251
|
Wang B, Zhang F, Zhang H, Wang Z, Ma YN, Zhu MJ, Du M. Alcohol intake aggravates adipose browning and muscle atrophy in cancer-associated cachexia. Oncotarget 2017; 8:100411-100420. [PMID: 29245988 PMCID: PMC5725030 DOI: 10.18632/oncotarget.22243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/13/2017] [Indexed: 11/25/2022] Open
Abstract
Cancer is commonly associated with cachexia, a paraneoplastic syndrome characterized by body weight loss, muscle wasting, adipose tissue atrophy and inflammation. Chronic alcohol consumption increases the risk of multiple types of cancer, and enhances cancer-associated cachexia (CAC), but the underlying mechanisms remain poorly defined. To test, C57BL/6 mice were fed with 0% or 20% (w/v) alcohol for 3 months, then inoculated with B16BL6 melanoma cells subcutaneously in the right side of the hip and continued to feed with/without alcohol for 3 or 4 weeks. Alcohol intake upregulated ALDH1A1 expression and elevated retinoic acid (RA) content in inguinal white adipose tissue (iWAT), which led to enhanced iWAT browning and brown adipose tissue (BAT) activation, accelerating fat loss. Moreover, alcohol increased muscle loss through augmenting muscle protein degradation, cell apoptosis and inflammation. In addition, alcohol reduced satellite cell density and impaired myogenesis in skeletal muscle. Taken together, alcohol aggravates cancer-associated cachexia at least partially through elevating adipose browning and muscle atrophy.
Collapse
Affiliation(s)
- Bo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing 100094, P. R. China
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Faya Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99210, USA
| | - Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99210, USA
| | - Zhixiu Wang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Yan-Nan Ma
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
- Department of Chemistry and Lifer Sciences, Gansu Normal University for Nationalities, Hezuo 747000, P. R. China
| | - Mei-Jun Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99210, USA
| | - Min Du
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing 100094, P. R. China
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
252
|
Seo YD, Jin SE, Kim D, Lee DH, Yang SG. Fabrication of Eudragit polymeric nanoparticles using ultrasonic nebulization method for enhanced oral absorption of megestrol acetate. Pharm Dev Technol 2017; 23:407-413. [PMID: 29095656 DOI: 10.1080/10837450.2017.1400049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Megestrol acetate (MGA) is used as a progestagen to treat advanced cancers in the breast or uterus and anorexia-cachexia syndrome in cancer patients. Due to its low solubility (BCS class II), MGA bioavailability needs to be enhanced for efficacy and safety. We developed MGA-encapsulated Eudragit® L100 (EUD) nanoparticles (MGA-EUD (1:1) and MGA-EUD (2:1)) using an ultrasonic nebulization method. MGA-EUD (1:1) and MGA-EUD (2:1) consisted of MGA and EUD at the mass ratios of 1:1 and 2:1. Their physicochemical properties, i.e. particle size, loading efficiency, morphology, and crystallinity were determined. Dissolution tests were performed using USP method II. For pharmacokinetics, they were orally administered at 50 mg/kg to mice. Microcrystalline MGA suspension (MGA-MC, Megace®, BMS) was used as control. MGA-EUD (1:1) and MGA-EUD (2:1) had a smooth and spherical shape of 0.70 and 1.05 µm in diameter with loading efficiencies of 93 and 95% showing amorphous states of MGA. They significantly enhanced the dissolution potential of MGA. Oral bioavailability of MGA-EUD (1:1) and MGA-EUD (2:1) increased 2.0- and 1.7-fold compared to that of MGA-MC. It suggests that ultrasonic nebulization method for the fabrication of polymeric nanoparticles is a promising approach to improve the bioavailability of poorly soluble drugs.
Collapse
Affiliation(s)
- Young Dai Seo
- a World Class Smart Lab, Department of New Drug Development, College of Medicine , Inha University , Incheon , Republic of Korea
| | - Su-Eon Jin
- a World Class Smart Lab, Department of New Drug Development, College of Medicine , Inha University , Incheon , Republic of Korea
| | - Daehyun Kim
- a World Class Smart Lab, Department of New Drug Development, College of Medicine , Inha University , Incheon , Republic of Korea
| | - Don Haeng Lee
- a World Class Smart Lab, Department of New Drug Development, College of Medicine , Inha University , Incheon , Republic of Korea
| | - Su-Geun Yang
- a World Class Smart Lab, Department of New Drug Development, College of Medicine , Inha University , Incheon , Republic of Korea
| |
Collapse
|
253
|
Brook MS, Wilkinson DJ, Atherton PJ. Nutrient modulation in the management of disease-induced muscle wasting: evidence from human studies. Curr Opin Clin Nutr Metab Care 2017; 20:433-439. [PMID: 28832372 DOI: 10.1097/mco.0000000000000413] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW In addition to being essential for movement, skeletal muscles act as both a store and source of key macronutrients. As such, muscle is an important tissue for whole body homeostasis, undergoing muscle wasting in times of starvation, disease, and stress, for example, to provide energy substrates for other tissues. Yet, muscle wasting is also associated with disability, comorbidities, and mortality. As nutrition is so crucial to maintaining muscle homeostasis 'in health', it has been postulated that muscle wasting in cachexia syndromes may be alleviated by nutritional interventions. This review will highlight recent work in this area in relation to muscle kinetics, the acute metabolic (e.g. dietary protein), and longer-term effects of dietary interventions. RECENT FINDINGS Whole body and skeletal muscle protein synthesis invariably exhibit deranged kinetics (favouring catabolism) in wasting states; further, many of these conditions harbour blunted anabolic responses to protein nutrition compared with healthy controls. These derangements underlie muscle wasting. Recent trials of essential amino acid and protein-based nutrition have shown some potential for therapeutic benefit. SUMMARY Nutritional modulation, particularly of dietary amino acids, may have benefits to prevent or attenuate disease-induced muscle wasting. Nonetheless, there remains a lack of recent studies exploring these key concepts to make conclusive recommendations.
Collapse
Affiliation(s)
- Matthew S Brook
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular Physiology, National Institute for Health Research Biomedical Research Centre, University of Nottingham, Royal Derby Hospital, Derby, UK
| | | | | |
Collapse
|
254
|
Virizuela JA, Camblor-Álvarez M, Luengo-Pérez LM, Grande E, Álvarez-Hernández J, Sendrós-Madroño MJ, Jiménez-Fonseca P, Cervera-Peris M, Ocón-Bretón MJ. Nutritional support and parenteral nutrition in cancer patients: an expert consensus report. Clin Transl Oncol 2017; 20:619-629. [PMID: 29043569 DOI: 10.1007/s12094-017-1757-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/30/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Malnutrition is a frequent medical problem of cancer patients that negatively impacts their quality of life. METHODS A multidisciplinary group of experts in Medical Oncology, Pharmacy, and Nutrition convened to discuss the management of the nutritional support in cancer patients. RESULTS Of the 18 questions addressed, 9 focused on nutritional support, 5 were related to parenteral nutrition (PN) and 4 about home PN (HPN). The panel of experts recommends using nutritional screening routinely, at diagnosis and throughout the disease course, for detecting the risk of malnutrition and, if it is positive, to perform a complete nutritional assessment, to diagnose malnutrition. Currently, there are different screening tools and methods that allow us to detect nutritional risk. Based on the evidence and experience, the panel stated that PN is indicated mainly when it is not possible to use the digestive tract and/or oral feeding and/or enteral nutrition is not sufficient or possible. The nutritional needs of the cancer patients, except in those cases where individualized measures are required, should be considered similar to healthy individuals (25-30 kcal/kg/day). The panel considers that the nutritional monitoring of the cancer patient should be multidisciplinary and adapted to the characteristics of each center. Additionally, the objective of the HPN is to improve or maintain the nutritional status of a patient at home. CONCLUSIONS This document seeks to lay down a set of recommendations and to identify key issues that may be useful for the nutritional management of cancer patients.
Collapse
Affiliation(s)
- J A Virizuela
- Department of Medical Oncology, Virgen Macarena University Hospital, Calle Dr. Fedriani, 3, 41009, Sevilla, Spain.
| | - M Camblor-Álvarez
- Endocrinology and Nutritional Department, Gregorio Marañón University General Hospital, Madrid, Spain
| | - L M Luengo-Pérez
- Dietetic and Clinical Nutrition Unit, Endocrinology and Nutritional Department, Infanta Cristina University Hospital, Badajoz, Spain
| | - E Grande
- Department of Medical Oncology, Ramón y Cajal Hospital, Madrid, Spain
| | - J Álvarez-Hernández
- Endocrinology and Nutritional Department, Prince of Asturias University Hospital, Alcalá de Henares, Madrid, Spain
| | | | - P Jiménez-Fonseca
- Department of Medical Oncology, Asturias Central University Hospital, Oviedo, Spain
| | - M Cervera-Peris
- Pharmacy Department, Son Espases University Hospital, Palma de Mallorca, Spain
| | - M J Ocón-Bretón
- Endocrinology and Nutritional Department, Lozano Blesa Clinic University Hospital, Zaragoza, Spain
| |
Collapse
|
255
|
Gangadharan A, Choi SE, Hassan A, Ayoub NM, Durante G, Balwani S, Kim YH, Pecora A, Goy A, Suh KS. Protein calorie malnutrition, nutritional intervention and personalized cancer care. Oncotarget 2017; 8:24009-24030. [PMID: 28177923 PMCID: PMC5410360 DOI: 10.18632/oncotarget.15103] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/23/2017] [Indexed: 12/27/2022] Open
Abstract
Cancer patients often experience weight loss caused by protein calorie malnutrition (PCM) during the course of the disease or treatment. PCM is expressed as severe if the patient has two or more of the following characteristics: obvious significant muscle wasting, loss of subcutaneous fat; nutritional intake of <50% of recommended intake for 2 weeks or more; bedridden or otherwise significantly reduced functional capacity; weight loss of >2% in 1 week, 5% in 1 month, or 7.5% in 3 months. Cancer anorexia-cachexia syndrome (CACS) is a multifactorial condition of advanced PCM associated with underlying illness (in this case cancer) and is characterized by loss of muscle with or without loss of fat mass. Cachexia is defined as weight loss of more than 5% of body weight in 12 months or less in the presence of chronic disease. Hence with a chronic illness on board even a small amount of weight loss can open the door to cachexia. These nutritional challenges can lead to severe morbidity and mortality in cancer patients. In the clinic, the application of personalized medicine and the ability to withstand the toxic effects of anti-cancer therapies can be optimized when the patient is in nutritional homeostasis and is free of anorexia and cachexia. Routine assessment of nutritional status and appropriate intervention are essential components of the effort to alleviate effects of malnutrition on quality of life and survival of patients.
Collapse
Affiliation(s)
- Anju Gangadharan
- The Genomics and Biomarkers Program, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Sung Eun Choi
- Department of Family, Nutrition, and Exercise Sciences, Queens College, The City University of New York, Flushing, NY, USA
| | - Ahmed Hassan
- The Genomics and Biomarkers Program, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Gina Durante
- Department of Clinical Nutrition, Baystate Medical Center, Springfield, MA, USA
| | - Sakshi Balwani
- The Genomics and Biomarkers Program, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Young Hee Kim
- Department of Clinical Nutrition, Baystate Medical Center, Springfield, MA, USA
| | - Andrew Pecora
- Clinical Divisions, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Andre Goy
- Clinical Divisions, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - K Stephen Suh
- The Genomics and Biomarkers Program, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| |
Collapse
|
256
|
Bruggeman AR, Kamal AH, LeBlanc TW, Ma JD, Baracos VE, Roeland EJ. Cancer Cachexia: Beyond Weight Loss. J Oncol Pract 2017; 12:1163-1171. [PMID: 27858548 DOI: 10.1200/jop.2016.016832] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cancer cachexia is a multifactorial syndrome characterized by skeletal muscle loss leading to progressive functional impairment. Despite the ubiquity of cachexia in clinical practice, prevention, early identification, and intervention remain challenging. The impact of cancer cachexia on quality of life, treatment-related toxicity, physical function, and mortality are well established; however, establishing a clinically meaningful definition has proven challenging because of the focus on weight loss alone. Attempts to more comprehensively define cachexia through body composition, physical functioning, and molecular biomarkers, while promising, are yet to be routinely incorporated into clinical practice. Pharmacologic agents that have not been approved by the US Food and Drug Administration but that are currently used in cancer cachexia (ie, megestrol, dronabinol) may improve weight but not outcomes of interest such as muscle mass, physical activity, or mortality. Their routine use is limited by adverse effects. For the practicing oncologist, early identification and management of cachexia is critical. Oncologists must recognize cachexia beyond weight loss alone, focusing instead on body composition and physical functioning. In fact, becoming emaciated is a late sign of cachexia that characterizes its refractory stage. Given that cachexia is a multifactorial syndrome, it requires early identification and polymodal intervention, including optimal cancer therapy, symptom management, nutrition, exercise, and psychosocial support. Consequently, oncologists have a role in ensuring that these resources are available to their patients. In addition, in light of the promising investigational agents, it remains imperative to refer patients with cachexia to clinical trials so that available options can be expanded to effectively treat this pervasive problem.
Collapse
Affiliation(s)
- Andrew R Bruggeman
- University of California at San Diego, San Diego, CA; Duke University Medical Center; and Duke University School of Medicine, Durham, NC; and University of Alberta, Edmonton, Alberta, Canada
| | - Arif H Kamal
- University of California at San Diego, San Diego, CA; Duke University Medical Center; and Duke University School of Medicine, Durham, NC; and University of Alberta, Edmonton, Alberta, Canada
| | - Thomas W LeBlanc
- University of California at San Diego, San Diego, CA; Duke University Medical Center; and Duke University School of Medicine, Durham, NC; and University of Alberta, Edmonton, Alberta, Canada
| | - Joseph D Ma
- University of California at San Diego, San Diego, CA; Duke University Medical Center; and Duke University School of Medicine, Durham, NC; and University of Alberta, Edmonton, Alberta, Canada
| | - Vickie E Baracos
- University of California at San Diego, San Diego, CA; Duke University Medical Center; and Duke University School of Medicine, Durham, NC; and University of Alberta, Edmonton, Alberta, Canada
| | - Eric J Roeland
- University of California at San Diego, San Diego, CA; Duke University Medical Center; and Duke University School of Medicine, Durham, NC; and University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
257
|
Michaelis KA, Zhu X, Burfeind KG, Krasnow SM, Levasseur PR, Morgan TK, Marks DL. Establishment and characterization of a novel murine model of pancreatic cancer cachexia. J Cachexia Sarcopenia Muscle 2017; 8:824-838. [PMID: 28730707 PMCID: PMC5659050 DOI: 10.1002/jcsm.12225] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cachexia is a complex metabolic and behavioural syndrome lacking effective therapies. Pancreatic ductal adenocarcinoma (PDAC) is one of the most important conditions associated with cachexia, with >80% of PDAC patients suffering from the condition. To establish the cardinal features of a murine model of PDAC-associated cachexia, we characterized the effects of implanting a pancreatic tumour cell line from a syngeneic C57BL/6 KRASG12D P53R172H Pdx-Cre+/+ (KPC) mouse. METHODS Male and female C57BL/6 mice were inoculated subcutaneously, intraperitoneally, or orthotopically with KPC tumour cells. We performed rigorous phenotypic, metabolic, and behavioural analysis of animals over the course of tumour development. RESULTS All routes of administration produced rapidly growing tumours histologically consistent with moderate to poorly differentiated PDAC. The phenotype of this model was dependent on route of administration, with orthotopic and intraperitoneal implantation inducing more severe cachexia than subcutaneous implantation. KPC tumour growth decreased food intake, decreased adiposity and lean body mass, and decreased locomotor activity. Muscle catabolism was observed in both skeletal and cardiac muscles, but the dominant catabolic pathway differed between these tissues. The wasting syndrome in this model was accompanied by hypothalamic inflammation, progressively decreasing brown and white adipose tissue uncoupling protein 1 (Ucp1) expression, and increased peripheral inflammation. Haematological and endocrine abnormalities included neutrophil-dominant leukocytosis and anaemia, and decreased serum testosterone. CONCLUSIONS Syngeneic KPC allografts are a robust model for studying cachexia, which recapitulate key features of the PDAC disease process and induce a wide array of cachexia manifestations. This model is therefore ideally suited for future studies exploring the physiological systems involved in cachexia and for preclinical studies of novel therapies.
Collapse
Affiliation(s)
| | - Xinxia Zhu
- Papé Family Pediatric Research InstituteOregon Health and Science UniversityPortlandUSA
| | - Kevin G. Burfeind
- Medical Scientist Training ProgramOregon Health and Science UniversityPortlandUSA
| | - Stephanie M. Krasnow
- Papé Family Pediatric Research InstituteOregon Health and Science UniversityPortlandUSA
| | - Peter R. Levasseur
- Papé Family Pediatric Research InstituteOregon Health and Science UniversityPortlandUSA
| | - Terry K. Morgan
- Departments of Pathology and Obstetrics and GynecologyOregon Health and Science UniversityPortlandUSA
| | - Daniel L. Marks
- Papé Family Pediatric Research InstituteOregon Health and Science UniversityPortlandUSA
| |
Collapse
|
258
|
Z-505 hydrochloride, an orally active ghrelin agonist, attenuates the progression of cancer cachexia via anabolic hormones in Colon 26 tumor-bearing mice. Eur J Pharmacol 2017; 811:30-37. [DOI: 10.1016/j.ejphar.2017.05.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 11/20/2022]
|
259
|
Wang X, Liu W, Xie X. Energy imbalance and cancer: Cause or consequence? IUBMB Life 2017; 69:776-784. [PMID: 28858429 DOI: 10.1002/iub.1674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
Abstract
Obesity has been an epidemic worldwide over the past decades and significantly increases the risk of developing a variety of deadly diseases including type 2 diabetes, cardiovascular diseases and many cancers. The relationship between obesity and type 2 diabetes and cardiovascular disease has been well documented. The drastically increased frequency of a number of cancers in obesity has attracted growing interest. On one hand, how increased adiposity promotes cancer development remains poorly understood, despite the fact that considerable epidemiological evidence has suggested links between them. On the other hand, however, numerous studies have shown that tumorigenesis leads to substantial weight loss in a large portion of cancer patients. Here, we summarize the recent advances on our understanding of the link between obesity and cancer development with a focus on the molecular mechanisms accounting for the rising cancer incidence in the context of obesity. In addition, we also discuss how cancer-associated anorexia and cachexia causes weight loss. © 2017 IUBMB Life, 69(10):776-784, 2017.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Liu
- Department of Neurology, Beijing Haidian Hospital, Beijing 100080, China
| | - Xiangyang Xie
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| |
Collapse
|
260
|
Aminzadeh-Gohari S, Feichtinger RG, Vidali S, Locker F, Rutherford T, O'Donnel M, Stöger-Kleiber A, Mayr JA, Sperl W, Kofler B. A ketogenic diet supplemented with medium-chain triglycerides enhances the anti-tumor and anti-angiogenic efficacy of chemotherapy on neuroblastoma xenografts in a CD1-nu mouse model. Oncotarget 2017; 8:64728-64744. [PMID: 29029389 PMCID: PMC5630289 DOI: 10.18632/oncotarget.20041] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/31/2017] [Indexed: 01/04/2023] Open
Abstract
Neuroblastoma (NB) is a pediatric malignancy characterized by a marked reduction in aerobic energy metabolism. Recent preclinical data indicate that targeting this metabolic phenotype by a ketogenic diet (KD), especially in combination with calorie restriction, slows tumor growth and enhances metronomic cyclophosphamide (CP) therapy of NB xenografts. Because calorie restriction would be contraindicated in most cancer patients, the aim of the present study was to optimize the KD such that the tumors are sensitized to CP without the need of calorie restriction. In a NB xenograft model, metronomic CP was combined with KDs of different triglyceride compositions and fed to CD1-nu mice ad libitum. Metronomic CP in combination with a KD containing 8-carbon medium-chain triglycerides exerted a robust anti-tumor effect, suppressing growth and causing a significant reduction of tumor blood-vessel density and intratumoral hemorrhage, accompanied by activation of AMP-activated protein kinase in NB cells. Furthermore, the KDs caused a significant reduction in the serum levels of essential amino acids, but increased those of serine, glutamine and glycine. Our data suggest that targeting energy metabolism by a modified KD may be considered as part of a multimodal treatment regimen to improve the efficacy of classic anti-NB therapy.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Department of Pediatrics, Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University, Salzburg, Austria
| | - René Günther Feichtinger
- Department of Pediatrics, Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University, Salzburg, Austria
| | - Silvia Vidali
- Department of Pediatrics, Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University, Salzburg, Austria
| | - Felix Locker
- Department of Pediatrics, Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University, Salzburg, Austria
| | | | - Maura O'Donnel
- Clinical Nutrition Vitaflo International, Liverpool, United Kingdom
| | | | | | - Wolfgang Sperl
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Department of Pediatrics, Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
261
|
Chang JY, Yi HS, Kim HW, Shong M. Dysregulation of mitophagy in carcinogenesis and tumor progression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:633-640. [DOI: 10.1016/j.bbabio.2016.12.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/09/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022]
|
262
|
Hodes RJ, Sierra F, Austad SN, Epel E, Neigh GN, Erlandson KM, Schafer MJ, LeBrasseur NK, Wiley C, Campisi J, Sehl ME, Scalia R, Eguchi S, Kasinath BS, Halter JB, Cohen HJ, Demark-Wahnefried W, Ahles TA, Barzilai N, Hurria A, Hunt PW. Disease drivers of aging. Ann N Y Acad Sci 2017; 1386:45-68. [PMID: 27943360 DOI: 10.1111/nyas.13299] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/14/2022]
Abstract
It has long been known that aging, at both the cellular and organismal levels, contributes to the development and progression of the pathology of many chronic diseases. However, much less research has examined the inverse relationship-the contribution of chronic diseases and their treatments to the progression of aging-related phenotypes. Here, we discuss the impact of three chronic diseases (cancer, HIV/AIDS, and diabetes) and their treatments on aging, putative mechanisms by which these effects are mediated, and the open questions and future research directions required to understand the relationships between these diseases and aging.
Collapse
Affiliation(s)
| | | | - Steven N Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elissa Epel
- Department of Psychiatry, University of California, San Francisco, San Francisco, California
| | | | | | - Marissa J Schafer
- Robert and Arlene Kogod Center on Aging and Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging and Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California
| | - Mary E Sehl
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Rosario Scalia
- Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Department of Physiology and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Balakuntalam S Kasinath
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, South Texas Veterans Health Care System, San Antonio, Texas
| | - Jeffrey B Halter
- Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - Tim A Ahles
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, New York, New York
| | - Arti Hurria
- City of Hope National Medical Center, Duarte, California
| | - Peter W Hunt
- University of California, San Francisco, School of Medicine, San Francisco, California
| |
Collapse
|
263
|
The ketogenic diet is not feasible as a therapy in a CD-1 nu/nu mouse model of renal cell carcinoma with features of Stauffer's syndrome. Oncotarget 2017; 8:57201-57215. [PMID: 28915665 PMCID: PMC5593636 DOI: 10.18632/oncotarget.19306] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/27/2017] [Indexed: 12/29/2022] Open
Abstract
The ketogenic diet (KD), a high-fat low-carbohydrate diet, has shown some efficacy in the treatment of certain types of tumors such as brain tumors and neuroblastoma. These tumors are characterized by the Warburg effect. Because renal cell carcinoma (RCC) presents similar energetic features as neuroblastoma, KD might also be effective in the treatment of RCC. To test this, we established xenografts with RCC 786-O cells in CD-1 nu/nu mice and then randomized them to a control diet or to KDs with different triglyceride contents. Although the KDs tended to reduce tumor growth, mouse survival was dramatically reduced due to massive weight loss. A possible explanation comes from observations of human RCC patients, who often experience secondary non-metastatic hepatic dysfunction due to secretion of high levels of inflammatory cytokines by the RCCs. Measurement of the mRNA levels of tumor necrosis factor alpha (TNFα) and interleukin-6 revealed high expression in the RCC xenografts compared to the original 786-O cells. The expression of TNFα, interleukin-6 and C-reactive protein were all increased in the livers of tumor-bearing mice, and KD significantly boosted their expression. KDs did not cause weight loss or liver inflammation in healthy mice, suggesting that KDs are per se safe, but might be contraindicated in the treatment of RCC patients presenting with Stauffer's syndrome, because they potentially worsen the associated hepatic dysfunction.
Collapse
|
264
|
Ongaro E, Buoro V, Cinausero M, Caccialanza R, Turri A, Fanotto V, Basile D, Vitale MG, Ermacora P, Cardellino GG, Nicoletti L, Fornaro L, Casadei-Gardini A, Aprile G. Sarcopenia in gastric cancer: when the loss costs too much. Gastric Cancer 2017; 20:563-572. [PMID: 28477106 DOI: 10.1007/s10120-017-0722-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023]
Abstract
Sarcopenia is a complex syndrome characterized by progressive and generalized loss of skeletal muscle mass and strength. Malignancy is a major determinant of sarcopenia, and gastric cancer (GC) is among the most common causes of this phenomenon. As sarcopenia is a well-recognized poor prognostic feature in GC and has been associated with worse tolerance of surgical and medical treatments, members of the multidisciplinary team should be aware of the clinical relevance, pathogenic mechanisms, and potential treatments for this syndrome. The importance of sarcopenia is often underestimated in everyday practice and clinical trials, particularly among elderly or fragile patients. As treatment options are improving in all disease stages, deeper knowledge and greater attention to the metabolic balance in GC patients could further increase the benefit of novel therapeutic strategies and dramatically impact on quality of life. In this review, we describe the role of sarcopenia in different phases of GC progression. Our aim is to provide oncologists and surgeons dealing with GC patients with a useful tool for comprehensive assessment and timely management of this potentially life-threatening condition.
Collapse
Affiliation(s)
- Elena Ongaro
- Department of Oncology, University and General Hospital, Udine, Italy
| | - Vanessa Buoro
- Department of Oncology, University and General Hospital, Udine, Italy
| | - Marika Cinausero
- Department of Oncology, University and General Hospital, Udine, Italy
| | - Riccardo Caccialanza
- Clinical Nutrition Service, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Annalisa Turri
- Clinical Nutrition Service, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Valentina Fanotto
- Department of Oncology, University and General Hospital, Udine, Italy
| | - Debora Basile
- Department of Oncology, University and General Hospital, Udine, Italy
| | | | - Paola Ermacora
- Department of Oncology, University and General Hospital, Udine, Italy
| | | | - Laura Nicoletti
- Department of Oncology, San Bortolo General Hospital, Azienda ULSS8 Berica, East District, Viale Rodolfi 37, 36100, Vicenza, Italy
| | - Lorenzo Fornaro
- Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Andrea Casadei-Gardini
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, FC, Italy
| | - Giuseppe Aprile
- Department of Oncology, University and General Hospital, Udine, Italy.
- Department of Oncology, San Bortolo General Hospital, Azienda ULSS8 Berica, East District, Viale Rodolfi 37, 36100, Vicenza, Italy.
| |
Collapse
|
265
|
Masel EK, Berghoff AS, Füreder LM, Heicappell P, Schlieter F, Widhalm G, Gatterbauer B, Dieckmann U, Birner P, Bartsch R, Schur S, Watzke HH, Zielinski CC, Preusser M. Decreased body mass index is associated with impaired survival in lung cancer patients with brain metastases: A retrospective analysis of 624 patients. Eur J Cancer Care (Engl) 2017; 26. [PMID: 28488812 DOI: 10.1111/ecc.12707] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2017] [Indexed: 12/30/2022]
Abstract
Body mass index (BMI) is a prognostic factor in several cancer types. We investigated the prognostic role of BMI in a large patient cohort with newly diagnosed lung cancer brain metastases (BM) between 1990 and 2013. BMI at diagnosis of BM and graded prognostic assessment (GPA) were calculated. Definitions were underweight (BMI <18.50), weight within normal range (BMI 18.50-24.99) and overweight (BMI ≥ 25.00). A total of 624 patients (men 401/624 [64.3%]; women 223/624 [35.7%]; median age of 61 [range 33-88]) were analysed. Histology was non-small cell lung cancer in 417/622 (66.8%), small cell lung cancer (SCLC) in 205/624 (32.9%) and not otherwise specified in 2/624 (0.3%) patients. About 313/624 (50.2%) had normal BMI, 272/624 (43.5%) were overweight and 39/624 (6.3%) were underweight. Underweight patients had shorter median overall survival (3 months) compared to patients with normal BMI (7 months) and overweight (8 months; p < .001; log rank test). At multivariate analysis, higher GPA class (HR 1.430; 95% cumulative incidence, CI 1.279-1.598; p < .001; Cox regression model), SCLC histology (HR 1.310; 95% CI 1.101-1.558) and presence of underweight (HR 1.845; 95% CI 1.317-2.585; p = .014; Cox regression model) were independent prognostic factors. Underweight at diagnosis of BM in lung cancer is associated with an unfavourable prognosis.
Collapse
Affiliation(s)
- E K Masel
- Department of Medicine I, Clinical Division of Palliative Care, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria
| | - A S Berghoff
- Comprehensive Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - L M Füreder
- Comprehensive Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - P Heicappell
- Comprehensive Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - F Schlieter
- Comprehensive Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - G Widhalm
- Comprehensive Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria.,Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - B Gatterbauer
- Comprehensive Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria.,Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - U Dieckmann
- Comprehensive Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria.,Department of Radiotherapy, Medical University of Vienna, Vienna, Austria
| | - P Birner
- Comprehensive Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria.,Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - R Bartsch
- Comprehensive Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - S Schur
- Department of Medicine I, Clinical Division of Palliative Care, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria
| | - H H Watzke
- Department of Medicine I, Clinical Division of Palliative Care, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria
| | - C C Zielinski
- Comprehensive Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - M Preusser
- Comprehensive Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
266
|
Leitner LM, Wilson RJ, Yan Z, Gödecke A. Reactive Oxygen Species/Nitric Oxide Mediated Inter-Organ Communication in Skeletal Muscle Wasting Diseases. Antioxid Redox Signal 2017; 26:700-717. [PMID: 27835923 PMCID: PMC5421600 DOI: 10.1089/ars.2016.6942] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Cachexia is defined as a complex metabolic syndrome that is associated with underlying illness and a loss of muscle with or without loss of fat mass. This disease is associated with a high incidence with chronic diseases such as heart failure, cancer, chronic obstructive pulmonary disease (COPD), and acquired immunodeficiency syndrome (AIDS), among others. Since there is currently no effective treatment available, cachectic patients have a poor prognosis. Elucidation of the underlying mechanisms is, therefore, an important medical task. Recent Advances: There is accumulating evidence that the diseased organs such as heart, lung, kidney, or cancer tissue secrete soluble factors, including Angiotensin II, myostatin (growth differentiation factor 8 [GDF8]), GDF11, tumor growth factor beta (TGFβ), which act on skeletal muscle. There, they induce a set of genes called atrogenes, which, among others, induce the ubiquitin-proteasome system, leading to protein degradation. Moreover, elevated reactive oxygen species (ROS) levels due to modulation of NADPH oxidases (Nox) and mitochondrial function contribute to disease progression, which is characterized by loss of muscle mass, exercise resistance, and frailty. CRITICAL ISSUES Although substantial progress was achieved to elucidate the pathophysiology of cachexia, effectice therapeutic strategies are urgently needed. FUTURE DIRECTIONS With the identification of key components of the aberrant inter-organ communication leading to cachexia, studies in mice and men to inhibit ROS formation, induction of anti-oxidative superoxide dismutases, and upregulation of muscular nitric oxide (NO) formation either by pharmacological tools or by exercise are promising approaches to reduce the extent of skeletal muscle wasting. Antioxid. Redox Signal. 26, 700-717.
Collapse
Affiliation(s)
- Lucia M Leitner
- 1 Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität Düsseldorf, Universitätsklinikum , Düsseldorf, Germany
| | - Rebecca J Wilson
- 2 Department of Medicine-Cardiovascular Medicine, University of Virginia , Charlottesville, Virginia
| | - Zhen Yan
- 2 Department of Medicine-Cardiovascular Medicine, University of Virginia , Charlottesville, Virginia.,3 Center for Skeletal Muscle Research at Robert Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
| | - Axel Gödecke
- 1 Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität Düsseldorf, Universitätsklinikum , Düsseldorf, Germany
| |
Collapse
|
267
|
Schcolnik-Cabrera A, Chávez-Blanco A, Domínguez-Gómez G, Dueñas-González A. Understanding tumor anabolism and patient catabolism in cancer-associated cachexia. Am J Cancer Res 2017; 7:1107-1135. [PMID: 28560061 PMCID: PMC5446478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023] Open
Abstract
Cachexia is a multifactorial paraneoplastic syndrome commonly associated with advanced stages of cancer. Cachexia is responsible for poor responses to antitumoral treatment and death in close to one-third of affected patients. There is still an incomplete understanding of the metabolic dysregulation induced by a tumor that leads to the appearance and persistence of cachexia. Furthermore, cachexia is irreversible, and there are currently no guidelines for its diagnosis or treatments for it. In this review, we aim to discuss the current knowledge about cancer-associated cachexia, starting with generalities about cancer as the generator of this syndrome, then analyzing the characteristics of cachexia at the biochemical and metabolic levels in both the tumor and the patient, and finally discussing current therapeutic approaches to treating cancer-associated cachexia.
Collapse
Affiliation(s)
| | | | | | - Alfonso Dueñas-González
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas UNAM/Instituto Nacional de CancerologíaMexico
| |
Collapse
|
268
|
Alkan A, Mızrak D, Şenler FÇ, Utkan G. Inadequate Nutritional Status of Hospitalized Cancer Patients. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2017. [DOI: 10.5799/jcei.328744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
269
|
Combined effect of aerobic interval training and selenium nanoparticles on expression of IL-15 and IL-10/TNF-α ratio in skeletal muscle of 4T1 breast cancer mice with cachexia. Cytokine 2017; 90:100-108. [DOI: 10.1016/j.cyto.2016.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 12/16/2022]
|
270
|
Reyna-Figueroa J, Lagunas-Martínez A, Galindo-Delgado P, Fernández-Bautista MF, Castro-Oteo PG, Martínez-Matsumoto P, Perez EM, Rosenstein Y, Limón-Rojas AE, Ortiz-Ibarra FJ, Madrid-Marina V. Serum concentrations of apoptosis-associated molecules in septic children with leukemia, neutropenia and fever. Int J Hematol 2017; 105:668-675. [PMID: 28144786 DOI: 10.1007/s12185-016-2175-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 01/10/2023]
Abstract
It has been shown that Fas, Fas-L, TNF and TNFR-1 display high serum concentrations in subjects with sepsis. This suggests that these are potential severity markers. However, the serum concentration of these molecules in children with leukemia and suspected sepsis has to be established before proposing their use as diagnostic biomarkers. We included children <17 years of age diagnosed with acute lymphoblastic leukemia with neutropenia and fever (NF). The subjects were divided into two groups: (1) leukemia and NF with sepsis, (2) leukemia and NF without sepsis. Determination of serum levels of TNF-α, TNFR-1, Fas and Fas-L was performed using ELISA tests, and apoptosis percentage using flow cytometry. Seventy-two subjects with ALL and NF were included in the two groups. The highest serum levels of TNF-α (35.2 ± 7.6 pg/ml) and TNF-R1 (4102 ± 2440) and the lowest levels of Fas-L (19.4 ± 7.3 pg/ml) were found in group 2: however, the difference in comparison with patients without sepsis was not statistically significant. Low levels of Fas-L and low percentage of apoptotic cells are observed in septic subjects. This pattern may reflect the presence of sepsis among subjects with NF secondary to leukemia.
Collapse
Affiliation(s)
- Jesus Reyna-Figueroa
- Pediatrics Service, South Central Hospital of High Specialty of Petroleos Mexicanos, Health Services of Petroleos Mexicanos, Dirección: Blvd. Adolfo Ruiz Cortines 4091, Tlalpan, Fuentes del Pedregal, 14140, Mexico City, DF, Mexico. .,Centre for Research on Infectious Diseases, National Institute of Public Health, Secretary of Health, Cuernavaca, Morelos, Mexico.
| | - Alfredo Lagunas-Martínez
- Centre for Research on Infectious Diseases, National Institute of Public Health, Secretary of Health, Cuernavaca, Morelos, Mexico
| | - Patricia Galindo-Delgado
- Pediatrics Service, South Central Hospital of High Specialty of Petroleos Mexicanos, Health Services of Petroleos Mexicanos, Dirección: Blvd. Adolfo Ruiz Cortines 4091, Tlalpan, Fuentes del Pedregal, 14140, Mexico City, DF, Mexico
| | - María Fernanda Fernández-Bautista
- Pediatrics Service, South Central Hospital of High Specialty of Petroleos Mexicanos, Health Services of Petroleos Mexicanos, Dirección: Blvd. Adolfo Ruiz Cortines 4091, Tlalpan, Fuentes del Pedregal, 14140, Mexico City, DF, Mexico
| | - Paola Guadalupe Castro-Oteo
- Pediatrics Service, South Central Hospital of High Specialty of Petroleos Mexicanos, Health Services of Petroleos Mexicanos, Dirección: Blvd. Adolfo Ruiz Cortines 4091, Tlalpan, Fuentes del Pedregal, 14140, Mexico City, DF, Mexico
| | - Pilar Martínez-Matsumoto
- Pediatrics Service, South Central Hospital of High Specialty of Petroleos Mexicanos, Health Services of Petroleos Mexicanos, Dirección: Blvd. Adolfo Ruiz Cortines 4091, Tlalpan, Fuentes del Pedregal, 14140, Mexico City, DF, Mexico
| | - Erika Melchy Perez
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Yvonne Rosenstein
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Ana Elena Limón-Rojas
- Pediatrics Service, South Central Hospital of High Specialty of Petroleos Mexicanos, Health Services of Petroleos Mexicanos, Dirección: Blvd. Adolfo Ruiz Cortines 4091, Tlalpan, Fuentes del Pedregal, 14140, Mexico City, DF, Mexico
| | | | - Vicente Madrid-Marina
- Centre for Research on Infectious Diseases, National Institute of Public Health, Secretary of Health, Cuernavaca, Morelos, Mexico
| |
Collapse
|
271
|
Gil da Costa RM, Aragão S, Moutinho M, Alvarado A, Carmo D, Casaca F, Silva S, Ribeiro J, Sousa H, Ferreira R, Nogueira-Ferreira R, Pires MJ, Colaço B, Medeiros R, Venâncio C, Oliveira MM, Bastos MM, Lopes C, Oliveira PA. HPV16 induces a wasting syndrome in transgenic mice: Amelioration by dietary polyphenols via NF-κB inhibition. Life Sci 2017; 169:11-19. [DOI: 10.1016/j.lfs.2016.10.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
|
272
|
Peterson SJ, Mozer M. Differentiating Sarcopenia and Cachexia Among Patients With Cancer. Nutr Clin Pract 2016; 32:30-39. [PMID: 28124947 DOI: 10.1177/0884533616680354] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Patients with cancer are at an increased risk for muscle loss via 2 distinct mechanisms: sarcopenia, defined as the age-associated decrease in muscle mass related to changes in muscle synthesis signaling pathways, and/or cachexia, defined as cytokine-mediated degradation of muscle and adipose depots. Both wasting disorders are prevalent; among patients with cancer, 15%-50% are sarcopenic and 25%-80% are cachectic. Muscle mass may be difficult to quantify in overweight/obese individuals. Often, overweight/obese patients with cancer are assumed to be normally nourished when in fact severe muscle depletion may be present. No universally accepted treatment exists for preventing or reversing sarcopenia or cachexia in patients with cancer. Current treatment options are limited to nutrition therapy and exercise, which may lead to difficulties in adherence during cancer treatment. Future treatments may provide pharmaceutical therapy that targets muscle degradation and synthesis pathways. There is a need to determine a multimodal treatment plan for muscle depletion to improve quality of life, survival, and therapy complications in patients with cancer.
Collapse
Affiliation(s)
- Sarah J Peterson
- 1 Department of Clinical Nutrition/Department of Food and Nutrition, Rush University Medical Center, Chicago, Illinois, USA
| | - Marisa Mozer
- 1 Department of Clinical Nutrition/Department of Food and Nutrition, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
273
|
Pastor-Cavada E, Pardo LM, Kandil D, Torres-Fuentes C, Clarke SL, Shaban H, McGlacken GP, Schellekens H. A Novel Non-Peptidic Agonist of the Ghrelin Receptor with Orexigenic Activity In vivo. Sci Rep 2016; 6:36456. [PMID: 27819353 PMCID: PMC5098229 DOI: 10.1038/srep36456] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/17/2016] [Indexed: 01/13/2023] Open
Abstract
Loss of appetite in the medically ill and ageing populations is a major health problem and a significant symptom in cachexia syndromes, which is the loss of muscle and fat mass. Ghrelin is a gut-derived hormone which can stimulate appetite. Herein we describe a novel, simple, non-peptidic, 2-pyridone which acts as a selective agonist for the ghrelin receptor (GHS-R1a). The small 2-pyridone demonstrated clear agonistic activity in both transfected human cells and mouse hypothalamic cells with endogenous GHS-R1a receptor expression. In vivo tests with the hit compound showed significant increased food intake following peripheral administration, which highlights the potent orexigenic effect of this novel GHS-R1a receptor ligand.
Collapse
Affiliation(s)
- Elena Pastor-Cavada
- Alimentary Pharmabiotic Centre (APC) Microbiome Institute, University College Cork, Cork, Ireland
| | - Leticia M Pardo
- Department of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| | - Dalia Kandil
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Cristina Torres-Fuentes
- Alimentary Pharmabiotic Centre (APC) Microbiome Institute, University College Cork, Cork, Ireland
| | - Sarah L Clarke
- Department of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| | - Hamdy Shaban
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard P McGlacken
- Department of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| | - Harriet Schellekens
- Alimentary Pharmabiotic Centre (APC) Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
274
|
Barreto R, Mandili G, Witzmann FA, Novelli F, Zimmers TA, Bonetto A. Cancer and Chemotherapy Contribute to Muscle Loss by Activating Common Signaling Pathways. Front Physiol 2016; 7:472. [PMID: 27807421 PMCID: PMC5070123 DOI: 10.3389/fphys.2016.00472] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/03/2016] [Indexed: 12/21/2022] Open
Abstract
Cachexia represents one of the primary complications of colorectal cancer due to its effects on depletion of muscle and fat. Evidence suggests that chemotherapeutic regimens, such as Folfiri, contribute to cachexia-related symptoms. The purpose of the present study was to investigate the cachexia signature in different conditions associated with severe muscle wasting, namely Colon-26 (C26) and Folfiri-associated cachexia. Using a quantitative LC-MS/MS approach, we identified significant changes in 386 proteins in the quadriceps muscle of Folfiri-treated mice, and 269 proteins differentially expressed in the C26 hosts (p < 0.05; -1.5 ≥ fold change ≥ +1.5). Comparative analysis isolated 240 proteins that were modulated in common, with a large majority (218) that were down-regulated in both experimental settings. Interestingly, metabolic (47.08%) and structural (21.25%) proteins were the most represented. Pathway analysis revealed mitochondrial dysfunctions in both experimental conditions, also consistent with reduced expression of mediators of mitochondrial fusion (OPA-1, mitofusin-2), fission (DRP-1) and biogenesis (Cytochrome C, PGC-1α). Alterations of oxidative phosphorylation within the TCA cycle, fatty acid metabolism, and Ca2+ signaling were also detected. Overall, the proteomic signature in the presence of both chemotherapy and cancer suggests the activation of mechanisms associated with movement disorders, necrosis, muscle cell death, muscle weakness and muscle damage. Conversely, this is consistent with the inhibition of pathways that regulate nucleotide and fatty acid metabolism, synthesis of ATP, muscle and heart function, as well as ROS scavenging. Interestingly, strong up-regulation of pro-inflammatory acute-phase proteins and a more coordinated modulation of mitochondrial and lipidic metabolisms were observed in the muscle of the C26 hosts that were different from the Folfiri-treated animals. In conclusion, our results suggest that both cancer and chemotherapy contribute to muscle loss by activating common signaling pathways. These data support the undertaking of combination strategies that aim to both counteract tumor growth and reduce chemotherapy side effects.
Collapse
Affiliation(s)
- Rafael Barreto
- Department of Surgery, Indiana University School of MedicineIndianapolis, IN, USA
| | - Giorgia Mandili
- Centre for Experimental and Clinical Studies, University of TorinoTorino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of TorinoTorino, Italy
| | - Frank A. Witzmann
- Department of Cellular and Integrative Physiology, Indiana University School of MedicineIndianapolis, IN, USA
| | - Francesco Novelli
- Centre for Experimental and Clinical Studies, University of TorinoTorino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of TorinoTorino, Italy
| | - Teresa A. Zimmers
- Department of Surgery, Indiana University School of MedicineIndianapolis, IN, USA
- Simon Cancer Center, Indiana University School of MedicineIndianapolis, IN, USA
- Center for Cachexia Research Innovation and Therapy, Indiana University - Purdue University IndianapolisIndianapolis, IN, USA
| | - Andrea Bonetto
- Department of Surgery, Indiana University School of MedicineIndianapolis, IN, USA
- Simon Cancer Center, Indiana University School of MedicineIndianapolis, IN, USA
- Center for Cachexia Research Innovation and Therapy, Indiana University - Purdue University IndianapolisIndianapolis, IN, USA
- Department of Otolaryngology, Head and Neck Surgery, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|
275
|
Pantziarka P, Bouche G, Sukhatme V, Meheus L, Rooman I, Sukhatme VP. Repurposing Drugs in Oncology (ReDO)-Propranolol as an anti-cancer agent. Ecancermedicalscience 2016; 10:680. [PMID: 27899953 PMCID: PMC5102691 DOI: 10.3332/ecancer.2016.680] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Indexed: 12/23/2022] Open
Abstract
Propranolol (PRO) is a well-known and widely used non-selective beta-adrenergic receptor antagonist (beta-blocker), with a range of actions which are of interest in an oncological context. PRO displays effects on cellular proliferation and invasion, on the immune system, on the angiogenic cascade, and on tumour cell sensitivity to existing treatments. Both pre-clinical and clinical evidence of these effects, in multiple cancer types, is assessed and summarised and relevant mechanisms of action outlined. In particular there is evidence that PRO is effective at multiple points in the metastatic cascade, particularly in the context of the post-surgical wound response. Based on this evidence the case is made for further clinical investigation of the anticancer effects of PRO, particularly in combination with other agents. A number of trials are on-going, in different treatment settings for various cancers.
Collapse
Affiliation(s)
- Pan Pantziarka
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium; The George Pantziarka TP53 Trust, London, UK
| | | | | | - Lydie Meheus
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium
| | - Ilse Rooman
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium; Oncology Research Centre, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Vikas P Sukhatme
- GlobalCures, Inc, Newton MA 02459, USA; Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
276
|
Preoperative cancer cachexia and short-term outcomes following surgery. J Surg Res 2016; 205:398-406. [DOI: 10.1016/j.jss.2016.06.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/11/2016] [Accepted: 06/27/2016] [Indexed: 11/21/2022]
|
277
|
Lam C, Murthy AS. Depo-Provera (depot medroxyprogesterone acetate) use after bariatric surgery. Open Access J Contracept 2016; 7:143-150. [PMID: 29386945 PMCID: PMC5683152 DOI: 10.2147/oajc.s84097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In the US, obesity rates are increasing greatly. The Centers for Disease Control and Prevention estimates that 68.5% of Americans, including 63.9% of adult women older than 20 years, are overweight (body mass index between 25 kg/m2 and 29.9 kg/m2) or obese (body mass index >30 kg/m2). In light of this, it is not surprising that the rates of bariatric surgery have also been increasing. When considering the metabolic changes associated with both bariatric surgery and contraceptive use, in combination with the unique medical considerations of obese women, it is indisputable that clear guidelines are needed when counseling obese patients of reproductive age after bariatric surgery. In this literature review, we focus on depot medroxyprogesterone acetate (DMPA) and the implications of its use in obese women, preweight and postweight loss following bariatric surgery. Both DMPA use and bariatric surgery are known to cause bone loss, but it is still unclear whether there is an additive effect of the two factors on bone loss and whether either of these factors directly leads to an increased risk of bone fracture. The current consensus guidelines do not impose a restriction on the use of DMPA after bariatric surgery. DMPA use is associated with weight gain, and it is unclear whether weight loss blunting occurs with the use of DMPA after bariatric surgery. Prior studies had demonstrated an association with weight gain in adolescents, and therefore, those prescribing DMPA use after bariatric surgery in adolescents should proceed with caution. Adult women do not have a similar response to the use of DMPA. DMPA use has rarely been associated with increased risk of venous thromboembolism (VTE). The obesity-associated increase in VTE should be mitigated by surgically induced weight loss. The concurrent use of DMPA in the post bariatric surgical period should not further increase the risk of VTE.
Collapse
Affiliation(s)
| | - Amitasrigowri S Murthy
- Department of Obstetrics and Gynecology, Bellevue Hospital Center, New York University School of Medicine.,New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|
278
|
Enteral Access is not Required for Esophageal Cancer Patients Undergoing Neoadjuvant Therapy. Ann Thorac Surg 2016; 102:948-954. [DOI: 10.1016/j.athoracsur.2016.03.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 01/24/2023]
|
279
|
Sato H, Naito T, Ishida T, Kawakami J. Relationships between oxycodone pharmacokinetics, central symptoms, and serum interleukin-6 in cachectic cancer patients. Eur J Clin Pharmacol 2016; 72:1463-1470. [DOI: 10.1007/s00228-016-2116-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
|
280
|
Abstract
Cancer is a complex disease that affects multiple organs. Whole-body animal models provide important insights into oncology that can lead to clinical impact. Here, we review novel concepts that Drosophila studies have established for cancer biology, drug discovery, and patient therapy. Genetic studies using Drosophila have explored the roles of oncogenes and tumor-suppressor genes that when dysregulated promote cancer formation, making Drosophila a useful model to study multiple aspects of transformation. Not limited to mechanism analyses, Drosophila has recently been showing its value in facilitating drug development. Flies offer rapid, efficient platforms by which novel classes of drugs can be identified as candidate anticancer leads. Further, we discuss the use of Drosophila as a platform to develop therapies for individual patients by modeling the tumor's genetic complexity. Drosophila provides both a classical and a novel tool to identify new therapeutics, complementing other more traditional cancer tools.
Collapse
Affiliation(s)
- M Sonoshita
- Icahn School of Medicine at Mount Sinai, New York, NY, United States; Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - R L Cagan
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
281
|
Salustiano EJ, Dumas ML, Silva-Santos GG, Netto CD, Costa PRR, Rumjanek VM. In vitro and in vivo antineoplastic and immunological effects of pterocarpanquinone LQB-118. Invest New Drugs 2016; 34:541-51. [PMID: 27189479 DOI: 10.1007/s10637-016-0359-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/11/2016] [Indexed: 11/29/2022]
Abstract
Cancer is a malignancy of worldwide prevalence, and although new therapeutic strategies are under investigation, patients still resort to reductive or palliative chemotherapy. Side effects are a great concern, since treatment can render patients susceptible to infections or secondary cancers. Thus, design of safer chemotherapeutic drugs must consider the risk of immunotoxicity. Pterocarpans are natural isoflavones that possess immunomodulatory and antineoplastic properties. Ubiquitous in nature, quinones are present in chemotherapeutic drugs such as doxorubicin and mitoxantrone. Our group has patented a hybrid molecule, the pterocarpanquinone LQB-118, and demonstrated its antineoplastic effect in vitro. In this report we describe its antineoplastic effect in vivo and assess its toxicity toward the immune system. Treated mice presented no changes in weight of primary and secondary organs of the immune system nor their cellular composition. Immunophenotyping showed that treatment increased CD4(+) thymocytes and proportionally reduced the CD4(+)CD8(+) subpopulation in the thymus. No significant changes were observed in T CD8(+) peripheral lymphocytes nor was the activation of fresh T cells affected after treatment. LQB-118 induced apoptosis in murine tumor cells in vitro, being synergistic with the autophagy promoter rapamycin. Furthermore, treatment significantly reduced ascites or solid Ehrlich and B16F10 melanoma growth in vivo, and ameliorated side effects such as cachexia. Based on its favorable preclinical profile and considering previous results obtained in vitro, this drug emerges as a promising candidate for further development.
Collapse
Affiliation(s)
- Eduardo J Salustiano
- Laboratory of Tumor Immunology, Leopoldo de Meis Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, Bloco H, 2° andar sala 003 Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil. .,Laboratory of Bioorganic Chemistry, Institute for Natural Products Research, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Matheus L Dumas
- Laboratory of Tumor Immunology, Leopoldo de Meis Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, Bloco H, 2° andar sala 003 Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Gabriel G Silva-Santos
- Laboratory of Tumor Immunology, Leopoldo de Meis Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, Bloco H, 2° andar sala 003 Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Chaquip D Netto
- Laboratory of Bioorganic Chemistry, Institute for Natural Products Research, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Chemistry, Macaé Institute of Metrology and Technology, Federal University of Rio de Janeiro, Professor Aloísio Teixeira Macaé Campus, Macaé, RJ, Brazil
| | - Paulo R R Costa
- Laboratory of Bioorganic Chemistry, Institute for Natural Products Research, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian M Rumjanek
- Laboratory of Tumor Immunology, Leopoldo de Meis Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, Bloco H, 2° andar sala 003 Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil
| |
Collapse
|
282
|
Sala D, Sacco A. Signal transducer and activator of transcription 3 signaling as a potential target to treat muscle wasting diseases. Curr Opin Clin Nutr Metab Care 2016; 19:171-6. [PMID: 27023048 PMCID: PMC4866604 DOI: 10.1097/mco.0000000000000273] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The review summarizes our current knowledge of the role of signal transducer and activator of transcription 3 (STAT3) signaling in skeletal muscle regeneration and the maintenance of muscle mass. RECENT FINDINGS STAT3 signaling plays a pivotal role in regulating the function of multiple cell types in skeletal muscle. This includes muscle stem cells, myofibers, and macrophages. It regulates muscle stem cell function by antagonizing self-renewal. STAT3 also functions in myofibers to regulate skeletal muscle mass. This is highly relevant under pathological conditions where STAT3 activation promotes protein degradation and muscle atrophy. Transient pharmacological inhibition of STAT3 partially prevents muscle wasting. However, the mechanisms responsible for the improvement of muscle condition are not currently well understood. This is because of the complexity of the system, as STAT3 has a critical role in regulating the function of several cell types residing in skeletal muscle. SUMMARY Muscle wasting is associated with several human diseases such as muscle dystrophies or cancer cachexia. However, currently there are no effective treatments for this condition, and there is a critical need to identify new potential targets for the development of efficient therapeutic approaches.
Collapse
Affiliation(s)
- David Sala
- Development, Aging and Regeneration Program (DARe), Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program (DARe), Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
- Corresponding author: Alessandra Sacco, Ph.D., Development, Aging and Regeneration Program, Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA, Tel: 858-597-5337,
| |
Collapse
|
283
|
Citrus unshiu peel extract alleviates cancer-induced weight loss in mice bearing CT-26 adenocarcinoma. Sci Rep 2016; 6:24214. [PMID: 27064118 PMCID: PMC4827095 DOI: 10.1038/srep24214] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/23/2016] [Indexed: 12/27/2022] Open
Abstract
Skeletal muscle atrophy is a critical feature of cancer-induced cachexia, caused by pro-cachectic factors secreted by host cells and tumor cells. Therefore, blockade of these factors has considered a reasonable target for pharmacological and nutritional interventions to prevent skeletal muscle loss under cancer-induced cachexia. Citrus unshiu peel (CUP) has been used for treating the common cold, dyspepsia, and bronchial discomfort and reported to have pharmacological activities against inflammation, allergy, diabetes, and viral infection. In the present study, we observed that daily oral administration of water extract of CUP (WCUP) to male BALB/c mice bearing CT-26 adenocarcinoma remarkably reduced the losses in final body weight, carcass weight, gastrocnemius muscle, epididymal adipose tissue, and hemoglobin (Hb), compared with saline treatment. The levels of serum IL-6 and muscle-specific E3 ligases elevated by tumor burden were also considerably reduced by WCUP administration. In an in vitro experiment, WCUP efficiently suppressed the production of pro-cachectic cytokines in immune cells as well as cancer cells. In addition, WCUP treatment attenuated C2C12 skeletal muscle cell atrophy caused by cancer cells. These findings collectively suggest that WCUP is beneficial as a nutritional supplement for the management of cancer patients with severe weight loss.
Collapse
|
284
|
Bucholz EM, Krumholz HA, Krumholz HM. Underweight, Markers of Cachexia, and Mortality in Acute Myocardial Infarction: A Prospective Cohort Study of Elderly Medicare Beneficiaries. PLoS Med 2016; 13:e1001998. [PMID: 27093615 PMCID: PMC4836735 DOI: 10.1371/journal.pmed.1001998] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/08/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Underweight patients are at higher risk of death after acute myocardial infarction (AMI) than normal weight patients; however, it is unclear whether this relationship is explained by confounding due to cachexia or other factors associated with low body mass index (BMI). This study aimed to answer two questions: (1) does comprehensive risk adjustment for comorbid illness and frailty measures explain the higher mortality after AMI in underweight patients, and (2) is the relationship between underweight and mortality also observed in patients with AMI who are otherwise without significant chronic illness and are presumably free of cachexia? METHODS AND FINDINGS We analyzed data from the Cooperative Cardiovascular Project, a cohort-based study of Medicare beneficiaries hospitalized for AMI between January 1994 and February 1996 with 17 y of follow-up and detailed clinical information to compare short- and long-term mortality in underweight and normal weight patients (n = 57,574). We used Cox proportional hazards regression to investigate the association of low BMI with 30-d, 1-y, 5-y, and 17-y mortality after AMI while adjusting for patient comorbidities, frailty measures, and laboratory markers of nutritional status. We also repeated the analyses in a subset of patients without significant comorbidity or frailty. Of the 57,574 patients with AMI included in this cohort, 5,678 (9.8%) were underweight and 51,896 (90.2%) were normal weight at baseline. Underweight patients were older, on average, than normal weight patients and had a higher prevalence of most comorbidities and measures of frailty. Crude mortality was significantly higher for underweight patients than normal weight patients at 30 d (25.2% versus 16.4%, p < 0.001), 1 y (51.3% versus 33.8%, p < 0.001), 5 y (79.2% versus 59.4%, p < 0.001), and 17 y (98.3% versus 94.0%, p < 0.001). After adjustment, underweight patients had a 13% higher risk of 30-d death and a 26% higher risk of 17-y death than normal weight patients (30-d hazard ratio [HR] 1.13, 95% CI 1.07-1.20; 17-y HR 1.26, 95% CI 1.23-1.30). Survival curves for underweight and normal weight patients separated early and remained separate over 17 y, suggesting that underweight patients remained at a significant survival disadvantage over time. Similar findings were observed among the subset of patients without comorbidity at baseline. Underweight patients without comorbidity had a 30-d adjusted mortality similar to that of normal weight patients but a 21% higher risk of death over the long term (30-d HR 1.08, 95% CI 0.93-1.26; 17-y HR 1.21, 95% CI 1.14-1.29). The adverse effects of low BMI were greatest in patients with very low BMIs. The major limitation of this study was the use of surrogate markers of frailty and comorbid conditions to identify patients at highest risk for cachexia rather than clear diagnostic criteria for cachexia. CONCLUSIONS Underweight BMI is an important risk factor for mortality after AMI, independent of confounding by comorbidities, frailty measures, and laboratory markers of nutritional status. Strategies to promote weight gain in underweight patients after AMI are worthy of testing.
Collapse
Affiliation(s)
- Emily M. Bucholz
- Department of Pediatrics, Boston Children’s Hospital and Boston Medical
Center, Boston, Massachusetts, United States of America
- Yale School of Medicine and Yale School of Public Health, New Haven,
Connecticut, United States of America
| | | | - Harlan M. Krumholz
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale
School of Medicine, New Haven, Connecticut, United States of America
- Center for Outcomes Research and Evaluation, Yale–New Haven Hospital, New
Haven, Connecticut, United States of America
- Robert Wood Johnson Foundation Clinical Scholars Program, Department of
Medicine, Yale School of Medicine, New Haven, Connecticut, United States of
America
- Department of Health Policy and Management, Yale School of Public Health,
New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
285
|
Vernia S, Morel C, Madara JC, Cavanagh-Kyros J, Barrett T, Chase K, Kennedy NJ, Jung DY, Kim JK, Aronin N, Flavell RA, Lowell BB, Davis RJ. Excitatory transmission onto AgRP neurons is regulated by cJun NH2-terminal kinase 3 in response to metabolic stress. eLife 2016; 5:e10031. [PMID: 26910012 PMCID: PMC4798947 DOI: 10.7554/elife.10031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 02/22/2016] [Indexed: 11/13/2022] Open
Abstract
The cJun NH2-terminal kinase (JNK) signaling pathway is implicated in the response to metabolic stress. Indeed, it is established that the ubiquitously expressed JNK1 and JNK2 isoforms regulate energy expenditure and insulin resistance. However, the role of the neuron-specific isoform JNK3 is unclear. Here we demonstrate that JNK3 deficiency causes hyperphagia selectively in high fat diet (HFD)-fed mice. JNK3 deficiency in neurons that express the leptin receptor LEPRb was sufficient to cause HFD-dependent hyperphagia. Studies of sub-groups of leptin-responsive neurons demonstrated that JNK3 deficiency in AgRP neurons, but not POMC neurons, was sufficient to cause the hyperphagic response. These effects of JNK3 deficiency were associated with enhanced excitatory signaling by AgRP neurons in HFD-fed mice. JNK3 therefore provides a mechanism that contributes to homeostatic regulation of energy balance in response to metabolic stress. DOI:http://dx.doi.org/10.7554/eLife.10031.001 Consuming the right amount of food is important for health. Eating too little for a long time causes damage to organs, and overeating can cause harm as well, in the form of conditions such as obesity and type 2 diabetes. Several signaling molecules and brain regions are linked to controlling food consumption and ensuring the body receives the correct amount of nutrients to fuel its activities. Previous studies have found that two proteins called JNK1 and JNK2, which are found in most tissues of the body, can reduce how much energy cells use. This can trigger insulin resistance and fat accumulation, and so suggests that blocking the activity of these proteins may help to treat type 2 diabetes and obesity. However, the role of another JNK protein – JNK3, which is mostly found in the brain – was not known. Now, Vernia, Morel et al. have investigated the role of JNK3 in metabolism. It was found that JNK3 reduced the amount of food consumed by mice provided with a cafeteria (high fat) diet. Mice that lacked JNK3 ate far more food and gained more weight on a high fat diet than normal mice. However, JNK3 played no role in food consumption when mice were fed a standard chow diet. Treating normal mice with leptin – an appetite-suppressing hormone – caused them to lose weight, but did not affect mice that lacked JNK3. Examining the brains of the mice revealed that in normal mice, JNK3 in a specific sub-population of neurons decreases the production of proteins that promote eating. However, the proteins continued to be produced in mice that lacked JNK3, encouraging overeating. Overall, the results suggest that blocking the activity of all the JNK proteins will not help treat obesity and diabetes as shutting down JNK3 could encourage overeating. Therefore, future investigation into treatments for these conditions should focus on drugs that specifically target JNK1 and JNK2, and not JNK3. DOI:http://dx.doi.org/10.7554/eLife.10031.002
Collapse
Affiliation(s)
- Santiago Vernia
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Caroline Morel
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Joseph C Madara
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States.,Harvard Medical School, Boston, United States
| | - Julie Cavanagh-Kyros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Tamera Barrett
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Kathryn Chase
- Department of Medicine, Division of Endocrinology, University of Massachusetts Medical School, Worcester, United States
| | - Norman J Kennedy
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Dae Young Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Medicine, Division of Endocrinology, University of Massachusetts Medical School, Worcester, United States
| | - Neil Aronin
- Department of Medicine, Division of Endocrinology, University of Massachusetts Medical School, Worcester, United States
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, United States.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Bradford B Lowell
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States.,Harvard Medical School, Boston, United States
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
286
|
Kim A, Im M, Ma JY. Sosiho‑tang ameliorates cachexia‑related symptoms in mice bearing colon 26 adenocarcinoma by reducing systemic inflammation and muscle loss. Oncol Rep 2015; 35:1841-50. [PMID: 26718030 DOI: 10.3892/or.2015.4527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/20/2015] [Indexed: 11/05/2022] Open
Abstract
Cachexia accompanied by muscle wasting is a key determinant of poor prognosis in cancer patients and cancer‑related death. Previous studies have demonstrated that inflammatory cytokines such as interleukin‑6 (IL‑6), tumor necrosis factor‑α (TNF‑α), IL‑1 and interferon‑γ (IFN‑γ) secreted from host cells and tumor cells participate in skeletal muscle wasting followed by severe loss of body weight. Therefore, blockade of the inflammatory response is thought to be a logical target for pharmacological and nutritional interventions to preserve skeletal muscle mass under cachectic conditions. Sosiho‑tang (SO; Xiaocharihu‑tang in Chinese and Sho‑saiko‑to in Japanese) is an Oriental herbal medicine that has been used to treat chronic hepatic diseases and to control fever. In recent studies, SO inhibited the production of inflammatory cytokines in lipopolysaccharide (LPS)‑stimulated macrophages, prevented thrombus formation and suppressed cancer progression. However, the anti‑cachectic activity of SO in tumor‑bearing mice has not yet been examined. In the present study, we characterized the effect of SO administration on cancer‑induced cachexia in CT‑26‑bearing mice, and elucidated the anti‑cachectic mechanisms. Daily oral administration of SO at doses of 50 and 100 mg/kg to CT‑26‑bearing mice significantly retarded tumor growth and prevented the loss of final body weight, carcass weight, heart weight, gastrocnemius muscle, and epididymal fat, compared with saline‑treated control mice. In addition, serum IL‑6 levels elevated by cancer were decreased by SO administration. In the J774A.1 macrophage cell line, SO efficiently suppressed LPS‑mediated increases in inducible nitric oxide synthase (iNOS) expression, nitric oxide (NO), and procachectic inflammatory cytokine production through inhibition of nuclear factor‑κB (NF‑κB) and p38 activation. In addition, SO attenuated muscle atrophy caused by cancer cells by affecting myoblast proliferation and differentiation, and C2C12 myotube wasting. Taken together, these results suggest that SO is a safe and useful anti‑cachectic therapy for cancer patients with severe weight loss.
Collapse
Affiliation(s)
- Aeyung Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong‑gu, Daegu 701‑300, Republic of Korea
| | - Minju Im
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong‑gu, Daegu 701‑300, Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong‑gu, Daegu 701‑300, Republic of Korea
| |
Collapse
|
287
|
Penna F, Pin F, Ballarò R, Baccino FM, Costelli P. Novel investigational drugs mimicking exercise for the treatment of cachexia. Expert Opin Investig Drugs 2015; 25:63-72. [PMID: 26560328 DOI: 10.1517/13543784.2016.1117072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Cachexia is a syndrome characterized by body weight loss, muscle wasting and metabolic abnormalities, that frequently complicates the management of people affected by chronic diseases. No effective therapy is actually available, although several drugs are under clinical evaluation. Altered energy metabolism markedly contributes to the pathogenesis of cachexia; it can be improved by exercise, which is able to both induce anabolism and inhibit catabolism. AREAS COVERED This review focuses on exercise mimetics and their potential inclusion in combined protocols to treat cachexia. The authors pay with particular reference to the cancer-associated cachexia. EXPERT OPINION Even though exercise improves muscle phenotype, most patients retain sedentary habits which are quite difficult to disrupt. Moreover, they frequently present with chronic fatigue and comorbidities that reduce exercise tolerance. For these reasons, drugs mimicking exercise could be beneficial to those who are unable to comply with the practice of physical activity. Since some exercise mimetics may exert serious side effects, further investigations should focus on treatments which maintain their effectiveness on muscle phenotype while remaining tolerable at the same time.
Collapse
Affiliation(s)
- F Penna
- a Department of Clinical and Biological Sciences , University of Turin , Turin , Italy.,b Interuniversity Institute of Myology , Italy
| | - F Pin
- a Department of Clinical and Biological Sciences , University of Turin , Turin , Italy.,b Interuniversity Institute of Myology , Italy
| | - R Ballarò
- a Department of Clinical and Biological Sciences , University of Turin , Turin , Italy.,b Interuniversity Institute of Myology , Italy
| | - F M Baccino
- a Department of Clinical and Biological Sciences , University of Turin , Turin , Italy
| | - P Costelli
- a Department of Clinical and Biological Sciences , University of Turin , Turin , Italy.,b Interuniversity Institute of Myology , Italy
| |
Collapse
|
288
|
The influence of high-intensity compared with moderate-intensity exercise training on cardiorespiratory fitness and body composition in colorectal cancer survivors: a randomised controlled trial. J Cancer Surviv 2015; 10:467-79. [PMID: 26482384 DOI: 10.1007/s11764-015-0490-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/05/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE Following colorectal cancer diagnosis and anti-cancer therapy, declines in cardiorespiratory fitness and body composition lead to significant increases in morbidity and mortality. There is increasing interest within the field of exercise oncology surrounding potential strategies to remediate these adverse outcomes. This study compared 4 weeks of moderate-intensity exercise (MIE) and high-intensity exercise (HIE) training on peak oxygen consumption (V̇O2peak) and body composition in colorectal cancer survivors. METHODS Forty seven post-treatment colorectal cancer survivors (HIE = 27 months post-treatment; MIE = 38 months post-treatment) were randomised to either HIE [85-95 % peak heart rate (HRpeak)] or MIE (70 % HRpeak) in equivalence with current physical activity guidelines and completed 12 training sessions over 4 weeks. RESULTS HIE was superior to MIE in improving absolute (p = 0.016) and relative (p = 0.021) V̇O2peak. Absolute (+0.28 L.min(-1), p < 0.001) and relative (+3.5 ml.kg(-1).min(-1), p < 0.001) V̇O2 peak were increased in the HIE group but not the MIE group following training. HIE led to significant increases in lean mass (+0.72 kg, p = 0.002) and decreases in fat mass (-0.74 kg, p < 0.001) and fat percentage (-1.0 %, p < 0.001), whereas no changes were observed for the MIE group. There were no severe adverse events. CONCLUSIONS In response to short-term training, HIE is a safe, feasible and efficacious intervention that offers clinically meaningful improvements in cardiorespiratory fitness and body composition for colorectal cancer survivors. IMPLICATIONS FOR CANCER SURVIVORS HIE appears to offer superior improvements in cardiorespiratory fitness and body composition in comparison to current physical activity recommendations for colorectal cancer survivors and therefore may be an effective clinical utility following treatment.
Collapse
|