251
|
Guo X, Sha Y, Lv W, Pu X, Liu X, Luo Y, Hu J, Wang J, Li S, Zhao Z. Sex differences in rumen fermentation and microbiota of Tibetan goat. Microb Cell Fact 2022; 21:55. [PMID: 35392919 PMCID: PMC8991483 DOI: 10.1186/s12934-022-01783-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/26/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The gut microbiota play an important role in maintaining host metabolism, the immune system and health, while sex, genotype, diet and health have specific effects on the composition of the gut microbiota. Therefore, to explore the sex differences in the structure and function of rumen microbiota in Tibetan goats, herein we analyzed sex differences in rumen fermentation parameters, rumen microbiota and the expression of genes related to VFA transport in Tibetan goats. RESULTS The results showed that the contents of acetic acid and propionic acid in the rumen of TGM (Tibetan goat male) were significantly higher than those in TGFm (Tibetan goat female) (P < 0.05), and total VFAs was significantly higher in TGM than TGFm (P < 0.05). Expression of the VFA transport-related genes DRA, AE2, MCT-1, NHE1, and NHE2 in the rumen epithelium of TGFm was significantly higher than that in TGM. Analysis of the composition and structure of the rumen microbiota revealed significant sex differences. At the phylum level, Firmicutes and Bacteroidetes were the dominant phyla in Tibetan goats. In addition, Fibrobacteres and Spirochaetes had significantly greater relative abundances in TGFm than in TGM (P < 0.05). At the genus level, the relative abundance of Fibrobacter, Ruminococcus_1 and Pyramidobacter was significantly higher in TGFm than in TGM (P < 0.05). The functional prediction results showed that replication, recombination and repair, RNA processing and modification were mainly enriched in TGFm (P < 0.05). CONCLUSIONS Correlation analysis revealed significant associations of some rumen microbiota with the fermentation product VFAs and VFA transport-related genes. We concluded that yearling TGM and TGFm have distinct fermentation and metabolism abilities when adapting to the plateau environment, which provides a certain sex reference basis for Tibetan goat adaptation to the plateau environment.
Collapse
Affiliation(s)
- Xinyu Guo
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuzhu Sha
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Weibing Lv
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaoning Pu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiu Liu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yuzhu Luo
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiang Hu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiqing Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shaobin Li
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhidong Zhao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
252
|
Zhou Z, Wu H, Li D, Zeng W, Huang J, Wu Z. Comparison of gut microbiome in the Chinese mud snail ( Cipangopaludina chinensis) and the invasive golden apple snail ( Pomacea canaliculata). PeerJ 2022; 10:e13245. [PMID: 35402093 PMCID: PMC8992660 DOI: 10.7717/peerj.13245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/18/2022] [Indexed: 01/13/2023] Open
Abstract
Background Gut microbiota play a critical role in nutrition absorption and environmental adaptation and can affect the biological characteristics of host animals. The invasive golden apple snail (Pomacea canaliculata) and native Chinese mud snail (Cipangopaludina chinensis) are two sympatric freshwater snails with similar ecological niche in southern China. However, gut microbiota comparison of interspecies remains unclear. Comparing the difference of gut microbiota between the invasive snail P. canaliculata and native snail C. chinensis could provide new insight into the invasion mechanism of P.canaliculata at the microbial level. Methods Gut samples from 20 golden apple snails and 20 Chinese mud snails from wild freshwater habitats were collected and isolated. The 16S rRNA gene V3-V4 region of the gut microbiota was analyzed using high throughput Illumina sequencing. Results The gut microbiota dominantly composed of Proteobacteria, Bacteroidetes, Firmicutes and Epsilonbacteraeota at phylum level in golden apple snail. Only Proteobacteria was the dominant phylum in Chinese mud snail. Alpha diversity analysis (Shannon and Simpson indices) showed there were no significant differences in gut microbial diversity, but relative abundances of the two groups differed significantly (P < 0.05). Beta diversity analysis (Bray Curtis and weighted UniFrac distance) showed marked differences in the gut microbiota structure (P < 0.05). Unique or high abundance microbial taxa were more abundant in the invasive snail compared to the native form. Functional prediction analysis indicated that the relative abundances of functions differed significantly regarding cofactor prosthetic group electron carrier and vitamin biosynthesis, amino acid biosynthesis, and nucleoside and nucleotide biosynthesis (P < 0.05). These results suggest an enhanced potential to adapt to new habitats in the invasive snail.
Collapse
Affiliation(s)
- Zihao Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, China,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China
| | - Hongying Wu
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China
| | - Dinghong Li
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China
| | - Wenlong Zeng
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China
| | - Jinlong Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, China,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China,College of Life Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, China,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China
| |
Collapse
|
253
|
Duan R, Huang K, Guan X, Li S, Xia J, Shen M, Sun Z, Yu Z. Tectorigenin ameliorated high-fat diet-induced nonalcoholic fatty liver disease through anti-inflammation and modulating gut microbiota in mice. Food Chem Toxicol 2022; 164:112948. [PMID: 35390440 DOI: 10.1016/j.fct.2022.112948] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a complex pathogenesis of liver disease combined with liver inflammation and gut microbiota dysbiosis. Tectorigenin (Tg) is derived from many plants with excellent anti-inflammation activity. However, the beneficial effect of Tg on NAFLD associated with gut microbiota remained unclear. This study aimed to investigate the underlying beneficial effect of Tg on NAFLD in high-fat diet (HFD)-fed mice. Results showed that Tg alleviated lipid profiles and liver steatosis, and reduced serum lipopolysaccharide (LPS) and total bile acid (TBA) levels. Besides, RT-qPCR and Western blot suggested that Tg alleviated hepatic lipid accumulation through inhibiting the lipogenesis and promoting the lipolysis, prevented gut-derived LPS-induced liver inflammatory via restoring intestinal barrier and restraining pro-inflammatory cytokines release, meanwhile, promoted the BA circulation via activating BA receptor and promoting BA synthesis. Moreover, Tg reverted the HFD-induced gut microbial dysbiosis by promoting the growth of beneficial Akkermansia, and inhibiting the proportions of harmful microbes, including Blautia, Lachnoclostridium, Lachnospiraceae_UCG-006, Roseburia, Romboutsia and Faecalibaculum, which were highly correlated with NAFLD-related parameters in serum and liver. Thus, Tg could attenuate NAFLD through mediating the liver-gut axis, and it could be used as a dietary supplement for NAFLD treatment via its anti-inflammatory and prebiotic effects.
Collapse
Affiliation(s)
- Ruiqian Duan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China.
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Ji'an Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Meng Shen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Zhu Sun
- Inner Mongolia Yangufang Ecological Agricultural Science and Technology (Group) Co., Ltd, Inner Mongolia, PR China
| | - Zhiquan Yu
- Inner Mongolia Yangufang Ecological Agricultural Science and Technology (Group) Co., Ltd, Inner Mongolia, PR China
| |
Collapse
|
254
|
Thom C, Smith CJ, Moore G, Weir P, Ijaz UZ. Microbiomes in drinking water treatment and distribution: A meta-analysis from source to tap. WATER RESEARCH 2022; 212:118106. [PMID: 35091225 DOI: 10.1016/j.watres.2022.118106] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
A meta-analysis of existing and available Illumina 16S rRNA datasets from drinking water source, treatment and drinking water distribution systems (DWDS) were collated to compare changes in abundance and diversity throughout. Samples from bulk water and biofilm were used to assess principles governing microbial community assembly and the value of amplicon sequencing to water utilities. Individual phyla relationships were explored to identify competitive or synergistic factors governing DWDS microbiomes. The relative importance of stochasticity in the assembly of the DWDS microbiome was considered to identify the significance of source and treatment in determining communities in DWDS. Treatment of water significantly reduces overall species abundance and richness, with chlorination of water providing the most impact to individual taxa relationships. The assembly of microbial communities in the bulk water of the source, primary treatment process and DWDS is governed by more stochastic processes, as is the DWDS biofilm. DWDS biofilm is significantly different from bulk water in terms of local contribution to beta diversity, type and abundance of taxa present. Water immediately post chlorination has a more deterministic microbial assembly, highlighting the significance of this process in changing the microbiome, although elevated levels of stochasticity in DWDS samples suggest that this may not be the case at customer taps. 16S rRNA sequencing is becoming more routine, and may have several uses for water utilities, including: detection and risk assessment of potential pathogens such as those within the genera of Legionella and Mycobacterium; assessing the risk of nitrification in DWDS; providing improved indicators of process performance and monitoring for significant changes in the microbial community to detect contamination. Combining this with quantitative methods like flow cytometry will allow a greater depth of understanding of the DWDS microbiome.
Collapse
Affiliation(s)
- Claire Thom
- Infrastructure and Environment Research Division, James Watt School of Engineering, University of Glasgow, UK; Scottish Water, 6 Castle Drive Dunfermline, KY11 8GG, UK.
| | - Cindy J Smith
- Infrastructure and Environment Research Division, James Watt School of Engineering, University of Glasgow, UK
| | - Graeme Moore
- Scottish Water, 6 Castle Drive Dunfermline, KY11 8GG, UK
| | - Paul Weir
- Scottish Water, 6 Castle Drive Dunfermline, KY11 8GG, UK
| | - Umer Z Ijaz
- Infrastructure and Environment Research Division, James Watt School of Engineering, University of Glasgow, UK
| |
Collapse
|
255
|
Chen LX, Jaffe AL, Borges AL, Penev PI, Nelson TC, Warren LA, Banfield JF. Phage-encoded ribosomal protein S21 expression is linked to late-stage phage replication. ISME COMMUNICATIONS 2022; 2:31. [PMID: 37938675 PMCID: PMC9723584 DOI: 10.1038/s43705-022-00111-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 06/16/2023]
Abstract
The ribosomal protein S21 (bS21) gene has been detected in diverse viruses with a large range of genome sizes, yet its in situ expression and potential significance have not been investigated. Here, we report five closely related clades of bacteriophages (phages) represented by 47 genomes (8 curated to completion and up to 331 kbp in length) that encode a bS21 gene. The bS21 gene is on the reverse strand within a conserved region that encodes the large terminase, major capsid protein, prohead protease, portal vertex proteins, and some hypothetical proteins. Based on CRISPR spacer targeting, the predominance of bacterial taxonomic affiliations of phage genes with those from Bacteroidetes, and the high sequence similarity of the phage bS21 genes and those from Bacteroidetes classes of Flavobacteriia, Cytophagia and Saprospiria, these phages are predicted to infect diverse Bacteroidetes species that inhabit a range of depths in freshwater lakes. Thus, bS21 phages have the potential to impact microbial community composition and carbon turnover in lake ecosystems. The transcriptionally active bS21-encoding phages were likely in the late stage of replication when collected, as core structural genes and bS21 were highly expressed. Thus, our analyses suggest that the phage bS21, which is involved in translation initiation, substitutes into the Bacteroidetes ribosomes and selects preferentially for phage transcripts during the late-stage replication when large-scale phage protein production is required for assembly of phage particles.
Collapse
Affiliation(s)
- Lin-Xing Chen
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Adair L Borges
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Petar I Penev
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | | | - Lesley A Warren
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
256
|
Mutungwazi A, Ijoma GN, Ogola HJO, Matambo TS. Physico-Chemical and Metagenomic Profile Analyses of Animal Manures Routinely Used as Inocula in Anaerobic Digestion for Biogas Production. Microorganisms 2022; 10:671. [PMID: 35456722 PMCID: PMC9033126 DOI: 10.3390/microorganisms10040671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Anaerobic digestion (AD) of organic waste is considered a sustainable solution to energy shortage and waste management challenges. The process is facilitated by complex communities of micro-organisms, yet most wastes do not have these and thus need microbial inoculation using animal manures to initiate the process. However, the degradation efficiency and methane yield achieved in using different inocula vary due to their different microbial diversities. This study used metagenomics tools to compare the autochthonous microbial composition of cow, pig, chicken, and horse manures commonly used for biogas production. Cows exhibited the highest carbon utilisation (>30%) and showed a carbon to nitrogen ratio (C/N) favourable for microbial growth. Pigs showed the least nitrogen utilisation (<3%) which explains their low C/N whilst horses showed the highest nitrogen utilisation (>40%), which explains its high C/N above the optimal range of 20−30 for efficient AD. Manures from animals with similar gastrointestinal tract (GIT) physiologies were observed to largely harbour similar microbial communities. Conversely, some samples from animals with different GITs also shared common microbial communities plausibly because of similar diets and rearing conditions. Insights from this study will lay a foundation upon which in-depth studies of AD metabolic pathways and strategies to boost methane production through efficient catalysis can be derived.
Collapse
Affiliation(s)
- Asheal Mutungwazi
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa (UNISA), 28 Pioneer Ave, Cnr Christiaan De Wet & Pioneer Rds., Florida Park, Roodepoort, Johannesburg 1709, South Africa; (A.M.); (G.N.I.)
| | - Grace N. Ijoma
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa (UNISA), 28 Pioneer Ave, Cnr Christiaan De Wet & Pioneer Rds., Florida Park, Roodepoort, Johannesburg 1709, South Africa; (A.M.); (G.N.I.)
| | - Henry J. O. Ogola
- Centre for Research, Innovation and Technology, Jaramogi Oginga Odinga University of Science and Technology, Bondo P.O. Box 210-40601, Kenya;
| | - Tonderayi S. Matambo
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa (UNISA), 28 Pioneer Ave, Cnr Christiaan De Wet & Pioneer Rds., Florida Park, Roodepoort, Johannesburg 1709, South Africa; (A.M.); (G.N.I.)
| |
Collapse
|
257
|
Brinkmann S, Spohn MS, Schäberle TF. Bioactive natural products from Bacteroidetes. Nat Prod Rep 2022; 39:1045-1065. [PMID: 35315462 DOI: 10.1039/d1np00072a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Covering: up to end of January 2022Bacteria representing the phylum Bacteroidetes produce a diverse range of natural products, including polyketides, peptides and lactams. Here, we discuss unique aspects of the bioactive compounds discovered thus far, and the corresponding biosynthetic pathways if known, providing a comprehensive overview of the Bacteroidetes as a natural product reservoir.
Collapse
Affiliation(s)
- Stephan Brinkmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany.
| | - Marius S Spohn
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany.
| | - Till F Schäberle
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany. .,Institute for Insect Biotechnology, Justus Liebig University of Giessen, 35392 Giessen, Germany.,German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| |
Collapse
|
258
|
Nikolić Chenais J, Marion L, Larocque R, Jam M, Jouanneau D, Cladiere L, Le Gall S, Fanuel M, Desban N, Rogniaux H, Ropartz D, Ficko-Blean E, Michel G. Systematic comparison of eight methods for preparation of high purity sulfated fucans extracted from the brown alga Pelvetia canaliculata. Int J Biol Macromol 2022; 201:143-157. [PMID: 34968546 DOI: 10.1016/j.ijbiomac.2021.12.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022]
Abstract
Sulfated fucans from brown algae are a heterogeneous group of biologically active molecules. To learn more on their structure and to analyze and exploit their biological activities, there is a growing need to develop reliable and cost effective protocols for their preparation. In the present study, a brown alga Pelvetia canaliculata (Linnaeus) was used as a rich source of sulfated fucans. Sulfated fucan preparation methods included neutral and acidic extractions followed by purification with activated charcoal (AC), polyvinylpolypyrrolidone (PVPP), or cetylpyridinium chloride (CPC). Final products were compared in terms of yield, purity, monosaccharide composition and molecular weight. Acidic extractions provided higher yields compared to neutral ones, whereas the AC purification provided sulfated fucan products with the highest purity. Mass spectrometry analyses were done on oligosaccharides produced by the fucanase MfFcnA from the marine bacterium Mariniflexille fucanivorans. This has provided unique insight into enzyme specificity and the structural characteristics of sulfated fucans.
Collapse
Affiliation(s)
- Jasna Nikolić Chenais
- Sorbonne Université, CNRS, Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29688 Roscoff, Bretagne, France
| | - Léry Marion
- INRAE, UR BIA, F-44316 Nantes, France; INRAE, BIBS facility, PROBE infrastructure, F-44316 Nantes, France
| | - Robert Larocque
- Sorbonne Université, CNRS, Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29688 Roscoff, Bretagne, France
| | - Murielle Jam
- Sorbonne Université, CNRS, Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29688 Roscoff, Bretagne, France
| | - Diane Jouanneau
- Sorbonne Université, CNRS, Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29688 Roscoff, Bretagne, France
| | - Lionel Cladiere
- Sorbonne Université, CNRS, Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29688 Roscoff, Bretagne, France
| | - Sophie Le Gall
- INRAE, UR BIA, F-44316 Nantes, France; INRAE, BIBS facility, PROBE infrastructure, F-44316 Nantes, France
| | - Mathieu Fanuel
- INRAE, UR BIA, F-44316 Nantes, France; INRAE, BIBS facility, PROBE infrastructure, F-44316 Nantes, France
| | - Nathalie Desban
- Sorbonne Université, CNRS, Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29688 Roscoff, Bretagne, France
| | - Hélène Rogniaux
- INRAE, UR BIA, F-44316 Nantes, France; INRAE, BIBS facility, PROBE infrastructure, F-44316 Nantes, France
| | - David Ropartz
- INRAE, UR BIA, F-44316 Nantes, France; INRAE, BIBS facility, PROBE infrastructure, F-44316 Nantes, France
| | - Elizabeth Ficko-Blean
- Sorbonne Université, CNRS, Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29688 Roscoff, Bretagne, France.
| | - Gurvan Michel
- Sorbonne Université, CNRS, Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29688 Roscoff, Bretagne, France.
| |
Collapse
|
259
|
Metabolism of a hybrid algal galactan by members of the human gut microbiome. Nat Chem Biol 2022; 18:501-510. [PMID: 35289327 DOI: 10.1038/s41589-022-00983-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
Native porphyran is a hybrid of porphryan and agarose. As a common element of edible seaweed, this algal galactan is a frequent component of the human diet. Bacterial members of the human gut microbiota have acquired polysaccharide utilization loci (PULs) that enable the metabolism of porphyran or agarose. However, the molecular mechanisms that underlie the deconstruction and use of native porphyran remains incompletely defined. Here, we have studied two human gut bacteria, porphyranolytic Bacteroides plebeius and agarolytic Bacteroides uniformis, that target native porphyran. This reveals an exo-based cycle of porphyran depolymerization that incorporates a keystone sulfatase. In both PULs this cycle also works together with a PUL-encoded agarose depolymerizing machinery to synergistically reduce native porphyran to monosaccharides. This provides a framework for understanding the deconstruction of a hybrid algal galactan, and insight into the competitive and/or syntrophic relationship of gut microbiota members that target rare nutrients.
Collapse
|
260
|
Huang L, Xie T, Wang Y, Tan S, Lu Z, Wang L, Mo C. Symbiotic treatment of ammonia-nitrogen wastewater by algae and activated sludge: effects of algae and sludge inoculation rates. ENVIRONMENTAL TECHNOLOGY 2022:1-11. [PMID: 35184701 DOI: 10.1080/09593330.2022.2044919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
A symbiotic microalgal-bacterial system may be an optional technology for wastewater treatment. It was composed of microalgae and activated sludge and established in the SBR to explore the effect of different dosing ratios of algae and sludge on the removal of nitrogen and phosphorus from simulated wastewater containing ammonium. It can be seen from the result that varied algae-sludge dosing ratios had a higher removal effect on COD removal, but the difference was not significant. The algal-bacterial symbiosis system had a 100% removal rate for ammonium removal on the 8th day. Relatively speaking, the removal of nutrients and related mechanisms vary with environmental conditions (inoculation rate). In general, when the additive ratio was 5:1 (algae: AS), the removal rate of TN and TP was the highest, reaching 53.85% and 85.13% in the shortest time (14 days), among them, the removal rate of ammonium and COD was 100%, and the reduction rates of Nitrite nitrogen and Nitrate nitrogen were 362.99% and 73.42%, respectively. In addition, 16S rDNA gene analysis results demonstrated that the microbial community in the reactor with algal sludge inoculation ratio of 5:1 had differences in three stages of the initial reaction, the middle reaction and the end of the reaction. Comamonadaceae, Flavobacterium, Paenarthrobacter, Mesorhizobium, Nitrobacter were enriched during the reaction operation.
Collapse
Affiliation(s)
- Lizhen Huang
- School of Resources, Environment and Materials Guangxi University, Nanning, the People's Republic of China
| | - Ting Xie
- School of Materials and Environment, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, the People's Republic of China
| | - Yilin Wang
- School of Resources, Environment and Materials Guangxi University, Nanning, the People's Republic of China
| | - Shun Tan
- School of Resources, Environment and Materials Guangxi University, Nanning, the People's Republic of China
| | - Zuyi Lu
- School of Resources, Environment and Materials Guangxi University, Nanning, the People's Republic of China
| | - Lujie Wang
- School of Resources, Environment and Materials Guangxi University, Nanning, the People's Republic of China
| | - Chuangrong Mo
- School of Resources, Environment and Materials Guangxi University, Nanning, the People's Republic of China
| |
Collapse
|
261
|
Yang B, Cui Z, Ning M, Chen Y, Wu Z, Huang H. Variation in the intestinal microbiota at different developmental stages of Hynobius maoershanensis. Ecol Evol 2022; 12:e8712. [PMID: 35342562 PMCID: PMC8931708 DOI: 10.1002/ece3.8712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 11/11/2022] Open
Abstract
Intestinal microbiota play an important role in the life of amphibians and its composition may vary by developmental stage. In this study, 16S rRNA high-throughput sequencing was used to profile the intestinal microbiota of Hynobius maoershanensis, which exclusively inhabit the Maoer Mountain swamp at an altitude of approximately 2,000 m. We characterized the bacterial composition, structure, and function of the microbiota of H. maoershanensis at different developmental stages. The alpha diversity was not markedly different for the Simpson, Shannon, Ace, and Sobs indices of microbes. The beta diversity revealed that there were age-related differences in the structure of the intestinal microbes of H. maoershanensis, specifically, at the phylum level. Bacteroidetes and Proteobacteria were the dominant bacteria present in the adult stage, and the relative abundance of Bacteroidetes was significantly higher compared with that of tadpoles. Firmicutes and Proteobacteria were the dominant phylum during the tadpole stage and their relative abundance was significantly higher compared with the adult period. Functional analysis revealed that the pathways associated with organismal systems and metabolism were significantly enriched in the adults, whereas human diseases, genetic information processing, and cellular processes were more enriched in the hindlimb bud stage. Human diseases and environmental information processing were more enriched in the forelimb bud stage at KEGG pathway level 1. Possibilities for the observed discrepancies include the adaptation to eating habits and the remodeling of the intestines during development. We speculated that H. maoershanensis adults may be more suitable to a high-fiber diet, whereas the tadpoles are associated with a carnivorous diet. Our study provides evidence of variations in the intestinal microbiota during development in amphibians, highlighting the influence of historical developments on the intestinal microbiota and an increased understanding of the importance of physiological characteristics in shaping the intestinal microbiota of amphibians. These data will help us formulate more effective protection measures for H. maoershanensis.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Zhenzhen Cui
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Meihong Ning
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Yu Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Huayuan Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| |
Collapse
|
262
|
Soong YHV, Sobkowicz MJ, Xie D. Recent Advances in Biological Recycling of Polyethylene Terephthalate (PET) Plastic Wastes. Bioengineering (Basel) 2022; 9:98. [PMID: 35324787 PMCID: PMC8945055 DOI: 10.3390/bioengineering9030098] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
Polyethylene terephthalate (PET) is one of the most commonly used polyester plastics worldwide but is extremely difficult to be hydrolyzed in a natural environment. PET plastic is an inexpensive, lightweight, and durable material, which can readily be molded into an assortment of products that are used in a broad range of applications. Most PET is used for single-use packaging materials, such as disposable consumer items and packaging. Although PET plastics are a valuable resource in many aspects, the proliferation of plastic products in the last several decades have resulted in a negative environmental footprint. The long-term risk of released PET waste in the environment poses a serious threat to ecosystems, food safety, and even human health in modern society. Recycling is one of the most important actions currently available to reduce these impacts. Current clean-up strategies have attempted to alleviate the adverse impacts of PET pollution but are unable to compete with the increasing quantities of PET waste exposed to the environment. In this review paper, current PET recycling methods to improve life cycle and waste management are discussed, which can be further implemented to reduce plastics pollution and its impacts on health and environment. Compared with conventional mechanical and chemical recycling processes, the biotechnological recycling of PET involves enzymatic degradation of the waste PET and the followed bioconversion of degraded PET monomers into value-added chemicals. This approach creates a circular PET economy by recycling waste PET or upcycling it into more valuable products with minimal environmental footprint.
Collapse
Affiliation(s)
- Ya-Hue Valerie Soong
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Margaret J. Sobkowicz
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| |
Collapse
|
263
|
Captivity Shifts Gut Microbiota Communities in White-Lipped Deer (Cervus albirostris). Animals (Basel) 2022; 12:ani12040431. [PMID: 35203139 PMCID: PMC8868073 DOI: 10.3390/ani12040431] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Captivity is a common conservation method for endangered animals. However, a growing number of recent studies have shown that some animals in captivity might be in sub-health condition. The gut microbiota has been described as a complex, interactive internal system that has effects on diseases of the host with many interactions, and the occurrence of certain diseases is accompanied by changes and disorder of gut microbiota. We used16S rRNA sequencing technology and a mathematical model to find differences in gut microbiota composition and assembly processes. The results show that captivity might be unfavorable for white-lipped deer by shifting the gut microbiota composition and assembly process. Abstract White-lipped deer (Cervus albirostris) is a nationally protected wild animal species in China, as well as a unique and endangered species, according to the International Union for Conservation of Nature (IUCN) Red List. Captivity may alleviate the pressure from poaching and contribute to the repopulation and conservation of the population in the wild. The gut microbiota is described as a complex, interactive internal system that has effects on diseases of the host, with many interactions. However, the influence of captivity on the composition and assembly process of gut microbiota in white-lipped deer is unclear. This study applied high-throughput 16S rRNA sequencing technology to determine differences in the gut microbiota between captive (CW) and wild (WW) white-lipped deer. We used the null model, neutral community model, and niche width to identify whether captivity affects the composition and assembly process of gut microbiota. The results show that WW has a higher number of Firmicutes and a lower number of Bacteroidetes compared with CW at the phylum level, and it has more opportunistic pathogens and specific decomposition bacteria at the genus level. Principal coordinate analysis also indicated significant differences in the composition and function of gut microbiota in CW and WW. Moreover, the results reveal that captivity shifts the ecological assembly process of gut microbiota by raising the contribution of deterministic processes. In conclusion, our results demonstrate that captivity might potentially have an unfavorable effect on white-lipped deer by continually exerting selective pressure.
Collapse
|
264
|
DeBofsky A, Xie Y, Challis JK, Ankley PJ, Brinkmann M, Jones PD, Giesy JP. 16S rRNA metabarcoding unearths responses of rare gut microbiome of fathead minnows exposed to benzo[a]pyrene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151060. [PMID: 34710422 DOI: 10.1016/j.scitotenv.2021.151060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Activities of gut microbiomes are often overlooked in assessments of ecotoxicological effects of environmental contaminants. Effects of the polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP) on active gut microbiomes of juvenile fathead minnows (Pimephales promelas) were investigated. Fish were exposed for two weeks, to concentrations of 0, 1, 10, 100, or 1000 μg BaP g-1 in the diet. The active gut microbiome was characterized using 16S rRNA metabarcoding to determine its response to dietary exposure of BaP. BaP reduced alpha-diversity at the greatest exposure concentrations. Additionally, exposure to BaP altered community composition of active microbiome and resulted in differential proportion of taxa associated with hydrocarbon degradation and fish health. Neighborhood selection networks of active microbiomes were not reduced with greater concentrations of BaP, which suggests ecological resistance and/or resilience of gut microbiota. The active gut microbiome had a similar overall biodiversity as that of the genomic gut microbiota, but had a distinct composition from that of the 16S rDNA profile. Responses of alpha- and beta-diversities of the active microbiome to BaP exposure were consistent with that of genomic microbiomes. Normalized activity of microbiome via the ratio of rRNA to rDNA abundance revealed rare taxa that became active or dormant due to exposure to BaP. These differences highlight the need to assess both 16S rDNA and rRNA metabarcoding to fully derive bacterial compositional changes resulting from exposure to contaminants.
Collapse
Affiliation(s)
- Abigail DeBofsky
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Jonathan K Challis
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Phillip J Ankley
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
265
|
A widely distributed phosphate-insensitive phosphatase presents a route for rapid organophosphorus remineralization in the biosphere. Proc Natl Acad Sci U S A 2022; 119:2118122119. [PMID: 35082153 PMCID: PMC8812569 DOI: 10.1073/pnas.2118122119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2021] [Indexed: 11/24/2022] Open
Abstract
At several locations across the globe, terrestrial and marine primary production, which underpin global food security, biodiversity, and climate regulation, are limited by inorganic phosphate availability. A major fraction of the total phosphorus pool exists in organic form, requiring mineralization to phosphate by enzymes known as phosphatases prior to incorporation into cellular biomolecules. Phosphatases are typically synthesized in response to phosphate depletion, assisting with phosphorus acquisition. Here, we reveal that a unique bacterial phosphatase, PafA, is widely distributed in the biosphere and has a distinct functional role in carbon acquisition, releasing phosphate as a by-product. PafA, therefore, represents an overlooked mechanism in the global phosphorus cycle and a hitherto cryptic route for the regeneration of bioavailable phosphorus in nature. The regeneration of bioavailable phosphate from immobilized organophosphorus represents a key process in the global phosphorus cycle and is facilitated by enzymes known as phosphatases. Most bacteria possess at least one of three phosphatases with broad substrate specificity, known as PhoA, PhoX, and PhoD, whose activity is optimal under alkaline conditions. The production and activity of these phosphatases is repressed by phosphate availability. Therefore, they are only fully functional when bacteria experience phosphorus-limiting growth conditions. Here, we reveal a previously overlooked phosphate-insensitive phosphatase, PafA, prevalent in Bacteroidetes, which is highly abundant in nature and represents a major route for the regeneration of environmental phosphate. Using the enzyme from Flavobacterium johnsoniae, we show that PafA is highly active toward phosphomonoesters, is fully functional in the presence of excess phosphate, and is essential for growth on phosphorylated carbohydrates as a sole carbon source. These distinct properties of PafA may expand the metabolic niche of Bacteroidetes by enabling the utilization of abundant organophosphorus substrates as C and P sources, providing a competitive advantage when inhabiting zones of high microbial activity and nutrient demand. PafA, which is constitutively synthesized by soil and marine flavobacteria, rapidly remineralizes phosphomonoesters releasing bioavailable phosphate that can be acquired by neighboring cells. The pafA gene is highly diverse in plant rhizospheres and is abundant in the global ocean, where it is expressed independently of phosphate availability. PafA therefore represents an important enzyme in the context of global biogeochemical cycling and has potential applications in sustainable agriculture.
Collapse
|
266
|
Madhubalaji CK, Ravi S, Mudliar SN. Unraveling of Chlorella-associated bacterial load, diversity, and their imputed functions at high- and low-yield conditions through metagenome sequencing. JOURNAL OF PHYCOLOGY 2022; 58:133-145. [PMID: 34850388 DOI: 10.1111/jpy.13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Chlorella-associated bacteria can have a significant influence on facilitating higher Chlorella biomass yield due to their symbiotic relationship. In this study, non-axenic Chlorella was cultivated in an airlift photobioreactor at high and low-yield conditions. The associated bacterial diversity was analyzed using 16S rRNA metagenome sequencing. At high-yield conditions, the bacterial load was observed in the range of 108 -1010 CFU · mL-1 , whereas at low-yield conditions, bacteria were more dominant and observed in the range of 1014 -1015 CFU · mL-1 . The majority of the bacterial species associated with Chlorella at high-yield conditions belongs to Proteobacteria and Bacteroidetes. Further, Bacteroidetes levels were decreased at low-yield conditions and were highly diversified with Planctomycetes, Firmicutes, and 18 others. Predicted functional genes indicated that Chlorella-associated bacteria have the enzymes involved in the metabolism and biosynthesis of B-complex vitamins (i.e., vitamin B12 , thiamin, biotin, pyridoxine, and riboflavin). A critical evaluation revealed that vitamin biosynthesis genes were more abundant at low-yield conditions; however, vitamin B12 transport genes (B12 transport ATP-binding protein, B12 substrate-binding transportation, and B12 permease protein) were less abundant, indicating even though vitamins production occurs, but their availability to Chlorella was limited due to the lack of vitamin transport genes. Further, at high yield, Chlorella-associated bacteria enabled higher growth by supplementing the vitamins. In contrast, at low-yield condition-an increased bacterial load, diversity, and limited vitamin transport functional genes affected the Chlorella yield. It can be inferred that Chlorella yield was significantly affected by three factors: associated bacterial load, diversity, and transport functional genes of vitamins.
Collapse
Affiliation(s)
- Chegu Krishnamurthi Madhubalaji
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sarada Ravi
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sandeep N Mudliar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
267
|
Zhang Q, Fu L, Gui Y, Miao J, Li J. Complete genome sequence of Polaribacter sejongensis NJDZ03 exhibiting diverse macroalgal polysaccharide-degrading activity. Mar Genomics 2022; 61:100913. [DOI: 10.1016/j.margen.2021.100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/28/2021] [Accepted: 10/16/2021] [Indexed: 11/30/2022]
|
268
|
Reilly LM, Hu Y, von Schaumburg PC, de Oliveira MRD, He F, Rodriguez-Zas SL, Southey BR, Parsons CM, Utterback P, Lambrakis L, da Costa DV, Bertechini AG, Saad FMOB, de Godoy MRC. Chemical composition of selected insect meals and their effect on apparent total tract digestibility, fecal metabolites, and microbiota of adult cats fed insect-based retorted diets. J Anim Sci 2022; 100:6518149. [PMID: 35100391 PMCID: PMC8903139 DOI: 10.1093/jas/skac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/28/2022] [Indexed: 02/02/2023] Open
Abstract
Insect meals are novel and potentially sustainable protein sources. The objectives of this study were to determine the chemical composition and standardized amino acid digestibility using the cecectomized rooster model of three selected insect meals (i.e., speckled cockroach [SC], Madagascar hissing cockroach [MC], and superworm [SW]) and to determine the effects of these insect meals on food intake, apparent total tract digestibility (ATTD) of macronutrients, fecal scores, and metabolites of adult cats fed insect- or chicken-based retorted diets. This study consisted of a complete randomized design, with 28 adult cats randomly assigned to one of the four experimental retorted diets: Control (chicken-based diet), SC diet, MC diet, or SW diet. All animal procedures were approved by the University of Illinois Institutional Animal Care and Use Committee. All diets were formulated to be complete and balanced and meet or exceed the nutritional requirements of adult cats. The experimental period was 28 d, with the first 7 d allotted for diet adaptation. The total fecal collection was completed during the last 4 d of the experimental period. On day 21, a fresh fecal sample from each cat was collected for the determination of fecal metabolites and microbiota. Food was offered twice daily to maintain body weight and body condition score. Among the three selected insect meals evaluated, oleic acid, palmitic acid, linoleic acid, and stearic acid were the most prevalent fatty acids. Branched-chain amino acids and arginine were the most preponderant indispensable amino acids in these insect meals. ATTD of dry matter, organic matter, acid-hydrolyzed fat, and crude protein did not differ among treatments (P > 0.05), and all diets were well digested by the cats. Similarly, fecal scores did not differ among the treatments and were within ideal range. No differences (P > 0.05) in fecal metabolite concentrations or microbiota diversity were observed among cats fed different experimental diets; only a few genera from Firmicutes and Bacteroidota phyla differ (P < 0.05) in cats fed SW diet in contrast to other dietary treatments. In conclusion, the selected insect meals evaluated herein are rich in linoleic acid, an essential fatty acid for cats. Insect-based retorted diets led to comparable results to those achieved with a chicken-based retorted diet, suggesting that these novel protein sources might be adequate alternative ingredients in feline diets.
Collapse
Affiliation(s)
- Lauren M Reilly
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Yi Hu
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - Maiara R D de Oliveira
- ADM, Decatur, IL 62526, USA,Department of Animal Sciences, Federal University of Lavras, Minas Gerais, Brazil
| | - Fei He
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - Bruce R Southey
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Carl M Parsons
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Pam Utterback
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - Diego V da Costa
- Agricultural Sciences Institute, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Antonio G Bertechini
- ADM, Decatur, IL 62526, USA,Department of Animal Sciences, Federal University of Lavras, Minas Gerais, Brazil
| | - Flávia M O B Saad
- ADM, Decatur, IL 62526, USA,Department of Animal Sciences, Federal University of Lavras, Minas Gerais, Brazil
| | - Maria R C de Godoy
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA,Corresponding author:
| |
Collapse
|
269
|
Screening and Application of Ligninolytic Microbial Consortia to Enhance Aerobic Degradation of Solid Digestate. Microorganisms 2022; 10:microorganisms10020277. [PMID: 35208731 PMCID: PMC8878073 DOI: 10.3390/microorganisms10020277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Recirculation of solid digestate through digesters has been demonstrated to be a potential simple strategy to increase continuous stirred-tank reactor biogas plant efficiency. This study extended this earlier work and investigated solid digestate post-treatment using liquid isolated ligninolytic aerobic consortia in order to increase methane recovery during the recirculation. Based on sampling in several natural environments, an enrichment and selection method was implemented using a Lab-scale Automated and Multiplexed (an)Aerobic Chemostat system to generate ligninolytic aerobic consortia. Then, obtained consortia were further cultivated under liquid form in bottles. Chitinophagia bacteria and Sordariomycetes fungi were the two dominant classes of microorganisms enriched through these steps. Finally, these consortia where mixed with the solid digestate before a short-term aerobic post-treatment. However, consortia addition did not increase the efficiency of aerobic post-treatment of solid digestate and lower methane yields were obtained in comparison to the untreated control. The main reason identified is the respiration of easily degradable fractions (e.g., sugars, proteins, amorphous cellulose) by the selected consortia. Thus, this paper highlights the difficulties of constraining microbial consortia to sole ligninolytic activities on complex feedstock, such as solid digestate, that does not only contain lignocellulosic structures.
Collapse
|
270
|
Zhang H, Perez-Garcia P, Dierkes RF, Applegate V, Schumacher J, Chibani CM, Sternagel S, Preuss L, Weigert S, Schmeisser C, Danso D, Pleiss J, Almeida A, Höcker B, Hallam SJ, Schmitz RA, Smits SHJ, Chow J, Streit WR. The Bacteroidetes Aequorivita sp. and Kaistella jeonii Produce Promiscuous Esterases With PET-Hydrolyzing Activity. Front Microbiol 2022; 12:803896. [PMID: 35069509 PMCID: PMC8767016 DOI: 10.3389/fmicb.2021.803896] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Certain members of the Actinobacteria and Proteobacteria are known to degrade polyethylene terephthalate (PET). Here, we describe the first functional PET-active enzymes from the Bacteroidetes phylum. Using a PETase-specific Hidden-Markov-Model- (HMM-) based search algorithm, we identified several PETase candidates from Flavobacteriaceae and Porphyromonadaceae. Among them, two promiscuous and cold-active esterases derived from Aequorivita sp. (PET27) and Kaistella jeonii (PET30) showed depolymerizing activity on polycaprolactone (PCL), amorphous PET foil and on the polyester polyurethane Impranil® DLN. PET27 is a 37.8 kDa enzyme that released an average of 174.4 nmol terephthalic acid (TPA) after 120 h at 30°C from a 7 mg PET foil platelet in a 200 μl reaction volume, 38-times more than PET30 (37.4 kDa) released under the same conditions. The crystal structure of PET30 without its C-terminal Por-domain (PET30ΔPorC) was solved at 2.1 Å and displays high structural similarity to the IsPETase. PET30 shows a Phe-Met-Tyr substrate binding motif, which seems to be a unique feature, as IsPETase, LCC and PET2 all contain Tyr-Met-Trp binding residues, while PET27 possesses a Phe-Met-Trp motif that is identical to Cut190. Microscopic analyses showed that K. jeonii cells are indeed able to bind on and colonize PET surfaces after a few days of incubation. Homologs of PET27 and PET30 were detected in metagenomes, predominantly aquatic habitats, encompassing a wide range of different global climate zones and suggesting a hitherto unknown influence of this bacterial phylum on man-made polymer degradation.
Collapse
Affiliation(s)
- Hongli Zhang
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Pablo Perez-Garcia
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
- Molecular Microbiology, Institute for General Microbiology, Kiel University, Kiel, Germany
| | - Robert F Dierkes
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Violetta Applegate
- Center for Structural Studies, Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Schumacher
- Center for Structural Studies, Heinrich-Heine-University, Düsseldorf, Germany
| | - Cynthia Maria Chibani
- Molecular Microbiology, Institute for General Microbiology, Kiel University, Kiel, Germany
| | - Stefanie Sternagel
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Lena Preuss
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Sebastian Weigert
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Christel Schmeisser
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Dominik Danso
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Juergen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Alexandre Almeida
- European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, Canada
| | - Ruth A Schmitz
- Molecular Microbiology, Institute for General Microbiology, Kiel University, Kiel, Germany
| | - Sander H J Smits
- Center for Structural Studies, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Biochemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jennifer Chow
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
271
|
Mekasha S, Linke D. Secretion Systems in Gram-Negative Bacterial Fish Pathogens. Front Microbiol 2022; 12:782673. [PMID: 34975803 PMCID: PMC8714846 DOI: 10.3389/fmicb.2021.782673] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial fish pathogens are one of the key challenges in the aquaculture industry, one of the fast-growing industries worldwide. These pathogens rely on arsenal of virulence factors such as toxins, adhesins, effectors and enzymes to promote colonization and infection. Translocation of virulence factors across the membrane to either the extracellular environment or directly into the host cells is performed by single or multiple dedicated secretion systems. These secretion systems are often key to the infection process. They can range from simple single-protein systems to complex injection needles made from dozens of subunits. Here, we review the different types of secretion systems in Gram-negative bacterial fish pathogens and describe their putative roles in pathogenicity. We find that the available information is fragmented and often descriptive, and hope that our overview will help researchers to more systematically learn from the similarities and differences between the virulence factors and secretion systems of the fish-pathogenic species described here.
Collapse
Affiliation(s)
- Sophanit Mekasha
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
272
|
Siddiqui R, Maciver SK, Khan NA. Gut microbiome-immune system interaction in reptiles. J Appl Microbiol 2022; 132:2558-2571. [PMID: 34984778 DOI: 10.1111/jam.15438] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/12/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022]
Abstract
Reptiles are ectothermic amniotes in a world dominated by endotherms. Reptiles originated more than 300 million years ago and they often dwell in polluted environments which may expose them to pathogenic micro-organisms, radiation and/or heavy metals. Reptiles also possess greater longevity and may live much longer than similar-sized land mammals, for example, turtles, tortoises, crocodiles and tuatara are long-lived reptiles living up to 100 years or more. Many recent studies have emphasized the pivotal role of the gut microbiome on its host; thus, we postulated that reptilian gut microbiome and/or its metabolites and the interplay with their robust immune system may contribute to their longevity and overall hardiness. Herein, we discuss the composition of the reptilian gut microbiome, immune system-gut microbiome cross-talk, antimicrobial peptides, reptilian resistance to infectious diseases and cancer, ageing, as well the current knowledge of the genome and epigenome of these remarkable species. Preliminary studies have demonstrated that microbial gut flora of reptiles such as crocodiles, tortoises, water monitor lizard and python exhibit remarkable anticancer and antibacterial properties, as well as comprise novel gut bacterial metabolites and antimicrobial peptides. The underlying mechanisms between the gut microbiome and the immune system may hold clues to developing new therapies overall for health, and possible extrapolation to exploit the ancient defence systems of reptiles for Homo sapiens benefit.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Sutherland K Maciver
- Centre for Discovery Brain Science, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
273
|
Payen A, Chen MJ, Carter TG, Kilmer RP, Bennett JM. Childhood ADHD, Going Beyond the Brain: A Meta-Analysis on Peripheral Physiological Markers of the Heart and the Gut. Front Endocrinol (Lausanne) 2022; 13:738065. [PMID: 35299964 PMCID: PMC8921263 DOI: 10.3389/fendo.2022.738065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/17/2022] [Indexed: 12/03/2022] Open
Abstract
UNLABELLED Attention-Deficit/Hyperactivity Disorder (ADHD) is the most common neurodevelopmental disorder diagnosed in children. Questions regarding its increased diagnostic rates and pharmacological treatments in developing children have led to a more holistic review of the multi-system pathophysiology observed in ADHD. The dopaminergic neurotransmitter system, known for its influence on reward-motivated behaviors and motor control, and the frontostriatal systems, that mediate motor, cognition, and behavior, are associated with ADHD's development. However, studies have shown that these neural systems do not wholly account for ADHD's multilayered and heterogeneous symptom presentation. For instance, the literature suggests that emotional dysregulation, the inability to regulate one's emotional responses to provoking stimuli, is associated with increased risk for social impairment in ADHD. A broader examination of physiological systems in children with ADHD has found potential markers in the heart-brain and gut-brain axes that correspond with certain behaviors associated with emotional dysregulation in recent studies. Hence, the purpose of this meta-analysis is to aggregate ten applicable published case studies and analyze task-related heart rate reactivity (HRR; n = 5 studies) and gut microbiota (n = 5 studies) data in children with and without ADHD. Data from a total of 531 youth with ADHD and 603 youth without ADHD revealed significant small and medium effect sizes for higher Chao1 levels and Actinobacteria levels in the ADHD group, respectively, but no evidence of altered task-related HRR. Thus, further research into multi-system psychophysiological measures of emotional dysregulation and ADHD is warranted. The clinical, empirical, and educational implications of these findings are discussed. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier PROSPERO (CRD42021236819).
Collapse
Affiliation(s)
- Ameanté Payen
- Health Psychology PhD Program, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Michelle J. Chen
- Health Psychology PhD Program, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - T. Grace Carter
- Health Psychology PhD Program, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Ryan P. Kilmer
- Health Psychology PhD Program, University of North Carolina at Charlotte, Charlotte, NC, United States
- Department of Psychological Science, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Jeanette M. Bennett
- Health Psychology PhD Program, University of North Carolina at Charlotte, Charlotte, NC, United States
- Department of Psychological Science, University of North Carolina at Charlotte, Charlotte, NC, United States
- *Correspondence: Jeanette M. Bennett,
| |
Collapse
|
274
|
Bianco A, Fancello F, Garau M, Deroma M, Atzori AS, Castaldi P, Zara G, Budroni M. Microbial and chemical dynamics of brewers' spent grain during a low-input pre-vermicomposting treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149792. [PMID: 34464790 DOI: 10.1016/j.scitotenv.2021.149792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The eco-sustainability of industrial processes relies on the proper exploitation of by-products and wastes. Recently, brewers' spent grain (BSG), the main by-product of brewing, was successfully recycled through vermicomposting to produce an organic soil conditioner. However, the pre-processing step there applied (oven-drying) resulted in high costs and the suppression of microbial species beneficial for soil fertility. To overcome these limitations, a low-input pre-processing step was here applied to better exploit BSG microbiota and to make BSG suitable for vermicomposting. During 51 days of pre-treatment, the bacterial and fungal communities of BSG were monitored by denaturing gradient gel electrophoresis (DGGE). Chemical (carbon, nitrogen, ammonium, nitrate content, dissolved organic carbon) and biochemical (dehydrogenase activity) parameters were also evaluated. Mature vermicompost obtained from pre-processed BSG was characterized considering its legal requirements (e.g., absence of pathogens and mycotoxins, lack of phytotoxicity on seeds), microbiota composition, and chemical properties. Results obtained showed that throughout the pre-process, the BSG microbiota was enriched in bacterial and fungal species of significant biotechnological and agronomic potential, including lactic acid bacteria (Weissella, Pediococcus), plant growth-promoting bacteria (Bacillus, Pseudomonas, Pseudoxhantomonas), and biostimulant yeasts (Pichia fermentans, Trichoderma reesei, Beauveria bassiana). Pre-processing increased the suitability of BSG for earthworms' activity to produce high-quality mature vermicompost.
Collapse
Affiliation(s)
- Angela Bianco
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100 Sassari, Italy - Associated Member of the JRU MIRRI-IT
| | - Francesco Fancello
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100 Sassari, Italy
| | - Matteo Garau
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100 Sassari, Italy
| | - Mario Deroma
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100 Sassari, Italy
| | - Alberto S Atzori
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100 Sassari, Italy
| | - Paola Castaldi
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100 Sassari, Italy
| | - Giacomo Zara
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100 Sassari, Italy - Associated Member of the JRU MIRRI-IT.
| | - Marilena Budroni
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100 Sassari, Italy - Associated Member of the JRU MIRRI-IT
| |
Collapse
|
275
|
Liu C, Jiang W, Yang F, Guo Y, Yao W, Cheng Y, Zhao Y, He Q. Combination of microbiome and metabolome to analyze the cross-cooperation mechanism of Echinacea purpurea polysaccharide with gut microbiota in vitro and in vivo. Food Funct 2022; 13:10069-10082. [DOI: 10.1039/d2fo02336a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Echinacea purpurea polysaccharide (EPP) is a functional compound in Echinacea purpurea. At the present, it is generally recognized that plant polysaccharides can regulate the intestinal microecology, but there are few...
Collapse
|
276
|
Chen P, Lei S, Tong M, Chang Q, Zheng B, Zhang Y, Zeng H. Effect of polysaccharide fractions from Fortunella margarita on the fecal microbiota of mice and SCFA production in vitro. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
277
|
Li F, Yang S, Zhang L, Qiao L, Wang L, He S, Li J, Yang N, Yue B, Zhou C. Comparative metagenomics analysis reveals how the diet shapes the gut microbiota in several small mammals. Ecol Evol 2022; 12:e8470. [PMID: 35136548 PMCID: PMC8809447 DOI: 10.1002/ece3.8470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
The gut microbiomes of the host are large and complex communities, which helps to maintain homeostasis, improves digestive efficiency, and promotes the development of the immune system. The small mammals distributed in Sichuan Province are the most popular species for biodiversity research in Southwest China. However, the effects of different diets on the structure and function of the gut microbial community of these small mammals are poorly understood. In this study, whole-metagenome shotgun sequencing has been used to analyze the composition and functional structures of the gut microbiota of seven small mammals in Laojunshan National Nature Reserve, Sichuan Province, China. Taxonomic classification revealed that the most abundant phyla in the gut of seven small mammals were Bacteroides, Proteobacteria, and Firmicutes. Moreover, Hafnia, Lactobacillus, and Yersinia were the most abundant genus in the gut microbiomes of these seven species. At the functional level, we annotated a series of KEGG functional pathways, six Cazy categories, and 46,163 AROs in the gut microbiomes of the seven species. Comparative analysis found that the difference in the gut microbiomes between the Soricidea and Muridae concentrated on the increase in the F/B (Firmicutes/Bacteroides) ratio in the Soricidea group, probably driven by the high-fat and -calorie digestive requirements due to their insectivorous diet. The comparative functional profiling revealed that functions related to metabolism and carbohydrates were significantly more abundant in Muridae group, which may be attributed to their high carbohydrate digestion requirements caused by their herbivorous diet. These data suggested that different diets in the host may play an important role in shaping the gut microbiota, and lay the foundation for teasing apart the influences of heritable and environmental factors on the evolution of gut microbial communities.
Collapse
Affiliation(s)
- Fengjun Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Shengzhi Yang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Linwan Zhang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Lu Qiao
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Lei Wang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Song He
- Laojunshan National Nature ReserveSichuan ProvincePingshanChina
| | - Jian Li
- Laojunshan National Nature ReserveSichuan ProvincePingshanChina
| | - Nan Yang
- Institute of Qinghai‐Tibetan PlateauSouthwest Minzu UniversityChengduChina
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
278
|
Lu Z, Li S, Li H, Wang Z, Meng D, Liu J. The gut microbiota of wild wintering great bustard ( Otis tarda dybowskii): survey data from two consecutive years. PeerJ 2021; 9:e12562. [PMID: 34909281 PMCID: PMC8641483 DOI: 10.7717/peerj.12562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/07/2021] [Indexed: 01/08/2023] Open
Abstract
Background The composition of the intestinal microbiota plays a significant role in modulating host health. It serves as a sensitive evaluation indicator and has substantial implications in protecting endangered species. Great Bustards are typical farmland-dependent wintering birds that are highly susceptible to the interference of human activities. However, information regarding their gut microbiota remains scarce. Methods To ensure a comprehensive analysis of this crucial data, we collected fecal samples from wild Great Bustards at their wintering habitat for two consecutive years. High-throughput sequencing of the 16S rRNA gene was subsequently applied to characterize their core gut microbiota and determine whether the gut microbial composition was similar or varied interannually. Results The gut microbiota of the Great Bustard was primarily comprised of four phyla: Firmicutes (82.87%), Bacteroidetes (7.98%), Proteobacteria (4.49%), and Actinobacteria (3.67%), accounting for 99.01% of the microbial community in all samples. Further analysis revealed 22 genera of core microbes and several pathogens. Notably, there were no significant differences in the alpha-diversity and beta-diversity between the two sample groups from different years. Conclusions This study provides essential information for assessing the health and developing targeted protective measures of this threatened species.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.,College of Life Sciences, Cangzhou Normal University, Cangzhou, China
| | - Sisi Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.,Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui, China
| | - Hongxia Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhucheng Wang
- College of Life Sciences, Cangzhou Normal University, Cangzhou, China
| | - Derong Meng
- College of Life Sciences, Cangzhou Normal University, Cangzhou, China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
279
|
Shekhar Bose R, Chowdhury B, Zakaria BS, Kumar Tiwari M, Ranjan Dhar B. Significance of different mixing conditions on performance and microbial communities in anaerobic digester amended with granular and powdered activated carbon. BIORESOURCE TECHNOLOGY 2021; 341:125768. [PMID: 34469818 DOI: 10.1016/j.biortech.2021.125768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Conductive materials amendment in anaerobic digestion (AD) is a promising strategy for boosting the methanogenesis process. Despite mixing is a critical parameter, the behavior of digesters amended with conductive additives upon different mixing conditions has rarely been investigated. This study investigated continuous mixing, intermittent mixing (10 min in every 12 h), and non-mixing conditions for digesters amended with granular activated carbon (GAC) and powdered activated carbon (PAC). The non-mixed GAC digester provided the highest methane yield (318 ± 28 mL/g COD) from synthetic blackwater, while intermittently mixed GAC and control exhibited similar methane yields (290-294 mL/g COD). For non-mixed systems, microbial richness and diversity increased with GAC and PAC amendment. In contrast, continuous and intermittent mixing increased microbial diversity and richness in control reactors while reduced the same in GAC and PAC amended reactors. Overall, various mixing conditions distinctly changed the degree of enrichment/retention of microbes and consequently influenced methane recovery.
Collapse
Affiliation(s)
- Raj Shekhar Bose
- Civil and Environmental Engineering, University of Alberta, Edmonton AB, Canada; School of Water Resources, Indian Institute of Technology Kharagpur, WB, India
| | - Bappi Chowdhury
- Civil and Environmental Engineering, University of Alberta, Edmonton AB, Canada
| | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, Edmonton AB, Canada
| | - Manoj Kumar Tiwari
- School of Water Resources, Indian Institute of Technology Kharagpur, WB, India
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, Edmonton AB, Canada.
| |
Collapse
|
280
|
Nakazawa-Miklasevica M, Daneberga Z, Murmane D, Kroica J, Cupane L, Isarova D, Berga-Svitina E, Masinska M, Miklasevics E. Alterations of Gut Microbiota among Children with Autism Spectrum Disorder. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2021. [DOI: 10.3103/s0891416821050104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
281
|
Chen W, Chang K, Chen J, Zhao X, Gao S. Dietary sodium butyrate supplementation attenuates intestinal inflammatory response and improves gut microbiota composition in largemouth bass (Micropterus salmoides) fed with a high soybean meal diet. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1805-1819. [PMID: 34518972 DOI: 10.1007/s10695-021-01004-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The study aimed to investigate the effects of dietary sodium butyrate (NaBT) supplementation on the gut health of largemouth bass (Micropterus salmoides) fed with a high soybean meal diet. Three isonitrogenous and isolipidic diets were formulated: a high fishmeal group (Control); a high soybean meal group (SBM), in which the 30% fishmeal protein in the Control diet was replaced by soy protein; and an NaBT group, in which 0.2% NaBT was added to the SBM diet. Each diet was fed to triplicate tanks (20 fish in each tank). After 8 weeks of feeding trial, the distal intestine and intestinal digesta of the fish in each treatment were sampled. The results showed that fishmeal replacement and NaBT supplementation did not affect fish growth performance. Dietary 0.2% NaBT supplementation improved intestinal morphology, increasing the villus width and villus height and reducing the width of lamina propria. The distal intestine of fish in the control and NaBT groups demonstrated lower activities of total superoxide dismutase (T-SOD) and glutathione peroxidase (GPx) and a lower malondialdehyde (MDA) content, compared with the fish in the SBM group. Moreover, the addition of 0.2% NaBT in the feed significantly decreased the expression of tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) compared to the SBM diet. PCoA and UPGMA analyses based on weighted UniFrac distances demonstrated that intestinal microbial communities in the NaBT group were closer to those in the control group than to those in the SBM group. In addition, dietary 0.2% NaBT supplementation significantly increased the abundance of Firmicutes and Bacteroidetes and decreased the abundance of Tenericutes at the phylum level. Furthermore, the abundance of Bacteroides, Lachnospiraceae_unclassified, and Lachnospiraceae_uncultured was significantly increased, while that of Mycoplasma was significantly decreased in fish intestine at NaBT group at the genus level. In conclusion, dietary NaBT supplementation had beneficial roles in protecting the gut health of largemouth bass from the impairments caused by soybean meal.
Collapse
Affiliation(s)
- Weijun Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
| | - Kuo Chang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
| | - Jialong Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
| | - Xiaoyu Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
| | - Shiyang Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
| |
Collapse
|
282
|
Tomek MB, Janesch B, Braun ML, Taschner M, Figl R, Grünwald-Gruber C, Coyne MJ, Blaukopf M, Altmann F, Kosma P, Kählig H, Comstock LE, Schäffer C. A Combination of Structural, Genetic, Phenotypic and Enzymatic Analyses Reveals the Importance of a Predicted Fucosyltransferase to Protein O-Glycosylation in the Bacteroidetes. Biomolecules 2021; 11:1795. [PMID: 34944439 PMCID: PMC8698959 DOI: 10.3390/biom11121795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
Diverse members of the Bacteroidetes phylum have general protein O-glycosylation systems that are essential for processes such as host colonization and pathogenesis. Here, we analyzed the function of a putative fucosyltransferase (FucT) family that is widely encoded in Bacteroidetes protein O-glycosylation genetic loci. We studied the FucT orthologs of three Bacteroidetes species-Tannerella forsythia, Bacteroides fragilis, and Pedobacter heparinus. To identify the linkage created by the FucT of B. fragilis, we elucidated the full structure of its nine-sugar O-glycan and found that l-fucose is linked β1,4 to glucose. Of the two fucose residues in the T. forsythia O-glycan, the fucose linked to the reducing-end galactose was shown by mutational analysis to be l-fucose. Despite the transfer of l-fucose to distinct hexose sugars in the B. fragilis and T. forsythia O-glycans, the FucT orthologs from B. fragilis, T. forsythia, and P. heparinus each cross-complement the B. fragilis ΔBF4306 and T. forsythia ΔTanf_01305 FucT mutants. In vitro enzymatic analyses showed relaxed acceptor specificity of the three enzymes, transferring l-fucose to various pNP-α-hexoses. Further, glycan structural analysis together with fucosidase assays indicated that the T. forsythia FucT links l-fucose α1,6 to galactose. Given the biological importance of fucosylated carbohydrates, these FucTs are promising candidates for synthetic glycobiology.
Collapse
Affiliation(s)
- Markus B. Tomek
- NanoGlycobiology Unit, Institute of Biologically Inspired Materials, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria; (M.B.T.); (B.J.); (M.L.B.); (M.T.)
| | - Bettina Janesch
- NanoGlycobiology Unit, Institute of Biologically Inspired Materials, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria; (M.B.T.); (B.J.); (M.L.B.); (M.T.)
| | - Matthias L. Braun
- NanoGlycobiology Unit, Institute of Biologically Inspired Materials, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria; (M.B.T.); (B.J.); (M.L.B.); (M.T.)
| | - Manfred Taschner
- NanoGlycobiology Unit, Institute of Biologically Inspired Materials, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria; (M.B.T.); (B.J.); (M.L.B.); (M.T.)
| | - Rudolf Figl
- Institute of Biochemistry, Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Vienna, Austria; (R.F.); (C.G.-G.); (F.A.)
| | - Clemens Grünwald-Gruber
- Institute of Biochemistry, Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Vienna, Austria; (R.F.); (C.G.-G.); (F.A.)
| | - Michael J. Coyne
- Department of Microbiology and the Duchossois Family Institute, University of Chicago, KCBD, 900 E. 57th Street, Chicago, IL 60637, USA; (M.J.C.); (L.E.C.)
| | - Markus Blaukopf
- Institute of Organic Chemistry, Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Vienna, Austria; (M.B.); (P.K.)
| | - Friedrich Altmann
- Institute of Biochemistry, Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Vienna, Austria; (R.F.); (C.G.-G.); (F.A.)
| | - Paul Kosma
- Institute of Organic Chemistry, Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Vienna, Austria; (M.B.); (P.K.)
| | - Hanspeter Kählig
- Department of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, A-1090 Vienna, Austria;
| | - Laurie E. Comstock
- Department of Microbiology and the Duchossois Family Institute, University of Chicago, KCBD, 900 E. 57th Street, Chicago, IL 60637, USA; (M.J.C.); (L.E.C.)
| | - Christina Schäffer
- NanoGlycobiology Unit, Institute of Biologically Inspired Materials, Department of NanoBiotechnology, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria; (M.B.T.); (B.J.); (M.L.B.); (M.T.)
| |
Collapse
|
283
|
Santiago LD, DeLeon-Rodriguez N, LaSanta-Pagán K, Hatt JK, Kurt Z, Massol-Deyá A, Konstantinidis KT. Microbial diversity in a military impacted lagoon (Vieques, Puerto Rico) and description of "Candidatus Biekeibacterium resiliens" gen. nov., sp. nov. comprising a new bacterial family. Syst Appl Microbiol 2021; 45:126288. [PMID: 34933230 DOI: 10.1016/j.syapm.2021.126288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
The Anones Lagoon, located in the Island Municipality of Vieques, Puerto Rico (PR), received extensive bombing by the US Navy during military exercises for decades until 2003 when military activities ceased. Here, we employed shotgun metagenomic sequencing to investigate how microbial communities responded to pollution by heavy metals and explosives at this lagoon. Sediment samples (0-5 cm) from Anones were collected in 2005 and 2014 and compared to samples from two reference lagoons, i.e., Guaniquilla, Cabo Rojo (a natural reserve) and Condado, San Juan (PR's capital city). Consistent with low anthropogenic inputs, Guaniquilla exhibited the highest degree of diversity with a lower frequency of genes related to xenobiotics metabolism between the three lagoons. Notably, a clear shift was observed in Anones, with Euryarchaeota becoming enriched (9% of total) and a concomitant increase in community diversity, by about one order of magnitude, after almost 10 years without bombing activities. In contrast, genes associated with explosives biodegradation and heavy metal transformation significantly decreased in abundance in Anones 2014 (by 91.5%). Five unique metagenome-assembled genomes (MAGs) were recovered from the Anones 2005 sample that encoded genetic determinants implicated in biodegradation of contaminants, and we propose to name one of them as "Candidatus Biekeibacterium resiliens" gen. nov., sp. nov. within the Gammaproteobacteria class. Collectively, these results provide new insights into the natural attenuation of explosive contaminants by the benthic microbial communities of the Anones lagoon and provide a reference point for assessing other similarly impacted sites and associated bioremediation efforts.
Collapse
Affiliation(s)
- Lizbeth-Dávila Santiago
- Department of Biology, University of Puerto Rico, Mayagüez, Puerto Rico; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Natasha DeLeon-Rodriguez
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | | | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Zohre Kurt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Arturo Massol-Deyá
- Department of Biology, University of Puerto Rico, Mayagüez, Puerto Rico; Casa Pueblo, Adjuntas, Puerto Rico.
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
284
|
Golisch B, Lei Z, Tamura K, Brumer H. Configured for the Human Gut Microbiota: Molecular Mechanisms of Dietary β-Glucan Utilization. ACS Chem Biol 2021; 16:2087-2102. [PMID: 34709792 DOI: 10.1021/acschembio.1c00563] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The β-glucans are a disparate group of structurally diverse polysaccharides, whose members are widespread in human diets as components of the cell walls of plants, algae, and fungi (including yeasts), and as bacterial exopolysaccharides. Individual β-glucans from these sources have long been associated with positive effects on human health through metabolic and immunological effects. Remarkably, the β-configured glucosidic linkages that define these polysaccharides render them inaccessible to the limited repertoire of digestive enzymes encoded by the human genome. As a result, the various β-glucans become fodder for the human gut microbiota (HGM) in the lower gastrointestinal tract, where they influence community composition and metabolic output, including fermentation to short chain fatty acids (SCFAs). Only recently, however, have the specific molecular systems that enable the utilization of β-glucans by select members of the HGM been fully elucidated by combined genetic, biochemical, and structural biological approaches. In the context of β-glucan structures and their effects on human nutrition and health, we summarize here the functional characterization of individual polysaccharide utilization loci (PULs) responsible for the saccharification of mixed-linkage β(1→3)/β(1→4)-glucans, β(1→6)-glucans, β(1→3)-glucans, β(1→2)-glucans, and xyloglucans in symbiotic human gut bacteria. These exemplar PULs serve as well-defined biomarkers for the prediction of β-glucan metabolic capability in individual bacterial taxa and across the global human population.
Collapse
|
285
|
Linares-Pastén JA, Hero JS, Pisa JH, Teixeira C, Nyman M, Adlercreutz P, Martinez MA, Karlsson EN. Novel xylan-degrading enzymes from polysaccharide utilizing loci of Prevotella copri DSM18205. Glycobiology 2021; 31:1330-1349. [PMID: 34142143 PMCID: PMC8631079 DOI: 10.1093/glycob/cwab056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/20/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022] Open
Abstract
Prevotella copri is a bacterium that can be found in the human gastrointestinal tract (GIT). The role of P. copri in the GIT is unclear, and elevated numbers of the microbe have been reported both in dietary fiber-induced improvement in glucose metabolism but also in conjunction with certain inflammatory conditions. These findings raised our interest in investigating the possibility of P. copri to grow on xylan, and identify the enzyme systems playing a role in digestion of xylan-based dietary fibers. Two xylan degrading polysaccharide utilizing loci (PUL10 and 15) were found in the genome, with three and eight glycoside hydrolase (GH) -encoding genes, respectively. Three of them were successfully produced in Escherichia coli: One extracellular enzyme from GH43 (subfamily 12, in PUL10, 60 kDa) and two enzymes from PUL15, one extracellular GH10 (41 kDa), and one intracellular GH43 (subfamily 137 kDa). Based on our results, we propose that in PUL15, GH10 (1) is an extracellular endo-1,4-β-xylanase, that hydrolazes mainly glucuronosylated xylan polymers to xylooligosaccharides (XOS); while, GH43_1 in the same PUL, is an intracellular β-xylosidase, catalyzing complete hydrolysis of the XOS to xylose. In PUL10, the characterized GH43_12 is an arabinofuranosidase, with a role in degradation of arabinoxylan, catalyzing removal of arabinose-residues on xylan.
Collapse
Affiliation(s)
| | - Johan Sebastian Hero
- Planta Piloto de Procesos Industriales Microbiológicos
PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB
San Miguel de Tucumán, Argentina
| | - José Horacio Pisa
- Planta Piloto de Procesos Industriales Microbiológicos
PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB
San Miguel de Tucumán, Argentina
| | - Cristina Teixeira
- Biotechnology, Department of Chemistry,
Lund University, P.O. Box 124, 221 00 Lund,
Sweden
| | - Margareta Nyman
- Department of Food Technology, Engineering and
Nutrition, Lund University, P.O. Box 124, SE-221
00 Lund, Sweden
| | - Patrick Adlercreutz
- Biotechnology, Department of Chemistry,
Lund University, P.O. Box 124, 221 00 Lund,
Sweden
| | - M Alejandra Martinez
- Planta Piloto de Procesos Industriales Microbiológicos
PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB
San Miguel de Tucumán, Argentina
- Facultad de Ciencias Exactas y
Tecnología, UNT. Av. Independencia 1800, San Miguel de
Tucumán 4000, Argentina
| | - Eva Nordberg Karlsson
- Biotechnology, Department of Chemistry,
Lund University, P.O. Box 124, 221 00 Lund,
Sweden
| |
Collapse
|
286
|
Masasa M, Kushmaro A, Kramarsky-Winter E, Shpigel M, Barkan R, Golberg A, Kribus A, Shashar N, Guttman L. Mono-specific algal diets shape microbial networking in the gut of the sea urchin Tripneustes gratilla elatensis. Anim Microbiome 2021; 3:79. [PMID: 34782025 PMCID: PMC8594234 DOI: 10.1186/s42523-021-00140-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Algivorous sea urchins can obtain energy from a diet of a single algal species, which may result in consequent changes in their gut microbe assemblies and association networks. METHODS To ascertain whether such changes are led by specific microbes or limited to a specific region in the gut, we compared the microbial assembly in the three major gut regions of the sea urchin Tripneustes gratilla elatensis when fed a mono-specific algal diet of either Ulva fasciata or Gracilaria conferta, or an algal-free diet. DNA extracts from 5 to 7 individuals from each diet treatment were used for Illumina MiSeq based 16S rRNA gene sequencing (V3-V4 region). Niche breadth of each microbe in the assembly was calculated for identification of core, generalist, specialist, or unique microbes. Network analyzers were used to measure the connectivity of the entire assembly and of each of the microbes within it and whether it altered with a given diet or gut region. Lastly, the predicted metabolic functions of key microbes in the gut were analyzed to evaluate their potential contribution to decomposition of dietary algal polysaccharides. RESULTS Sea urchins fed with U. fasciata grew faster and their gut microbiome network was rich in bacterial associations (edges) and networking clusters. Bacteroidetes was the keystone microbe phylum in the gut, with core, generalist, and specialist representatives. A few microbes of this phylum were central hub nodes that maintained community connectivity, while others were driver microbes that led the rewiring of the assembly network based on diet type through changes in their associations and centrality. Niche breadth agreed with microbes' richness in genes for carbohydrate active enzymes and correlated Bacteroidetes specialists to decomposition of specific polysaccharides in the algal diets. CONCLUSIONS The dense and well-connected microbial network in the gut of Ulva-fed sea urchins, together with animal's rapid growth, may suggest that this alga was most nutritious among the experimental diets. Our findings expand the knowledge on the gut microbial assembly in T. gratilla elatensis and strengthen the correlation between microbes' generalism or specialism in terms of occurrence in different niches and their metabolic arsenal which may aid host nutrition.
Collapse
Affiliation(s)
- Matan Masasa
- Marine Biology and Biotechnology Program, Department of Life Sciences, Ben-Gurion University of the Negev, Eilat Campus, Eilat, Israel.,Israel Oceanographic and Limnological Research, The National Center for Mariculture, P.O. Box 1212, 8811201, Eilat, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O.B. 653, 8410501, Beer-Sheva, Israel
| | - Esti Kramarsky-Winter
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O.B. 653, 8410501, Beer-Sheva, Israel
| | - Muki Shpigel
- Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel
| | - Roy Barkan
- Marine Biology and Biotechnology Program, Department of Life Sciences, Ben-Gurion University of the Negev, Eilat Campus, Eilat, Israel.,Israel Oceanographic and Limnological Research, The National Center for Mariculture, P.O. Box 1212, 8811201, Eilat, Israel
| | - Alex Golberg
- Department of Environmental Studies, Tel Aviv University, P.O. Box 39040, 6997801, Tel Aviv, Israel
| | - Abraham Kribus
- School of Mechanical Engineering, Tel Aviv University, P.O. Box 39040, 6997801, Tel Aviv, Israel
| | - Nadav Shashar
- Marine Biology and Biotechnology Program, Department of Life Sciences, Ben-Gurion University of the Negev, Eilat Campus, Eilat, Israel
| | - Lior Guttman
- Israel Oceanographic and Limnological Research, The National Center for Mariculture, P.O. Box 1212, 8811201, Eilat, Israel.
| |
Collapse
|
287
|
Shi H, Ge X, Ma X, Zheng M, Cui X, Pan W, Zheng P, Yang X, Zhang P, Hu M, Hu T, Tang R, Zheng K, Huang XF, Yu Y. A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. MICROBIOME 2021; 9:223. [PMID: 34758889 PMCID: PMC8582174 DOI: 10.1186/s40168-021-01172-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/06/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Cognitive impairment, an increasing mental health issue, is a core feature of the aging brain and neurodegenerative diseases. Industrialized nations especially, have experienced a marked decrease in dietary fiber intake, but the potential mechanism linking low fiber intake and cognitive impairment is poorly understood. Emerging research reported that the diversity of gut microbiota in Western populations is significantly reduced. However, it is unknown whether a fiber-deficient diet (which alters gut microbiota) could impair cognition and brain functional elements through the gut-brain axis. RESULTS In this study, a mouse model of long-term (15 weeks) dietary fiber deficiency (FD) was used to mimic a sustained low fiber intake in humans. We found that FD mice showed impaired cognition, including deficits in object location memory, temporal order memory, and the ability to perform daily living activities. The hippocampal synaptic ultrastructure was damaged in FD mice, characterized by widened synaptic clefts and thinned postsynaptic densities. A hippocampal proteomic analysis further identified a deficit of CaMKIId and its associated synaptic proteins (including GAP43 and SV2C) in the FD mice, along with neuroinflammation and microglial engulfment of synapses. The FD mice also exhibited gut microbiota dysbiosis (decreased Bacteroidetes and increased Proteobacteria), which was significantly associated with the cognitive deficits. Of note, a rapid differentiating microbiota change was observed in the mice with a short-term FD diet (7 days) before cognitive impairment, highlighting a possible causal impact of the gut microbiota profile on cognitive outcomes. Moreover, the FD diet compromised the intestinal barrier and reduced short-chain fatty acid (SCFA) production. We exploit these findings for SCFA receptor knockout mice and oral SCFA supplementation that verified SCFA playing a critical role linking the altered gut microbiota and cognitive impairment. CONCLUSIONS This study, for the first time, reports that a fiber-deprived diet leads to cognitive impairment through altering the gut microbiota-hippocampal axis, which is pathologically distinct from normal brain aging. These findings alert the adverse impact of dietary fiber deficiency on brain function, and highlight an increase in fiber intake as a nutritional strategy to reduce the risk of developing diet-associated cognitive decline and neurodegenerative diseases. Video Abstract.
Collapse
Affiliation(s)
- Hongli Shi
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, 4113, Australia
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Peng Zheng
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Peng Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Tao Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
288
|
Pilch HE, Steinberger AJ, Sockett DC, Aulik N, Suen G, Czuprynski CJ. Assessing the microbiota of recycled bedding sand on a Wisconsin dairy farm. J Anim Sci Biotechnol 2021; 12:114. [PMID: 34758888 PMCID: PMC8582206 DOI: 10.1186/s40104-021-00635-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sand is often considered the preferred bedding material for dairy cows as it is thought to have lower bacterial counts than organic bedding materials and cows bedded on sand experience fewer cases of lameness and disease. Sand can also be efficiently recycled and reused, making it cost-effective. However, some studies have suggested that the residual organic material present in recycled sand can serve as a reservoir for commensal and pathogenic bacteria, although no studies have yet characterized the total bacterial community composition. Here we sought to characterize the bacterial community composition of a Wisconsin dairy farm bedding sand recycling system and its dynamics across several stages of the recycling process during both summer and winter using 16S rRNA gene amplicon sequencing. RESULTS Bacterial community compositions of the sand recycling system differed by both seasons and stage. Summer samples had higher richness and distinct community compositions, relative to winter samples. In both summer and winter samples, the diversity of recycled sand decreased with time drying in the recycling room. Compositionally, summer sand 14 d post-recycling was enriched in operational taxonomic units (OTUs) belonging to the genera Acinetobacter and Pseudomonas, relative to freshly washed sand and sand from cow pens. In contrast, no OTUs were found to be enriched in winter sand. The sand recycling system contained an overall core microbiota of 141 OTUs representing 68.45% ± 10.33% SD of the total bacterial relative abundance at each sampled stage. The 4 most abundant genera in this core microbiota included Acinetobacter, Psychrobacter, Corynebacterium, and Pseudomonas. Acinetobacter was present in greater abundance in summer samples, whereas Psychrobacter and Corynebacterium had higher relative abundances in winter samples. Pseudomonas had consistent relative abundances across both seasons. CONCLUSIONS These findings highlight the potential of recycled bedding sand as a bacterial reservoir that warrants further study.
Collapse
Affiliation(s)
- Hannah E. Pilch
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53706 USA
| | - Andrew J. Steinberger
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706 USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, 53706 USA
| | - Donald C. Sockett
- Wisconsin Veterinary Diagnostic Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53706 USA
| | - Nicole Aulik
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53706 USA
- Wisconsin Veterinary Diagnostic Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53706 USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, 53706 USA
| | - Charles J. Czuprynski
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, 53706 USA
| |
Collapse
|
289
|
Bai S, Zhang P, Zhang C, Du J, Du X, Zhu C, Liu J, Xie P, Li S. Comparative Study of the Gut Microbiota Among Four Different Marine Mammals in an Aquarium. Front Microbiol 2021; 12:769012. [PMID: 34745077 PMCID: PMC8567075 DOI: 10.3389/fmicb.2021.769012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
Despite an increasing appreciation in the importance of host–microbe interactions in ecological and evolutionary processes, information on the gut microbial communities of some marine mammals is still lacking. Moreover, whether diet, environment, or host phylogeny has the greatest impact on microbial community structure is still unknown. To fill part of this knowledge gap, we exploited a natural experiment provided by an aquarium with belugas (Delphinapterus leucas) affiliated with family Monodontidae, Pacific white-sided dolphins (Lagenorhynchus obliquidens) and common bottlenose dolphin (Tursiops truncatus) affiliated with family Delphinidae, and Cape fur seals (Arctocephalus pusillus pusillus) affiliated with family Otariidae. Results show significant differences in microbial community composition of whales, dolphins, and fur seals and indicate that host phylogeny (family level) plays the most important role in shaping the microbial communities, rather than food and environment. In general, the gut microbial communities of dolphins had significantly lower diversity compared to that of whales and fur seals. Overall, the gut microbial communities were mainly composed of Firmicutes and Gammaproteobacteria, together with some from Bacteroidetes, Fusobacteria, and Epsilonbacteraeota. However, specific bacterial lineages were differentially distributed among the marine mammal groups. For instance, Lachnospiraceae, Ruminococcaceae, and Peptostreptococcaceae were the dominant bacterial lineages in the gut of belugas, while for Cape fur seals, Moraxellaceae and Bacteroidaceae were the main bacterial lineages. Moreover, gut microbial communities in both Pacific white-sided dolphins and common bottlenose dolphins were dominated by a number of pathogenic bacteria, including Clostridium perfringens, Vibrio fluvialis, and Morganella morganii, reflecting the poor health condition of these animals. Although there is a growing recognition of the role microorganisms play in the gut of marine mammals, current knowledge about these microbial communities is still severely lacking. Large-scale research studies should be undertaken to reveal the roles played by the gut microbiota of different marine mammal species.
Collapse
Affiliation(s)
- Shijie Bai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Peijun Zhang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | | | - Jiang Du
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | | | - Chengwei Zhu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Jun Liu
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peiyu Xie
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Songhai Li
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
290
|
Sánchez-Osuna M, Cortés P, Lee M, Smith AT, Barbé J, Erill I. Non-canonical LexA proteins regulate the SOS response in the Bacteroidetes. Nucleic Acids Res 2021; 49:11050-11066. [PMID: 34614190 PMCID: PMC8565304 DOI: 10.1093/nar/gkab773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
Lesions to DNA compromise chromosome integrity, posing a direct threat to cell survival. The bacterial SOS response is a widespread transcriptional regulatory mechanism to address DNA damage. This response is coordinated by the LexA transcriptional repressor, which controls genes involved in DNA repair, mutagenesis and cell-cycle control. To date, the SOS response has been characterized in most major bacterial groups, with the notable exception of the Bacteroidetes. No LexA homologs had been identified in this large, diverse and ecologically important phylum, suggesting that it lacked an inducible mechanism to address DNA damage. Here, we report the identification of a novel family of transcriptional repressors in the Bacteroidetes that orchestrate a canonical response to DNA damage in this phylum. These proteins belong to the S24 peptidase family, but are structurally different from LexA. Their N-terminal domain is most closely related to CI-type bacteriophage repressors, suggesting that they may have originated from phage lytic phase repressors. Given their role as SOS regulators, however, we propose to designate them as non-canonical LexA proteins. The identification of a new class of repressors orchestrating the SOS response illuminates long-standing questions regarding the origin and plasticity of this transcriptional network.
Collapse
Affiliation(s)
- Miquel Sánchez-Osuna
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Pilar Cortés
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Mark Lee
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Jordi Barbé
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Ivan Erill
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
291
|
Doelman A, Tigchelaar S, McConeghy B, Sinha S, Keung MS, Manouchehri N, Webster M, Fisk S, Morrison C, Streijger F, Nislow C, Kwon BK. Characterization of the gut microbiome in a porcine model of thoracic spinal cord injury. BMC Genomics 2021; 22:775. [PMID: 34717545 PMCID: PMC8557039 DOI: 10.1186/s12864-021-07979-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The gut microbiome is a diverse network of bacteria which inhabit our digestive tract and is crucial for efficient cellular metabolism, nutrient absorption, and immune system development. Spinal cord injury (SCI) disrupts autonomic function below the level of injury and can alter the composition of the gut microbiome. Studies in rodent models have shown that SCI-induced bacterial imbalances in the gut can exacerbate the spinal cord damage and impair recovery. In this study we, for the first time, characterized the composition of the gut microbiome in a Yucatan minipig SCI model. We compared the relative abundance of the most dominant bacterial phyla in control samples to those collected from animals who underwent a contusion-compression SCI at the 2nd or 10th Thoracic level. RESULTS We identify specific bacterial fluctuations that are unique to SCI animals, which were not found in uninjured animals given the same dietary regimen or antibiotic administration. Further, we identified a specific time-frame, "SCI-acute stage", during which many of these bacterial fluctuations occur before returning to "baseline" levels. CONCLUSION This work presents a dynamic view of the microbiome changes that accompany SCI, establishes a resource for future studies and to understand the changes that occur to gut microbiota after spinal cord injury and may point to a potential therapeutic target for future treatment.
Collapse
Affiliation(s)
- Adam Doelman
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Seth Tigchelaar
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Brian McConeghy
- Sequencing and Bioinformatics Consortium, University of British Columbia, Vancouver, BC Canada
| | - Sunita Sinha
- Sequencing and Bioinformatics Consortium, University of British Columbia, Vancouver, BC Canada
| | - Martin S. Keung
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Megan Webster
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Shera Fisk
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Charlotte Morrison
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
| | - Corey Nislow
- Sequencing and Bioinformatics Consortium, University of British Columbia, Vancouver, BC Canada
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC Canada
- Department of Orthopedics, Vancouver Spine Surgery Institute, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
292
|
Hu P, Wang L, Hu Z, Jiang L, Hu H, Rao Z, Wu L, Tang Z. Effects of Multi-Bacteria Solid-State Fermented Diets with Different Crude Fiber Levels on Growth Performance, Nutrient Digestibility, and Microbial Flora of Finishing Pigs. Animals (Basel) 2021; 11:ani11113079. [PMID: 34827811 PMCID: PMC8614399 DOI: 10.3390/ani11113079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Dietary cellulase was found to be an important nutrient, and solid-state fermentation could improve the nutritional value of feed. To study the effects of multi-bacteria solid-state fermented diets and dietary crude fiber levels on finishing pigs, a total of 36 pigs were divided into four treatments: (1) pigs fed a basal diet containing 7.00% CF (HF), (2) pigs fed a basal multi-bacteria fermentation diet containing 7.00% CF (HFM), (3) pigs fed a basal diet containing 2.52% CF (LF), and (4) piglets fed a basal multi-bacteria fermentation diet containing 2.52% CF (LFM). The growth performance, nutrient digestibility and digestion amount, serum biochemical index, and fecal microflora were evaluated. Multi-bacteria solid-state fermentation had a positive effect on the nutrient digestion and serum biochemical indicators, which was contrary to high-fiber diets. Both high-fiber diets and multi-bacteria solid-state fermentation could optimize intestinal flora in finishing pigs. Abstract This study aimed to investigate the effects of multi-bacteria solid-state fermented diets with different crude fiber (CF) levels on growth performance, nutrient digestibility, and microbial flora of finishing pigs. The multi-bacteria solid-state fermented diets were made up of Lactobacillus amylovorus, Enterococcus faecalis, Bacillus subtilis, and Candida utilis. According to a 2 (factors) × 2 (levels) design, with the two factors being multi-bacteria solid-state fermentation (fed non-fermented diet or multi-bacteria fermentation) or CF levels (fed a basal diet containing 2.52% CF or 7.00% CF), a total of 36 finishing pigs (70.80 ± 5.75 kg) were divided into 4 treatments with 9 barrows per group: (1) pigs fed a diet containing 7.00% CF (HF), (2) pigs fed a multi-bacteria fermentation diet containing 7.00% CF (HFM), (3) pigs fed a diet containing 2.52% CF (LF), and (4) piglets fed a multi-bacteria fermentation diet containing 2.52% CF (LFM). This experiment lasted 28 days. The multi-bacteria solid-state fermented diet increased the backfat thickness (p < 0.05) and apparent total tract nutrient digestibility (ATTD) of CF, neutral detergent fiber (NDF), acid detergent fiber (ADF), crude protein (CP), 8 amino acids (Trp, Asp, Gly, Cys, Val, Met, Ile, and Leu), total essential amino acids (EAA), total non-essential amino acids (NEEA), and total amino acids (TAA) (p < 0.05). Multi-bacteria solid-state fermented diet increased serum concentrations of HDL-c, ABL, TP, and GLU, the serum enzyme activities of GSH-Px, T-AOC, SOD, and CAT (p < 0.05), the relative abundance of Lactobacillus, Oscillospira, and Coprococcus (p < 0.05), and the abundance of YAMINSYN3-PWY, PWY-7013, GOLPDLCAT-PWY, ARGORNPROST-PWY, and PWY-5022 pathways (p < 0.05). The multi-bacteria solid-state fermented diet reduced the digestion amount of CF, NDF, and ADF (p < 0.05), the serum concentrations of TC, TG, LDL-c, BUN, and MDA (p < 0.05), the relative abundance of Streptococcaceae (p < 0.05), and the abundance of PWY-6470, PWY0-862, HSERMETANA-PWY, LACTOSECAT-PWY, MET-SAM-PWY, PWY-6700, PWY-5347, PWY0-1061, and LACTOSECAT-PWY pathways (p < 0.05). The high-fiber diet increased average daily feed intake (p < 0.05), the serum concentrations of TC, TG, LDL-c, BUN, and MDA (p < 0.05), the relative abundance of Clostridiaceae_Clostridium and Coprococcus (p < 0.05), and the abundance of TCA-GLYOX-BYPASS, GLYCOLYSIS-TCA-GLYOX-BYPASS, and PWY-6906 pathways (p < 0.05). The high-fiber diet reduced chest circumference (p < 0.05) and ATTD of ether extract (EE), CF, NDF, ADF, Ca, CP, 18 amino acids (Trp, Thr, Val, Met, Ile, Leu, Phe, Lys, His, Arg Asp, Ser, Glu, Gly, Ala, Cys, Tyr, and Pro), EAA, NEAA, and TAA (p < 0.05). The high-fiber diet also reduced the serum concentrations of HDL-c, TP, ABL, and GLU, the serum enzyme activities of T-AOC, GSH-Px, SOD, and CAT (p < 0.05), and the relative abundance of Akkermansia and Oscillospira (p < 0.05). There was no significant effect of the interaction between multi-bacteria fermentation and dietary CF levels, except on the digestion amount of CF (p < 0.05). The 7.00% CF had a negative effect on the digestion of nutrients, but multi-bacteria solid-state fermentation diets could relieve this negative effect and increase backfat thickness. High-fiber diets and multi-bacteria solid-state fermentation improved the diversity and abundance of fecal microorganisms in finishing pigs.
Collapse
|
293
|
Kittana M, Ahmadani A, Al Marzooq F, Attlee A. Dietary Fat Effect on the Gut Microbiome, and Its Role in the Modulation of Gastrointestinal Disorders in Children with Autism Spectrum Disorder. Nutrients 2021; 13:3818. [PMID: 34836074 PMCID: PMC8618510 DOI: 10.3390/nu13113818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022] Open
Abstract
Children with autism spectrum disorder (ASD) report a higher frequency and severity of gastrointestinal disorders (GID) than typically developing (TD) children. GID-associated discomfort increases feelings of anxiety and frustration, contributing to the severity of ASD. Emerging evidence supports the biological intersection of neurodevelopment and microbiome, indicating the integral contribution of GM in the development and function of the nervous system, and mental health, and disease balance. Dysbiotic GM could be a contributing factor in the pathogenesis of GID in children with ASD. High-fat diets may modulate GM through accelerated growth of bile-tolerant bacteria, altered bacterial ratios, and reduced bacterial diversity, which may increase the risk of GID. Notably, saturated fatty acids are considered to have a pronounced effect on the increase of bile-tolerant bacteria and reduction in microbial diversity. Additionally, omega-3 exerts a favorable impact on GM and gut health due to its anti-inflammatory properties. Despite inconsistencies in the data elaborated in the review, the dietary fat composition, as part of an overall dietary intervention, plays a role in modulating GID, specifically in ASD, due to the altered microbiome profile. This review emphasizes the need to conduct future experimental studies investigating the effect of diets with varying fatty acid compositions on GID-specific microbiome profiles in children with ASD.
Collapse
Affiliation(s)
- Monia Kittana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.K.); (A.A.)
| | - Asma Ahmadani
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.K.); (A.A.)
| | - Farah Al Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Amita Attlee
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.K.); (A.A.)
| |
Collapse
|
294
|
Krucon T, Dziewit L, Drewniak L. Insight Into Ecology, Metabolic Potential, and the Taxonomic Composition of Bacterial Communities in the Periodic Water Pond on King George Island (Antarctica). Front Microbiol 2021; 12:708607. [PMID: 34690951 PMCID: PMC8531505 DOI: 10.3389/fmicb.2021.708607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Polar regions contain a wide variety of lentic ecosystems. These include periodic ponds that have a significant impact on carbon and nitrogen cycling in polar environments. This study was conducted to assess the taxonomic and metabolic diversity of bacteria found in Antarctic pond affected by penguins and sea elephants and to define their role in ongoing processes. Metabolic assays showed that of the 168 tested heterotrophic bacteria present in the Antarctic periodic pond, 96% are able to degrade lipids, 30% cellulose, 26% proteins, and 26% starch. The taxonomic classification of the obtained isolates differs from that based on the composition of the 16S rRNA relative abundances in the studied pond. The dominant Actinobacteria constituting 45% of isolates represents a low proportion of the community, around 4%. With the addition of run-off, the proportions of inhabiting bacteria changed, including a significant decrease in the abundance of Cyanobacteria, from 2.38 to 0.33%, increase of Firmicutes from 9.32 to 19.18%, and a decreasing richness (Chao1 index from 1299 to 889) and diversity (Shannon index from 4.73 to 4.20). Comparative studies of communities found in different Antarctic environments indicate a great role for penguins in shaping bacterial populations.
Collapse
Affiliation(s)
- Tomasz Krucon
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Drewniak
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
295
|
Li J, Wang Y, Xie H, Zhao W, Zhang L, Li J. Enhanced refractory organics removal by sponge iron-coupled microbe technology: performance and underlying mechanism analysis. Bioprocess Biosyst Eng 2021; 45:117-130. [PMID: 34617132 DOI: 10.1007/s00449-021-02645-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Sponge iron (SFe) is a zero-valent iron (Fe0) composite with a high-purity and porous structure. In this study, SFe was coupled with microorganisms that were gradually domesticated to form a Fe0/iron-oxidizing bacteria system (Fe0-FeOB system). The enhancement effect of the Fe0-FeOB system on refractory organics was verified, the mechanism of its strengthening action was investigated, and the relationship and influencing factors between the Fe0 and microorganisms were revealed. The average removal rates of the Fe0-FeOB system were 8.98%, 5.69%, and 40.67% higher than those of the SBR system for AF, AN, and NB wastewater treatment, respectively. With the addition of SFe, the microbial community structure was gradually enhanced with a large number of FeOB were detected. Moreover, the bacteria with strong iron corrosion and Fe(II) oxidation abilities plays a critical role in improving the Fenton-like effect. Interestingly, the variation trend of ⋅OH was fairly consistent with that of Fe(II). Thus, the main drivers of the Fenton-like effect are biological corrosion and metabolism. Consequently, microbial degradation and Fenton-like effect contributed to the degradation performance of the Fe0-FeOB system. Among them, the microbial degradation accounted for 96.09%, of which the biogenic Fenton effect accounted for 8.9%, and the microbial metabolic activity accounted for 87.19%. However, the augmentation of the Fe0-FeOB system was strongly dependent on SFe for the strengthening effect of microorganisms disappeared after leaving the SFe 35 days.
Collapse
Affiliation(s)
- Jie Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 88 Anning West Road, Anning District, Lanzhou, 730070, Gansu, People's Republic of China.
| | - Yae Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 88 Anning West Road, Anning District, Lanzhou, 730070, Gansu, People's Republic of China
| | - Huina Xie
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 88 Anning West Road, Anning District, Lanzhou, 730070, Gansu, People's Republic of China
| | - Wei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 88 Anning West Road, Anning District, Lanzhou, 730070, Gansu, People's Republic of China
| | - Lihong Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 88 Anning West Road, Anning District, Lanzhou, 730070, Gansu, People's Republic of China.,Gansu Membrane Science and Technology Research Institute Co., Ltd., Lanzhou, 730020, People's Republic of China
| | - Jing Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 88 Anning West Road, Anning District, Lanzhou, 730070, Gansu, People's Republic of China
| |
Collapse
|
296
|
McKee LS, La Rosa SL, Westereng B, Eijsink VG, Pope PB, Larsbrink J. Polysaccharide degradation by the Bacteroidetes: mechanisms and nomenclature. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:559-581. [PMID: 34036727 DOI: 10.1111/1758-2229.12980] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
The Bacteroidetes phylum is renowned for its ability to degrade a wide range of complex carbohydrates, a trait that has enabled its dominance in many diverse environments. The best studied species inhabit the human gut microbiome and use polysaccharide utilization loci (PULs), discrete genetic structures that encode proteins involved in the sensing, binding, deconstruction, and import of target glycans. In many environmental species, polysaccharide degradation is tightly coupled to the phylum-exclusive type IX secretion system (T9SS), which is used for the secretion of certain enzymes and is linked to gliding motility. In addition, within specific species these two adaptive systems (PULs and T9SS) are intertwined, with PUL-encoded enzymes being secreted by the T9SS. Here, we discuss the most noteworthy PUL and non-PUL mechanisms that confer specific and rapid polysaccharide degradation capabilities to the Bacteroidetes in a range of environments. We also acknowledge that the literature showcasing examples of PULs is rapidly expanding and developing a set of assumptions that can be hard to track back to original findings. Therefore, we present a simple universal description of conserved PUL functions and how they are determined, while proposing a common nomenclature describing PULs and their components, to simplify discussion and understanding of PUL systems.
Collapse
Affiliation(s)
- Lauren S McKee
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, 106 91, Sweden
- Wallenberg Wood Science Center, Stockholm, 100 44, Sweden
| | | | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Vincent G Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Phillip B Pope
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Johan Larsbrink
- Wallenberg Wood Science Center, Stockholm, 100 44, Sweden
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| |
Collapse
|
297
|
Alejandre-Colomo C, Francis B, Viver T, Harder J, Fuchs BM, Rossello-Mora R, Amann R. Cultivable Winogradskyella species are genomically distinct from the sympatric abundant candidate species. ISME COMMUNICATIONS 2021; 1:51. [PMID: 36747039 PMCID: PMC9723794 DOI: 10.1038/s43705-021-00052-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023]
Abstract
Winogradskyella is a genus within the phylum Bacteroidetes with a clear marine origin. Most members of this genus have been found associated with marine animals and algae, but also with inorganic surfaces such as sand. In this study, we analyzed genomes of eleven species recently isolated from surface seawater samples from the North Sea during a single spring algae bloom. Corresponding metagenomes yielded a single Candidatus species for this genus. All species in culture, with the exception of W. ursingii, affiliated with a Winogradskyella lineage characterized by large genomes (~4.3 ± 0.4 Mb), with high complexity in their carbohydrate and protein degradation genes. Specifically, the polysaccharide utilization loci (PULs) were diverse within each individual strain, indicating large substrate versatility. Although present in the North Sea, the abundances of these strains were at, or below, the detection limit of the metagenomes. In contrast, the single species, classified as Candidatus W. atlantica, to which all North Sea MAGs belonged, affiliated with a lineage in which the cultivated representatives showed small genomes of ~3.0-3.5 Mb, with the MAGs having ~2.3 Mb. In Ca. W. atlantica, genome streamlining has apparently resulted in the loss of biosynthesis pathways for several amino acids including arginine, methionine, leucine and valine, and the PUL loci were reduced to a single one for utilizing laminarin. This as-yet uncultivated species seems to capitalize on sporadically abundant substrates that are released by algae blooms, mainly laminarin. We also suggest that this streamlined genome might be responsible for the lack of growth on plates for this Candidatus species, in contrast to growth of the less abundant but coexisting members of the genus.
Collapse
Affiliation(s)
- Carlota Alejandre-Colomo
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Miquel Marques 21, 07190, Esporles, Spain
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Ben Francis
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Miquel Marques 21, 07190, Esporles, Spain
| | - Jens Harder
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Bernhard M Fuchs
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Miquel Marques 21, 07190, Esporles, Spain.
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany.
| |
Collapse
|
298
|
Alterisio MC, Ciaramella P, Guccione J. Dynamics of Macrophages and Polymorphonuclear Leukocytes Milk-Secreted by Buffaloes with Udders Characterized by Different Clinical Status. Vet Sci 2021; 8:vetsci8100204. [PMID: 34679034 PMCID: PMC8539079 DOI: 10.3390/vetsci8100204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/13/2023] Open
Abstract
The study evaluated the dynamics of macrophages and polymorphonuclear leukocytes milk-secreted by Mediterranean Buffaloes (MBs). Sixty quarter-milk-samples were collected and divided into three groups (n = 20 units each one): clinical mastitis (CM), subclinical mastitis (SCM), and intramammary infection (IMI). The control group consisted of an additional 20 healthy quarters. Their health status was assessed by clinical examination, quantitative somatic cell count (QSCC) and bacteriological milk culture. Finally, a differential somatic cell count (DSCC) was performed on all the milk samples. The mean percentage of macrophages, both in CM- and SCM-quarters, showed a significant difference as compared with the healthy-ones. Significant differences were also detected comparing the mean percentages of polymorphonuclear leukocytes between CM- and healthy-quarters, SCM and healthy, IMI and healthy. The QSCC revealed a weak-significant-negative-correlation with the quantitation of macrophages (r = −0.388), and a moderate-significant-positive-correlation with the polymorphonuclear leukocytes (r = 0.477). Macrophages and polymorphonuclear leukocytes showed a weak-significant-negative-correlation between them (r = −0.247). The interpretation of macrophages and polymorphonuclear leukocytes dynamics in milk provided beneficial information regarding the clinical status of the quarters enrolled. Future studies exploring the potential use of DSCC to improve udder health represent an interesting perspective in these ruminants.
Collapse
|
299
|
Pennycook JH, Scanlan PD. Ecological and Evolutionary responses to Antibiotic Treatment in the Human Gut Microbiota. FEMS Microbiol Rev 2021; 45:fuab018. [PMID: 33822937 PMCID: PMC8498795 DOI: 10.1093/femsre/fuab018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
The potential for antibiotics to affect the ecology and evolution of the human gut microbiota is well recognised and has wide-ranging implications for host health. Here, we review the findings of key studies that surveyed the human gut microbiota during antibiotic treatment. We find several broad patterns including the loss of diversity, disturbance of community composition, suppression of bacteria in the Actinobacteria phylum, amplification of bacteria in the Bacteroidetes phylum, and promotion of antibiotic resistance. Such changes to the microbiota were often, but not always, recovered following the end of treatment. However, many studies reported unique and/or contradictory results, which highlights our inability to meaningfully predict or explain the effects of antibiotic treatment on the human gut microbiome. This problem arises from variation between existing studies in three major categories: differences in dose, class and combinations of antibiotic treatments used; differences in demographics, lifestyles, and locations of subjects; and differences in measurements, analyses and reporting styles used by researchers. To overcome this, we suggest two integrated approaches: (i) a top-down approach focused on building predictive models through large sample sizes, deep metagenomic sequencing, and effective collaboration; and (ii) a bottom-up reductionist approach focused on testing hypotheses using model systems.
Collapse
Affiliation(s)
- Joseph Hugh Pennycook
- APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, T12 YT20, Ireland
- School of Mirobiology, Food Science & Technology Building, University College Cork, College Road, Cork, T12 K8AF, Ireland
| | - Pauline Deirdre Scanlan
- APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, T12 YT20, Ireland
- School of Mirobiology, Food Science & Technology Building, University College Cork, College Road, Cork, T12 K8AF, Ireland
| |
Collapse
|
300
|
Gui LS, Raza SHA, Ahmed Allam FAE, Zhou L, Hou S, Khan I, Kakar IU, Abd El-Aziz AH, Jia J, Sun Y, Wang Z. Altered milk yield and rumen microbial abundance in response to concentrate supplementation during the cold season in Tibetan sheep. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|