the local distributions.
Collapse
Affiliation(s)
- Romana Perinajová
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology and J.M. Burgerscentrum Research School for Fluid Mechanics, Delft, the Netherlands.
| | - Joe F Juffermans
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roel L F van der Palen
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Saša Kenjereš
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology and J.M. Burgerscentrum Research School for Fluid Mechanics, Delft, the Netherlands.
| |
Collapse
|
273
|
Casciaro ME, Pascaner AF, Guilenea FN, Alcibar J, Gencer U, Soulat G, Mousseaux E, Craiem D. 4D flow MRI: impact of region of interest size, angulation and spatial resolution on aortic flow assessment. Physiol Meas 2021; 42. [PMID: 33567412 DOI: 10.1088/1361-6579/abe525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/10/2021] [Indexed: 12/31/2022]
Abstract
Objectives.In cardiovascular magnetic resonance, the 3D time-resolved phase-contrast technique, also known as 4D flow, is gaining increasing attention due to applications that exploit three-directional velocity encoding throughout the cardiac cycle. Blood flow volume assessment usually requires an expert to draw regions of interest (ROI) around the vessel cross section, whereas the errors involved in this estimation have not been thoroughly investigated. Our objective is to quantify the influence of ROI sizing, angulation and spatial resolution of the reconstructed plane employed in blood flow measurements using 4D flow.Approach.Three circular ROIs were drawn around the ascending, arch and descending aorta of healthy volunteers (n= 27) and patients with a dilated ascending aorta or bicuspid valve (n= 37). We applied systematic changes of ROI diameter (up to ±10%), tilt angle (up to ±25°) and spatial resolution (from 0.25 to 2 mm) of the reconstructed oblique planes, calculating the effects on net, forward and backward blood flow volumes.Main results.Patients had a larger ascending aorta than healthy volunteers with similar ages and male sex proportion (60 ± 15 y.o. vs 58 ± 16 y.o. and 84% vs 70%, respectively). Higher forward and backward flow volumes were observed in the ascending aorta and the aortic arch of the patients with respect to controls (p< 0.001), whereas net volumes were similar: 74.0 ± 20.8 ml versus 75.7 ± 21.8 ml (p= 0.37), respectively. The ascending aorta was the most sensitive to ROI modifications. Changes of ±10% in the ROI diameter and ±25° in tilt angles produced flow volume differences of up to 9 ml (10%) and 18 ml (15%) in controls and patients, respectively. Modifying the reconstructed planes spatial resolution produced flow volume changes below 2 ml.Significance.Since the setting of the ROI size and plane angle could produce errors that represent up to 20% of the forward and/or backward aortic flow volume, a good standardization for vessel segmentation and plane positioning is desirable.
Collapse
Affiliation(s)
- M E Casciaro
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, CP 1078 Buenos Aires, Argentina
| | - A F Pascaner
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, CP 1078 Buenos Aires, Argentina
| | - F N Guilenea
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, CP 1078 Buenos Aires, Argentina
| | - J Alcibar
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, CP 1078 Buenos Aires, Argentina
| | - U Gencer
- Cardiovascular Imaging Unit, Hôpital Européen Georges Pompidou, INSERM U970, Paris, France
| | - G Soulat
- Cardiovascular Imaging Unit, Hôpital Européen Georges Pompidou, INSERM U970, Paris, France
| | - E Mousseaux
- Cardiovascular Imaging Unit, Hôpital Européen Georges Pompidou, INSERM U970, Paris, France
| | - D Craiem
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, CP 1078 Buenos Aires, Argentina
| |
Collapse
|
274
|
Shokina N, Teschner G, Bauer A, Tropea C, Egger H, Hennig J, Krafft AJ. Parametric Sequential Method for MRI-Based Wall Shear Stress Quantification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1105-1112. [PMID: 33347405 DOI: 10.1109/tmi.2020.3046331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wall shear stress (WSS) has been suggested as a potential biomarker in various cardiovascular diseases and it can be estimated from phase-contrast Magnetic Resonance Imaging (PC-MRI) velocity measurements. We present a parametric sequential method for MRI-based WSS quantification consisting of a geometry identification and a subsequent approximation of the velocity field. This work focuses on its validation, investigating well controlled high-resolution in vitro measurements of turbulent stationary flows and physiological pulsatile flows in phantoms. Initial tests for in vivo 2D PC-MRI data of the ascending aorta of three volunteers demonstrate basic applicability of the method to in vivo.
Collapse
|
275
|
Callaghan FM, Burkhardt B, Valsangiacomo Buechel ER, Kellenberger CJ, Geiger J. Assessment of ventricular flow dynamics by 4D-flow MRI in patients following surgical repair of d-transposition of the great arteries. Eur Radiol 2021; 31:7231-7241. [PMID: 33783570 PMCID: PMC8452555 DOI: 10.1007/s00330-021-07813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/18/2021] [Accepted: 02/18/2021] [Indexed: 11/13/2022]
Abstract
Objectives To use 4D-flow MRI to describe systemic and non-systemic ventricular flow organisation and energy loss in patients with repaired d-transposition of the great arteries (d-TGA) and normal subjects. Methods Pathline tracking of ventricular volumes was performed using 4D-flow MRI data from a 1.5-T GE Discovery MR450 scanner. D-TGA patients following arterial switch (n = 17, mean age 14 ± 5 years) and atrial switch (n = 15, 35 ± 6 years) procedures were examined and compared with subjects with normal cardiac anatomy and ventricular function (n = 12, 12 ± 3 years). Pathlines were classified by their passage through the ventricles as direct flow, retained inflow, delayed ejection flow, and residual volume and visually and quantitatively assessed. Additionally, viscous energy losses (ELv) were calculated. Results In normal subjects, the ventricular flow paths were well ordered following similar trajectories through the ventricles with very little mixing of flow components. The flow paths in all atrial and some arterial switch patients were more irregular with high mixing. Direct flow and delayed ejection flow were decreased in atrial switch patients’ systemic ventricles with a corresponding increase in residual volume compared with normal subjects (p = 0.003 and p < 0.001 respectively) and arterial switch patients (p < 0.0001 and p < 0.001 respectively). In non-systemic ventricles, arterial switch patients had increased direct flow and decreased delayed ejection fractions compared to normal (p = 0.007 and p < 0.001 respectively) and atrial switch patients (p = 0.01 and p < 0.001 respectively). Regions of high levels of mixing of ventricular flow components showed elevated ELv. Conclusions 4D-flow MRI pathline tracking reveals disordered ventricular flow patterns and associated ELv in d-TGA patients. Key Points • 4D-flow MRI can be used to assess intraventricular flow dynamics in d-TGA patients. • d-TGA arterial switch patients mostly show intraventricular flow dynamics representative of normal subjects, while atrial switch patients show increased flow disorder and different proportions of intraventricular flow volumes. • Flow disruption and disorder increase viscous energy losses. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-07813-0.
Collapse
Affiliation(s)
- Fraser M Callaghan
- University of Zurich, Zurich, Switzerland. .,Center for MR-Research, University Children's Hospital, Steinwiesstrasse 75, 8032, Zurich, Switzerland. .,Children's Research Center, University Children's Hospital, Zurich, Switzerland.
| | - Barbara Burkhardt
- Children's Research Center, University Children's Hospital, Zurich, Switzerland.,Division of Pediatric Cardiology, University Children's Hospital, Zurich, Switzerland
| | - Emanuela R Valsangiacomo Buechel
- Children's Research Center, University Children's Hospital, Zurich, Switzerland.,Division of Pediatric Cardiology, University Children's Hospital, Zurich, Switzerland
| | - Christian J Kellenberger
- Children's Research Center, University Children's Hospital, Zurich, Switzerland.,Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland
| | - Julia Geiger
- Children's Research Center, University Children's Hospital, Zurich, Switzerland.,Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
276
|
Markl M. How Well Does an Automated Approach Calculate and Visualize Blood Flow Vorticity at 4D Flow MRI? Radiol Cardiothorac Imaging 2021; 2:e190233. [PMID: 33778539 DOI: 10.1148/ryct.2020190233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Michael Markl
- Department of Radiology, Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611
| |
Collapse
|
277
|
Ngo MT, Lee UY, Ha H, Jin N, Chung GH, Kwak YG, Jung J, Kwak HS. Comparison of Hemodynamic Visualization in Cerebral Arteries: Can Magnetic Resonance Imaging Replace Computational Fluid Dynamics? J Pers Med 2021; 11:jpm11040253. [PMID: 33808514 PMCID: PMC8066205 DOI: 10.3390/jpm11040253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 01/04/2023] Open
Abstract
A multimodality approach was applied using four-dimensional flow magnetic resonance imaging (4D flow MRI), time-of-flight magnetic resonance angiography (TOF-MRA) signal intensity gradient (SIG), and computational fluid dynamics (CFD) to investigate the 3D blood flow characteristics and wall shear stress (WSS) of the cerebral arteries. TOF-MRA and 4D flow MRI were performed on the major cerebral arteries in 16 healthy volunteers (mean age 34.7 ± 7.6 years). The flow rate measured with 4D flow MRI in the internal carotid artery, middle cerebral artery, and anterior cerebral artery were 3.8, 2.5, and 1.2 mL/s, respectively. The 3D blood flow pattern obtained through CFD and 4D flow MRI on the cerebral arteries showed reasonable consensus. CFD delivered much greater resolution than 4D flow MRI. TOF-MRA SIG and CFD WSS of the major cerebral arteries showed reasonable consensus with the locations where the WSS was relatively high. However, the visualizations were very different between TOF-MRA SIG and CFD WSS at the internal carotid artery bifurcations, the anterior cerebral arteries, and the anterior communicating arteries. 4D flow MRI, TOF-MRA SIG, and CFD are complementary methods that can provide additional insight into the hemodynamics of the human cerebral artery.
Collapse
Affiliation(s)
- Minh Tri Ngo
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeon-ju 54907, Korea; (M.T.N.); (G.H.C.); (Y.G.K.)
| | - Ui Yun Lee
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeon-ju 54896, Korea;
| | - Hojin Ha
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Korea;
| | - Ning Jin
- Siemens Medical Solutions USA, Inc., Chicago, IL 60089, USA;
| | - Gyung Ho Chung
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeon-ju 54907, Korea; (M.T.N.); (G.H.C.); (Y.G.K.)
| | - Yeong Gon Kwak
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeon-ju 54907, Korea; (M.T.N.); (G.H.C.); (Y.G.K.)
| | - Jinmu Jung
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeon-ju 54896, Korea;
- Hemorheology Research Institute, Jeonbuk National University, Jeon-ju 54896, Korea
- Correspondence: (J.J.); (H.S.K.); Tel.: +82-63-270-3998 (J.J.); +82-63-250-2582 (H.S.K.)
| | - Hyo Sung Kwak
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeon-ju 54907, Korea; (M.T.N.); (G.H.C.); (Y.G.K.)
- Correspondence: (J.J.); (H.S.K.); Tel.: +82-63-270-3998 (J.J.); +82-63-250-2582 (H.S.K.)
| |
Collapse
|
278
|
Cave DGW, Panayiotou H, Bissell MM. Hemodynamic Profiles Before and After Surgery in Bicuspid Aortic Valve Disease-A Systematic Review of the Literature. Front Cardiovasc Med 2021; 8:629227. [PMID: 33842561 PMCID: PMC8024488 DOI: 10.3389/fcvm.2021.629227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/02/2021] [Indexed: 11/25/2022] Open
Abstract
Bicuspid aortic valve (BAV) disease presents a unique management challenge both pre- and post-operatively. 4D flow MRI offers multiple tools for the assessment of the thoracic aorta in aortic valve disease. In particular, its assessment of flow patterns and wall shear stress have led to new understandings around the mechanisms of aneurysm development in BAV disease. Novel parameters have now been developed that have the potential to predict pathological aortic dilatation and may help to risk stratify BAV patients in future. This systematic review analyses the current 4D flow MRI literature after aortic valve and/or ascending aortic replacement in bicuspid aortic valve disease. 4D flow MRI has also identified distinct challenges posed by this cohort at the time of valve replacement compared to standard management of tri-leaflet disorders, and may help tailor the type and timing of replacement. Eccentric pathological flow patterns seen after bioprosthetic valve implantation, but not with mechanical prostheses, might be an important future consideration in intervention planning. 4D flow MRI also has promising potential in supporting the development of artificial valve prostheses and aortic conduits with more physiological flow patterns.
Collapse
Affiliation(s)
- Daniel G W Cave
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Hannah Panayiotou
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Malenka M Bissell
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
279
|
Spartera M, Pessoa-Amorim G, Stracquadanio A, Von Ende A, Fletcher A, Manley P, Neubauer S, Ferreira VM, Casadei B, Hess AT, Wijesurendra RS. Left atrial 4D flow cardiovascular magnetic resonance: a reproducibility study in sinus rhythm and atrial fibrillation. J Cardiovasc Magn Reson 2021; 23:29. [PMID: 33745457 PMCID: PMC7983287 DOI: 10.1186/s12968-021-00729-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/03/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) allows sophisticated quantification of left atrial (LA) blood flow, and could yield novel biomarkers of propensity for intra-cardiac thrombus formation and embolic stroke. As reproducibility is critically important to diagnostic performance, we systematically investigated technical and temporal variation of LA 4D flow in atrial fibrillation (AF) and sinus rhythm (SR). METHODS Eighty-six subjects (SR, n = 64; AF, n = 22) with wide-ranging stroke risk (CHA2DS2VASc 0-6) underwent LA 4D flow assessment of peak and mean velocity, vorticity, vortex volume, and stasis. Eighty-five (99%) underwent a second acquisition within the same session, and 74 (86%) also returned at 30 (27-35) days for an interval scan. We assessed variability attributable to manual contouring (intra- and inter-observer), and subject repositioning and reacquisition of data, both within the same session (same-day scan-rescan), and over time (interval scan). Within-subject coefficients of variation (CV) and bootstrapped 95% CIs were calculated and compared. RESULTS Same-day scan-rescan CVs were 6% for peak velocity, 5% for mean velocity, 7% for vorticity, 9% for vortex volume, and 10% for stasis, and were similar between SR and AF subjects (all p > 0.05). Interval-scan variability was similar to same-day scan-rescan variability for peak velocity, vorticity, and vortex volume (all p > 0.05), and higher for stasis and mean velocity (interval scan CVs of 14% and 8%, respectively, both p < 0.05). Longitudinal changes in heart rate and blood pressure at the interval scan in the same subjects were associated with significantly higher variability for LA stasis (p = 0.024), but not for the remaining flow parameters (all p > 0.05). SR subjects showed significantly greater interval-scan variability than AF patients for mean velocity, vortex volume, and stasis (all p < 0.05), but not peak velocity or vorticity (both p > 0.05). CONCLUSIONS LA peak velocity and vorticity are the most reproducible and temporally stable novel LA 4D flow biomarkers, and are robust to changes in heart rate, blood pressure, and differences in heart rhythm.
Collapse
Affiliation(s)
- Marco Spartera
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, West Wing, Headley Way, Oxford, UK.
- The University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Oxford, UK.
| | - Guilherme Pessoa-Amorim
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, West Wing, Headley Way, Oxford, UK
- The University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Oxford, UK
| | - Antonio Stracquadanio
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, West Wing, Headley Way, Oxford, UK
- The University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Oxford, UK
| | - Adam Von Ende
- Department of Population Health, CTSU Nuffield University of Oxford, Oxford, UK
| | - Alison Fletcher
- The University of Oxford Acute Vascular Imaging Centre (AVIC), Oxford, UK
| | - Peter Manley
- The University of Oxford Acute Vascular Imaging Centre (AVIC), Oxford, UK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, West Wing, Headley Way, Oxford, UK
- The University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Oxford, UK
| | - Vanessa M Ferreira
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, West Wing, Headley Way, Oxford, UK
- The University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Oxford, UK
| | - Barbara Casadei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, West Wing, Headley Way, Oxford, UK
| | - Aaron T Hess
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, West Wing, Headley Way, Oxford, UK
- The University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Oxford, UK
| | - Rohan S Wijesurendra
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, West Wing, Headley Way, Oxford, UK
- The University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Oxford, UK
| |
Collapse
|
280
|
Gbinigie H, Coats L, Parikh JD, Hollingsworth KG, Gan L. A 4D flow cardiovascular magnetic resonance study of flow asymmetry and haemodynamic quantity correlations in the pulmonary artery. Physiol Meas 2021; 42:025005. [PMID: 33482652 DOI: 10.1088/1361-6579/abdf3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE In this paper we elucidate the asymmetric flow pattern and the haemodynamic quantity distributions and correlations in the pulmonary artery (PA) vasculature in healthy adults having structurally normal hearts, to provide reference on the flow characteristics in the PA and the right ventricle. APPROACH Velocity data are acquired non-invasively from 18 healthy volunteers by 4D flow magnetic resonance imaging, resolved to 20 phases with spatial resolution 3 × 3 × 3 mm3. Interpolation is applied to improve the accuracy in quantifying haemodynamic quantities including kinetic energy, rotational energy, helicity and energy dissipation rate. These quantities are volumetrically normalised to remove size dependency, representing densities or local intensity. MAIN RESULTS Flow asymmetry in the PA is quantified in terms of all the flow dynamic quantities and their correlations. The right PA has larger diameter and higher peak stroke velocity than the left PA. It also has the highest rotational energy intensity. Counter-rotating helical streams in the main PA appear to be associated with the unidirectional helical flow noticed in the left and the right PA near the peak systole. SIGNIFICANCE This study provides a fundamental basis of normal flow in the PA. It implies the validity to use these flow pattern-related quantitative measures to aid with the identification of abnormal PA flow non-invasively, specifically for detecting abnormalities in the pulmonary circulation and response to therapy, where haemodynamic flow is commonly characterised by increased vortical and helical formations.
Collapse
Affiliation(s)
- Henrike Gbinigie
- Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom
| | | | | | | | | |
Collapse
|
281
|
Gottwald LM, Blanken CPS, Tourais J, Smink J, Planken RN, Boekholdt SM, Meijboom LJ, Coolen BF, Strijkers GJ, Nederveen AJ, van Ooij P. Retrospective Camera-Based Respiratory Gating in Clinical Whole-Heart 4D Flow MRI. J Magn Reson Imaging 2021; 54:440-451. [PMID: 33694310 PMCID: PMC8359364 DOI: 10.1002/jmri.27564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Background Respiratory gating is generally recommended in 4D flow MRI of the heart to avoid blurring and motion artifacts. Recently, a novel automated contact‐less camera‐based respiratory motion sensor has been introduced. Purpose To compare camera‐based respiratory gating (CAM) with liver‐lung‐navigator‐based gating (NAV) and no gating (NO) for whole‐heart 4D flow MRI. Study Type Retrospective. Subjects Thirty two patients with a spectrum of cardiovascular diseases. Field Strength/Sequence A 3T, 3D‐cine spoiled‐gradient‐echo‐T1‐weighted‐sequence with flow‐encoding in three spatial directions. Assessment Respiratory phases were derived and compared against each other by cross‐correlation. Three radiologists/cardiologist scored images reconstructed with camera‐based, navigator‐based, and no respiratory gating with a 4‐point Likert scale (qualitative analysis). Quantitative image quality analysis, in form of signal‐to‐noise ratio (SNR) and liver‐lung‐edge (LLE) for sharpness and quantitative flow analysis of the valves were performed semi‐automatically. Statistical Tests One‐way repeated measured analysis of variance (ANOVA) with Wilks's lambda testing and follow‐up pairwise comparisons. Significance level of P ≤ 0.05. Krippendorff's‐alpha‐test for inter‐rater reliability. Results The respiratory signal analysis revealed that CAM and NAV phases were highly correlated (C = 0.93 ± 0.09, P < 0.01). Image scoring showed poor inter‐rater reliability and no significant differences were observed (P ≥ 0.16). The image quality comparison showed that NAV and CAM were superior to NO with higher SNR (P = 0.02) and smaller LLE (P < 0.01). The quantitative flow analysis showed significant differences between the three respiratory‐gated reconstructions in the tricuspid and pulmonary valves (P ≤ 0.05), but not in the mitral and aortic valves (P > 0.05). Pairwise comparisons showed that reconstructions without respiratory gating were different in flow measurements to either CAM or NAV or both, but no differences were found between CAM and NAV reconstructions. Data Conclusion Camera‐based respiratory gating performed as well as conventional liver‐lung‐navigator‐based respiratory gating. Quantitative image quality analysis showed that both techniques were equivalent and superior to no‐gating‐reconstructions. Quantitative flow analysis revealed local flow differences (tricuspid/pulmonary valves) in images of no‐gating‐reconstructions, but no differences were found between images reconstructed with camera‐based and navigator‐based respiratory gating. Level of Evidence 3 Technical Efficacy Stage 2
Collapse
Affiliation(s)
- Lukas M Gottwald
- Radiology and Nuclear Medicine, Amsterdam, Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Carmen P S Blanken
- Radiology and Nuclear Medicine, Amsterdam, Amsterdam University Medical Centers, location AMC, The Netherlands
| | - João Tourais
- MR R&D-Clinical Science, Philips Healthcare, Best, The Netherlands.,Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Magnetic Resonance Systems Lab, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Jouke Smink
- MR R&D-Clinical Science, Philips Healthcare, Best, The Netherlands
| | - R Nils Planken
- Cardiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | - Lilian J Meijboom
- Radiology and Nuclear Medicine, Amsterdam, Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Bram F Coolen
- Biomedical Engineering and Physics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Biomedical Engineering and Physics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Radiology and Nuclear Medicine, Amsterdam, Amsterdam University Medical Centers, location AMC, The Netherlands
| | - Pim van Ooij
- Radiology and Nuclear Medicine, Amsterdam, Amsterdam University Medical Centers, location AMC, The Netherlands
| |
Collapse
|
282
|
Zhang M, Peng F, Tong X, Feng X, Li Y, Chen H, Niu H, Zhang B, Song G, Li Y, Liu P, Liu A, Li R. Associations between haemodynamics and wall enhancement of intracranial aneurysm. Stroke Vasc Neurol 2021; 6:467-475. [PMID: 33637615 PMCID: PMC8485248 DOI: 10.1136/svn-2020-000636] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous studies have reported about inflammation processes (IPs) that play important roles in aneurysm formation and rupture, which could be driven by blood flow. IPs can be identified using aneurysmal wall enhancement (AWE) on high-resolution black-blood MRI (BB-MRI) and blood flow haemodynamics can be demonstrated by four-dimensional-flow MRI (4D-flow MRI). Thus, this study investigated the associations between AWE and haemodynamics in unruptured intracranial aneurysms (IA) by combining 4D-flow MRI and high-resolution BB-MRI. MATERIALS AND METHODS Between April 2014 and October 2017, 48 patients with 49 unruptured IA who underwent both 4D-flow MRI and high-resolution BB-MRI were retrospectively included in this study. The haemodynamic parameters demonstrated using 4D-flow MRI were compared between different AWE patterns using the Kruskal-Wallis test and ordinal regression. RESULTS The results of Kruskal-Wallis test showed that the average wall shear stress in the IA (WSSavg-IA), maximum through-plane velocity in the adjacent parent artery, inflow jet patterns and the average vorticity in IA (vorticityavg-IA) were significantly associated with the AWE patterns. Ordinal regression analysis identified WSSavg-IA (p=0.002) and vorticityavg-IA (p=0.033) as independent predictors of AWE patterns. CONCLUSION A low WSS and low average vorticity were independently associated with a high AWE grade for IAs larger than 4 mm. Therefore, WSS and average vorticity could predict AWE and circumferential AWE.
Collapse
Affiliation(s)
- Miaoqi Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Fei Peng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Xin Tong
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Xin Feng
- Department of Neurosurgery, Beijing Hospital, Beijing, China
| | - Yunduo Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Hao Niu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Baorui Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Guangrong Song
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Youxiang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Peng Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Aihua Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
283
|
Nikolou E, Bilkhu R, Kafil TS, Demetrescu C, Kotta PA, Lucchese G, Tzemos N, Grapsa J. Multimodality Imaging in Transcatheter Mitral Interventions. Front Cardiovasc Med 2021; 8:638399. [PMID: 33718458 PMCID: PMC7950542 DOI: 10.3389/fcvm.2021.638399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/29/2021] [Indexed: 11/21/2022] Open
Abstract
Multimodality imaging is of imperative value for the planning and guidance of transcatheter mitral valve interventions. This review employs the value of different imaging modalities and future implications for clinical practice.
Collapse
Affiliation(s)
- Evgenia Nikolou
- Department of Cardiology, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Rajdeep Bilkhu
- Department of Cardiothoracic Surgery, Guys and St Thomas NHS Hospitals Trust, London, United Kingdom
| | - Tahir S. Kafil
- Department of Cardiology, Western University, London, ON, Canada
| | - Camelia Demetrescu
- Department of Cardiology, Guys and St Thomas NHS Hospitals Trust, London, United Kingdom
| | - Prasanti Alekhya Kotta
- Department of Cardiology, Guys and St Thomas NHS Hospitals Trust, London, United Kingdom
| | - Gianluca Lucchese
- Department of Cardiothoracic Surgery, Guys and St Thomas NHS Hospitals Trust, London, United Kingdom
| | - Nikolaos Tzemos
- Department of Cardiology, Western University, London, ON, Canada
| | - Julia Grapsa
- Department of Cardiology, Guys and St Thomas NHS Hospitals Trust, London, United Kingdom
| |
Collapse
|
284
|
Castagna M, Levilly S, Paul-Gilloteaux P, Moussaoui S, Rousset JM, Bonnefoy F, Idier J, Serfaty JM, Le Touzé D. An LDV based method to quantify the error of PC-MRI derived Wall Shear Stress measurement. Sci Rep 2021; 11:4112. [PMID: 33603139 PMCID: PMC7892875 DOI: 10.1038/s41598-021-83633-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/02/2021] [Indexed: 11/14/2022] Open
Abstract
Wall Shear Stress (WSS) has been demonstrated to be a biomarker of the development of atherosclerosis. In vivo assessment of WSS is still challenging, but 4D Flow MRI represents a promising tool to provide 3D velocity data from which WSS can be calculated. In this study, a system based on Laser Doppler Velocimetry (LDV) was developed to validate new improvements of 4D Flow MRI acquisitions and derived WSS computing. A hydraulic circuit was manufactured to allow both 4D Flow MRI and LDV velocity measurements. WSS profiles were calculated with one 2D and one 3D method. Results indicated an excellent agreement between MRI and LDV velocity data, and thus the set-up enabled the evaluation of the improved performances of 3D with respect to the 2D-WSS computation method. To provide a concrete example of the efficacy of this method, the influence of the spatial resolution of MRI data on derived 3D-WSS profiles was investigated. This investigation showed that, with acquisition times compatible with standard clinical conditions, a refined MRI resolution does not improve WSS assessment, if the impact of noise is unreduced. This study represents a reliable basis to validate with LDV WSS calculation methods based on 4D Flow MRI.
Collapse
Affiliation(s)
- Marco Castagna
- LHEEA Lab, École Centrale Nantes, CNRS UMR 6598, 1 rue de la Noë, 44321, Nantes, France.,Université de Nantes, CHU Nantes, CNRS UMR 6291, INSERM UMR 1087, L'institut du thorax, 8 quai Moncousu, 44035, Nantes, France
| | - Sébastien Levilly
- LS2N, École Centrale Nantes, CNRS UMR 6004, 1 rue de la Noë, 44321, Nantes, France
| | - Perrine Paul-Gilloteaux
- Université de Nantes, CHU Nantes, CNRS UMR 6291, INSERM UMR 1087, L'institut du thorax, 8 quai Moncousu, 44035, Nantes, France.,Université de Nantes, CHU Nantes, CNRS UMS 3556, INSERM UMS 016, SFR Santé, 8 quai Moncousu, 44035, Nantes, France
| | - Saïd Moussaoui
- LS2N, École Centrale Nantes, CNRS UMR 6004, 1 rue de la Noë, 44321, Nantes, France
| | - Jean-Marc Rousset
- LHEEA Lab, École Centrale Nantes, CNRS UMR 6598, 1 rue de la Noë, 44321, Nantes, France
| | - Félicien Bonnefoy
- LHEEA Lab, École Centrale Nantes, CNRS UMR 6598, 1 rue de la Noë, 44321, Nantes, France
| | - Jérôme Idier
- LS2N, École Centrale Nantes, CNRS UMR 6004, 1 rue de la Noë, 44321, Nantes, France
| | - Jean-Michel Serfaty
- Université de Nantes, CHU Nantes, CNRS UMR 6291, INSERM UMR 1087, L'institut du thorax, 8 quai Moncousu, 44035, Nantes, France
| | - David Le Touzé
- LHEEA Lab, École Centrale Nantes, CNRS UMR 6598, 1 rue de la Noë, 44321, Nantes, France.
| |
Collapse
|
285
|
Arslan F, Akdim F, Ten Berg JM. Reverse remodeling after percutaneous transluminal septal myocardial ablation in severe but asymptomatic LVOT obstruction (RASTA) study: Rationale and design of transcatheter septal reduction in asymptomatic patients with severe hypertrophic obstructive cardiomyopathy. Catheter Cardiovasc Interv 2021; 97:488-492. [PMID: 32808736 DOI: 10.1002/ccd.29178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/05/2020] [Accepted: 07/19/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The aim of this study is to evaluate the impact of percutaneous transluminal septal myocardial ablation (PTSMA) on remodeling in asymptomatic patients with hypertrophic obstructive cardiomyopathy (HOCM) and severe left ventricular outflow tract (LVOT) obstruction. BACKGROUND Symptoms justify invasive treatment in HOCM patients with LVOT obstruction. Adverse structural and functional changes (remodeling) in the heart occur preceding heart failure and sudden cardiac death. Early invasive treatment in asymptomatic patients may reverse adverse remodeling to the same extent as in symptomatic patients. METHODS Reverse remodeling after PTSMA in severe but asymptomatic LVOT obstruction (RASTA) study is a prospective single-blind randomized trial (ClinicalTrials.gov number: NCT04230551). Ten asymptomatic HOCM patients with an exertional LVOT gradient ≥50 mmHg (or >30 mmHg in rest) are randomized 1:1 to PTSMA versus conservative therapy, in the absence of mitral valve disease or other indications for cardiac surgery. Five symptomatic (reference group) will undergo PTSMA according to the current guidelines. RESULTS Remodeling is assessed using extensive cardiac imaging with transthoracic echocardiography and late gadolinium enhancement cardiac magnetic resonance at baseline and during follow-up at 1, 12, and 24 months. Extracellular volume fraction, global, and regional strain analysis, geometry, pressure gradients and changes in four-dimensional velocity mapping are primary parameters to study (reversal of) adverse remodeling. CONCLUSIONS The RASTA study gives insight in cardiac remodeling that may occur in asymptomatic patients after PTSMA. It will provide arguments whether to pursue (or not) a larger trial with clinical endpoints in asymptomatic HOCM patients with severe LVOT obstruction.
Collapse
Affiliation(s)
- Fatih Arslan
- Department of Cardiology, St. Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
| | - Fatima Akdim
- Department of Cardiology, St. Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
| | - Jurriën M Ten Berg
- Department of Cardiology, St. Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
| |
Collapse
|
286
|
Juffermans JF, Minderhoud SCS, Wittgren J, Kilburg A, Ese A, Fidock B, Zheng YC, Zhang JM, Blanken CPS, Lamb HJ, Goeman JJ, Carlsson M, Zhao S, Planken RN, van Ooij P, Zhong L, Chen X, Garg P, Emrich T, Hirsch A, Töger J, Westenberg JJM. Multicenter Consistency Assessment of Valvular Flow Quantification With Automated Valve Tracking in 4D Flow CMR. JACC Cardiovasc Imaging 2021; 14:1354-1366. [PMID: 33582060 DOI: 10.1016/j.jcmg.2020.12.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES This study determined: 1) the interobserver agreement; 2) valvular flow variation; and 3) which variables independently predicted the variation of valvular flow quantification from 4-dimensional (4D) flow cardiac magnetic resonance (CMR) with automated retrospective valve tracking at multiple sites. BACKGROUND Automated retrospective valve tracking in 4D flow CMR allows consistent assessment of valvular flow through all intracardiac valves. However, due to the variance of CMR scanners and protocols, it remains uncertain if the published consistency holds for other clinical centers. METHODS Seven sites each retrospectively or prospectively selected 20 subjects who underwent whole heart 4D flow CMR (64 patients and 76 healthy volunteers; aged 32 years [range 24 to 48 years], 47% men, from 2014 to 2020), which was acquired with locally used CMR scanners (scanners from 3 vendors; 2 1.5-T and 5 3-T scanners) and protocols. Automated retrospective valve tracking was locally performed at each site to quantify the valvular flow and repeated by 1 central site. Interobserver agreement was evaluated with intraclass correlation coefficients (ICCs). Net forward volume (NFV) consistency among the valves was evaluated by calculating the intervalvular variation. Multiple regression analysis was performed to assess the predicting effect of local CMR scanners and protocols on the intervalvular inconsistency. RESULTS The interobserver analysis demonstrated strong-to-excellent agreement for NFV (ICC: 0.85 to 0.96) and moderate-to-excellent agreement for regurgitation fraction (ICC: 0.53 to 0.97) for all sites and valves. In addition, all observers established a low intervalvular variation (≤10.5%) in their analysis. The availability of 2 cine images per valve for valve tracking compared with 1 cine image predicted a decreasing variation in NFV among the 4 valves (beta = -1.3; p = 0.01). CONCLUSIONS Independently of locally used CMR scanners and protocols, valvular flow quantification can be performed consistently with automated retrospective valve tracking in 4D flow CMR.
Collapse
Affiliation(s)
- Joe F Juffermans
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Savine C S Minderhoud
- Department of Cardiology and Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Johan Wittgren
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skane University Hospital, Lund, Sweden
| | - Anton Kilburg
- Department of Radiology, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Amir Ese
- Department of Radiology, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Benjamin Fidock
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Yu-Cong Zheng
- Department of MRI, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Mei Zhang
- National Heart Centre Singapore; Duke-NUS Medical School Singapore, National University of Singapore, Singapore
| | - Carmen P S Blanken
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jelle J Goeman
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Marcus Carlsson
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skane University Hospital, Lund, Sweden
| | - Shihua Zhao
- Department of MRI, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - R Nils Planken
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands
| | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands
| | - Liang Zhong
- National Heart Centre Singapore; Duke-NUS Medical School Singapore, National University of Singapore, Singapore
| | - Xiuyu Chen
- Department of MRI, Fuwai Hospital, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pankaj Garg
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Tilman Emrich
- Department of Radiology, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| | - Alexander Hirsch
- Department of Cardiology and Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Johannes Töger
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Skane University Hospital, Lund, Sweden
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
287
|
Riva A, Sturla F, Caimi A, Pica S, Giese D, Milani P, Palladini G, Lombardi M, Redaelli A, Votta E. 4D flow evaluation of blood non-Newtonian behavior in left ventricle flow analysis. J Biomech 2021; 119:110308. [PMID: 33631666 DOI: 10.1016/j.jbiomech.2021.110308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/03/2021] [Indexed: 12/31/2022]
Abstract
Blood is generally modeled as a Newtonian fluid, assuming a standard and constant viscosity; however, this assumption may not hold for the highly pulsatile and recirculating intracavitary flow in the left ventricle (LV), hampering the quantification of fluid dynamic indices of potential clinical relevance. Herein, we investigated the effect of three viscosity models on the patient-specific quantification of LV blood energetics, namely on viscous energy loss (EL), from 4D Flow magnetic resonance imaging: I) Newtonian with standard viscosity (3.7 cP), II) Newtonian with subject-specific hematocrit-dependent viscosity, III) non-Newtonian accounting for the effect of hematocrit and shear rate. Analyses were performed on 5 controls and 5 patients with cardiac light-chain amyloidosis. In Model II, viscosity ranged between 3.0 (-19%) and 4.3 cP (+16%), mildly deviating from the standard value. In the non-Newtonian model, this effect was emphasized: viscosity ranged from 3.2 to 6.0 cP, deviating maximally from the standard value in low shear rate (i.e., <100 s-1) regions. This effect reflected on EL quantifications: in particular, as compared to Model I, Model III yielded markedly higher EL values (up to +40%) or markedly lower (down to -21%) for subjects with hematocrit higher than 39.5% and lower than 30%, respectively. Accounting for non-Newtonian blood behavior on a patient-specific basis may enhance the accuracy of intracardiac energetics assessment by 4D Flow, which may be explored as non-invasive index to discriminate between healthy and pathologic LV.
Collapse
Affiliation(s)
- Alessandra Riva
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy; 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Francesco Sturla
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Alessandro Caimi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Silvia Pica
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | | | - Paolo Milani
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Massimo Lombardi
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Emiliano Votta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy; 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
288
|
Secinaro A, Milano EG, Ciancarella P, Trezzi M, Capelli C, Ciliberti P, Cetrano E, Curione D, Santangelo TP, Napolitano C, Albanese SB, Carotti A. Blood flow characteristics after aortic valve neocuspidization in paediatric patients: a comparison with the Ross procedure. Eur Heart J Cardiovasc Imaging 2021; 23:275-282. [PMID: 33550364 PMCID: PMC8787994 DOI: 10.1093/ehjci/jeab009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 01/13/2021] [Indexed: 12/25/2022] Open
Abstract
Aims The aortic valve (AV) neocuspidization (Ozaki procedure) is a novel surgical technique for AV disease that preserves the natural motion and cardiodynamics of the aortic root. In this study, we sought to evaluate, by 4D-flow magnetic resonance imaging, the aortic blood flow characteristics after AV neocuspidization in paediatric patients. Methods and results Aortic root and ascending aorta haemodynamics were evaluated in a population of patients treated with the Ozaki procedure; results were compared with those of a group of patients operated with the Ross technique. Cardiovascular magnetic resonance studies were performed at 1.5 T using a 4D flow-sensitive sequence acquired with retrospective electrocardiogram-gating and respiratory navigator. Post-processing of 4D-flow analysis was performed to calculate flow eccentricity and wall shear stress. Twenty children were included in this study, 10 after Ozaki and 10 after Ross procedure. Median age at surgery was 10.7 years (range 3.9–16.5 years). No significant differences were observed in wall shear stress values measured at the level of the proximal ascending aorta between the two groups. The analysis of flow patterns showed no clear association between eccentric flow and the procedure performed. The Ozaki group showed just a slightly increased transvalvular maximum velocity. Conclusion Proximal aorta flow dynamics of children treated with the Ozaki and the Ross procedure are comparable. Similarly to the Ross, Ozaki technique restores a physiological laminar flow pattern in the short-term follow-up, with the advantage of not inducing a bivalvular disease, although further studies are warranted to evaluate its long-term results.
Collapse
Affiliation(s)
- Aurelio Secinaro
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Elena Giulia Milano
- University College London, Institute of Cardiovascular Science, London, UK.,Great Ormond Street Hospital for Children, Department of Cardiology, London, UK
| | - Paolo Ciancarella
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Matteo Trezzi
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudio Capelli
- University College London, Institute of Cardiovascular Science, London, UK
| | - Paolo Ciliberti
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Enrico Cetrano
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Davide Curione
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Teresa Pia Santangelo
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Carmela Napolitano
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Sonia B Albanese
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Adriano Carotti
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
289
|
Abstract
This review describes the current role and potential future applications of cardiac magnetic resonance (CMR) for the management of heart failure (HF). CMR allows noninvasive morphologic and functional assessment, tissue characterization, blood flow, and perfusion evaluation. CMR overcomes echocardiography limitations (geometric assumptions, interobserver variability and poor acoustic window) and provides incremental information in relation to cause, prognosis, and treatment monitoring of patients with HF.
Collapse
|
290
|
Ziegler M, Alfraeus J, Good E, Engvall J, de Muinck E, Dyverfeldt P. Exploring the Relationships Between Hemodynamic Stresses in the Carotid Arteries. Front Cardiovasc Med 2021; 7:617755. [PMID: 33614742 PMCID: PMC7886794 DOI: 10.3389/fcvm.2020.617755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/31/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Atherosclerosis manifests as a focal disease, often affecting areas with complex hemodynamics such as the carotid bifurcation. The magnitude and regularity of the hemodynamic shear stresses acting on the vessel wall are thought to generate risk patterns unique to each patient and play a role in the pathogenesis of atherosclerosis. The involvement of different expressions of shear stress in the pathogenesis of carotid atherosclerosis highlights the need to characterize and compare the differential impact of the various expressions of shear stress in the atherosclerotic carotid bifurcation. Therefore, the aim of this study is to characterize and compare hemodynamic wall shear stresses (WSS) in the carotid arteries of subjects with asymptomatic atherosclerotic plaques. Shear stresses were also compared against vessel diameter and bifurcation angle to examine the relationships with the geometry of the carotid bifurcation. Methods: 4D Flow MRI and contrast-enhanced MRA data were acquired for 245 subjects with atherosclerotic plaques of at least 2.7 mm in conjunction with the Swedish CArdioPulmonary bioImage Study (SCAPIS). Following automatic segmentation and geometric analysis, time-resolved WSS and near-wall turbulent kinetic energy (nwTKE) were derived from the 4D Flow data. Whole-cycle parameters including time-averaged WSS and nwTKE, and the oscillatory shear index (OSI) were calculated. Pairwise Spearman rank-correlation analyses were used to investigate relationships among the hemodynamic as well as geometric parameters. Results: One hundred and seventy nine subjects were successfully segmented using automated tools and subsequently geometric and hemodynamic analyses were performed. Temporally resolved WSS and nwTKE were strongly correlated, ρ = 0.64. Cycle-averaged WSS and nwTKE were moderately correlated, ρ = 0.57. Cycle-average nwTKE was weakly correlated to OSI (ρ = -0.273), revealing that nwTKE provides information about disturbed flow on the vessel wall that OSI does not. In this cohort, there was large inter-individual variation for both WSS and nwTKE. Both WSS and nwTKE varied most within the external carotid artery. WSS, nwTKE, and OSI were weakly correlated to vessel diameter and bifurcation angle. Conclusion: The turbulent and mean component of WSS were examined together in vivo for the first time, and a strong correlation was found between them. nwTKE presents the opportunity to quantify turbulent wall stresses in vivo and gain insight into the effects of disturbed flow on the vessel wall. Neither vessel diameter nor bifurcation angle were found to be strongly correlated to the turbulent or mean component of WSS in this cohort.
Collapse
Affiliation(s)
- Magnus Ziegler
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Jesper Alfraeus
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Elin Good
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Cardiology, Linköping University, Linköping, Sweden
| | - Jan Engvall
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Ebo de Muinck
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Cardiology, Linköping University, Linköping, Sweden
| | - Petter Dyverfeldt
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
291
|
Wolf K, Reisert M, Beltrán SF, Klingler JH, Hubbe U, Krafft AJ, Egger K, Hohenhaus M. Focal cervical spinal stenosis causes mechanical strain on the entire cervical spinal cord tissue - A prospective controlled, matched-pair analysis based on phase-contrast MRI. NEUROIMAGE-CLINICAL 2021; 30:102580. [PMID: 33578322 PMCID: PMC7875814 DOI: 10.1016/j.nicl.2021.102580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Focally increased spinal cord motion at the level of cervical spinal stenosis has been revealed by phase-contrast MRI (PC-MRI). OBJECTIVE To investigate spinal cord motion among patients suffering of degenerative cervical myelopathy (DCM) across the entire cervical spine applying automated segmentation and standardized PC-MRI post-processing protocols. METHODS Prospective, matched-pair controlled trial on 29 patients with stenosis at C5/C6. MRI-protocol covering all cervical segments: 3D T2-SPACE, prospectively ECG-triggered sagittal PC-MRI. Segmentation by trained 3D hierarchical deep convolutional neural network and data processing were conducted via in-house software pipeline. Parameters per segment: maximum velocity, peak-to-peak (PTP)-amplitude, total displacement, PTP-amplitudeHB (PTP-amplitude per duration of heartbeat), and, for characterization of intraindividual alterations, the PTP-amplitude index between the cervical segments C3/C4-C7/T1 and C2/C3. RESULTS Spinal cord motion was increased at C4/C5, C5/C6 and C6/C7 among patients (all parameters, p < 0.001-0.025). The PTP-amplitude index revealed an increase from C3/C4 to C4/C5 (p = 0.002), C4/C5 to C5/C6 (p = 0.037) and a decrease from C5/C6 to C6/C7 and C6/C7 to C7/T1 (p < 0.001, each). This implied an up-building stretch on spinal cord tissue cranial and a mechanical compression caudal of the stenotic level. Furthermore, significant far range effects across the entire cervical spinal cord were observed (e.g. PTP-amplitude C2/C3 vs. C6/C7, p = 0.026) in contrast to controls (p = 1.00). CONCLUSION This study revealed the nature and extends of mechanical stress on the entire cervical spinal cord tissue due to focal stenosis. These pathophysiological alterations of spinal cord motion can be expected to be clinically relevant.
Collapse
Affiliation(s)
- Katharina Wolf
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Marco Reisert
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Saúl Felipe Beltrán
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jan-Helge Klingler
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Ulrich Hubbe
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Axel J Krafft
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Karl Egger
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Radiology, Tauernklinikum Zell am See/Mittersill, Salzburg, Austria
| | - Marc Hohenhaus
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
292
|
Rivera-Rivera LA, Cody KA, Eisenmenger L, Cary P, Rowley HA, Carlsson CM, Johnson SC, Johnson KM. Assessment of vascular stiffness in the internal carotid artery proximal to the carotid canal in Alzheimer's disease using pulse wave velocity from low rank reconstructed 4D flow MRI. J Cereb Blood Flow Metab 2021; 41:298-311. [PMID: 32169012 PMCID: PMC8370001 DOI: 10.1177/0271678x20910302] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/27/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022]
Abstract
Clinical evidence shows vascular factors may co-occur and complicate the expression of Alzheimer's disease (AD); yet, the pathologic mechanisms and involvement of different compartments of the vascular network are not well understood. Diseases such as arteriosclerosis diminish vascular compliance and will lead to arterial stiffness, a well-established risk factor for cardiovascular morbidity. Arterial stiffness can be assessed using pulse wave velocity (PWV); however, this is usually done from carotid-to-femoral artery ratios. To probe the brain vasculature, intracranial PWV measures would be ideal. In this study, high temporal resolution 4D flow MRI was used to assess transcranial PWV in 160 subjects including AD, mild cognitive impairment (MCI), healthy controls, and healthy subjects with apolipoprotein ɛ4 positivity (APOE4+) and parental history of AD dementia (FH+). High temporal resolution imaging was achieved by high temporal binning of retrospectively gated data using a local-low rank approach. Significantly higher transcranial PWV in AD dementia and MCI subjects was found when compared to old-age-matched controls (AD vs. old-age-matched controls: P <0.001, AD vs. MCI: P = 0.029, MCI vs. old-age-matched controls P = 0.013). Furthermore, vascular changes were found in clinically healthy middle-age adults with APOE4+ and FH+ indicating significantly higher transcranial PWV compared to controls (P <0.001).
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of
Medicine and Public Health, Madison, WI, USA
| | - Karly A Cody
- Alzheimer’s Disease Research Center, University of Wisconsin School
of Medicine and Public Health, Madison, WI, USA
| | - Laura Eisenmenger
- Department of Radiology, University of Wisconsin School of Medicine
and Public Health, Madison, WI, USA
| | - Paul Cary
- Alzheimer’s Disease Research Center, University of Wisconsin School
of Medicine and Public Health, Madison, WI, USA
| | - Howard A Rowley
- Alzheimer’s Disease Research Center, University of Wisconsin School
of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine
and Public Health, Madison, WI, USA
| | - Cynthia M Carlsson
- Alzheimer’s Disease Research Center, University of Wisconsin School
of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S.
Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sterling C Johnson
- Alzheimer’s Disease Research Center, University of Wisconsin School
of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S.
Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of
Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine
and Public Health, Madison, WI, USA
| |
Collapse
|
293
|
Zhang M, Peng F, Li Y, He L, Liu A, Li R. Associations between morphology and hemodynamics of intracranial aneurysms based on 4D flow and black-blood magnetic resonance imaging. Quant Imaging Med Surg 2021; 11:597-607. [PMID: 33532260 DOI: 10.21037/qims-20-440] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Previous studies have hypothesized that intracranial aneurysm (IA) morphology interacts with hemodynamic conditions. Magnetic resonance imaging (MRI) provides a single image modality solution for both morphological and hemodynamic measurements for IA. This study aimed to explore the interaction between the morphology and hemodynamics of IA using black-blood MRI (BB-MRI) and 4D flow MRI. Methods A total of 97 patients with unruptured IA were recruited for this study. The IA size, size ratio (SR), and minimum wall thickness (mWT) were measured using BB-MRI. Velocity, blood flow, pulsatility index (PI), and wall shear stress (WSS) were measured with 4D flow MRI. The relationship between hemodynamic parameters and morphological indices was investigated by linear regression analysis and unpaired two-sample t-test. To determine the independent interaction, multiple linear regression analysis was further performed. Results The findings showed that mWT was negatively correlated with IA size (r=-0.665, P<0.001). Maximum blood flow in IA (FlowIA) was positively correlated with IA size (r=0.458, P<0.001). The average WSS (WSSavg) was negatively correlated with IA size (r=-0.650, P<0.001). The relationships remained the same after the multivariate analysis was adjusted for hemodynamic, morphologic, and demographic confounding factors. The WSSavg was positively correlated with mWT (r=0.528, P<0.001). In the unpaired two-sample t-test, mWT, WSSavg, and FlowIA were statistically significantly associated with the size and SR of IAs. Conclusions There is potential for BB-MRI and 4D flow MRI to provide morphological and hemodynamic information regarding IA. Blood flow, WSS, and mWT may serve as non-invasive biomarkers for IA assessments, and may contribute to a more comprehensive understanding of the mechanism of IA.
Collapse
Affiliation(s)
- Miaoqi Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Fei Peng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yunduo Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Le He
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Aihua Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
294
|
Kroeger JR, Pavesio FC, Mörsdorf R, Weiss K, Bunck AC, Baeßler B, Maintz D, Giese D. Velocity quantification in 44 healthy volunteers using accelerated multi-VENC 4D flow CMR. Eur J Radiol 2021; 137:109570. [PMID: 33596498 DOI: 10.1016/j.ejrad.2021.109570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/25/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND To evaluate the feasibility of a k-t accelerated multi-VENC 4D phase contrast flow MRI acquisition of the main heart-surrounding vessels, its benefits over a traditional single-VENC acquisition and to present reference flow and velocity values in a large cohort of volunteers. METHODS 44 healthy volunteers were examined on a 3 T MRI scanner (Ingenia, Philips, Best, The Netherlands). 4D flow measurements were obtained with a FOV including the aorta and the pulmonary arteries. VENC values were set to 40, 100 and 200 cm/s and unfolded based on an MRI signal model. Unfolded multi-VENC data was compared to the single-VENC with VENC 200 cm/s. Flow and velocity quantification was performed in several regions of interest (ROI) placed in the ascending aorta and in the main pulmonary artery. Conservation of mass analysis was performed for single- and multi-VENC datasets. Values for mean and maximal flow velocity and stroke volume were calculated and compared to the literature. RESULTS Mean scan time was 13.8 ± 4 min. Differences between stroke volumes between the ascending aorta and the main pulmonary artery were significantly lower in multi-VENC datasets compared to single-VENC datasets (9.6 ± 7.8 mL vs. 25.4 ± 26.4 mL, p < 0.001). This was also true for differences in stroke volume between up- and downstream ROIs in the ascending aorta and pulmonary artery. Values for mean and maximal velocities and stroke volume were in-line with previous studies. To highlight potential clinical applications two exemplary 4D flow measurements in patients with different pathologies are shown and compared to single-VENC datasets. CONCLUSIONS k-t accelerated multi-VENC 4D phase contrast flow MRI acquisition of the great vessels is feasible in a clinically acceptable scan duration. It offers improvements over traditional single-VENC 4D flow, expectedly being valuable when vessels with different flow velocities or complex flow phenomena are evaluated.
Collapse
Affiliation(s)
- Jan Robert Kroeger
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Germany.
| | - Francesca Claudia Pavesio
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Richard Mörsdorf
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Kilian Weiss
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Philips GmbH, Hamburg, Germany.
| | - Alexander Christian Bunck
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Bettina Baeßler
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland.
| | - David Maintz
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Daniel Giese
- Department of Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
295
|
Intracardiac and Vascular Hemodynamics with Cardiovascular Magnetic Resonance in Heart Failure. Heart Fail Clin 2021; 17:135-147. [PMID: 33220882 DOI: 10.1016/j.hfc.2020.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In heart failure (HF), the impaired heart loses its ability to competently eject blood during systole or fill with blood during diastole, manifesting in multifaceted abnormal intracardiac or intravascular flow dynamics. Conventional imaging techniques are limited in their ability to evaluate multidirectional multidimensional flow alterations in HF. Four-dimensional (4-D) flow magnetic resonance imaging (MRI) has emerged as a promising technique to comprehensively visualize and quantify changes in 3-dimensional blood flow dynamics in complex cardiovascular diseases. This article reviews emerging applications of 4-D flow MRI hemodynamic markers in HF and etiologies at risk of progressing to HF.
Collapse
|
296
|
Li X, Qiu X, Ding H, Lv H, Zhao P, Yang Z, Gong S, Wang Z. Effects of different morphologic abnormalities on hemodynamics in patients with venous pulsatile tinnitus: A four-dimensional flow magnetic resonance imaging study. J Magn Reson Imaging 2021; 53:1744-1751. [PMID: 33491233 PMCID: PMC8248416 DOI: 10.1002/jmri.27503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
The effects of morphologic abnormalities, including sigmoid sinus wall dehiscence (SSWD), transverse sinus stenosis (TSS), and sigmoid sinus diverticulum (SSD), on hemodynamics in venous pulsatile tinnitus (PT) patients have not been established. The aim of this study was to evaluate the effects of SSWD, TSS, and SSD on the hemodynamics of transverse‐sigmoid sinus in venous PT patients. This was a prospective study with 44 venous PT patients and 12 healthy controls. A 3 T/four‐dimensional (4D) flow magnetic resonance imaging with fast field echo was used. Computed tomography arteriography/venography was used to assess ipsilateral SSWD, TSS, and SSD. Maximum velocity (Vmax), average velocity (Vavg), and average flow (Flowavg) were measured. Blood flow patterns were independently assessed by three neuroradiologists. One‐way analysis of variance or Kruskal–Wallis test was also used. On the symptomatic side, all patients had SSWD, 33 patients had TSS, and 22 patients had SSD. Compared with healthy controls, patients with TSS, without TSS, with SSD, and without SSD all showed higher Vmax (all p < 0.050), Vavg (all p < 0.050), and Flowavg (all p < 0.050). Patients with TSS showed higher Vmax (p < 0.050) and Vavg (p < 0.050) than those without TSS, and no significant difference in Flowavg was found between the two groups (p = 0.408). No significant differences in Vmax, Vavg, and Flowavg were found between patients with and without SSD (all p = 1.000). Jet‐like flow in the stenosis and downstream of the stenosis was observed in all patients with TSS. Vortex in SSD was observed in 15 patients with SSD (68%). High blood velocity and flow may be characteristic markers of venous PT. SSWD may be a necessary condition for venous PT. TSS may further increase the blood velocity and form a jet‐like flow. SSD may be related to vortex formation but had no significant effect on blood velocity and flow. Level of Evidence 2 Technical Efficacy Stage 3
Collapse
Affiliation(s)
- Xiaoshuai Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Qiu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Heyu Ding
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
297
|
Sekine T, Nakaza M, Kumita S. Careful consideration should be paid in the new imaging modality evaluation. J Thorac Dis 2021; 13:422-424. [PMID: 33569225 PMCID: PMC7867812 DOI: 10.21037/jtd-20-3229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Tetsuro Sekine
- Department of Radiology, Nippon Medical School Musashi-Kosugi Hospital, Kanagawa, Japan
| | - Masatoki Nakaza
- Department of Radiology, Nippon Medical School, Tokyo, Japan
| | | |
Collapse
|
298
|
Settecase F, Rayz VL. Advanced vascular imaging techniques. HANDBOOK OF CLINICAL NEUROLOGY 2021; 176:81-105. [DOI: 10.1016/b978-0-444-64034-5.00016-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
299
|
Aortic Vorticity, Helicity, and Aortopathy in Adult Patients with Tetralogy of Fallot: Pilot Study Using Four-Dimensional Flow Magnetic Resonance Images. Pediatr Cardiol 2021; 42:169-177. [PMID: 32978672 DOI: 10.1007/s00246-020-02466-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
To employ quantitative analysis in the vorticity and helicity of the aortic root and the ascending aorta (AAo) in adults with tetralogy of Fallot (TOF), and to evaluate aortopathy and the relevant factors. Prospectively, 51 consecutive adults with TOF underwent 4 dimensional flow magnetic resonance imaging study for the assessment of vorticity and helicity of the aortic root and AAo, wall shear stress (WSS), viscous energy loss (EL), and the left ventricular outflow tract - aortic root (LVOT-Ao) angle. Patients were divided into the two groups: dilated aortic root and/or AAo (indexed diameter > 25 mm/cm2), Group A (15 patients); non-dilated aortic patients, Group B (36 patients). Ten age-matched controls were also enrolled. Group A showed more acute LVOT-Ao angle, higher incidence of aortic regurgitation, and initial anatomy of pulmonary atresia, compared to Group B (P < 0.0001, 0.02, 0.043). Group A showed greater clockwise vorticity at the level of Valsalva, AAo, and proximal arch, sagittal vorticity, AAo helicity, WSS, and EL than in Group B (P < 0.001, < 0.001, < 0.001, 0.045, 0.049, 0.02, 0.026). More acute LVOT-Ao angle correlated with the diameter of the aortic root and AAo, AAo vorticity, helicity, WSS, and EL (P = 0.004, 0.023, 0.045, 0.004, 0.0004, 0.017). On a univariate logistic analysis, more acute LVOT-Ao angle, AAo vorticity, AAo helicity, and maximum WSS were relevant factors of AAo dilatation (P = 0.02, 0.02, 0.045, 0.03, 0.046). On a multivariate logistic analysis, more acute LVOT-Ao angle was the most important factor of AAo dilatation (odds ratio 0.66, 95% CI 0.46-0.95, P < 0.024). TOF adults presenting dilated AAo have greater vorticity, helicity, and acute LVOT-Ao angle. Flow eccentricity and these flow hemodynamic parameters may be adjunctive predictions of aortopathy in this population.
Collapse
|
300
|
Geiger J, Callaghan FM, Burkhardt BEU, Valsangiacomo Buechel ER, Kellenberger CJ. Additional value and new insights by four-dimensional flow magnetic resonance imaging in congenital heart disease: application in neonates and young children. Pediatr Radiol 2021; 51:1503-1517. [PMID: 33313980 PMCID: PMC8266722 DOI: 10.1007/s00247-020-04885-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
Cardiovascular MRI has become an essential imaging modality in children with congenital heart disease (CHD) in the last 15-20 years. With use of appropriate sequences, it provides important information on cardiovascular anatomy, blood flow and function for initial diagnosis and post-surgical or -interventional monitoring in children. Although considered as more sophisticated and challenging than CT, in particular in neonates and infants, MRI is able to provide information on intra- and extracardiac haemodynamics, in contrast to CT. In recent years, four-dimensional (4-D) flow MRI has emerged as an additional MR technique for retrospective assessment and visualisation of blood flow within the heart and any vessel of interest within the acquired three-dimensional (3-D) volume. Its application in young children requires special adaptations for the smaller vessel size and faster heart rate compared to adolescents or adults. In this article, we provide an overview of 4-D flow MRI in various types of complex CHD in neonates and infants to demonstrate its potential indications and beneficial application for optimised individual cardiovascular assessment. We focus on its application in clinical routine cardiovascular workup and, in addition, show some examples with pathologies other than CHD to highlight that 4-D flow MRI yields new insights in disease understanding and therapy planning. We shortly review the essentials of 4-D flow data acquisition, pre- and post-processing techniques in neonates, infants and young children. Finally, we conclude with some details on accuracy, limitations and pitfalls of the technique.
Collapse
Affiliation(s)
- Julia Geiger
- Department of Diagnostic Imaging, University Children's Hospital Zürich, Steinwiesstr 75, 8032, Zürich, Switzerland. .,Children's Research Centre, University Children's Hospital Zürich, Zürich, Switzerland.
| | - Fraser M. Callaghan
- Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland ,Center for MR research, University Children’s Hospital Zürich, Zürich, Switzerland
| | - Barbara E. U. Burkhardt
- Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland ,Department of Pediatric Cardiology, University Hospital Zürich, Zürich, Switzerland
| | - Emanuela R. Valsangiacomo Buechel
- Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland ,Department of Pediatric Cardiology, University Hospital Zürich, Zürich, Switzerland
| | - Christian J. Kellenberger
- Department of Diagnostic Imaging, University Children’s Hospital Zürich, Steinwiesstr 75, 8032 Zürich, Switzerland ,Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland
| |
Collapse
|