251
|
Mattila T, Santonen T, Andersen HR, Katsonouri A, Szigeti T, Uhl M, Wąsowicz W, Lange R, Bocca B, Ruggieri F, Kolossa-Gehring M, Sarigiannis DA, Tolonen H. Scoping Review-The Association between Asthma and Environmental Chemicals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1323. [PMID: 33535701 PMCID: PMC7908498 DOI: 10.3390/ijerph18031323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023]
Abstract
Asthma is one of the most common chronic diseases worldwide affecting all age groups from children to the elderly. In addition to other factors such as smoking, air pollution and atopy, some environmental chemicals are shown or suspected to increase the risk of asthma, exacerbate asthma symptoms and cause other respiratory symptoms. In this scoping review, we report environmental chemicals, prioritized for investigation in the European Human Biomonitoring Initiative (HBM4EU), which are associated or possibly associated with asthma. The substance groups considered to cause asthma through specific sensitization include: diisocyanates, hexavalent chromium Cr(VI) and possibly p-phenylenediamine (p-PDA). In epidemiological studies, polyaromatic hydrocarbons (PAHs) and organophosphate insecticides are associated with asthma, and phthalates, per- and polyfluoroalkyl substances (PFASs), pyrethroid insecticides, mercury, cadmium, arsenic and lead are only potentially associated with asthma. As a conclusion, exposure to PAHs and some pesticides are associated with increased risk of asthma. Diisocyanates and Cr(VI) cause asthma with specific sensitization. For many environmental chemicals, current studies have provided contradicting results in relation to increased risk of asthma. Therefore, more research about exposure to environmental chemicals and risk of asthma is needed.
Collapse
Affiliation(s)
- Tiina Mattila
- Finnish Institute for Health and Welfare, PO Box 30, 00271 Helsinki, Finland;
- Department of Pulmonary Diseases, Heart and Lung Center, Helsinki University Hospital and Helsinki University, Meilahti Triangle Hospital, 6th Floor, PO Box 372, 00029 Helsinki, Finland
| | - Tiina Santonen
- Finnish Institute of Occupational Health, PO Box 40, 00032 Helsinki, Finland;
| | - Helle Raun Andersen
- Environmental Medicine, Department of Public Health, University of Southern Denmark, DK-5000 Odense, Denmark;
| | | | - Tamás Szigeti
- National Public Health Center, 1097 Budapest, Hungary;
| | - Maria Uhl
- Environment Agency, 1090 Vienna, Austria;
| | | | - Rosa Lange
- German Environment Agency, 14195 Berlin, Germany; (R.L.); (M.K.-G.)
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.B.); (F.R.)
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.B.); (F.R.)
| | | | - Denis A. Sarigiannis
- Technologies Division, Environmental Engineering Laboratory Department of Chemical Engineering and HERACLES Research Center on the Exposome and Health Center for Interdisciplinary Research and Innovation, Aristotle University, GR-54124 Thessaloniki, Greece;
| | - Hanna Tolonen
- Finnish Institute for Health and Welfare, PO Box 30, 00271 Helsinki, Finland;
| |
Collapse
|
252
|
Xu Y, Nielsen C, Li Y, Hammarstrand S, Andersson EM, Li H, Olsson DS, Engström K, Pineda D, Lindh CH, Fletcher T, Jakobsson K. Serum perfluoroalkyl substances in residents following long-term drinking water contamination from firefighting foam in Ronneby, Sweden. ENVIRONMENT INTERNATIONAL 2021; 147:106333. [PMID: 33360412 DOI: 10.1016/j.envint.2020.106333] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND In December 2013, it was discovered that drinking water supplied to one third of the households in Ronneby, southern Sweden, was highly contaminated by PFAS (sum level >10,000 ng/L) originated from firefighting foams used at a nearby military airport. OBJECTIVES To report serum PFAS levels of Ronneby residents participating in a biomonitoring program, and to describe the variation by age, sex and calendar period for residential exposure. In addition, a reference group living in a neighboring municipality without PFAS contaminated drinking water was examined. METHODS Blood samples and demographic data were collected for 3297 Ronneby residents and 226 individuals from the reference group. Yearly residence addresses were available for 3086 Ronneby residents from the national population registry. Serum concentrations of PFHxS, PFOS and PFOA were determined in all participants, with additional PFHpA, PFNA and PFDA in subsets of the participants. RESULTS The population geometric means for serum PFHxS, PFOS and PFOA were 114, 135 and 6.8 ng/mL for all Ronneby residents, i.e.135, 35 and 4.5 times higher than for the reference group. Ronneby residents who resided in the area with contaminated water supply during 2005-2013 showed much higher PFAS levels in 2014 than those exposed only before 2005. Ronneby residents who never resided in the area with contaminated water supply also had higher serum PFAS levels than the reference group. All three PFAS were highly correlated (rs > 0.9 for each pair). Serum PFAS levels were lowest in teenage years and then increased with age. Adult females had lower PFAS levels on average than males under the age of 60 but higher above 60. DISCUSSION The results reveal high serum PFAS levels dominated by PFHxS and PFOS in the Ronneby residents highly exposed to PFAS originated from firefighting foams. The PFAS exposure in Ronneby permits studies of associations to a range of health parameters, as well as studies of the toxicokinetics of PFAS exposure.
Collapse
Affiliation(s)
- Yiyi Xu
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Christel Nielsen
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Ying Li
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Sofia Hammarstrand
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Eva M Andersson
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Huiqi Li
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Daniel S Olsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Karin Engström
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Daniela Pineda
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, London, UK.
| | - Kristina Jakobsson
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
253
|
Abstract
Following an official request to EFSA from the European Commission, EFSA assessed the chronic dietary exposure to inorganic arsenic (iAs) in the European population. A total of 13,608 analytical results on iAs were considered in the current assessment (7,623 corresponding to drinking water and 5,985 to different types of food). Samples were collected across Europe between 2013 and 2018. The highest mean dietary exposure estimates at the lower bound (LB) were in toddlers (0.30 μg/kg body weight (bw) per day), and in both infants and toddlers (0.61 μg/kg bw per day) at the upper bound (UB). At the 95th percentile, the highest exposure estimates (LB-UB) were 0.58 and 1.20 μg/kg bw per day in toddlers and infants, respectively. In general, UB estimates were two to three times higher than LB estimates. The mean dietary exposure estimates (LB) were overall below the range of benchmark dose lower confidence limit (BMDL 01) values of 0.3-8 μg/kg bw per day established by the EFSA Panel on Contaminants in the Food Chain in 2009. However, for the 95th percentile dietary exposure (LB), the maximum estimates for infants, toddlers and other children were within this range of BMDL 01 values. Across the different age classes, the main contributors to the dietary exposure to iAs (LB) were 'Rice', 'Rice-based products', 'Grains and grain-based products (no rice)' and 'Drinking water'. Different ad hoc exposure scenarios (e.g. consumption of rice-based formulae) showed dietary exposure estimates in average and for high consumers close to or within the range of BMDL 01 values. The main uncertainties associated with the dietary exposure estimations refer to the impact of using the substitution method to treat the left-censored data (LB-UB differences), to the lack of information (consumption and occurrence) on some iAs-containing ingredients in specific food groups, and to the effect of food preparation on the iAs levels. Recommendations were addressed to improve future dietary exposure assessments to iAs.
Collapse
|
254
|
Severity of COVID-19 at elevated exposure to perfluorinated alkylates. PLoS One 2020; 15:e0244815. [PMID: 33382826 PMCID: PMC7774856 DOI: 10.1371/journal.pone.0244815] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/16/2020] [Indexed: 01/09/2023] Open
Abstract
Background The course of coronavirus disease 2019 (COVID-19) seems to be aggravated by air pollution, and some industrial chemicals, such as the perfluorinated alkylate substances (PFASs), are immunotoxic and may contribute to an association with disease severity. Methods From Danish biobanks, we obtained plasma samples from 323 subjects aged 30–70 years with known SARS-CoV-2 infection. The PFAS concentrations measured at the background exposures included five PFASs known to be immunotoxic. Register data was obtained to classify disease status, other health information, and demographic variables. We used ordered logistic regression analyses to determine associations between PFAS concentrations and disease outcome. Results Plasma-PFAS concentrations were higher in males, in subjects with Western European background, and tended to increase with age, but were not associated with the presence of chronic disease. Of the study population, 108 (33%) had not been hospitalized, and of those hospitalized, 53 (16%) had been in intensive care or were deceased. Among the five PFASs considered, perfluorobutanoic acid (PFBA) showed an unadjusted odds ratio (OR) of 2.19 (95% confidence interval, CI, 1.39–3.46) for increasing severities of the disease. Among those hospitalized, the fully adjusted OR for getting into intensive care or expiring was 5.18 (1.29, 20.72) when based on plasma samples obtained at the time of diagnosis or up to one week before. Conclusions Measures of individual exposures to immunotoxic PFASs included short-chain PFBA known to accumulate in the lungs. Elevated plasma-PFBA concentrations were associated with an increased risk of a more severe course of COVID-19. Given the low background exposure levels in this study, the role of exposure to PFASs in COVID-19 needs to be ascertained in populations with elevated exposures.
Collapse
|
255
|
Gałęzowska G, Rogowska J, Olkowska E, Ratajczyk W, Wolska L. Environmental Risk Assessment Resulting from Sediment Contamination with Perfluoroalkyl Substances. Molecules 2020; 26:E116. [PMID: 33383779 PMCID: PMC7795547 DOI: 10.3390/molecules26010116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 01/06/2023] Open
Abstract
Due to wide use of perfluoroalkyl substances (PFASs) (e.g., in metal-plating, in fire-fighting foam, lubricants) and their resistance to degradation, they occur widely in the environment. The aim of this study was to estimate the environmental risk resulting from the presence of PFASs in the Gulf of Gdansk. Therefore, 17 PFASs concentrations were determined using ultra performance liquid chromatography with tandem mass spectrometry detection (UPLC-MS/MS). Additionally, sediment ecotoxicity was investigated. The results of the chemical analysis were used to asses environmental risk of PFASs. In samples collected around discharge collectors from a wastewater treatment plant and the Vistula mouth, Σ17PFASs values were 0.00403 ÷ 40.6 and 0.509 ÷ 614 ng/g d.w., respectively. In samples collected around discharge collectors, PFHxA, PFPeA, PFHpA, and PFOA were dominating, while at the Vistula River mouth, PFHxS, PFDS, and PFBS were prevalent. For most sediments, no toxic effect was observed in the toxicity tests with Heterocypris inconguens and Aliivibrio ficsheri. There was no observed correlation between the PFASs level and their ecotoxicity. Generally, the results of environmental risk assessment indicate that the PFASs would not generate high impact on the aquatic life (five water samples have shown medium risk related to PFBS and PFDoA).
Collapse
Affiliation(s)
| | - Justyna Rogowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204 Gdansk, Poland; (G.G.); (E.O.); (W.R.); (L.W.)
| | | | | | | |
Collapse
|
256
|
Buoso E, Masi M, Racchi M, Corsini E. Endocrine-Disrupting Chemicals' (EDCs) Effects on Tumour Microenvironment and Cancer Progression: Emerging Contribution of RACK1. Int J Mol Sci 2020; 21:E9229. [PMID: 33287384 PMCID: PMC7729595 DOI: 10.3390/ijms21239229] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Endocrine disruptors (EDCs) can display estrogenic and androgenic effects, and their exposure has been linked to increased cancer risk. EDCs have been shown to directly affect cancer cell regulation and progression, but their influence on tumour microenvironment is still not completely elucidated. In this context, the signalling hub protein RACK1 (Receptor for Activated C Kinase 1) could represent a nexus between cancer and the immune system due to its roles in cancer progression and innate immune activation. Since RACK1 is a relevant EDCs target that responds to steroid-active compounds, it could be considered a molecular bridge between the endocrine-regulated tumour microenvironment and the innate immune system. We provide an analysis of immunomodulatory and cancer-promoting effects of different EDCs in shaping tumour microenvironment, with a final focus on the scaffold protein RACK1 as a pivotal molecular player due to its dual role in immune and cancer contexts.
Collapse
Affiliation(s)
- Erica Buoso
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Mirco Masi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
- Classe di Scienze Umane e della Vita (SUV), Scuola Universitaria Superiore IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| |
Collapse
|
257
|
Brown JB, Conder JM, Arblaster JA, Higgins CP. Assessing Human Health Risks from Per- and Polyfluoroalkyl Substance (PFAS)-Impacted Vegetable Consumption: A Tiered Modeling Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15202-15214. [PMID: 33200604 DOI: 10.1021/acs.est.0c03411] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Irrigation water or soil contaminated with per- and polyfluoroalkyl substances (PFASs) raises concerns among regulators tasked with protecting human health from potential PFAS-contaminated food crops, with several studies identifying crop uptake as an important exposure pathway. We estimated daily dietary exposure intake of individual PFASs in vegetables for children and adults using Monte Carlo simulation in a tiered stochastic modeling approach: exposures were the highest for young children (1-2 years > adults > 3-5 years > 6-11 years > 12-19 years). Using the lowest available human health toxicity reference values (RfDs) and no additional exposure, estimated fifth percentile risk-based threshold concentrations in irrigation water were 38 ng/L (median 180 ng/L) for perfluorooctanoate (PFOA) and 140 ng/L (median 850 ng/L) for perfluorooctane sulfonate (PFOS). Thus, consumption of vegetables irrigated with PFAS-impacted water that meets the current 70 ng/L of PFOA and PFOS U.S. Environmental Protection Agency's lifetime health advisory for drinking water may or may not be protective of vegetable exposures to these contaminants. Hazard analyses using real-world PFAS-contaminated groundwater data for a hypothetical farm showed estimated exposures to most PFASs exceeding available or derived RfDs, indicating water-to-crop transfer is an important exposure pathway for communities with PFAS-impacted irrigation water.
Collapse
Affiliation(s)
- Juliane B Brown
- Department of Civil and Environmental Engineering, 1500 Illinois St., Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jason M Conder
- Geosyntec Consultants, 2100 Main St., Suite 150, Huntington Beach, California 92648, United States
| | | | - Christopher P Higgins
- Department of Civil and Environmental Engineering, 1500 Illinois St., Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
258
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Sánchez JÁ, Blagojevic B, Fürst P, Garin‐Bastuji B, Jensen HE, Paulsen P, Baert K, Barrucci F, Broglia A, Georgiadis M, Hempen M, Hilbert F. Evaluation of public and animal health risks in case of a delayed post-mortem inspection in ungulates. EFSA J 2020; 18:e06307. [PMID: 33304413 PMCID: PMC7716243 DOI: 10.2903/j.efsa.2020.6307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The potential effects of a 24 or 72-h delay in post-mortem inspection (PMI) of ungulates on public health and monitoring of animal health and welfare was evaluated. The assessment used a survey of meat inspectors, expert opinion, literature search and a stochastic model for Salmonella detection sensitivity. Disease detection sensitivity at a delayed PMI is expected to reduce detection sensitivity to a variable extent, depending on the hazard and on the signs/lesions and organs involved. No reduction is expected for Trichinella detection in meat from susceptible animal species and any decrease in detection of transmissible spongiform encephalopathies (TSEs) will not exceed the current tolerance for fallen stock. A 24-h delay in PMI could result in a small reduction in sensitivity of detection for tuberculosis, echinococcosis and cysticercosis. A greater reduction is expected for the detection of pyaemia and Rift valley fever. For the detection of Salmonella, the median model estimates are a reduction of sensitivity of 66.5% (90% probability interval (PI) 0.08-99.75%) after 24-h delay and 94% (90% PI 0.83-100%) after 72-h delay of PMI. Laboratory testing for tuberculosis following a sampling delay of 24-72 h could result in no, or a moderate, decrease in detection depending on the method of confirmation used (PCR, culture, histopathology). For chemical contaminants, a delay in meat inspection of 24 or 72 h is expected to have no impact on the effectiveness of detection of persistent organic pollutants and metals. However, for certain pharmacologically active substances, there will be a reduced effectiveness to detect some of these substances due to potential degradation in the available matrices (tissues and organs) and the non-availability of specific preferred matrices of choice.
Collapse
|
259
|
Kaiser AM, Aro R, Kärrman A, Weiss S, Hartmann C, Uhl M, Forsthuber M, Gundacker C, Yeung LWY. Comparison of extraction methods for per- and polyfluoroalkyl substances (PFAS) in human serum and placenta samples-insights into extractable organic fluorine (EOF). Anal Bioanal Chem 2020; 413:865-876. [PMID: 33215313 PMCID: PMC7809006 DOI: 10.1007/s00216-020-03041-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/25/2020] [Accepted: 11/02/2020] [Indexed: 01/31/2023]
Abstract
Since the detection of per- and polyfluoroalkyl substances (PFAS) in humans and different environmental media in the last two decades, this substance group has attracted a lot of attention as well as increasing concerns. The fluorine mass balance approach, by comparing the levels of targeted PFAS after conversion to fluorine equivalents with those of extractable organic fluorine (EOF), showed the presence of unidentified organofluorine in different environmental samples. Out of the thousands of PFAS in existence, only a very small fraction is included in routine analysis. In recent years, liquid chromatography coupled with tandem-mass spectrometry (LC-MS/MS) has demonstrated the ability to analytically cover a wide spectrum of PFAS. In contrast, conventional extraction methods developed 10 to 15 years ago were only evaluated for a limited number of PFAS. The aim of the present study was to evaluate the advantages and disadvantages of three different extraction methods, adapted from the literatures without further optimization (ion-pair liquid-liquid extraction, solid-phase extraction (SPE), using hydrophilic-lipophilic (HLB) or weak anion exchange (WAX) sorbents), for human biomonitoring of 61 PFAS in serum and placental tissue samples. In addition, levels of EOF were compared among these extraction methods via spiked samples. Results showed that performance, in terms of recovery, differed between the extraction methods for different PFAS; different extraction methods resulted in different EOF concentrations indicating that the choice of extraction method is important for target PFAS and EOF analysis. Results of maternal serum samples, analyzed in two different laboratories using two different extraction methods, showed an accordance of 107.6% (± 21.3); the detected perfluoroalkyl acids (PFAAs) in maternal and cord serum samples were in the range of 0.076 to 2.9 ng/mL. Graphical abstract![]()
Collapse
Affiliation(s)
- Andreas-Marius Kaiser
- Environment Agency Austria, Spittelauer Lände 5, 1090, Vienna, Austria. .,Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090, Vienna, Austria.
| | - Rudolf Aro
- Man-Technology-Environment Research Centre (MTM), Örebro University, 701 82, Örebro, Sweden
| | - Anna Kärrman
- Man-Technology-Environment Research Centre (MTM), Örebro University, 701 82, Örebro, Sweden
| | - Stefan Weiss
- Environment Agency Austria, Spittelauer Lände 5, 1090, Vienna, Austria
| | | | - Maria Uhl
- Environment Agency Austria, Spittelauer Lände 5, 1090, Vienna, Austria
| | - Martin Forsthuber
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090, Vienna, Austria.,Department of Environmental Health, Center for Public Health, Medical University of Vienna, 1090, Vienna, Austria
| | - Claudia Gundacker
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090, Vienna, Austria
| | - Leo W Y Yeung
- Man-Technology-Environment Research Centre (MTM), Örebro University, 701 82, Örebro, Sweden.
| |
Collapse
|
260
|
Hall SM, Patton S, Petreas M, Zhang S, Phillips AL, Hoffman K, Stapleton HM. Per- and Polyfluoroalkyl Substances in Dust Collected from Residential Homes and Fire Stations in North America. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14558-14567. [PMID: 33143410 PMCID: PMC7939574 DOI: 10.1021/acs.est.0c04869] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Over the past few years, human exposure to per- and polyfluoroalkyl substances (PFAS) has garnered increased attention. Research has focused on PFAS exposure via drinking water and diet, and fewer studies have focused on exposure in the indoor environment. To support more research on the latter exposure pathway, we conducted a study to evaluate PFAS in indoor dust. Dust samples from 184 homes in North Carolina and 49 fire stations across the United States and Canada were collected and analyzed for a suite of PFAS using liquid and gas chromatography-mass spectrometry. Fluorotelomer alcohols (FTOHs) and di-polyfluoroalkyl phosphoric acid esters (diPAPs) were the most prevalent PFAS in both fire station and house dust samples, with medians of approximately 100 ng/g dust or greater. Notably, perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonate, perfluorononanoic acid, and 6:2 diPAP were significantly higher in dust from fire stations than from homes, and 8:2 FTOH was significantly higher in homes than in fire stations. Additionally, when comparing our results to earlier published values, we see that perfluoroalkyl acid levels in residential dust appear to decrease over time, particularly for PFOA and PFOS. These results highlight a need to better understand what factors contribute to PFAS levels in dust and to understand how much dust contributes to overall human PFAS exposure.
Collapse
Affiliation(s)
- Samantha M. Hall
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, North Carolina, United States
| | - Sharyle Patton
- Commonweal, Bolinas, California, USA, 451 Mesa Road, Bolinas, California, United States
| | - Myrto Petreas
- Environmental Chemistry Laboratory, California Department of Toxic Substances Control, 700 Heinz Avenue, Berkeley, California, United States
| | - Sharon Zhang
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, North Carolina, United States
| | - Allison L. Phillips
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, North Carolina, United States
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, North Carolina, United States
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, North Carolina, United States
- CORRESPONDING AUTHOR: Heather M. Stapleton, PhD, Nicholas School of the Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, North Carolina 27708;
| |
Collapse
|
261
|
Kowalczyk J, Göckener B, Eichhorn M, Kotthoff M, Bücking M, Schafft H, Lahrssen-Wiederholt M, Numata J. Transfer of Per- and Polyfluoroalkyl Substances (PFAS) from Feed into the Eggs of Laying Hens. Part 2: Toxicokinetic Results Including the Role of Precursors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12539-12548. [PMID: 33121240 DOI: 10.1021/acs.jafc.0c04485] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A feeding study was performed to examine the bioaccumulation of per- and polyfluoroalkyl substances (PFAS) in laying hens' tissues and plasma and feed-to-egg transfer rates and half-lives. A 25 day exposure was followed by a 42 day depuration period. A target analysis revealed substantial amounts of the precursors N-methyl and N-ethyl perfluorooctane sulfonamidoacetic acid (Me- and EtFOSAA), perfluorooctane sulfonamidoacetic acid (FOSAA), and perfluorooctane sulfonamide (FOSA). In tissues and eggs, the highest bioaccumulation was found for PFHxS, PFHpS, PFOS, and PFOA. Low levels of PFHxS (all samples), PFOS, and FOSAA (in yolk) were measurable even after the depuration period. The egg elimination half-lives of PFOS and aforementioned precursors were estimated to be 4.3 days, while the transfer rates of PFOS and all precursors taken together were 0.99. The transfer rate of PFOA was around 0.49. PFHxS and PFHpS showed apparent transfer rates of >100%, which is hypothesized to indicate the presence of precursors.
Collapse
Affiliation(s)
- Janine Kowalczyk
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Bernd Göckener
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Maria Eichhorn
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Matthias Kotthoff
- University of Applied Sciences Hamm-Lippstadt, Marker Allee 76-78, 59063 Hamm, Germany
| | - Mark Bücking
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
- Monash University, School of Chemistry, 13 Rainforest Walk, Clayton, Victoria, 3800, Australia
| | - Helmut Schafft
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | | | - Jorge Numata
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
262
|
Orešič M, McGlinchey A, Wheelock CE, Hyötyläinen T. Metabolic Signatures of the Exposome-Quantifying the Impact of Exposure to Environmental Chemicals on Human Health. Metabolites 2020; 10:metabo10110454. [PMID: 33182712 PMCID: PMC7698239 DOI: 10.3390/metabo10110454] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Human health and well-being are intricately linked to environmental quality. Environmental exposures can have lifelong consequences. In particular, exposures during the vulnerable fetal or early development period can affect structure, physiology and metabolism, causing potential adverse, often permanent, health effects at any point in life. External exposures, such as the “chemical exposome” (exposures to environmental chemicals), affect the host’s metabolism and immune system, which, in turn, mediate the risk of various diseases. Linking such exposures to adverse outcomes, via intermediate phenotypes such as the metabolome, is one of the central themes of exposome research. Much progress has been made in this line of research, including addressing some key challenges such as analytical coverage of the exposome and metabolome, as well as the integration of heterogeneous, multi-omics data. There is strong evidence that chemical exposures have a marked impact on the metabolome, associating with specific disease risks. Herein, we review recent progress in the field of exposome research as related to human health as well as selected metabolic and autoimmune diseases, with specific emphasis on the impacts of chemical exposures on the host metabolome.
Collapse
Affiliation(s)
- Matej Orešič
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; (M.O.); (A.M.)
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Aidan McGlinchey
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; (M.O.); (A.M.)
| | - Craig E. Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden;
| | - Tuulia Hyötyläinen
- MTM Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
- Correspondence:
| |
Collapse
|
263
|
Coperchini F, Croce L, Ricci G, Magri F, Rotondi M, Imbriani M, Chiovato L. Thyroid Disrupting Effects of Old and New Generation PFAS. Front Endocrinol (Lausanne) 2020; 11:612320. [PMID: 33542707 PMCID: PMC7851056 DOI: 10.3389/fendo.2020.612320] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) represent a group of synthetic compounds widely used in industry plants due to their low grade of degradation, surfactant properties, thermic and flame resistance. These characteristics are useful for the industrial production, however they are also potentially dangerous for human health and for the environment. PFAS are persistent pollutants accumulating in waters and soil and recoverable in foods due to their release by food packaging. Humans are daily exposed to PFAS because these compounds are ubiquitous and, when assimilated, they are difficult to be eliminated, persisting for years both in humans and animals. Due to their persistence and potential danger to health, some old generation PFAS have been replaced by newly synthesized PFAS with the aim to use alternative compounds presumably safer for humans and the environment. Yet, the environmental pollution with PFAS remains a matter of concern worldwide and led to large-scale epidemiological studies both on plants' workers and on exposed people in the general population. In this context, strong concern emerged concerning the potential adverse effects of PFAS on the thyroid gland. Thyroid hormones play a critical role in the regulation of metabolism, and thyroid function is related to cardiovascular disease, fertility, and fetal neurodevelopment. In vitro, ex vivo data, and epidemiological studies suggested that PFASs may disrupt the thyroid hormone system in humans, with possible negative repercussions on the outcome of pregnancy and fetal-child development. However, data on the thyroid disrupting effect of PFAS remain controversial, as well as their impact on human health in different ages of life. Aim of the present paper is to review recent data on the effects of old and new generation PFAS on thyroid homeostasis. To this purpose we collected information from in vitro studies, animal models, and in vivo data on exposed workers, general population, and pregnant women.
Collapse
Affiliation(s)
- Francesca Coperchini
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Laura Croce
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Gianluca Ricci
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Flavia Magri
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Mario Rotondi
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Marcello Imbriani
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Luca Chiovato
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- *Correspondence: Luca Chiovato,
| |
Collapse
|