251
|
Yamashita SI, Kanki T. Detection of Iron Depletion- and Hypoxia-Induced Mitophagy in Mammalian Cells. Methods Mol Biol 2018; 1782:315-324. [PMID: 29851008 DOI: 10.1007/978-1-4939-7831-1_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mitochondrial autophagy or mitophagy is a process that selectively degrades mitochondria via autophagy. It is believed that mitophagy degrades damaged or unnecessary mitochondria and is important for maintaining mitochondrial homeostasis. To date, it is known that several stimuli can induce mitophagy. However, some of these stimuli (including iron depletion, hypoxia, and nitrogen starvation) induce mild mitophagy, which is difficult to detect by measuring the decrease in mitochondrial mass. Recently, we have successfully detected mitophagy induced under these conditions using mito-Keima as a reporter. In this chapter, we describe the protocols for induction and detection of iron depletion- and hypoxia-induced mitophagy using the mito-Keima-expressing cells.
Collapse
Affiliation(s)
- Shun-Ichi Yamashita
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
252
|
Sabouny R, Fraunberger E, Geoffrion M, Ng ACH, Baird SD, Screaton RA, Milne R, McBride HM, Shutt TE. The Keap1-Nrf2 Stress Response Pathway Promotes Mitochondrial Hyperfusion Through Degradation of the Mitochondrial Fission Protein Drp1. Antioxid Redox Signal 2017; 27:1447-1459. [PMID: 28494652 DOI: 10.1089/ars.2016.6855] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AIMS Mitochondrial function is coupled to metabolic and survival pathways through both direct signaling cascades and dynamic changes in mitochondrial morphology. For example, a hyperfused mitochondrial reticulum is activated upon cellular stress and is protective against cell death. As part of a genome-wide small inhibitory ribonucleic acid screen, we identified the central redox regulator, Keap1, as a novel regulator of mitochondrial morphology. Here, we aimed to determine the mechanism through which redox signaling and Keap1 mediate changes in mitochondrial morphology. RESULTS We found that the Nrf2 transcription factor is required for mitochondrial hyperfusion induced by knockdown of Keap1. Nrf2, which is negatively regulated by Keap1, mediates the cell's response to stress by controlling the expression of several hundred genes, including proteasome expression. We next showed that increased proteasome activity, a result of increased Nrf2 activity, is responsible for the degradation of the mitochondrial fission protein Drp1, which occurs in an ubiquitin-independent manner. INNOVATION Our study described a novel pathway by which Nrf2 activation, known to occur in response to increased oxidative stress, decreases mitochondrial fission and contributes to a hyperfused mitochondrial network. CONCLUSION This study has identified the Keap1-Nrf2 nexus and modulation of proteasomal activity as novel avenues to inhibit mitochondrial fission. These findings are important, because inhibiting mitochondrial fission is a promising therapeutic approach to restore the balance between fission and fusion, which is attractive for an increasing number of disorders linked to mitochondrial dysfunction. Antioxid. Redox Signal. 27, 1447-1459.
Collapse
Affiliation(s)
- Rasha Sabouny
- 1 Department of Biochemistry and Molecular Biology, University of Calgary , Calgary, Canada
| | - Erik Fraunberger
- 2 Department of Neuroscience, University of Calgary , Calgary, Canada
| | - Michèle Geoffrion
- 3 Department of Atherosclerosis, Genetics and Cell Biology, University of Ottawa Heart Institute , Ottawa, Canada
| | - Andy Cheuk-Him Ng
- 4 Department of Cellular and Molecular Medicine, University of Ottawa , Ottawa, Canada
| | - Stephen D Baird
- 5 Children's Hospital of Eastern Ontario Research Institute , Ottawa, Canada
| | - Robert A Screaton
- 6 Department of Biochemistry, Sunnybrook Research Institute , Toronto, Canada
| | - Ross Milne
- 7 Department of Pathology and Laboratory Medicine, University of Ottawa Heart Institute , Ottawa, Canada
| | - Heidi M McBride
- 8 Department of Neurology and Neurosurgery, Montreal Neurological Institute , Montreal, Canada
| | - Timothy E Shutt
- 1 Department of Biochemistry and Molecular Biology, University of Calgary , Calgary, Canada .,9 Department of Medical Genetics, University of Calgary , Calgary, Canada
| |
Collapse
|
253
|
Jin Q, Li R, Hu N, Xin T, Zhu P, Hu S, Ma S, Zhu H, Ren J, Zhou H. DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biol 2017; 14:576-587. [PMID: 29149759 PMCID: PMC5691221 DOI: 10.1016/j.redox.2017.11.004] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial fission and selective mitochondrial autophagy (mitophagy) form an essential axis of mitochondrial quality control that plays a critical role in the development of cardiac ischemia-reperfusion (IR) injury. However, the precise upstream molecular mechanism of fission/mitophagy remains unclear. Dual-specificity protein phosphatase1 (DUSP1) regulates cardiac metabolism, but its physiological contribution in the reperfused heart, particularly its influence on mitochondrial homeostasis, is unknown. Here, we demonstrated that cardiac DUSP1 was downregulated following acute cardiac IR injury. In vivo, compared to wild-type mice, DUSP1 transgenic mice (DUSP1TG mice) demonstrated a smaller infarcted area and the improved myocardial function. In vitro, the IR-induced DUSP1 deficiency promoted the activation of JNK which upregulated the expression of the mitochondrial fission factor (Mff). A higher expression level of Mff was associated with elevated mitochondrial fission and mitochondrial apoptosis. Additionally, the loss of DUSP1 also amplified the Bnip3 phosphorylated activation via JNK, leading to the activation of mitophagy. Increased mitophagy overtly consumed mitochondrial mass resulting into the mitochondrial metabolism disorder. However, the reintroduction of DUSP1 blunted Mff/Bnip3 activation and therefore alleviated the fatal mitochondrial fission/mitophagy by inactivating the JNK pathway, providing a survival advantage to myocardial tissue following IR stress. The results of our study suggest that DUSP1 and its downstream JNK pathway are therapeutic targets for conferring protection against IR injury by repressing Mff-mediated mitochondrial fission and Bnip3-required mitophagy.
Collapse
Affiliation(s)
- Qinhua Jin
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Ruibing Li
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China; Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Nan Hu
- Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA
| | - Ting Xin
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China; Department of Cardiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Pingjun Zhu
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Shunying Hu
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Sai Ma
- Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA
| | - Hong Zhu
- Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China; Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA.
| |
Collapse
|
254
|
Tsushima K, Bugger H, Wende AR, Soto J, Jenson GA, Tor AR, McGlauflin R, Kenny HC, Zhang Y, Souvenir R, Hu XX, Sloan CL, Pereira RO, Lira VA, Spitzer KW, Sharp TL, Shoghi KI, Sparagna GC, Rog-Zielinska EA, Kohl P, Khalimonchuk O, Schaffer JE, Abel ED. Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induce Post-Translational Modifications of AKAP121, DRP1, and OPA1 That Promote Mitochondrial Fission. Circ Res 2017; 122:58-73. [PMID: 29092894 DOI: 10.1161/circresaha.117.311307] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 12/20/2022]
Abstract
RATIONALE Cardiac lipotoxicity, characterized by increased uptake, oxidation, and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes mellitus. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood. OBJECTIVE To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts in vivo. METHODS AND RESULTS Using a transgenic mouse model of cardiac lipotoxicity overexpressing ACSL1 (long-chain acyl-CoA synthetase 1) in cardiomyocytes, we show that modestly increased myocardial fatty acid uptake leads to mitochondrial structural remodeling with significant reduction in minimum diameter. This is associated with increased palmitoyl-carnitine oxidation and increased reactive oxygen species (ROS) generation in isolated mitochondria. Mitochondrial morphological changes and elevated ROS generation are also observed in palmitate-treated neonatal rat ventricular cardiomyocytes. Palmitate exposure to neonatal rat ventricular cardiomyocytes initially activates mitochondrial respiration, coupled with increased mitochondrial polarization and ATP synthesis. However, long-term exposure to palmitate (>8 hours) enhances ROS generation, which is accompanied by loss of the mitochondrial reticulum and a pattern suggesting increased mitochondrial fission. Mechanistically, lipid-induced changes in mitochondrial redox status increased mitochondrial fission by increased ubiquitination of AKAP121 (A-kinase anchor protein 121) leading to reduced phosphorylation of DRP1 (dynamin-related protein 1) at Ser637 and altered proteolytic processing of OPA1 (optic atrophy 1). Scavenging mitochondrial ROS restored mitochondrial morphology in vivo and in vitro. CONCLUSIONS Our results reveal a molecular mechanism by which lipid overload-induced mitochondrial ROS generation causes mitochondrial dysfunction by inducing post-translational modifications of mitochondrial proteins that regulate mitochondrial dynamics. These findings provide a novel mechanism for mitochondrial dysfunction in lipotoxic cardiomyopathy.
Collapse
Affiliation(s)
- Kensuke Tsushima
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Heiko Bugger
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Adam R Wende
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Jamie Soto
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Gregory A Jenson
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Austin R Tor
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Rose McGlauflin
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Helena C Kenny
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Yuan Zhang
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Rhonda Souvenir
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Xiao X Hu
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Crystal L Sloan
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Renata O Pereira
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Vitor A Lira
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Kenneth W Spitzer
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Terry L Sharp
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Kooresh I Shoghi
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Genevieve C Sparagna
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Eva A Rog-Zielinska
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Peter Kohl
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Oleh Khalimonchuk
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - Jean E Schaffer
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.)
| | - E Dale Abel
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine (K.T., J.S., G.A.J., A.R.T., R.M., H.C.K., Y.Z., R.S., R.O.P., E.D.A.) and Department of Health and Human Physiology (V.A.L.), University of Iowa, Iowa City; Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine (K.T., H.B., A.R.W., J.S., X.X.H., C.L.S., E.D.A.), Nora Eccles Harrison Cardiovascular Research and Training Institute (K.W.S.), and Department of Biochemistry (O.K.), University of Utah School of Medicine, Salt Lake City; Cardiology and Angiology I (H.B.) and Institute for Experimental Cardiovascular Medicine (E.A.R.-Z., P.K.), Heart Center Freiburg University, and Faculty of Medicine (H.B., E.A.R.-Z., P.K.), University of Freiburg, Germany; Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.); Department of Radiology (T.L.S., K.I.S.) and Diabetic Cardiovascular Disease Center, Cardiovascular Division (J.E.S.), Washington University School of Medicine, St. Louis, MO; Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora (G.C.S.); and Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln (O.K.).
| |
Collapse
|
255
|
Napoli E, Song G, Liu S, Espejo A, Perez CJ, Benavides F, Giulivi C. Zdhhc13-dependent Drp1 S-palmitoylation impacts brain bioenergetics, anxiety, coordination and motor skills. Sci Rep 2017; 7:12796. [PMID: 29038583 PMCID: PMC5643561 DOI: 10.1038/s41598-017-12889-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/14/2017] [Indexed: 01/14/2023] Open
Abstract
Protein S-palmitoylation is a reversible post-translational modification mediated by palmitoyl acyltransferase enzymes, a group of Zn2+-finger DHHC-domain-containing proteins (ZDHHC). Here, for the first time, we show that Zdhhc13 plays a key role in anxiety-related behaviors and motor function, as well as brain bioenergetics, in a mouse model (luc) carrying a spontaneous Zdhhc13 recessive mutation. At 3 m of age, mutant mice displayed increased sensorimotor gating, anxiety, hypoactivity, and decreased motor coordination, compared to littermate controls. Loss of Zdhhc13 in cortex and cerebellum from 3- and 24 m old hetero- and homozygous male mutant mice resulted in lower levels of Drp1 S-palmitoylation accompanied by altered mitochondrial dynamics, increased glycolysis, glutaminolysis and lactic acidosis, and neurotransmitter imbalances. Employing in vivo and in vitro models, we identified that Zdhhc13-dependent Drp1 S-palmitoylation, which acting alone or in concert, enables the normal occurrence of the fission-fusion process. In vitro and in vivo direct Zdhhc13-Drp1 protein interaction was observed, confirming Drp1 as a substrate of Zdhhc13. Abnormal fission-fusion processes result in disrupted mitochondria morphology and distribution affecting not only mitochondrial ATP output but neurotransmission and integrity of synaptic structures in the brain, setting the basis for the behavioral abnormalities described in the Zdhhc13-deficient mice.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Gyu Song
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Siming Liu
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Alexsandra Espejo
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - Carlos J Perez
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA. .,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Davis, CA, 95817, USA.
| |
Collapse
|
256
|
Zhao C, Chen Z, Qi J, Duan S, Huang Z, Zhang C, Wu L, Zeng M, Zhang B, Wang N, Mao H, Zhang A, Xing C, Yuan Y. Drp1-dependent mitophagy protects against cisplatin-induced apoptosis of renal tubular epithelial cells by improving mitochondrial function. Oncotarget 2017; 8:20988-21000. [PMID: 28423497 PMCID: PMC5400560 DOI: 10.18632/oncotarget.15470] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
Cisplatin chemotherapy often causes acute kidney injury (AKI) in cancer patients. There is increasing evidence that mitochondrial dysfunction plays an important role in cisplatin-induced nephrotoxicity. Degradation of damaged mitochondria is carried out by mitophagy. Although mitophagy is considered of particular importance in protecting against AKI, little is known of the precise role of mitophagy and its molecular mechanisms during cisplatin-induced nephrotoxicity. Also, evidence that activation of mitophagy improved mitochondrial function is lacking. Furthermore, several evidences have shown that mitochondrial fission coordinates with mitophagy. The aim of this study was to investigate whether activation of mitophagy protects against mitochondrial dysfunction and renal proximal tubular cells injury during cisplatin treatment. The effect of mitochondrial fission on mitophagy was also investigated. In cultured human renal proximal tubular cells, we observed that 3-methyladenine, a pharmacological inhibitor of autophagy, blocked mitophagy and exacerbated cisplatin-induced mitochondrial dysfunction and cells injury. In contrast, autophagy activator rapamycin enhanced mitophagy and protected against the harmful effects of cisplatin on mitochondrial function and cells viability. Suppression of mitochondrial fission by knockdown of its main regulator dynamin-related protein-1 (Drp1) decreased cisplatin-induced mitophagy. Meanwhile, Drp1 suppression protected against cisplatin-induced cells injury by inhibiting mitochondrial dysfunction. Our results provide evidence that Drp1-depedent mitophagy has potential as renoprotective targets for the treatment of cisplatin-induced AKI.
Collapse
Affiliation(s)
- Chuanyan Zhao
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zhuyun Chen
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jia Qi
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Suyan Duan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zhimin Huang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Chengning Zhang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Lin Wu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ming Zeng
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Bo Zhang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ningning Wang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Huijuan Mao
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China.,Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yanggang Yuan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
257
|
Wang W, Fernandez-Sanz C, Sheu SS. Regulation of mitochondrial bioenergetics by the non-canonical roles of mitochondrial dynamics proteins in the heart. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1991-2001. [PMID: 28918113 DOI: 10.1016/j.bbadis.2017.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023]
Abstract
Recent advancement in mitochondrial research has significantly extended our knowledge on the role and regulation of mitochondria in health and disease. One important breakthrough is the delineation of how mitochondrial morphological changes, termed mitochondrial dynamics, are coupled to the bioenergetics and signaling functions of mitochondria. In general, it is believed that fusion leads to an increased mitochondrial respiration efficiency and resistance to stress-induced dysfunction while fission does the contrary. This concept seems not applicable to adult cardiomyocytes. The mitochondria in adult cardiomyocytes exhibit fragmented morphology (tilted towards fission) and show less networking and movement as compared to other cell types. However, being the most energy-demanding cells, cardiomyocytes in the adult heart possess vast number of mitochondria, high level of energy flow, and abundant mitochondrial dynamics proteins. This apparent discrepancy could be explained by recently identified new functions of the mitochondrial dynamics proteins. These "non-canonical" roles of mitochondrial dynamics proteins range from controlling inter-organelle communication to regulating cell viability and survival under metabolic stresses. Here, we summarize the newly identified non-canonical roles of mitochondrial dynamics proteins. We focus on how these fission and fusion independent roles of dynamics proteins regulate mitochondrial bioenergetics. We also discuss potential molecular mechanisms, unique intracellular location, and the cardiovascular disease relevance of these non-canonical roles of the dynamics proteins. We propose that future studies are warranted to differentiate the canonical and non-canonical roles of dynamics proteins and to identify new approaches for the treatment of heart diseases. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.
Collapse
Affiliation(s)
- Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA.
| | - Celia Fernandez-Sanz
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
258
|
Nah J, Miyamoto S, Sadoshima J. Mitophagy as a Protective Mechanism against Myocardial Stress. Compr Physiol 2017; 7:1407-1424. [PMID: 28915329 DOI: 10.1002/cphy.c170005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondria are dynamic organelles that can undergo fusion, fission, biogenesis, and autophagic elimination to maintain mitochondrial quality control. Since the heart is in constant need of high amounts of energy, mitochondria, as a central energy supply source, play a crucial role in maintaining optimal cardiac performance. Therefore, it is reasonable to assume that mitochondrial dysfunction is associated with the pathophysiology of heart diseases. In non-dividing, post-mitotic cells such as cardiomyocytes, elimination of dysfunctional organelles is essential to maintaining cellular function because non-dividing cells cannot dilute dysfunctional organelles through cell division. In this review, we discuss the recent findings regarding the physiological role of mitophagy in the heart and cardiomyocytes. Moreover, we discuss the functional role of mitophagy in the progression of cardiovascular diseases, including myocardial ischemic injury, diabetic cardiomyopathy, cardiac hypertrophy, and heart failure. © 2017 American Physiological Society. Compr Physiol 7:1407-1424, 2017.
Collapse
Affiliation(s)
- Jihoon Nah
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Shigeki Miyamoto
- University of California San Diego, Department of Pharmacology, La Jolla, California, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
259
|
Kameoka S, Adachi Y, Okamoto K, Iijima M, Sesaki H. Phosphatidic Acid and Cardiolipin Coordinate Mitochondrial Dynamics. Trends Cell Biol 2017; 28:67-76. [PMID: 28911913 DOI: 10.1016/j.tcb.2017.08.011] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/28/2017] [Accepted: 08/24/2017] [Indexed: 11/16/2022]
Abstract
Membrane organelles comprise both proteins and lipids. Remodeling of these membrane structures is controlled by interactions between specific proteins and lipids. Mitochondrial structure and function depend on regulated fusion and the division of both the outer and inner membranes. Here we discuss recent advances in the regulation of mitochondrial dynamics by two critical phospholipids, phosphatidic acid (PA) and cardiolipin (CL). These two lipids interact with the core components of mitochondrial fusion and division (Opa1, mitofusin, and Drp1) to activate and inhibit these dynamin-related GTPases. Moreover, lipid-modifying enzymes such as phospholipases and lipid phosphatases may organize local lipid composition to spatially and temporarily coordinate a balance between fusion and division to establish mitochondrial morphology.
Collapse
Affiliation(s)
- Shoichiro Kameoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yoshihiro Adachi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koji Okamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
260
|
Burman JL, Pickles S, Wang C, Sekine S, Vargas JNS, Zhang Z, Youle AM, Nezich CL, Wu X, Hammer JA, Youle RJ. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J Cell Biol 2017; 216:3231-3247. [PMID: 28893839 PMCID: PMC5626535 DOI: 10.1083/jcb.201612106] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/07/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022] Open
Abstract
Within the mitochondrial matrix, protein aggregation activates the mitochondrial unfolded protein response and PINK1-Parkin-mediated mitophagy to mitigate proteotoxicity. We explore how autophagy eliminates protein aggregates from within mitochondria and the role of mitochondrial fission in mitophagy. We show that PINK1 recruits Parkin onto mitochondrial subdomains after actinonin-induced mitochondrial proteotoxicity and that PINK1 recruits Parkin proximal to focal misfolded aggregates of the mitochondrial-localized mutant ornithine transcarbamylase (ΔOTC). Parkin colocalizes on polarized mitochondria harboring misfolded proteins in foci with ubiquitin, optineurin, and LC3. Although inhibiting Drp1-mediated mitochondrial fission suppresses the segregation of mitochondrial subdomains containing ΔOTC, it does not decrease the rate of ΔOTC clearance. Instead, loss of Drp1 enhances the recruitment of Parkin to fused mitochondrial networks and the rate of mitophagy as well as decreases the selectivity for ΔOTC during mitophagy. These results are consistent with a new model that, instead of promoting mitophagy, fission protects healthy mitochondrial domains from elimination by unchecked PINK1-Parkin activity.
Collapse
Affiliation(s)
- Jonathon L Burman
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Sarah Pickles
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Chunxin Wang
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Shiori Sekine
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Jose Norberto S Vargas
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Zhe Zhang
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Alice M Youle
- Molecular Cell Biology Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Catherine L Nezich
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Xufeng Wu
- Molecular Cell Biology Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - John A Hammer
- Molecular Cell Biology Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
261
|
Adachi Y, Itoh K, Yamada T, Cerveny KL, Suzuki TL, Macdonald P, Frohman MA, Ramachandran R, Iijima M, Sesaki H. Coincident Phosphatidic Acid Interaction Restrains Drp1 in Mitochondrial Division. Mol Cell 2017; 63:1034-43. [PMID: 27635761 DOI: 10.1016/j.molcel.2016.08.013] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/20/2016] [Accepted: 08/09/2016] [Indexed: 12/31/2022]
Abstract
Mitochondria divide to control their size, distribution, turnover, and function. Dynamin-related protein 1 (Drp1) is a critical mechanochemical GTPase that drives constriction during mitochondrial division. It is generally believed that mitochondrial division is regulated during recruitment of Drp1 to mitochondria and its oligomerization into a division apparatus. Here, we report an unforeseen mechanism that regulates mitochondrial division by coincident interactions of Drp1 with the head group and acyl chains of phospholipids. Drp1 recognizes the head group of phosphatidic acid (PA) and two saturated acyl chains of another phospholipid by penetrating into the hydrophobic core of the membrane. The dual phospholipid interactions restrain Drp1 via inhibition of oligomerization-stimulated GTP hydrolysis that promotes membrane constriction. Moreover, a PA-producing phospholipase, MitoPLD, binds Drp1, creating a PA-rich microenvironment in the vicinity of a division apparatus. Thus, PA controls the activation of Drp1 after the formation of the division apparatus.
Collapse
Affiliation(s)
- Yoshihiro Adachi
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kie Itoh
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tatsuya Yamada
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kara L Cerveny
- Department of Biology, Reed College, Portland, OR 97202, USA
| | - Takamichi L Suzuki
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Patrick Macdonald
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michael A Frohman
- Department of Pharmacological Sciences and Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rajesh Ramachandran
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Miho Iijima
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Hiromi Sesaki
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
262
|
Yuan Y, Zheng Y, Zhang X, Chen Y, Wu X, Wu J, Shen Z, Jiang L, Wang L, Yang W, Luo J, Qin Z, Hu W, Chen Z. BNIP3L/NIX-mediated mitophagy protects against ischemic brain injury independent of PARK2. Autophagy 2017; 13:1754-1766. [PMID: 28820284 DOI: 10.1080/15548627.2017.1357792] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Cerebral ischemia induces massive mitochondrial damage. These damaged mitochondria are cleared, thus attenuating brain injury, by mitophagy. Here, we identified the involvement of BNIP3L/NIX in cerebral ischemia-reperfusion (I-R)-induced mitophagy. Bnip3l knockout (bnip3l-/-) impaired mitophagy and aggravated cerebral I-R injury in mice, which can be rescued by BNIP3L overexpression. The rescuing effects of BNIP3L overexpression can be observed in park2-/- mice, which showed mitophagy deficiency after I-R. Interestingly, bnip3l and park2 double-knockout mice showed a synergistic mitophagy deficiency with I-R treatment, which further highlighted the roles of BNIP3L-mediated mitophagy as being independent from PARK2. Further experiments indicated that phosphorylation of BNIP3L serine 81 is critical for BNIP3L-mediated mitophagy. Nonphosphorylatable mutant BNIP3LS81A failed to counteract both mitophagy impairment and neuroprotective effects in bnip3l-/- mice. Our findings offer insights into mitochondrial quality control in ischemic stroke and bring forth the concept that BNIP3L could be a potential therapeutic target for ischemic stroke, beyond its accepted role in reticulocyte maturation.
Collapse
Affiliation(s)
- Yang Yuan
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China
| | - Yanrong Zheng
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China
| | - Xiangnan Zhang
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China.,b Collaborative Innovation Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Ying Chen
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China
| | - Xiaoli Wu
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China
| | - Jiaying Wu
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China
| | - Zhe Shen
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China
| | - Lei Jiang
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China
| | - Lu Wang
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China
| | - Wei Yang
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China
| | - Jianhong Luo
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China
| | - Zhenghong Qin
- c Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases , Soochow University School of Pharmaceutical Science , Suzhou , China
| | - Weiwei Hu
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China.,b Collaborative Innovation Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Zhong Chen
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China , Zhejiang University , Hangzhou , China.,b Collaborative Innovation Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| |
Collapse
|
263
|
SCHWALM CÉLINE, DELDICQUE LOUISE, FRANCAUX MARC. Lack of Activation of Mitophagy during Endurance Exercise in Human. Med Sci Sports Exerc 2017; 49:1552-1561. [DOI: 10.1249/mss.0000000000001256] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
264
|
Correia M, Pinheiro P, Batista R, Soares P, Sobrinho-Simões M, Máximo V. Etiopathogenesis of oncocytomas. Semin Cancer Biol 2017; 47:82-94. [PMID: 28687249 DOI: 10.1016/j.semcancer.2017.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 01/01/2023]
Abstract
Oncocytomas are distinct tumors characterized by an abnormal accumulation of defective and (most probably) dysfunctional mitochondria in cell cytoplasm of such tumors. This particular phenotype has been studied for the last decades and the clarification of the etiopathogenic causes are still needed. Several mechanisms involved in the formation and maintenance of oncocytomas are accepted as reasonable causes, but the relevance and contribution of each one for oncocytic transformation may depend on different cancer etiopathogenic contexts. In this review, we describe the current knowledge of the etiopathogenic events that may lead to oncocytic transformation and discuss their contribution for tumor progression and mitochondrial accumulation.
Collapse
Affiliation(s)
- Marcelo Correia
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Pedro Pinheiro
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Rui Batista
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal
| | - Paula Soares
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal; Department of Pathology, Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal
| | - Manuel Sobrinho-Simões
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal; Department of Pathology, Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal; Department of Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Valdemar Máximo
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal; Department of Pathology, Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal.
| |
Collapse
|
265
|
Nan J, Zhu W, Rahman M, Liu M, Li D, Su S, Zhang N, Hu X, Yu H, Gupta MP, Wang J. Molecular regulation of mitochondrial dynamics in cardiac disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1260-1273. [DOI: 10.1016/j.bbamcr.2017.03.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/25/2017] [Accepted: 03/14/2017] [Indexed: 12/31/2022]
|
266
|
Adachi Y, Iijima M, Sesaki H. An unstructured loop that is critical for interactions of the stalk domain of Drp1 with saturated phosphatidic acid. Small GTPases 2017; 9:472-479. [PMID: 28644713 PMCID: PMC6204998 DOI: 10.1080/21541248.2017.1321614] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Dynamin-related protein 1 (Drp1) is a dynamin superfamily GTPase, which drives membrane constriction during mitochondrial division. To mediate mitochondrial division, Drp1 is recruited to the mitochondrial outer membrane and is assembled into the division machinery. We previously showed that Drp1 interacts with phosphatidic acid (PA) and saturated phospholipids in the mitochondrial membrane, and this interaction restrains Drp1 in initiating the constriction of mitochondria. Here, we show that the role of saturated acyl chains of phospholipids is independent of their contribution to the membrane curvature or lipid packing suggesting their direct interaction with Drp1. We further show that an unstructured loop in the stalk domain of Drp1 is critical for interaction with unsaturated PA. Our data significantly advance our understanding of this unique protein-lipid interaction involved in mitochondrial division.
Collapse
Affiliation(s)
- Yoshihiro Adachi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,CONTACT Hiromi Sesaki 725 N. Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
267
|
Anding AL, Baehrecke EH. Cleaning House: Selective Autophagy of Organelles. Dev Cell 2017; 41:10-22. [PMID: 28399394 DOI: 10.1016/j.devcel.2017.02.016] [Citation(s) in RCA: 425] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/12/2016] [Accepted: 02/16/2017] [Indexed: 10/19/2022]
Abstract
The selective clearance of organelles by autophagy is critical for the regulation of cellular homeostasis in organisms from yeast to humans. Removal of damaged organelles clears the cell of potentially toxic byproducts and enables reuse of organelle components for bioenergetics. Thus, defects in organelle clearance may be detrimental to the health of the cells, contributing to cancer, neurodegeneration, and inflammatory diseases. Organelle-specific autophagy can clear mitochondria, peroxisomes, lysosomes, ER, chloroplasts, and the nucleus. Here, we review our understanding of the mechanisms that regulate the clearance of organelles by autophagy and highlight gaps in our knowledge of these processes.
Collapse
Affiliation(s)
- Allyson L Anding
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
268
|
Whitworth AJ, Pallanck LJ. PINK1/Parkin mitophagy and neurodegeneration—what do we really know in vivo ? Curr Opin Genet Dev 2017; 44:47-53. [DOI: 10.1016/j.gde.2017.01.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/16/2017] [Accepted: 01/26/2017] [Indexed: 01/01/2023]
|
269
|
The pharmacological regulation of cellular mitophagy. Nat Chem Biol 2017; 13:136-146. [PMID: 28103219 DOI: 10.1038/nchembio.2287] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/06/2016] [Indexed: 12/16/2022]
Abstract
Small molecules are pharmacological tools of considerable value for dissecting complex biological processes and identifying potential therapeutic interventions. Recently, the cellular quality-control process of mitophagy has attracted considerable research interest; however, the limited availability of suitable chemical probes has restricted our understanding of the molecular mechanisms involved. Current approaches to initiate mitophagy include acute dissipation of the mitochondrial membrane potential (ΔΨm) by mitochondrial uncouplers (for example, FCCP/CCCP) and the use of antimycin A and oligomycin to impair respiration. Both approaches impair mitochondrial homeostasis and therefore limit the scope for dissection of subtle, bioenergy-related regulatory phenomena. Recently, novel mitophagy activators acting independently of the respiration collapse have been reported, offering new opportunities to understand the process and potential for therapeutic exploitation. We have summarized the current status of mitophagy modulators and analyzed the available chemical tools, commenting on their advantages, limitations and current applications.
Collapse
|
270
|
Bordt EA, Clerc P, Roelofs BA, Saladino AJ, Tretter L, Adam-Vizi V, Cherok E, Khalil A, Yadava N, Ge SX, Francis TC, Kennedy NW, Picton LK, Kumar T, Uppuluri S, Miller AM, Itoh K, Karbowski M, Sesaki H, Hill RB, Polster BM. The Putative Drp1 Inhibitor mdivi-1 Is a Reversible Mitochondrial Complex I Inhibitor that Modulates Reactive Oxygen Species. Dev Cell 2017; 40:583-594.e6. [PMID: 28350990 PMCID: PMC5398851 DOI: 10.1016/j.devcel.2017.02.020] [Citation(s) in RCA: 384] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 01/19/2017] [Accepted: 02/24/2017] [Indexed: 11/15/2022]
Abstract
Mitochondrial fission mediated by the GTPase dynamin-related protein 1 (Drp1) is an attractive drug target in numerous maladies that range from heart disease to neurodegenerative disorders. The compound mdivi-1 is widely reported to inhibit Drp1-dependent fission, elongate mitochondria, and mitigate brain injury. Here, we show that mdivi-1 reversibly inhibits mitochondrial complex I-dependent O2 consumption and reverse electron transfer-mediated reactive oxygen species (ROS) production at concentrations (e.g., 50 μM) used to target mitochondrial fission. Respiratory inhibition is rescued by bypassing complex I using yeast NADH dehydrogenase Ndi1. Unexpectedly, respiratory impairment by mdivi-1 occurs without mitochondrial elongation, is not mimicked by Drp1 deletion, and is observed in Drp1-deficient fibroblasts. In addition, mdivi-1 poorly inhibits recombinant Drp1 GTPase activity (Ki > 1.2 mM). Overall, these results suggest that mdivi-1 is not a specific Drp1 inhibitor. The ability of mdivi-1 to reversibly inhibit complex I and modify mitochondrial ROS production may contribute to effects observed in disease models.
Collapse
Affiliation(s)
- Evan A Bordt
- Department of Anesthesiology, The Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Pascaline Clerc
- Department of Anesthesiology, The Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brian A Roelofs
- Department of Anesthesiology, The Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Andrew J Saladino
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Pathology and Laboratory Medicine Service, Department of Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - László Tretter
- MTA-SE Laboratory for Neurobiochemistry, Department of Medical Biochemistry, Semmelweis University, Budapest 1094, Hungary
| | - Vera Adam-Vizi
- MTA-SE Laboratory for Neurobiochemistry, Department of Medical Biochemistry, Semmelweis University, Budapest 1094, Hungary
| | - Edward Cherok
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ahmed Khalil
- Pioneer Valley Life Sciences Institute, Springfield, MA 01109, USA; Baystate Medical Center, Springfield, MA 01109, USA
| | - Nagendra Yadava
- Pioneer Valley Life Sciences Institute, Springfield, MA 01109, USA; Baystate Medical Center, Springfield, MA 01109, USA; Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Shealinna X Ge
- Department of Anesthesiology, The Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - T Chase Francis
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nolan W Kennedy
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lora K Picton
- Department of Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tanya Kumar
- Department of Anesthesiology, The Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sruti Uppuluri
- Department of Anesthesiology, The Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alexandrea M Miller
- Department of Anesthesiology, The Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kie Itoh
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mariusz Karbowski
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian M Polster
- Department of Anesthesiology, The Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
271
|
Bravo-Sagua R, Parra V, López-Crisosto C, Díaz P, Quest AFG, Lavandero S. Calcium Transport and Signaling in Mitochondria. Compr Physiol 2017; 7:623-634. [PMID: 28333383 DOI: 10.1002/cphy.c160013] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Calcium (Ca2+) is a key player in the regulation of many cell functions. Just like Ca2+, mitochondria are ubiquitous, versatile, and dynamic players in determining both cell survival and death decisions. Given their ubiquitous nature, the regulation of both is deeply intertwined, whereby Ca2+ regulates mitochondrial functions, while mitochondria shape Ca2+ dynamics. Deregulation of either Ca2+ or mitochondrial signaling leads to abnormal function, cell damage or even cell death, thereby contributing to muscle dysfunction or cardiac pathologies. Moreover, altered mitochondrial Ca2+ homeostasis has been linked to metabolic diseases like cancer, obesity, and pulmonary hypertension. In this review article, we summarize the mechanisms that coordinate mitochondrial and Ca2+ responses and how they affect human health. © 2017 American Physiological Society. Compr Physiol 7:623-634, 2017.
Collapse
Affiliation(s)
- Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
| | - Camila López-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paula Díaz
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Molecular Studies of the Cell (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Molecular Studies of the Cell (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile.,Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
272
|
Santoro A, Campolo M, Liu C, Sesaki H, Meli R, Liu ZW, Kim JD, Diano S. DRP1 Suppresses Leptin and Glucose Sensing of POMC Neurons. Cell Metab 2017; 25:647-660. [PMID: 28190775 PMCID: PMC5366041 DOI: 10.1016/j.cmet.2017.01.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/30/2016] [Accepted: 01/10/2017] [Indexed: 11/24/2022]
Abstract
Hypothalamic pro-opiomelanocortin (POMC) neurons regulate energy and glucose metabolism. Intracellular mechanisms that enable these neurons to respond to changes in metabolic environment are ill defined. Here we show reduced expression of activated dynamin-related protein (pDRP1), a mitochondrial fission regulator, in POMC neurons of fed mice. These POMC neurons displayed increased mitochondrial size and aspect ratio compared to POMC neurons of fasted animals. Inducible deletion of DRP1 of mature POMC neurons (Drp1fl/fl-POMC-cre:ERT2) resulted in improved leptin sensitivity and glucose responsiveness. In Drp1fl/fl-POMC-cre:ERT2 mice, POMC neurons showed increased mitochondrial size, ROS production, and neuronal activation with increased expression of Kcnj11 mRNA regulated by peroxisome proliferator-activated receptor (PPAR). Furthermore, deletion of DRP1 enhanced the glucoprivic stimulus in these neurons, causing their stronger inhibition and a greater activation of counter-regulatory responses to hypoglycemia that were PPAR dependent. Together, these data unmasked a role for mitochondrial fission in leptin sensitivity and glucose sensing of POMC neurons.
Collapse
Affiliation(s)
- Anna Santoro
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Michela Campolo
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chen Liu
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rosaria Meli
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pharmacy, University of Naples "Federico II," 80131 Napoli, Italy
| | - Zhong-Wu Liu
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jung Dae Kim
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sabrina Diano
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
273
|
Yang X, Wang H, Ni HM, Xiong A, Wang Z, Sesaki H, Ding WX, Yang L. Inhibition of Drp1 protects against senecionine-induced mitochondria-mediated apoptosis in primary hepatocytes and in mice. Redox Biol 2017; 12:264-273. [PMID: 28282614 PMCID: PMC5344326 DOI: 10.1016/j.redox.2017.02.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/12/2017] [Accepted: 02/24/2017] [Indexed: 02/01/2023] Open
Abstract
Pyrrolizidine alkaloids (PAs) are a group of compounds found in various plants and some of them are widely consumed in the world as herbal medicines and food supplements. PAs are potent hepatotoxins that cause irreversible liver injury in animals and humans. However, the mechanisms by which PAs induce liver injury are not clear. In the present study, we determined the hepatotoxicity and molecular mechanisms of senecionine, one of the most common toxic PAs, in primary cultured mouse and human hepatocytes as well as in mice. We found that senecionine administration increased serum alanine aminotransferase levels in mice. H&E and TUNEL staining of liver tissues revealed increased hemorrhage and hepatocyte apoptosis in liver zone 2 areas. Mechanistically, senecionine induced loss of mitochondrial membrane potential, release of mitochondrial cytochrome c as well as mitochondrial JNK translocation and activation prior to the increased DNA fragmentation and caspase-3 activation in primary cultured mouse and human hepatocytes. SP600125, a specific JNK inhibitor, and ZVAD-fmk, a general caspase inhibitor, alleviated senecionine-induced apoptosis in primary hepatocytes. Interestingly, senecionine also caused marked mitochondria fragmentation in hepatocytes. Pharmacological inhibition of dynamin-related protein1 (Drp1), a protein that is critical to regulate mitochondrial fission, blocked senecionine-induced mitochondrial fragmentation and mitochondrial release of cytochrome c and apoptosis. More importantly, hepatocyte-specific Drp1 knockout mice were resistant to senecionine-induced liver injury due to decreased mitochondrial damage and apoptosis. In conclusion, our results uncovered a novel mechanism of Drp1-mediated mitochondrial fragmentation in senecionine-induced liver injury. Targeting Drp1-mediated mitochondrial fragmentation and apoptosis may be a potential avenue to prevent and treat hepatotoxicity induced by PAs. Senecionine induces apoptosis in primary mouse and human hepatocytes as well as in mouse livers. Senecionine induces mitochondrial Drp1 translocation, mitochondrial fragmentation, loss of mitochondrial membrane potential and release of mitochondrial cytochrome c in hepatocytes. Pharmacological inhibition or genetic deletion of Drp1 protects against senecionine-induced hepatotoxicity. Targeting Drp1-mediated mitochondrial fragmentation and apoptosis may be a potential avenue to prevent and treat hepatotoxicity induced by Pyrrolizidine alkaloids.
Collapse
Affiliation(s)
- Xiao Yang
- The Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 2001203, China; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Hua Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Aizhen Xiong
- The Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 2001203, China
| | - Zhengtao Wang
- The Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 2001203, China
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | - Li Yang
- The Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 2001203, China; Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
274
|
Lahiri V, Klionsky DJ. PHB2/prohibitin 2: An inner membrane mitophagy receptor. Cell Res 2017; 27:311-312. [PMID: 28220775 DOI: 10.1038/cr.2017.23] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mitophagy, the selective autophagic elimination of mitochondria, is a conserved cellular process critical for maintaining normal cellular physiology, and defects in this process are associated with certain pathophysiologies. In a recently published paper, Wei et al. describe their discovery of a hitherto unexplored mechanism of marking mitochondria for degradation.
Collapse
Affiliation(s)
- Vikramjit Lahiri
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
275
|
Zhang S, Lin X, Li G, Shen X, Niu D, Lu G, Fu X, Chen Y, Cui M, Bai Y. Knockout of Eva1a leads to rapid development of heart failure by impairing autophagy. Cell Death Dis 2017; 8:e2586. [PMID: 28151473 PMCID: PMC5386466 DOI: 10.1038/cddis.2017.17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
EVA1A (Eva-1 homologue A) is a novel lysosome and endoplasmic reticulum-associated protein that can regulate cell autophagy and apoptosis. Eva1a is expressed in the myocardium, but its function in myocytes has not yet been investigated. Therefore, we generated inducible, cardiomyocyte-specific Eva1a knockout mice with an aim to determine the role of Eva1a in cardiac remodelling in the adult heart. Data from experiments showed that loss of Eva1a in the adult heart increased cardiac fibrosis, promoted cardiac hypertrophy, and led to cardiomyopathy and death. Further investigation suggested that this effect was associated with impaired autophagy and increased apoptosis in Eva1a knockout hearts. Moreover, knockout of Eva1a activated Mtor signalling and the subsequent inhibition of autophagy. In addition, Eva1a knockout hearts showed disorganized sarcomere structure and mitochondrial misalignment and aggregation, leading to the lack of ATP generation. Collectively, these data demonstrated that Eva1a improves cardiac function and inhibits cardiac hypertrophy and fibrosis by increasing autophagy. In conclusion, our results demonstrated that Eva1a may have an important role in maintaining cardiac homeostasis.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China
| | - Xin Lin
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Peking University Center for Human Disease Genomics, Beijing 100191, China
| | - Ge Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Peking University Center for Human Disease Genomics, Beijing 100191, China
| | - Xue Shen
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Di Niu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guang Lu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Xin Fu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China
| | - Yingyu Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Peking University Center for Human Disease Genomics, Beijing 100191, China
| | - Ming Cui
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China
| | - Yun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
276
|
Zhang H, Wang P, Bisetto S, Yoon Y, Chen Q, Sheu SS, Wang W. A novel fission-independent role of dynamin-related protein 1 in cardiac mitochondrial respiration. Cardiovasc Res 2017; 113:160-170. [PMID: 27794519 PMCID: PMC5340145 DOI: 10.1093/cvr/cvw212] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/07/2016] [Accepted: 09/21/2016] [Indexed: 01/14/2023] Open
Abstract
AIMS Mitochondria in adult cardiomyocytes exhibit static morphology and infrequent dynamic changes, despite the high abundance of fission and fusion regulatory proteins in the heart. Previous reports have indicated that fusion proteins may bear functions beyond morphology regulation. Here, we investigated the role of fission protein, dynamin-related protein 1 (DRP1), on mitochondrial respiration regulation in adult cardiomyocytes. METHODS AND RESULTS By using genetic or pharmacological approaches, we manipulated the activity or protein level of fission and fusion proteins and found they mildly influenced mitochondrial morphology in adult rodent cardiomyocytes, which is in contrast to their significant effect in H9C2 cardiac myoblasts. Intriguingly, inhibiting endogenous DRP1 by dominant-negative DRP1 mutation (K38A), shRNA, or Mdivi-1 suppressed maximal respiration and respiratory control ratio in isolated mitochondria from adult mouse heart or in adult cardiomyocytes from rat. Meanwhile, basal respiration was increased due to increased proton leak. Facilitating mitofusin-mediated fusion by S3 compound, however, failed to inhibit mitochondrial respiration in adult cardiomyocytes. Mechanistically, DRP1 inhibition did not affect the maximal activity of individual respiratory chain complexes or the assembly of supercomplexes. Knocking out cyclophilin D, a regulator of mitochondrial permeability transition pore (mPTP), abolished the effect of DRP1 inhibition on respiration. Finally, DRP1 inhibition decreased transient mPTP-mediated mitochondrial flashes, delayed laser-induced mPTP opening and suppressed mitochondrial reactive oxygen species (ROS). CONCLUSION These results uncover a novel non-canonical function of the fission protein, DRP1 in maintaining or positively stimulating mitochondrial respiration, bioenergetics and ROS signalling in adult cardiomyocyte, which is likely independent of morphological changes.
Collapse
Affiliation(s)
- Huiliang Zhang
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, 850 Republican Street N121, Seattle, WA 98109, USA
| | - Pei Wang
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, 850 Republican Street N121, Seattle, WA 98109, USA
| | - Sara Bisetto
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Room 543D, Philadelphia, PA 19107, USA
| | - Yisang Yoon
- Department of Physiology, Georgia Regents University, 1120 Fifteenth Street, Augusta, GA 30912, USA
| | - Quan Chen
- Laboratory of Apoptosis and Mitochondrial Biology, The State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Shey-Shing Sheu
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Room 543D, Philadelphia, PA 19107, USA
| | - Wang Wang
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, 850 Republican Street N121, Seattle, WA 98109, USA
| |
Collapse
|
277
|
Parra V, Rothermel BA. Calcineurin signaling in the heart: The importance of time and place. J Mol Cell Cardiol 2017; 103:121-136. [PMID: 28007541 PMCID: PMC5778886 DOI: 10.1016/j.yjmcc.2016.12.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022]
Abstract
The calcium-activated protein phosphatase, calcineurin, lies at the intersection of protein phosphorylation and calcium signaling cascades, where it provides an essential nodal point for coordination between these two fundamental modes of intracellular communication. In excitatory cells, such as neurons and cardiomyocytes, that experience rapid and frequent changes in cytoplasmic calcium, calcineurin protein levels are exceptionally high, suggesting that these cells require high levels of calcineurin activity. Yet, it is widely recognized that excessive activation of calcineurin in the heart contributes to pathological hypertrophic remodeling and the progression to failure. How does a calcium activated enzyme function in the calcium-rich environment of the continuously contracting heart without pathological consequences? This review will discuss the wide range of calcineurin substrates relevant to cardiovascular health and the mechanisms calcineurin uses to find and act on appropriate substrates in the appropriate location while potentially avoiding others. Fundamental differences in calcineurin signaling in neonatal verses adult cardiomyocytes will be addressed as well as the importance of maintaining heterogeneity in calcineurin activity across the myocardium. Finally, we will discuss how circadian oscillations in calcineurin activity may facilitate integration with other essential but conflicting processes, allowing a healthy heart to reap the benefits of calcineurin signaling while avoiding the detrimental consequences of sustained calcineurin activity that can culminate in heart failure.
Collapse
Affiliation(s)
- Valentina Parra
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago,Chile; Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chie, Santiago, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA; Department of Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| |
Collapse
|
278
|
Lee Y, Stevens DA, Kang SU, Jiang H, Lee YI, Ko HS, Scarffe LA, Umanah GE, Kang H, Ham S, Kam TI, Allen K, Brahmachari S, Kim JW, Neifert S, Yun SP, Fiesel FC, Springer W, Dawson VL, Shin JH, Dawson TM. PINK1 Primes Parkin-Mediated Ubiquitination of PARIS in Dopaminergic Neuronal Survival. Cell Rep 2017; 18:918-932. [PMID: 28122242 PMCID: PMC5312976 DOI: 10.1016/j.celrep.2016.12.090] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/08/2016] [Accepted: 12/27/2016] [Indexed: 02/03/2023] Open
Abstract
Mutations in PTEN-induced putative kinase 1 (PINK1) and parkin cause autosomal-recessive Parkinson's disease through a common pathway involving mitochondrial quality control. Parkin inactivation leads to accumulation of the parkin interacting substrate (PARIS, ZNF746) that plays an important role in dopamine cell loss through repression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α) promoter activity. Here, we show that PARIS links PINK1 and parkin in a common pathway that regulates dopaminergic neuron survival. PINK1 interacts with and phosphorylates serines 322 and 613 of PARIS to control its ubiquitination and clearance by parkin. PINK1 phosphorylation of PARIS alleviates PARIS toxicity, as well as repression of PGC-1α promoter activity. Conditional knockdown of PINK1 in adult mouse brains leads to a progressive loss of dopaminergic neurons in the substantia nigra that is dependent on PARIS. Altogether, these results uncover a function of PINK1 to direct parkin-PARIS-regulated PGC-1α expression and dopaminergic neuronal survival.
Collapse
Affiliation(s)
- Yunjong Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, South Korea
| | - Daniel A Stevens
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Haisong Jiang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Yun-Il Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Leslie A Scarffe
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - George E Umanah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hojin Kang
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, South Korea
| | - Sangwoo Ham
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, South Korea
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kathleen Allen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Saurav Brahmachari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Jungwoo Wren Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stewart Neifert
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Seung Pil Yun
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Mayo Graduate School, Neurobiology of Disease, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Mayo Graduate School, Neurobiology of Disease, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA.
| | - Joo-Ho Shin
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, South Korea.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA.
| |
Collapse
|
279
|
Gusdon AM, Callio J, Distefano G, O'Doherty RM, Goodpaster BH, Coen PM, Chu CT. Exercise increases mitochondrial complex I activity and DRP1 expression in the brains of aged mice. Exp Gerontol 2017; 90:1-13. [PMID: 28108329 DOI: 10.1016/j.exger.2017.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 01/06/2023]
Abstract
Exercise is known to have numerous beneficial effects. Recent studies indicate that exercise improves mitochondrial energetics not only in skeletal muscle but also in other tissues. While exercise elicits positive effects on memory, neurogenesis, and synaptic plasticity, the effects of exercise on brain mitochondrial energetics remain relatively unknown. Herein, we studied the effects of exercise training in old and young mice on brain mitochondrial energetics, in comparison to known effects on peripheral tissues that utilize fatty acid oxidation. Exercise improved the capacity for muscle and liver to oxidize palmitate in old mice, but not young mice. In the brain, exercise increased rates of respiration and reactive oxygen species (ROS) production in the old group only while utilizing complex I substrates, effects that were not seen in the young group. Coupled complex I to III enzymatic activity was significantly increased in old trained versus untrained mice with no effect on coupled II to III enzymatic activity. Mitochondrial protein content and markers of mitochondrial biogenesis (PGC-1α and TFAM) were not affected by exercise training in the brain, in contrast to the skeletal muscle of old mice. Brain levels of the autophagy marker LC3-II and protein levels of other signaling proteins that regulate metabolism or transport (BDNF, HSP60, phosphorylated mTOR, FNDC5, SIRT3) were not significantly altered. Old exercised mice showed a significant increase in DRP1 protein levels in the brain without changes in phosphorylation, while MFN2 and OPA1 protein levels were unchanged. Our results suggest that exercise training in old mice can improve brain mitochondrial function through effects on electron transport chain function and mitochondrial dynamics without increasing mitochondrial biogenesis.
Collapse
Affiliation(s)
- Aaron M Gusdon
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, United States; Department of Neurology, NewYork-Presbyterian Hospital, Weill Cornell Medical College, United States
| | - Jason Callio
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, United States
| | - Giovanna Distefano
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, United States; Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, United States
| | - Robert M O'Doherty
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, United States
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, United States; Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, United States
| | - Paul M Coen
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, United States; Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, United States.
| | - Charleen T Chu
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, United States.
| |
Collapse
|
280
|
Mitochondrial dynamics as regulators of cancer biology. Cell Mol Life Sci 2017; 74:1999-2017. [PMID: 28083595 DOI: 10.1007/s00018-016-2451-3] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/22/2016] [Accepted: 12/29/2016] [Indexed: 02/07/2023]
Abstract
Mitochondria are dynamic organelles that supply energy required to drive key cellular processes, such as survival, proliferation, and migration. Critical to all of these processes are changes in mitochondrial architecture, a mechanical mechanism encompassing both fusion and fragmentation (fission) of the mitochondrial network. Changes to mitochondrial shape, size, and localization occur in a regulated manner to maintain energy and metabolic homeostasis, while deregulation of mitochondrial dynamics is associated with the onset of metabolic dysfunction and disease. In cancers, oncogenic signals that drive excessive proliferation, increase intracellular stress, and limit nutrient supply are all able to alter the bioenergetic and biosynthetic requirements of cancer cells. Consequently, mitochondrial function and shape rapidly adapt to these hostile conditions to support cancer cell proliferation and evade activation of cell death programs. In this review, we will discuss the molecular mechanisms governing mitochondrial dynamics and integrate recent insights into how changes in mitochondrial shape affect cellular migration, differentiation, apoptosis, and opportunities for the development of novel targeted cancer therapies.
Collapse
|
281
|
Ong SB, Hausenloy DJ. Mitochondrial Dynamics as a Therapeutic Target for Treating Cardiac Diseases. Handb Exp Pharmacol 2017; 240:251-279. [PMID: 27844171 DOI: 10.1007/164_2016_7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mitochondria are dynamic in nature and are able to shift their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins - mitofusins 1 and 2 (Mfn1 and 2), and optic atrophy 1 (Opa1) as well as the mitochondrial fission proteins - dynamin-related peptide 1 (Drp1) and fission protein 1 (Fis1). Despite having a unique spatial arrangement, cardiac mitochondria have been implicated in a variety of disorders including ischemia-reperfusion injury (IRI), heart failure, diabetes, and pulmonary hypertension. In this chapter, we review the influence of mitochondrial dynamics in these cardiac disorders as well as their potential as therapeutic targets in tackling cardiovascular disease.
Collapse
Affiliation(s)
- Sang-Bing Ong
- Cardiovascular and Metabolic Disorders (CVMD) Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.
| | - Derek J Hausenloy
- Cardiovascular and Metabolic Disorders (CVMD) Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
- The Hatter Cardiovascular Institute, University College London Hospitals and Medical School, London, UK
| |
Collapse
|
282
|
Konstantinidis K. A new side to an old coin: dynamin related protein-1 with benefits in the heart. Cardiovasc Res 2016; 113:118-119. [PMID: 28003271 DOI: 10.1093/cvr/cvw255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Klitos Konstantinidis
- Department of Medicine, Division of Cardiology, School of Medicine, Johns Hopkins University
| |
Collapse
|
283
|
Abstract
The highly regulated processes of mitochondrial fusion (joining), fission (division) and trafficking, collectively called mitochondrial dynamics, determine cell-type specific morphology, intracellular distribution and activity of these critical organelles. Mitochondria are critical for cardiac function, while their structural and functional abnormalities contribute to several common cardiovascular diseases, including heart failure (HF). The tightly balanced mitochondrial fusion and fission determine number, morphology and activity of these multifunctional organelles. Although the intracellular architecture of mature cardiomyocytes greatly restricts mitochondrial dynamics, this process occurs in the adult human heart. Fusion and fission modulate multiple mitochondrial functions, ranging from energy and reactive oxygen species production to Ca(2+) homeostasis and cell death, allowing the heart to respond properly to body demands. Tightly controlled balance between fusion and fission is of utmost importance in the high energy-demanding cardiomyocytes. A shift toward fission leads to mitochondrial fragmentation, while a shift toward fusion results in the formation of enlarged mitochondria and in the fusion of damaged mitochondria with healthy organelles. Mfn1, Mfn2 and OPA1 constitute the core machinery promoting mitochondrial fusion, whereas Drp1, Fis1, Mff and MiD49/51 are the core components of fission machinery. Growing evidence suggests that fusion/fission factors in adult cardiomyocytes play essential noncanonical roles in cardiac development, Ca(2+) signaling, mitochondrial quality control and cell death. Impairment of this complex circuit causes cardiomyocyte dysfunction and death contributing to heart injury culminating in HF. Pharmacological targeting of components of this intricate network may be a novel therapeutic modality for HF treatment.
Collapse
|
284
|
Abstract
Mitochondria-classically viewed as the powerhouses of the cell-have taken center stage in disease pathogenesis and resolution. Mitochondrial dysfunction, which originates from primary defects within the organelle or is induced by environmental stresses, plays a critical role in human disease. Despite their central role in human health and disease, there are no approved drugs that directly target mitochondria. We present possible new druggable targets in mitochondrial biology, including protein modification, calcium ion (Ca(2+)) transport, and dynamics, as we move into a new era of mitochondrial medicine.
Collapse
Affiliation(s)
- Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98109, USA.
| | - Georgios Karamanlidis
- Pfizer Global Research and Development CVMED (Cardiovascular and Metabolic Diseases), Cambridge, MA 02139, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
285
|
Tanner MJ, Wang J, Ying R, Suboc TB, Malik M, Couillard A, Branum A, Puppala V, Widlansky ME. Dynamin-related protein 1 mediates low glucose-induced endothelial dysfunction in human arterioles. Am J Physiol Heart Circ Physiol 2016; 312:H515-H527. [PMID: 27923790 DOI: 10.1152/ajpheart.00499.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 11/22/2022]
Abstract
Intensive glycemic regulation has resulted in an increased incidence of hypoglycemia. Hypoglycemic burden correlates with adverse cardiovascular complications and contributes acutely and chronically to endothelial dysfunction. Prior data indicate that mitochondrial dysfunction contributes to hypoglycemia-induced endothelial dysfunction, but the mechanisms behind this linkage remain unknown. We attempt to determine whether clinically relevant low-glucose (LG) exposures acutely induce endothelial dysfunction through activation of the mitochondrial fission process. Characterization of mitochondrial morphology was carried out in cultured endothelial cells by using confocal microscopy. Isolated human arterioles were used to explore the effect LG-induced mitochondrial fission has on the formation of detrimental reactive oxygen species (ROS), bioavailability of nitric oxide (NO), and endothelial-dependent vascular relaxation. Fluorescence microscopy was employed to visualize changes in mitochondrial ROS and NO levels and videomicroscopy applied to measure vasodilation response. Pharmacological disruption of the profission protein Drp1 with Mdivi-1 during LG exposure reduced mitochondrial fragmentation among vascular endothelial cells (LG: 0.469; LG+Mdivi-1: 0.276; P = 0.003), prevented formation of vascular ROS (LG: 2.036; LG+Mdivi-1: 1.774; P = 0.005), increased the presence of NO (LG: 1.352; LG+Mdivi-1: 1.502; P = 0.048), and improved vascular dilation response to acetylcholine (LG: 31.6%; LG+Mdivi-1; 78.5% at maximum dose; P < 0.001). Additionally, decreased expression of Drp1 via siRNA knockdown during LG conditions also improved vascular relaxation. Exposure to LG imparts endothelial dysfunction coupled with altered mitochondrial phenotypes among isolated human arterioles. Disruption of Drp1 and subsequent mitochondrial fragmentation events prevents impaired vascular dilation, restores mitochondrial phenotype, and implicates mitochondrial fission as a primary mediator of LG-induced endothelial dysfunction.NEW & NOTEWORTHY Acute low-glucose exposure induces mitochondrial fragmentation in endothelial cells via Drp1 and is associated with impaired endothelial function in human arterioles. Targeting of Drp1 prevents fragmentation, improves vasofunction, and may provide a therapeutic target for improving cardiovascular complications among diabetics.Listen to this article's corresponding podcast @ http://ajpheart.podbean.com/e/mitochondrial-dynamics-impact-endothelial-function/.
Collapse
Affiliation(s)
- Michael J Tanner
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jingli Wang
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rong Ying
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Tisha B Suboc
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mobin Malik
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Allison Couillard
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amberly Branum
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Venkata Puppala
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael E Widlansky
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
286
|
Abstract
Martin Graef highlights Yamashita et al.’s finding that mitophagy can occur independently of the canonical mitochondrial fission apparatus. Whether or not mitophagy depends on prior mitochondrial fragmentation by the canonical mitochondrial division machinery is controversial. In this issue, Yamashita et al. (2016. J. Cell Biol.https://doi.org/10.1083/jcb.201605093) report that mitochondrial fragments start to bud and divide from mitochondrial tubules when in tight association with forming autophagosomes, but independently of the mitochondrial division factor Drp1/Dnm1.
Collapse
Affiliation(s)
- Martin Graef
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
287
|
Yamashita SI, Jin X, Furukawa K, Hamasaki M, Nezu A, Otera H, Saigusa T, Yoshimori T, Sakai Y, Mihara K, Kanki T. Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy. J Cell Biol 2016; 215:649-665. [PMID: 27903607 PMCID: PMC5147001 DOI: 10.1083/jcb.201605093] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/02/2016] [Accepted: 10/26/2016] [Indexed: 01/14/2023] Open
Abstract
Mitophagy is thought to play an important role in mitochondrial quality control. Mitochondrial division is believed to occur first, and autophagosome formation subsequently occurs to enwrap mitochondria as a process of mitophagy. However, there has not been any temporal analysis of mitochondrial division and autophagosome formation in mitophagy. Therefore, the relationships among these processes remain unclear. We show that the mitochondrial division factor Dnm1 in yeast or Drp1 in mammalian cells is dispensable for mitophagy. Autophagosome formation factors, such as FIP200, ATG14, and WIPIs, were essential for the mitochondrial division for mitophagy. Live-cell imaging showed that isolation membranes formed on the mitochondria. A small portion of the mitochondria then divided from parental mitochondria simultaneously with the extension of isolation membranes and autophagosome formation. These findings suggest the presence of a mitophagy process in which mitochondrial division for mitophagy is accomplished together with autophagosome formation.
Collapse
Affiliation(s)
- Shun-Ichi Yamashita
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Xiulian Jin
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Kentaro Furukawa
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Maho Hamasaki
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Akiko Nezu
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hidenori Otera
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Tetsu Saigusa
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Katsuyoshi Mihara
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| |
Collapse
|
288
|
Callegari S, Oeljeklaus S, Warscheid B, Dennerlein S, Thumm M, Rehling P, Dudek J. Phospho-ubiquitin-PARK2 complex as a marker for mitophagy defects. Autophagy 2016; 13:201-211. [PMID: 27846363 DOI: 10.1080/15548627.2016.1254852] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The E3 ubiquitin ligase PARK2 and the mitochondrial protein kinase PINK1 are required for the initiation of mitochondrial damage-induced mitophagy. Together, PARK2 and PINK1 generate a phospho-ubiquitin signal on outer mitochondrial membrane proteins that triggers recruitment of the autophagy machinery. This paper describes the detection of a defined 500-kDa phospho-ubiquitin-rich PARK2 complex that accumulates on mitochondria upon treatment with the membrane uncoupler CCCP. Formation of this complex is dependent on the presence of PINK1 and is absent in mutant forms of PARK2, whereby mitophagy is also arrested. These results signify a functional signaling complex that is essential for the progression of mitophagy. The visualization of the PARK2 signaling complex represents a novel marker for this critical step in mitophagy and can be used to monitor mitophagy progression in PARK2 mutants and to uncover additional upstream factors required for PARK2-mediated mitophagy signaling.
Collapse
Affiliation(s)
- Sylvie Callegari
- a Department of Cellular Biochemistry , University Medical Center Göttingen , Göttingen , Germany
| | - Silke Oeljeklaus
- b University of Freiburg , Department of Biochemistry and Functional Proteomics , Institute of Biology II, Faculty of Biology , Freiburg , Germany
| | - Bettina Warscheid
- b University of Freiburg , Department of Biochemistry and Functional Proteomics , Institute of Biology II, Faculty of Biology , Freiburg , Germany.,c University of Freiburg, BIOSS Center for Biological Signaling Studies , Freiburg , Germany
| | - Sven Dennerlein
- a Department of Cellular Biochemistry , University Medical Center Göttingen , Göttingen , Germany
| | - Michael Thumm
- a Department of Cellular Biochemistry , University Medical Center Göttingen , Göttingen , Germany
| | - Peter Rehling
- a Department of Cellular Biochemistry , University Medical Center Göttingen , Göttingen , Germany.,d Max Planck Institute for Biophysical Chemistry , Göttingen , Germany
| | - Jan Dudek
- a Department of Cellular Biochemistry , University Medical Center Göttingen , Göttingen , Germany
| |
Collapse
|
289
|
Wende AR, Young ME, Chatham J, Zhang J, Rajasekaran NS, Darley-Usmar VM. Redox biology and the interface between bioenergetics, autophagy and circadian control of metabolism. Free Radic Biol Med 2016; 100:94-107. [PMID: 27242268 PMCID: PMC5124549 DOI: 10.1016/j.freeradbiomed.2016.05.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/01/2022]
Abstract
Understanding molecular mechanisms that underlie the recent emergence of metabolic diseases such as diabetes and heart failure has revealed the need for a multi-disciplinary research integrating the key metabolic pathways which change the susceptibility to environmental or pathologic stress. At the physiological level these include the circadian control of metabolism which aligns metabolism with temporal demand. The mitochondria play an important role in integrating the redox signals and metabolic flux in response to the changing activities associated with chronobiology, exercise and diet. At the molecular level this involves dynamic post-translational modifications regulating transcription, metabolism and autophagy. In this review we will discuss different examples of mechanisms which link these processes together. An important pathway capable of linking signaling to metabolism is the post-translational modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc). This is a nutrient regulated protein modification that plays an important role in impaired cellular stress responses. Circadian clocks have also emerged as critical regulators of numerous cardiometabolic processes, including glucose/lipid homeostasis, hormone secretion, redox status and cardiovascular function. Central to these pathways are the response of autophagy, bioenergetics to oxidative stress, regulated by Keap1/Nrf2 and mechanisms of metabolic control. The extension of these ideas to the emerging concept of bioenergetic health will be discussed.
Collapse
Affiliation(s)
- Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John Chatham
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namakkal S Rajasekaran
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor M Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
290
|
Guebel DV, Torres NV. Sexual Dimorphism and Aging in the Human Hyppocampus: Identification, Validation, and Impact of Differentially Expressed Genes by Factorial Microarray and Network Analysis. Front Aging Neurosci 2016; 8:229. [PMID: 27761111 PMCID: PMC5050216 DOI: 10.3389/fnagi.2016.00229] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/14/2016] [Indexed: 01/09/2023] Open
Abstract
Motivation: In the brain of elderly-healthy individuals, the effects of sexual dimorphism and those due to normal aging appear overlapped. Discrimination of these two dimensions would powerfully contribute to a better understanding of the etiology of some neurodegenerative diseases, such as “sporadic” Alzheimer. Methods: Following a system biology approach, top-down and bottom-up strategies were combined. First, public transcriptome data corresponding to the transition from adulthood to the aging stage in normal, human hippocampus were analyzed through an optimized microarray post-processing (Q-GDEMAR method) together with a proper experimental design (full factorial analysis). Second, the identified genes were placed in context by building compatible networks. The subsequent ontology analyses carried out on these networks clarify the main functionalities involved. Results: Noticeably we could identify large sets of genes according to three groups: those that exclusively depend on the sex, those that exclusively depend on the age, and those that depend on the particular combinations of sex and age (interaction). The genes identified were validated against three independent sources (a proteomic study of aging, a senescence database, and a mitochondrial genetic database). We arrived to several new inferences about the biological functions compromised during aging in two ways: by taking into account the sex-independent effects of aging, and considering the interaction between age and sex where pertinent. In particular, we discuss the impact of our findings on the functions of mitochondria, autophagy, mitophagia, and microRNAs. Conclusions: The evidence obtained herein supports the occurrence of significant neurobiological differences in the hippocampus, not only between adult and elderly individuals, but between old-healthy women and old-healthy men. Hence, to obtain realistic results in further analysis of the transition from the normal aging to incipient Alzheimer, the features derived from the sexual dimorphism in hippocampus should be explicitly considered.
Collapse
Affiliation(s)
- Daniel V Guebel
- Biotechnology Counselling ServicesBuenos Aires, Argentina; Systems Biology and Mathematical Modelling Group, Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Ciencias, Universidad de La LagunaSan Cristóbal de La Laguna, España
| | - Néstor V Torres
- Systems Biology and Mathematical Modelling Group, Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Facultad de Ciencias, Universidad de La Laguna San Cristóbal de La Laguna, España
| |
Collapse
|
291
|
Genin EC, Plutino M, Bannwarth S, Villa E, Cisneros-Barroso E, Roy M, Ortega-Vila B, Fragaki K, Lespinasse F, Pinero-Martos E, Augé G, Moore D, Burté F, Lacas-Gervais S, Kageyama Y, Itoh K, Yu-Wai-Man P, Sesaki H, Ricci JE, Vives-Bauza C, Paquis-Flucklinger V. CHCHD10 mutations promote loss of mitochondrial cristae junctions with impaired mitochondrial genome maintenance and inhibition of apoptosis. EMBO Mol Med 2016; 8:58-72. [PMID: 26666268 PMCID: PMC4718158 DOI: 10.15252/emmm.201505496] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CHCHD10-related diseases include mitochondrial DNA instability disorder, frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) clinical spectrum, late-onset spinal motor neuropathy (SMAJ), and Charcot-Marie-Tooth disease type 2 (CMT2). Here, we show that CHCHD10 resides with mitofilin, CHCHD3 and CHCHD6 within the "mitochondrial contact site and cristae organizing system" (MICOS) complex. CHCHD10 mutations lead to MICOS complex disassembly and loss of mitochondrial cristae with a decrease in nucleoid number and nucleoid disorganization. Repair of the mitochondrial genome after oxidative stress is impaired in CHCHD10 mutant fibroblasts and this likely explains the accumulation of deleted mtDNA molecules in patient muscle. CHCHD10 mutant fibroblasts are not defective in the delivery of mitochondria to lysosomes suggesting that impaired mitophagy does not contribute to mtDNA instability. Interestingly, the expression of CHCHD10 mutant alleles inhibits apoptosis by preventing cytochrome c release.
Collapse
Affiliation(s)
- Emmanuelle C Genin
- IRCAN, UMR CNRS 7284/INSERM U1081/UNS, School of Medicine, Nice Sophia-Antipolis University, Nice Cedex 2, France
| | - Morgane Plutino
- IRCAN, UMR CNRS 7284/INSERM U1081/UNS, School of Medicine, Nice Sophia-Antipolis University, Nice Cedex 2, France
| | - Sylvie Bannwarth
- IRCAN, UMR CNRS 7284/INSERM U1081/UNS, School of Medicine, Nice Sophia-Antipolis University, Nice Cedex 2, France Department of Medical Genetics, National Centre for Mitochondrial Diseases, Nice Teaching Hospital, Nice Cedex 2, France
| | - Elodie Villa
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe "contrôle métabolique des morts cellulaires", Nice Sophia-Antipolis University, Nice Cedex 2, France
| | - Eugenia Cisneros-Barroso
- Research Health Institute of Palma (IdISPa), Research Unit, Son Espases University Hospital, Palma de Mallorca, Spain
| | - Madhuparna Roy
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bernardo Ortega-Vila
- Research Health Institute of Palma (IdISPa), Research Unit, Son Espases University Hospital, Palma de Mallorca, Spain
| | - Konstantina Fragaki
- IRCAN, UMR CNRS 7284/INSERM U1081/UNS, School of Medicine, Nice Sophia-Antipolis University, Nice Cedex 2, France Department of Medical Genetics, National Centre for Mitochondrial Diseases, Nice Teaching Hospital, Nice Cedex 2, France
| | - Françoise Lespinasse
- IRCAN, UMR CNRS 7284/INSERM U1081/UNS, School of Medicine, Nice Sophia-Antipolis University, Nice Cedex 2, France
| | - Estefania Pinero-Martos
- Research Health Institute of Palma (IdISPa), Research Unit, Son Espases University Hospital, Palma de Mallorca, Spain
| | - Gaëlle Augé
- IRCAN, UMR CNRS 7284/INSERM U1081/UNS, School of Medicine, Nice Sophia-Antipolis University, Nice Cedex 2, France Department of Medical Genetics, National Centre for Mitochondrial Diseases, Nice Teaching Hospital, Nice Cedex 2, France
| | - David Moore
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, International Centre for Life Newcastle University, Newcastle upon Tyne, UK Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Florence Burté
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, International Centre for Life Newcastle University, Newcastle upon Tyne, UK Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Sandra Lacas-Gervais
- Joint Center for Applied Electron Microscopy, Nice Sophia-Antipolis University, Nice Cedex 2, France
| | - Yusuke Kageyama
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kie Itoh
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick Yu-Wai-Man
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, International Centre for Life Newcastle University, Newcastle upon Tyne, UK Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jean-Ehrland Ricci
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe "contrôle métabolique des morts cellulaires", Nice Sophia-Antipolis University, Nice Cedex 2, France
| | - Cristofol Vives-Bauza
- Research Health Institute of Palma (IdISPa), Research Unit, Son Espases University Hospital, Palma de Mallorca, Spain
| | - Véronique Paquis-Flucklinger
- IRCAN, UMR CNRS 7284/INSERM U1081/UNS, School of Medicine, Nice Sophia-Antipolis University, Nice Cedex 2, France Department of Medical Genetics, National Centre for Mitochondrial Diseases, Nice Teaching Hospital, Nice Cedex 2, France
| |
Collapse
|
292
|
Yamada T, Adachi Y, Fukaya M, Iijima M, Sesaki H. Dynamin-Related Protein 1 Deficiency Leads to Receptor-Interacting Protein Kinase 3-Mediated Necroptotic Neurodegeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2798-2802. [PMID: 27640145 DOI: 10.1016/j.ajpath.2016.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/20/2016] [Accepted: 06/28/2016] [Indexed: 12/14/2022]
Abstract
Mitochondria are dynamic organelles that divide and fuse to modulate their number and shape. We have previously reported that the loss of dynamin-related protein 1 (Drp1), which mediates mitochondrial division, leads to the degeneration of cerebellar Purkinje cells in mice. Because Drp1 has been shown to be important for apoptosis and necroptosis, it is puzzling how Purkinje neurons die in the absence of Drp1. In this study, we tested whether neurodegeneration involves necrotic cell death by generating Purkinje cell-specific Drp1-knockout (KO) mice that lack the receptor-interacting protein kinase 3 (Rip3), which regulates necroptosis. We found that the loss of Rip3 significantly delays the degeneration of Drp1-KO Purkinje neurons. In addition, before neurodegeneration, mitochondrial tubules elongate because of unopposed fusion and subsequently become large spheres as a result of oxidative damage. Surprisingly, Rip3 loss also helps Drp1-KO Purkinje cells maintain the elongated morphology of the mitochondrial tubules. These data suggest that Rip3 plays a role in neurodegeneration and mitochondrial morphology in the absence of mitochondrial division.
Collapse
Affiliation(s)
- Tatsuya Yamada
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yoshihiro Adachi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
293
|
Malena A, Pantic B, Borgia D, Sgarbi G, Solaini G, Holt IJ, Spinazzola A, Perissinotto E, Sandri M, Baracca A, Vergani L. Mitochondrial quality control: Cell-type-dependent responses to pathological mutant mitochondrial DNA. Autophagy 2016; 12:2098-2112. [PMID: 27627835 DOI: 10.1080/15548627.2016.1226734] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pathological mutations in the mitochondrial DNA (mtDNA) produce a diverse range of tissue-specific diseases and the proportion of mutant mitochondrial DNA can increase or decrease with time via segregation, dependent on the cell or tissue type. Previously we found that adenocarcinoma (A549.B2) cells favored wild-type (WT) mtDNA, whereas rhabdomyosarcoma (RD.Myo) cells favored mutant (m3243G) mtDNA. Mitochondrial quality control (mtQC) can purge the cells of dysfunctional mitochondria via mitochondrial dynamics and mitophagy and appears to offer the perfect solution to the human diseases caused by mutant mtDNA. In A549.B2 and RD.Myo cybrids, with various mutant mtDNA levels, mtQC was explored together with macroautophagy/autophagy and bioenergetic profile. The 2 types of tumor-derived cell lines differed in bioenergetic profile and mitophagy, but not in autophagy. A549.B2 cybrids displayed upregulation of mitophagy, increased mtDNA removal, mitochondrial fragmentation and mitochondrial depolarization on incubation with oligomycin, parameters that correlated with mutant load. Conversely, heteroplasmic RD.Myo lines had lower mitophagic markers that negatively correlated with mutant load, combined with a fully polarized and highly fused mitochondrial network. These findings indicate that pathological mutant mitochondrial DNA can modulate mitochondrial dynamics and mitophagy in a cell-type dependent manner and thereby offer an explanation for the persistence and accumulation of deleterious variants.
Collapse
Affiliation(s)
- Adriana Malena
- a Department of Neurosciences , University of Padova , Italy
| | - Boris Pantic
- a Department of Neurosciences , University of Padova , Italy
| | - Doriana Borgia
- a Department of Neurosciences , University of Padova , Italy
| | - Gianluca Sgarbi
- b Department of Biomedical and Neuromotor Sciences , University of Bologna , Italy
| | - Giancarlo Solaini
- b Department of Biomedical and Neuromotor Sciences , University of Bologna , Italy
| | - Ian J Holt
- c Medical Research Council, Mill Hill Laboratory , London , United Kingdom
| | | | - Egle Perissinotto
- d Department of Cardiac, Thoracic and Vascular Sciences, Biostatistics, Epidemiology and Public Health Unit , University of Padova , Padova , Italy
| | - Marco Sandri
- e Department of Biomedical Sciences , University of Padova , Italy.,f Venetian Institute of Molecular Medicine , Padova , Italy
| | - Alessandra Baracca
- b Department of Biomedical and Neuromotor Sciences , University of Bologna , Italy
| | | |
Collapse
|
294
|
Kim DI, Lee KH, Gabr AA, Choi GE, Kim JS, Ko SH, Han HJ. Aβ-Induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2820-2834. [PMID: 27599716 DOI: 10.1016/j.bbamcr.2016.09.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/26/2022]
Abstract
Mitochondrial dysfunction is known as one of causative factors in Alzheimer's disease (AD), inducing neuronal cell death. Mitochondria regulate their functions through changing their morphology. The present work was undertaken to investigate whether Amyloid β (Aβ) affects mitochondrial morphology in neuronal cells to induce apoptosis. Aβ treatment induced not only the fragmentation of mitochondria but also neuronal apoptosis in association with an increase in caspase-9 and -3 activity. Calcium influx induced by Aβ up-regulated the activation of Akt through CaMKII resulting in changes to the phosphorylation level of Drp1 in a time-dependent manner. Translocation of Drp1 from the cytosol to mitochondria was blocked by CB-124005 (an Akt inhibitor). Recruitment of Drp1 to mitochondria led to ROS generation and mitochondrial fission, accompanied by dysfunction of mitochondria such as loss of membrane potential and ATP production. ROS generation and mitochondrial dysfunction by Aβ were attenuated when treated with Mdivi-1, a selective Drp1 inhibitor. Furthermore, the sustained Akt activation induced not only the fragmentation of mitochondria but also the activation of mTOR, eventually suppressing autophagy. Inhibition of autophagic clearance of Aβ led to increased ROS levels and aggravating mitochondrial defects, which were blocked by Rapamycin (an mTOR inhibitor). In conclusion, sustained phosphorylation of Akt by Aβ directly activates Drp1 and inhibits autophagy through the mTOR pathway. Together, these changes elicit abundant mitochondrial fragmentation resulting in ROS-mediated neuronal apoptosis.
Collapse
Affiliation(s)
- Dah Ihm Kim
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Ki Hoon Lee
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Amr Ahmed Gabr
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Gee Euhn Choi
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Jun Sung Kim
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - So Hee Ko
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| | - Ho Jae Han
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.
| |
Collapse
|
295
|
Abstract
Mitochondria play a key role in various cell processes including ATP production, Ca2+ homeostasis, reactive oxygen species (ROS) generation, and apoptosis. The selective removal of impaired mitochondria by autophagosome is known as mitophagy. Cerebral ischemia is a common form of stroke caused by insufficient blood supply to the brain. Emerging evidence suggests that mitophagy plays important roles in the pathophysiological process of cerebral ischemia. This review focuses on the relationship between ischemic brain injury and mitophagy. Based on the latest research, it describes how the signaling pathways of mitophagy appear to be involved in cerebral ischemia.
Collapse
|
296
|
Parkin Protects against Oxygen-Glucose Deprivation/Reperfusion Insult by Promoting Drp1 Degradation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8474303. [PMID: 27597885 PMCID: PMC5002297 DOI: 10.1155/2016/8474303] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/13/2016] [Accepted: 07/11/2016] [Indexed: 11/17/2022]
Abstract
Ischemic stroke results in severe brain damage and remains one of the leading causes of death and disability worldwide. Effective neuroprotective therapies are needed to reduce brain damage resulting from ischemic stroke. Mitochondria are crucial for cellular energy production and homeostasis. Modulation of mitochondrial function mediates neuroprotection against ischemic brain damage. Dynamin-related protein 1 (Drp1) and parkin play a key role in regulating mitochondrial dynamics. They are potential therapeutic targets for neuroprotection in ischemic stroke. Protective effects of parkin-Drp1 pathway on mitochondria were assessed in a cellular ischemia-reperfusion injury model. Mouse neuroblastoma Neuro2a (N2a) cells were subjected to oxygen-glucose deprivation/reperfusion (OGDR) insult. OGDR induces mitochondrial fragmentation. The expression of Drp1 protein is increased after OGDR insult, while the parkin protein level is decreased. The altered protein level of Drp1 after OGDR injury is mediated by parkin through ubiquitin proteasome system (UPS). Drp1 depletion protects against OGDR induced mitochondrial damage and apoptosis. Meanwhile, parkin overexpression protects against OGDR induced apoptosis and mitochondrial dysfunction, which is attenuated by increased expression of Drp1. Our data demonstrate that parkin protects against OGDR insult through promoting degradation of Drp1. This neuroprotective potential of parkin-Drp1 pathway against OGDR insult will pave the way for developing novel neuroprotective agents for cerebral ischemia-reperfusion related disorders.
Collapse
|
297
|
Kokoszka JE, Waymire KG, Flierl A, Sweeney KM, Angelin A, MacGregor GR, Wallace DC. Deficiency in the mouse mitochondrial adenine nucleotide translocator isoform 2 gene is associated with cardiac noncompaction. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:1203-1212. [PMID: 27048932 PMCID: PMC5100012 DOI: 10.1016/j.bbabio.2016.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 01/05/2023]
Abstract
The mouse fetal and adult hearts express two adenine nucleotide translocator (ANT) isoform genes. The predominant isoform is the heart-muscle-brain ANT-isoform gene 1 (Ant1) while the other is the systemic Ant2 gene. Genetic inactivation of the Ant1 gene does not impair fetal development but results in hypertrophic cardiomyopathy in postnatal mice. Using a knockin X-linked Ant2 allele in which exons 3 and 4 are flanked by loxP sites combined in males with a protamine 1 promoter driven Cre recombinase we created females heterozygous for a null Ant2 allele. Crossing the heterozygous females with the Ant2(fl), PrmCre(+) males resulted in male and female ANT2-null embryos. These fetuses proved to be embryonic lethal by day E14.5 in association with cardiac developmental failure, immature cardiomyocytes having swollen mitochondria, cardiomyocyte hyperproliferation, and cardiac failure due to hypertrabeculation/noncompaction. ANTs have two main functions, mitochondrial-cytosol ATP/ADP exchange and modulation of the mitochondrial permeability transition pore (mtPTP). Previous studies imply that ANT2 biases the mtPTP toward closed while ANT1 biases the mtPTP toward open. It has been reported that immature cardiomyocytes have a constitutively opened mtPTP, the closure of which signals the maturation of cardiomyocytes. Therefore, we hypothesize that the developmental toxicity of the Ant2 null mutation may be the result of biasing the cardiomyocyte mtPTP to remain open thus impairing cardiomyocyte maturation and resulting in cardiomyocyte hyperproliferation and failure of trabecular maturation. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
MESH Headings
- Adenine/metabolism
- Adenine Nucleotide Translocator 2/deficiency
- Adenine Nucleotide Translocator 2/genetics
- Animals
- Biological Transport
- Cell Proliferation
- Embryo, Mammalian
- Female
- Gene Expression Regulation, Developmental
- Genes, Lethal
- Heart Defects, Congenital/embryology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Heart Defects, Congenital/pathology
- Heart Failure/embryology
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Ventricles/abnormalities
- Heart Ventricles/embryology
- Heart Ventricles/metabolism
- Integrases
- Male
- Mice
- Mice, Transgenic
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondrial Swelling/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Organogenesis
- Phenotype
Collapse
Affiliation(s)
- Jason E Kokoszka
- Forensic Biology Section, Alabama Department of Forensic Sciences, Annex C, Mobile, AL 36617, United States
| | - Katrina G Waymire
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697-2300, United States
| | - Adrian Flierl
- The Parkinson's Institute, Sunnyvale, CA 94085, United States
| | - Katelyn M Sweeney
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Grant R MacGregor
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697-2300, United States
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
298
|
Gottlieb RA, Bernstein D. Mitochondrial remodeling: Rearranging, recycling, and reprogramming. Cell Calcium 2016; 60:88-101. [PMID: 27130902 PMCID: PMC4996709 DOI: 10.1016/j.ceca.2016.04.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 12/26/2022]
Abstract
Mitochondria are highly dynamic and responsive organelles that respond to environmental cues with fission and fusion. They undergo mitophagy and biogenesis, and are subject to extensive post-translational modifications. Calcium plays an important role in regulating mitochondrial functions. Mitochondria play a central role in metabolism of glucose, fatty acids, and amino acids, and generate ATP with effects on redox poise, oxidative stress, pH, and other metabolites including acetyl-CoA and NAD(+) which in turn have effects on chromatin remodeling. The complex interplay of mitochondria, cytosolic factors, and the nucleus ensure a well-coordinated response to environmental stresses.
Collapse
Affiliation(s)
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology) and the Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
299
|
Lerner CA, Sundar IK, Rahman I. Mitochondrial redox system, dynamics, and dysfunction in lung inflammaging and COPD. Int J Biochem Cell Biol 2016; 81:294-306. [PMID: 27474491 DOI: 10.1016/j.biocel.2016.07.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/21/2016] [Accepted: 07/23/2016] [Indexed: 01/01/2023]
Abstract
Myriad forms of endogenous and environmental stress disrupt mitochondrial function by impacting critical processes in mitochondrial homeostasis, such as mitochondrial redox system, oxidative phosphorylation, biogenesis, and mitophagy. External stressors that interfere with the steady state activity of mitochondrial functions are generally associated with an increase in reactive oxygen species, inflammatory response, and induction of cellular senescence (inflammaging) potentially via mitochondrial damage associated molecular patterns (DAMPS). Many of these are the key events in the pathogenesis of chronic obstructive pulmonary disease (COPD) and its exacerbations. In this review, we highlight the primary mitochondrial quality control mechanisms that are influenced by oxidative stress/redox system, including role of mitochondria during inflammation and cellular senescence, and how mitochondrial dysfunction contributes to the pathogenesis of COPD and its exacerbations via pathogenic stimuli.
Collapse
Affiliation(s)
- Chad A Lerner
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
300
|
Roberts RF, Tang MY, Fon EA, Durcan TM. Defending the mitochondria: The pathways of mitophagy and mitochondrial-derived vesicles. Int J Biochem Cell Biol 2016; 79:427-436. [PMID: 27443527 DOI: 10.1016/j.biocel.2016.07.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 01/09/2023]
Abstract
Mitochondria are the powerhouses for the cell, consuming oxygen to generate sufficient energy for the maintenance of normal cellular processes. However, a deleterious consequence of this process are reactive oxygen species generated as side-products of these reactions. As a means to protect mitochondria from damage, cells and mitochondria have developed a wide-range of mitochondrial quality control mechanisms that remove damaged mitochondrial cargo, enabling the mitochondria to repair the damage and ultimately restore their normal function. If the damage is extensive and mitochondria can no longer be repaired, a process termed mitophagy is initiated in which the mitochondria are directed for autophagic clearance. Canonical mitophagy is regulated by two proteins, PINK1 and Parkin, which are mutated in familial forms of Parkinson's disease. In this review, we discuss recent work elucidating the mechanism of PINK1/Parkin-mediated mitophagy, along with recently uncovered PINK1/Parkin-independent mitophagy pathways. Moreover, we describe a novel mitochondrial quality control pathway, involving mitochondrial-derived vesicles that direct distinct and damaged mitochondrial cargo for degradation in the lysosome. Finally, we discuss the association between mitochondrial quality control, cardiac, hepatic and neurodegenerative disease and discuss the possibility of targeting these pathways for therapeutic purposes.
Collapse
Affiliation(s)
- Rosalind F Roberts
- Centre for Neurodegenerative Disease, Montreal Neurological Institute, McGill University, MP038, Molson Fieldhouse, 3801 Rue University, Montréal, Quebec H3A 2B4, Canada
| | - Matthew Y Tang
- Centre for Neurodegenerative Disease, Montreal Neurological Institute, McGill University, MP038, Molson Fieldhouse, 3801 Rue University, Montréal, Quebec H3A 2B4, Canada
| | - Edward A Fon
- Centre for Neurodegenerative Disease, Montreal Neurological Institute, McGill University, MP038, Molson Fieldhouse, 3801 Rue University, Montréal, Quebec H3A 2B4, Canada
| | - Thomas M Durcan
- Centre for Neurodegenerative Disease, Montreal Neurological Institute, McGill University, MP038, Molson Fieldhouse, 3801 Rue University, Montréal, Quebec H3A 2B4, Canada.
| |
Collapse
|