301
|
Manda G, Hinescu ME, Neagoe IV, Ferreira LF, Boscencu R, Vasos P, Basaga SH, Cuadrado A. Emerging Therapeutic Targets in Oncologic Photodynamic Therapy. Curr Pharm Des 2019; 24:5268-5295. [DOI: 10.2174/1381612825666190122163832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 12/20/2022]
Abstract
Background:Reactive oxygen species sustain tumorigenesis and cancer progression through deregulated redox signalling which also sensitizes cancer cells to therapy. Photodynamic therapy (PDT) is a promising anti-cancer therapy based on a provoked singlet oxygen burst, exhibiting a better toxicological profile than chemo- and radiotherapy. Important gaps in the knowledge on underlining molecular mechanisms impede on its translation towards clinical applications.Aims and Methods:The main objective of this review is to critically analyse the knowledge lately gained on therapeutic targets related to redox and inflammatory networks underlining PDT and its outcome in terms of cell death and resistance to therapy. Emerging therapeutic targets and pharmaceutical tools will be documented based on the identified molecular background of PDT.Results:Cellular responses and molecular networks in cancer cells exposed to the PDT-triggered singlet oxygen burst and the associated stresses are analysed using a systems medicine approach, addressing both cell death and repair mechanisms. In the context of immunogenic cell death, therapeutic tools for boosting anti-tumor immunity will be outlined. Finally, the transcription factor NRF2, which is a major coordinator of cytoprotective responses, is presented as a promising pharmacologic target for developing co-therapies designed to increase PDT efficacy.Conclusion:There is an urgent need to perform in-depth molecular investigations in the field of PDT and to correlate them with clinical data through a systems medicine approach for highlighting the complex biological signature of PDT. This will definitely guide translation of PDT to clinic and the development of new therapeutic strategies aimed at improving PDT.
Collapse
Affiliation(s)
| | | | | | - Luis F.V. Ferreira
- CQFM-Centro de Fisica Molecular and IN-Institute for Nanosciences and Nanotechnologies and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal
| | | | - Paul Vasos
- Research Centre of the University of Bucharest, Bucharest, Romania
| | - Selma H. Basaga
- Molecular Biology Genetics & Program, Faculty of Engineering & Natural Sciences, Sabanci University, Istanbul, Turkey
| | | |
Collapse
|
302
|
Zahran AM, Nafady-Hego H, Mansor SG, Abbas WA, Abdel-Malek MO, Mekky MA, Hetta HF. Increased frequency and FOXP3 expression of human CD8 +CD25 High+ T lymphocytes and its relation to CD4 regulatory T cells in patients with hepatocellular carcinoma. Hum Immunol 2019; 80:510-516. [PMID: 30904437 DOI: 10.1016/j.humimm.2019.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 02/08/2023]
Abstract
The mechanism of action of CD8+CD25High+FOXP3+ T cells in hepatocellular carcinoma (HCC) has not been fully understood. Herein, the role of CD8+CD25High+FOXP3+ T cells in HCC was compared with that of CD4+CD25High+FOXP3+ regulatory T cells (conventional Tregs). Thirty-five patients with HCC and twenty age and sex-matched healthy adults (controls) were enrolled. The percentage of CD8+CD25High+FOXP3+ T cells and conventional Tregs in peripheral blood was measured by flow cytometry. Our results revealed that the percentage of peripheral CD8+CD25High+FOXP3+ T cells in HCC patients was significantly higher than controls (P = 0.005). The conventional Tregs showed the same trend with a higher level in HCC than controls (P < 0.0001). FOXP3 expression of CD8+CD25High+ T cells is higher than that of CD8+CD25low+ and CD8+CD25Negative T cells. The percentage of CD8+CD25High+FOXP3+ T cells positively correlated with that of conventional Tregs in HCC patients but not in controls. The higher alpha-fetoprotein positively correlated with the higher CD8+CD25High+FOXP3+ T cells and conventional Tregs (R2 = 0.481, P < 0.0001 and R2 = 0.249, P = 0.001, respectively). The frequency of both CD8+CD25High+FOXP3+ T cells and conventional Tregs was significantly increased in HCC with multiple lesions compared with those with one or two lesions. In conclusion: CD8+CD25High+FOXP3+ T cells similar to conventional Tregs might be used as biomarkers of HCC progression. Therapy targeting the peripherally expanded CD8+CD25High+FOXP3+ T cells may provide a novel perspective for HCC treatment.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut, Egypt
| | - Hanaa Nafady-Hego
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Egypt.
| | - Shima G Mansor
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut, Egypt
| | - Wael A Abbas
- Department of Internal Medicine, Faculty of Medicine, Assiut University, Egypt
| | - Mohamed O Abdel-Malek
- Department of Tropical Medicine and Gastroenterology, Assiut University Hospital, Assiut, Egypt
| | - Mohamed A Mekky
- Department of Tropical Medicine and Gastroenterology, Assiut University Hospital, Assiut, Egypt
| | - Helal F Hetta
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Egypt; Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
303
|
Sirivichayakul S, Kanchanatawan B, Thika S, Carvalho AF, Maes M. A New Schizophrenia Model: Immune Activation is Associated with the Induction of Different Neurotoxic Products which Together Determine Memory Impairments and Schizophrenia Symptom Dimensions. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:124-140. [DOI: 10.2174/1871527317666181119115532] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/02/2018] [Accepted: 11/13/2018] [Indexed: 12/19/2022]
Abstract
Objective: Recently, we reported that stable-phase schizophrenia is characterized by two interrelated
symptom dimensions: PHEMN (psychotic, hostility, excitation, mannerism and negative symptoms);
and DAPS (depressive, anxiety and physio-somatic symptoms) and that Major Neuro-Cognitive
psychosis (MNP) is the full-blown phenotype of schizophrenia (largely overlapping with deficit schizophrenia).
Herein we examined the effects of immune activation in association with tryptophan catabolite
(TRYCAT) patterning and memory disorders on PHEMN/DAPS dimensions and MNP.
Methods:
Serum levels of macrophage inflammatory protein-1 (MIP-1), soluble interleukin (IL)-1 receptor
antagonist (sIL-1RA), IL-10, eotaxin, IgA/IgM responses to TRYCATs, and Consortium to Establish
a Registry for Alzheimer’s disease (CERAD) tests were assessed in 40 controls and 80 schizophrenia
patients.
Results:
Schizophrenia and MNP were predicted by significantly increased levels of IL-10, eotaxin
and TRYCATs. A large part of variance in both PHEMN/DAPS symptom dimensions (42.8%) was
explained by cytokine levels and TRYCATs combined. The MIP+sIL-1RA+IL-10 composite score
and eotaxin explained each around on the basis of 19% of the variance in symptom dimensions, and
approximately 18% of memory deficits. Moreover, MIP+sIL-1RA+IL-10 was significantly associated
with elevations in picolinic acid, xanthurenic acid and 3-OH-kynurenine. Partial Least Squares path
modeling shows that highly significant effects of MIP+sIL-1RA+IL-10 on symptomatology are mediated
by the effects of noxious TRYCATs on memory deficits.
Conclusion:
Current findings indicate that in schizophrenia, immune activation may underpin activation
of indoleamine-2,3-dioxygenase and kynurenine monooxygenase, while impairments in episodic
and semantic memory may be caused by the neurotoxic effects of TRYCATs and eotaxin. The combined
effects of immune activation, eotaxin and memory defects determine to a large extent,
PHEMN/DAPS symptoms and the MNP phenotype. These findings indicate that schizophrenia phenomenology
is largely mediated by multiple neuro-immune pathways and that immune activation, increased
production of eotaxin and neurotoxic TRYCATs (picolinic acid, xanthurenic acid and 3-HOkynurenine)
are new drug targets in schizophrenia and MNP.
Collapse
Affiliation(s)
- Sunee Sirivichayakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supaksorn Thika
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - André F. Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
304
|
Tomić S, Joksimović B, Bekić M, Vasiljević M, Milanović M, Čolić M, Vučević D. Prostaglanin-E2 Potentiates the Suppressive Functions of Human Mononuclear Myeloid-Derived Suppressor Cells and Increases Their Capacity to Expand IL-10-Producing Regulatory T Cell Subsets. Front Immunol 2019; 10:475. [PMID: 30936876 PMCID: PMC6431635 DOI: 10.3389/fimmu.2019.00475] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/21/2019] [Indexed: 01/22/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) emerged as major factors driving the tumor progression due to numerous immunosuppressive mechanisms they possess. Prostaglandin (PG)E2 is shown critical for the induction of MDSC and their suppressive functions in vivo, but it is poorly understood how it affects the capacity of MDSC to induce different subsets of regulatory T cells (Treg). By using a novel protocol for the generation of mononuclear (M)-MDSC, we showed that PGE2 potentiates the GM-CSF/IL-6-dependent induction of CD33+CD11b+HLA-DR-CD14+ M-MDSC in vitro. PGE2 diminished the capacity of GM-CSF/IL-6 M-MDSC to produce proinflammatory cytokines upon activation and augmented their capacity to produce IL-27, IL-33, and TGF-β. These results correlated with an increased potential of GM-CSF/IL-6/PGE2 M-MDSC to suppress T cell proliferation, expand alloreactive Th2 cells, and reduce the development of alloreactive Th17 and cytotoxic T cells. Interestingly, GM-CSF/IL-6/PGE2 M-MDSC displayed a lower capacity to induce TGF-β-producing FoxP3+ regulatory Treg compared to GM-CSF/IL-6 M-MDSC, as a consequence of reduced IDO-1 expression. In contrast, GM-CSF/IL-6/PGE2 M-MDSC potentiated IL-10 production by CD8+T, Th2, and particularly CD4+FoxP3- type 1 Treg, the latter of which depended on ILT3 and ILT4 expression. Cumulatively, PGE2 potentiated the suppressive phenotype and functions of GM-CSF/IL-6-induced M-MDSC and changed the mechanisms involved in Treg induction, which could be important for investigating new therapeutic strategies focused on MDSC-related effects in tumors and autoimmune diseases.
Collapse
Affiliation(s)
- Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Belgrade, Serbia
| | - Bojan Joksimović
- Medical Faculty Foča, University of East Sarajevo, Lukavica, Bosnia and Herzegovina
| | - Marina Bekić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Belgrade, Serbia
| | - Miloš Vasiljević
- Medical Faculty Foča, University of East Sarajevo, Lukavica, Bosnia and Herzegovina
| | - Marijana Milanović
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Belgrade, Serbia
| | - Miodrag Čolić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Belgrade, Serbia
- Medical Faculty Foča, University of East Sarajevo, Lukavica, Bosnia and Herzegovina
| | - Dragana Vučević
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Belgrade, Serbia
| |
Collapse
|
305
|
Hosomi S, Koyama Y, Watabe T, Ohnishi M, Ogura H, Yamashita T, Shimazu T. Myeloid-Derived Suppressor Cells Infiltrate the Brain and Suppress Neuroinflammation in a Mouse Model of Focal Traumatic Brain Injury. Neuroscience 2019; 406:457-466. [PMID: 30880103 DOI: 10.1016/j.neuroscience.2019.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/22/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) have strong immunosuppressive characteristics, which allow them to limit inflammation and facilitate wound healing and recovery. Although MDSCs are a newly-determined cell type that is gaining attention in the immunology field, their neuroimmunological characteristics remain unstudied. In this study, we explored the suppressive role of MDSCs in cerebral inflammatory reactions after focal traumatic brain injury (TBI) using in vivo imaging. Through morphological, functional, and phenotypic analyses we determined that CD11b+/Gr-1+ cells infiltrating the contusion area are MDSCs. MDSCs are among the first responders to tissue injury, responding even prior to microglial activation. Positron emission tomography imaging of translocator protein results suggest that infiltrating MDSCs suppress neuronal inflammation and interact with resident immune cells, like microglia, following focal TBI.
Collapse
Affiliation(s)
- Sanae Hosomi
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
| | - Yoshihisa Koyama
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
| | - Tadashi Watabe
- Positron Emission Tomography Molecular Imaging Center, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
| | - Mitsuo Ohnishi
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
| | - Takeshi Shimazu
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
306
|
Wang X, Han Y, Jin J, Cheng Z, Wang Q, Guo X, Li W, Liu H. Plum-blossom needle assisted photodynamic therapy for the treatment of oral potentially malignant disorder in the elderly. Photodiagnosis Photodyn Ther 2019; 25:296-299. [DOI: 10.1016/j.pdpdt.2019.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 02/08/2023]
|
307
|
Rahman S, Archana A, Jan AT, Dutta D, Shankar A, Kim J, Minakshi R. Molecular Insights Into the Relationship Between Autoimmune Thyroid Diseases and Breast Cancer: A Critical Perspective on Autoimmunity and ER Stress. Front Immunol 2019; 10:344. [PMID: 30881358 PMCID: PMC6405522 DOI: 10.3389/fimmu.2019.00344] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
The etiopathologies behind autoimmune thyroid diseases (AITDs) unravel misbehavior of immune components leading to the corruption of immune homeostasis where thyroid autoantigens turn foe to the self. In AITDs lymphocytic infiltration in the thyroid shows up a deranged immune system charging the follicular cells of the thyroid gland (thyrocytes) leading to the condition of either hyperthyroidism or hypothyroidism. The inflammation in AITDs consistently associate with ER function due to which disturbances in the ER protein homeostasis leads to unfolded protein response (UPR) that promotes pathogenesis of autoimmunity. The roles of ER stress in the instantaneous downregulation of MHC class I molecules on thyrocytes and the relevance of IFN γ in the pathogenesis of AITD has been well-documented. Thyroglobulin being the major target of autoantibodies in most of the AITDs is because of its unusual processing in the ER. Autoimmune disorders display a conglomeration of ER stress-induced UPR activated molecules. Several epidemiological data highlight the preponderance of AITDs in women as well as its concurrence with breast cancer. Both being an active glandular system displaying endocrine activity, thyroid as well as breast tissue show various commonalities in the expression pattern of heterogenous molecules that not only participate in the normal functioning but at the same time share the blame during disease establishment. Studies on the development and progression of breast carcinoma display a deranged and uncontrolled immune response, which is meticulously exploited during tumor metastasis. The molecular crosstalks between AITDs and breast tumor microenvironment rely on active participation of immune cells. The induction of ER stress by Tunicamycin advocates to provide a model for cancer therapy by intervening glycosylation. Therefore, this review attempts to showcase the molecules that are involved in feeding up the relationship between breast carcinoma and AITDs.
Collapse
Affiliation(s)
- Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ayyagari Archana
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Durgashree Dutta
- Department of Biochemistry, Jan Nayak Chaudhary Devilal Dental College, Sirsa, India
| | - Abhishek Shankar
- Department of Preventive Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Rinki Minakshi
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| |
Collapse
|
308
|
Hetta HF, Zahran AM, Mansor SG, Abdel-Malek MO, Mekky MA, Abbas WA. Frequency and Implications of myeloid-derived suppressor cells and lymphocyte subsets in Egyptian patients with hepatitis C virus-related hepatocellular carcinoma. J Med Virol 2019; 91:1319-1328. [PMID: 30761547 DOI: 10.1002/jmv.25428] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/26/2019] [Accepted: 02/07/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIM Myeloid-derived suppressor cells (MDSCs) play a pivotal role in tumor immunity and induction of immune tolerance to a variety of antitumor effectors, including T lymphocytes. Herein, we tried to evaluate the frequency and clinical significance of MDSCs and different lymphocyte subsets in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC). METHODS Four groups were enrolled; chronic HCV (CHC; n = 40), HCV-related liver cirrhosis (n = 40), HCV-related HCC (HCV-HCC; n = 75), and healthy control group (n = 20). The percentage of peripheral lymphocytes subsets and total MDSCs with their main two subsets; monocytic (M-MDSCs) and granulocytic (G-MDSCs) was evaluated by flow cytometry. RESULTS The frequency of total MSDCs and M-MDSCs was significantly elevated in HCV-HCC especially patients with advanced stage HCC compared with those with early-stage HCC. The frequency of total MSDCs and M-MDSCs was positively correlated with ALT, AFP, and HCV viral load and negatively correlated with CD8+ T-cell frequency. CD4 + T cells were significantly decreased in HCV-HCC patients. The frequency of CD4 + T cells and CD8 + T cells was negatively correlated with AFP and AST, but not with albumin or HCV viral load. CONCLUSION Taken together, our data suggest that MDSCs, M-MDSCs, and lymphocyte subsets are associated with the development and progression of HCV-related HCC.
Collapse
Affiliation(s)
- Helal F Hetta
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut, Egypt
| | - Shima G Mansor
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut, Egypt
| | - Mohamed O Abdel-Malek
- Department of Tropical Medicine and Gastroenterology, Assiut University Hospital, Assiut, Egypt
| | - Mohamed A Mekky
- Department of Tropical Medicine and Gastroenterology, Assiut University Hospital, Assiut, Egypt
| | - Wael A Abbas
- Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
309
|
Basingnaa A, Antwi-Baffour S, Nkansah DO, Afutu E, Owusu E. Plasma Levels of Cytokines (IL-10, IFN-γ and TNF-α) in Multidrug Resistant Tuberculosis and Drug Responsive Tuberculosis Patients in Ghana. Diseases 2018; 7:E2. [PMID: 30583589 PMCID: PMC6473728 DOI: 10.3390/diseases7010002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
The emergence of multidrug-resistant tuberculosis (MDR⁻TB) and more recently, extensively drug-resistant (XDR) TB has intensified the need for studies aimed at identifying factors associated with TB drug resistance. This study determined the differences in plasma concentrations of pro-inflammatory (IFN-γ and TNF-α) and anti-inflammatory (IL-10) cytokines in MDR-TB and drug-susceptible (DS) TB patients, in addition to some socio-economic factors. Plasma levels of IL-10, IFN-γ and TNF-α were measured in 83 participants (comprising 49 MDR-TB and 34 DS-TB patients) using sandwich ELISA. Levels of the three cytokines were elevated in MDR-TB patients compared to DS-TB patients. The mean level of IL-10 (7.8 ± 3.61 ρg/mL) measured in MDR-TB cases was relatively higher than those of TNF-α and IFN-γ, and statistically significant (p = 0.0022) when compared to the level of IL-10 (4.8 ± 4.94 ρg/mL) in the DS-TB cases. There were statistically significant associations between MDR-TB and factors such as education level (X² = 9.895, p = 0.043), employment status (X² = 19.404, p = 0.001) and alcoholism (X² = 3.971, p = 0.046). This study adds to the knowledge that IFN-γ, TNF-α and IL-10 play a role in the host response to Mycobacterium tuberculosis (MTB). Alcohol intake can be considered as an important MDR-TB risk factor.
Collapse
Affiliation(s)
- Anthony Basingnaa
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana.
- Ghana Health Service, PMB, Ministries, Accra, Ghana.
| | - Samuel Antwi-Baffour
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana.
| | - Dinah Obenewaa Nkansah
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana.
| | - Emmanuel Afutu
- Department of Medical Microbiology, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana.
| | - Enid Owusu
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana.
| |
Collapse
|
310
|
Li M, Zhu D, Wang T, Xia X, Tian J, Wang S. Roles of Myeloid-Derived Suppressor Cell Subpopulations in Autoimmune Arthritis. Front Immunol 2018; 9:2849. [PMID: 30564242 PMCID: PMC6288996 DOI: 10.3389/fimmu.2018.02849] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022] Open
Abstract
Emerging evidence suggests the promise of the use of myeloid-derived suppressor cells (MDSCs) in inflammatory disorders based on their unique immune-intervention properties. However, the roles of MDSCs in autoimmune arthritis are not completely understood. Indeed, their immunosuppressive functions in arthritic conditions remain controversial, with heterogeneity among MDSCs and differential effects among subpopulations receiving much attention. As a result, it is necessary to determine the roles of MDSC subpopulations in autoimmune arthritis to clarify their diagnostic and therapeutic potential. Interestingly, in the inflammation niche of autoimmune arthritis, each MDSC subpopulation can exhibit both alternatives of a given characteristic. Moreover, polymorphonuclear MDSCs (PMN-MDSCs) are likely to be more suppressive and stable compared with monocytic MDSCs (MO-MDSCs). Although various important cytokines associated with the differentiation of MDSCs or MDSC subpopulations from immature myeloid precursors, such as granulocyte colony-stimulating factor (G-CSF), have been largely applied in external inductive systems, their roles are not entirely clear. Moreover, MDSC-based clinical treatments in rheumatoid arthritis (RA) continue to represent a significant challenge, as also reported for other autoimmune diseases. In this review, we describe the effects and actions of MDSC subpopulations on the development of autoimmune arthritis and analyze several types of MDSC-based therapeutic strategies to provide comprehensive information regarding immune networks and a foundation for more effective protocols for autoimmune arthritis.
Collapse
Affiliation(s)
- Min Li
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Dongwei Zhu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Tingting Wang
- Department of Laboratory Medicine, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, China
| | - Xueli Xia
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
311
|
Gellén E, Fidrus E, Péter M, Szegedi A, Emri G, Remenyik É. Immunological effects of photodynamic therapy in the treatment of actinic keratosis and squamous cell carcinoma. Photodiagnosis Photodyn Ther 2018; 24:342-348. [DOI: 10.1016/j.pdpdt.2018.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/08/2023]
|
312
|
Cisplatin Loaded Multiwalled Carbon Nanotubes Induce Resistance in Triple Negative Breast Cancer Cells. Pharmaceutics 2018; 10:pharmaceutics10040228. [PMID: 30428555 PMCID: PMC6321179 DOI: 10.3390/pharmaceutics10040228] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/27/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
In this paper we developed a method for multiwalled carbon nanotubes (MWCNTs) use as carriers for a drug based on platinum in breast cancer therapy. The method of functionalization involves the carboxyl functionalization of nanotubes and encapsulation of cisplatin (CDDP) into MWCNTs. The biological properties of MWCNTs loaded with CDDP (MWCNT-COOH-CDDP) and of individual components MWCNT-COOH and free CDDP were evaluated on MDA-MB-231 cells. Various concentrations of CDDP (0.316–2.52 µg/mL) and MWCNTs (0.5–4 µg/mL) were applied on cells for 24 and 48 h. Only at high doses of CDDP (1.26 and 2.52 µg/mL) and MWCNT-COOH-CDDP (2 and 4 µg/mL) cell morphological changes were observed. The cellular viability decreased only with approx. 40% after 48 h of exposure to 2.52 µg/mL CDDP and 4 µg/mL MWCNT-COOH-CDDP despite the high reactive oxygen species (ROS) production induced by MWCNTs starting with 24 h. After 48 h, ROS level dropped as a result of the antioxidant defence activation. We also found a significant decrease of caspase-3 and p53 expression after 48 h, accompanied by a down-regulation of NF-κB in cells exposed to MWCNT-COOH-CDDP system which promotes apoptosis escape and thus failing to overcome the triple negative breast cancer (TNBC) cells resistance.
Collapse
|
313
|
Ushio A, Arakaki R, Otsuka K, Yamada A, Tsunematsu T, Kudo Y, Aota K, Azuma M, Ishimaru N. CCL22-Producing Resident Macrophages Enhance T Cell Response in Sjögren's Syndrome. Front Immunol 2018; 9:2594. [PMID: 30467506 PMCID: PMC6236111 DOI: 10.3389/fimmu.2018.02594] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/22/2018] [Indexed: 12/28/2022] Open
Abstract
Macrophages (MΦs) are critical regulators of immune response and serve as a link between innate and acquired immunity. The precise mechanism of involvement of tissue-resident MΦs in the pathogenesis of autoimmune diseases is not clear. Here, using a murine model for Sjögren's syndrome (SS), we investigated the role of tissue-resident MΦs in the onset and development of autoimmunity. Two unique populations of CD11bhigh and CD11blow resident MΦs were observed in the target tissue of the SS model. Comprehensive gene expression analysis of chemokines revealed effective production of CCL22 by the CD11bhigh MΦs. CCL22 upregulated the migratory activity of CD4+ T cells by increasing CCR4, a receptor of CCL22, on T cells in the SS model. In addition, CCL22 enhanced IFN-γ production of T cells of the SS model, thereby suggesting that CCL22 may impair the local immune tolerance in the target organ of the SS model. Moreover, administration of anti-CCL22 antibody suppressed autoimmune lesions in the SS model. Finally, histopathological analysis revealed numerous CCL22-producing MΦs in the minor salivary gland tissue specimens of the SS patients. CCL22-producing tissue-resident MΦs may control autoimmune lesions by enhancing T cell response in the SS model. These results suggest that specific chemokines and their receptors may serve as novel therapeutic or diagnostic targets for SS.
Collapse
Affiliation(s)
- Aya Ushio
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Rieko Arakaki
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kunihiro Otsuka
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Akiko Yamada
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takaaki Tsunematsu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Keiko Aota
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masayuki Azuma
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
314
|
Pagnini C, Corleto VD, Martorelli M, Lanini C, D’Ambra G, Di Giulio E, Delle Fave G. Mucosal adhesion and anti-inflammatory effects of Lactobacillus rhamnosus GG in the human colonic mucosa: A proof-of-concept study. World J Gastroenterol 2018; 24:4652-4662. [PMID: 30416313 PMCID: PMC6224475 DOI: 10.3748/wjg.v24.i41.4652] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/28/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the adhesion and anti-inflammatory effects of Lactobacillus rhamnosus GG (LGG) in the colonic mucosa of healthy and ulcerative colitis (UC) patients, both in vivo and ex vivo in an organ culture model.
METHODS For the ex vivo experiment, a total of 98 patients (68 UC patients and 30 normal subjects) were included. Endoscopic biopsies were collected and incubated with and without LGG or LGG-conditioned media to evaluate the mucosal adhesion and anti-inflammatory effects [reduction of tumor necrosis factor alpha (TNFα) and interleukin (IL)-17 expression] of the bacteria, and extraction of DNA and RNA for quantification by real-time (RT)-PCR occurred after the incubation. A dose-response study was performed by incubating biopsies at “regular”, double and 5 times higher doses of LGG. For the in vivo experiment, a total of 42 patients (20 UC patients and 22 normal controls) were included. Biopsies were taken from the colons of normal subjects who consumed a commercial formulation of LGG for 7 d prior to the colonoscopy, and the adhesion of the bacteria to the colonic mucosa was evaluated by RT-PCR and compared with that of control biopsies from patients who did not consume the formulation. LGG adhesion and TNFα and IL-17 expression were compared between UC patients who consumed a regular or double dose of LGG supplementation prior to colonoscopy.
RESULTS In the ex vivo experiment, LGG showed consistent adhesion to the distal and proximal colon in normal subjects and UC patients, with a trend towards higher concentrations in the distal colon, and in UC patients, adhesion was similar in biopsies with active and quiescent inflammation. In addition, bioptic samples from UC patients incubated with LGG conditioned media (CM) showed reduced expression of TNFα and IL-17 compared with the corresponding expression in controls (P < 0.05). Incubation with a double dose of LGG increased mucosal adhesion and the anti-inflammatory effects (P < 0.05). In the in vivo experiment, LGG was detectable only in the colon of patients who consumed the LGG formulation, and bowel cleansing did not affect LGG adhesion. UC patients who consumed the double LGG dose had increased mucosal concentrations of the bacteria and reduced TNFα and IL-17 expression compared with patients who consumed the regular dose (48% and 40% reduction, respectively, P < 0.05).
CONCLUSION In an ex vivo organ culture model, LGG showed consistent adhesion and anti-inflammatory effects. Colonization by LGG after consumption for a week was demonstrated in vivo in the human colon. Increasing the administered dose increased the adhesion and effectiveness of the bacteria. For the first time, we demonstrated that LGG effectively adheres to the colonic mucosa and exerts anti-inflammatory effects, both ex vivo and in vivo.
Collapse
Affiliation(s)
- Cristiano Pagnini
- Department of Digestive and Liver Disease, School of Medicine and Psychology, S. Andrea Hospital, Sapienza University, Rome 00189, Italy
| | - Vito Domenico Corleto
- Department of Digestive and Liver Disease, School of Medicine and Psychology, S. Andrea Hospital, Sapienza University, Rome 00189, Italy
| | - Michela Martorelli
- Department of Digestive and Liver Disease, School of Medicine and Psychology, S. Andrea Hospital, Sapienza University, Rome 00189, Italy
| | - Claudio Lanini
- Department of Digestive and Liver Disease, School of Medicine and Psychology, S. Andrea Hospital, Sapienza University, Rome 00189, Italy
| | - Giancarlo D’Ambra
- Department of Digestive and Liver Disease, School of Medicine and Psychology, S. Andrea Hospital, Sapienza University, Rome 00189, Italy
| | - Emilio Di Giulio
- Department of Digestive and Liver Disease, School of Medicine and Psychology, S. Andrea Hospital, Sapienza University, Rome 00189, Italy
| | - Gianfranco Delle Fave
- Department of Digestive and Liver Disease, School of Medicine and Psychology, S. Andrea Hospital, Sapienza University, Rome 00189, Italy
| |
Collapse
|
315
|
Crosslinked self-assembled nanoparticles for chemo-sonodynamic combination therapy favoring antitumor, antimetastasis management and immune responses. J Control Release 2018; 290:150-164. [DOI: 10.1016/j.jconrel.2018.10.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
|
316
|
Ou W, Byeon JH, Thapa RK, Ku SK, Yong CS, Kim JO. Plug-and-Play Nanorization of Coarse Black Phosphorus for Targeted Chemo-photoimmunotherapy of Colorectal Cancer. ACS NANO 2018; 12:10061-10074. [PMID: 30222314 DOI: 10.1021/acsnano.8b04658] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Because of their extraordinary physical properties and biocompatibility, black phosphorus (BP) nanosheets (NSs) have been intensively employed in chemo-phototherapies, such as plasmonic inorganic nanoparticles or graphene NSs, over the past few years. However, most biomedical studies using BP NSs are only concerned with the optical property of BP NSs to repeatedly demonstrate chemo-phototherapeutic efficacies, although BP NSs have different properties from inorganic nanoparticles or graphene NSs, such as corrugated crystal structure, hydrophilicity, and biodegradability. Moreover, it is still a challenging issue to efficiently fabricate uniform BP NSs for clinical translation because of the top-down nature of fabrication, despite the easy preparation of coarse BP flakes. It is thus essential to explore their most suitable bioapplications as well as suggest an easy-to-access strategy to produce uniform BP NSs for realization as advanced therapeutic materials. To rationalize these issues, this report introduces a plug-and-play nanorization, ultrasonic bubble bursting, of coarse BP flakes for continuous BP NS production, and the resulting uniform NSs (∼40 nm lateral dimension, ∼0.15 polydispersity index) were used as base materials to load drug (doxorubicin), targeting agent (chitosan-polyethylene glycol), and cancer growth inhibitor (programmed death ligand 1 and small interfering RNA) for achieving efficacious chemo-photoimmunotherapy of colorectal cancer.
Collapse
Affiliation(s)
| | | | | | - Sae Kwang Ku
- College of Korean Medicine , Daegu Haany University , Gyeongsan 38610 , Republic of Korea
| | | | | |
Collapse
|
317
|
Stubljar D, Jukic T, Ihan A. How far are we from vaccination against Helicobacter pylori infection? Expert Rev Vaccines 2018; 17:935-945. [PMID: 30238819 DOI: 10.1080/14760584.2018.1526680] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Helicobacter pylori infection results in chronic gastritis, peptic ulcer, or gastric cancer; therefore, eradication of this bacterium is essential. The strategy for developing effective vaccines against H. pylori entails immunization of mice with a combination of classical and recombinant H. pylori antigens, but this has proven to be onerous in all cases. AREAS COVERED We have reviewed literature databases in PubMed and Scopus using the key words H. pylori, vaccine, and vaccination and have conducted a systematic review of published clinical trials and animal model studies on vaccines against H. pylori and have tried to summarize why the vaccines are not effective or only partially effective. EXPERT COMMENTARY This is the perfect time to review vaccine development against H. pylori as, after several failed attempts, promising results were reported by Zeng et al. in 2015. Successful vaccine development requires knowledge of both the immune mechanisms active during natural infection by H. pylori, owing to the complicated host response against the pathogen, and the factors that allow the persistence of bacteria, such as genetic diversity of H. pylori. Moreover, various clinical trials are needed to prove vaccine efficacy.
Collapse
Affiliation(s)
- David Stubljar
- a Department of Research & Development , In-Medico , Metlika , Slovenia
| | - Tomislav Jukic
- b Department of Biomedicine and Public Health , Faculty of Medicine Osijek , Osijek , Croatia
| | - Alojz Ihan
- c Medical Faculty of Ljubljana , Institute of Microbiology and Immunology , Ljubljana , Slovenia
| |
Collapse
|
318
|
Shi S, Zhang L, Zhu M, Wan G, Li C, Zhang J, Wang Y, Wang Y. Reactive Oxygen Species-Responsive Nanoparticles Based on PEGlated Prodrug for Targeted Treatment of Oral Tongue Squamous Cell Carcinoma by Combining Photodynamic Therapy and Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29260-29272. [PMID: 30106279 DOI: 10.1021/acsami.8b08269] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, a reactive oxygen species (ROS)-responsive nanoparticle system was designed for combining photodynamic therapy (PDT) and chemotherapy for oral tongue squamous cell carcinoma (OTSCC)-targeted treatment. A PEGlated prodrug (RPTD) of doxorubicin (DOX) via thioketal linkage and cRGD peptide modification was synthesized and then used to prepare nanoparticles for encapsulating photosensitizer hematoporphyrin (HP). Thus, the obtained HP-loaded RPTD (RPTD/HP) nanoparticles had a regular spherical shape and small size, approximately 180 nm. The RPTD/HP nanoparticles showed a remarkable PDT efficiency and successfully induced ROS generation upon laser irradiation both in vitro and in vivo. DOX exhibited significant ROS-responsive release property from RPTD/HP nanoparticles because of the rupture of the thioketal linker. In OTSCC cells, RPTD/HP nanoparticles were efficiently internalized and showed potent effects on cell growth inhibition and apoptosis induction after laser irradiation. In OTSCC tumor-bearing mice, RPTD/HP nanoparticles displayed excellent tumor-targeting ability and notably suppressed tumor growth through multiple mechanisms after local laser irradiation. Taken together, we supplied a novel therapeutic nanosystem for OTSCC treatment through combining PDT and chemotherapy.
Collapse
|
319
|
Elliott DM, Singh N, Nagarkatti M, Nagarkatti PS. Cannabidiol Attenuates Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis Through Induction of Myeloid-Derived Suppressor Cells. Front Immunol 2018; 9:1782. [PMID: 30123217 PMCID: PMC6085417 DOI: 10.3389/fimmu.2018.01782] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/19/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic debilitating autoimmune disease without a cure. While the use of marijuana cannabinoids for MS has recently been approved in some countries, the precise mechanism of action leading to attenuate neuroinflammation is not clear. We used experimental autoimmune encephalomyelitis (EAE), a murine model of MS, to explore the anti-inflammatory properties of cannabidiol (CBD), a non-psychoactive cannabinoid. Treatment with CBD caused attenuation of EAE disease paradigms as indicated by a significant reduction in clinical scores of paralysis, decreased T cell infiltration in the central nervous system, and reduced levels of IL-17 and IFNγ. Interestingly, CBD treatment led to a profound increase in myeloid-derived suppressor cells (MDSCs) in EAE mice when compared to the vehicle-treated EAE controls. These MDSCs caused robust inhibition of MOG-induced proliferation of T cells in vitro. Moreover, adoptive transfer of CBD-induced MDSCs ameliorated EAE while MDSC depletion reversed the beneficial effects of CBD treatment, thereby conclusively demonstrating that MDSCs played a crucial role in CBD-mediated attenuation of EAE. Together, these studies demonstrate for the first time that CBD treatment may ameliorate EAE through induction of immunosuppressive MDSCs.
Collapse
Affiliation(s)
- David M Elliott
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Narendra Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
320
|
Qi J, Li D, Shi G, Zhang X, Pan Y, Dou H, Yao G, Hou Y. Myeloid-derived suppressor cells exacerbate Sjögren's syndrome by inhibiting Th2 immune responses. Mol Immunol 2018; 101:251-258. [PMID: 30029059 DOI: 10.1016/j.molimm.2018.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/12/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) can regulate various aspects of immune responses based on their potent immune-suppressive activity. Studies reported that MDSCs participated in many autoimmune diseases. However, the role of MDSCs in Sjögren's syndrome (SS) is unknown. In this study, we determined the frequencies and function of MDSCs in non-obese diabetic (NOD) mice and SS patients. The NOD mice were adoptively transferred with MDSCs or treated with anti-Gr1 antibody. Results showed that peripheral MDSCs increased significantly with the development of SS-like syndrome in NOD mice and the percentage of MDSCs was higher in SS patients than healthy controls. The SS-like syndrome aggravated after transfer of MDSCs in NOD mice. The deletion of MDSCs in NOD mice alleviated SS-like syndrome. Mechanistically, MDSCs down-regulated the percentages of Th2 cells in NOD mice and SS patients. In summary, our findings suggested that MDSCs exacerbated Sjögren's syndrome by inhibiting Th2 cells.
Collapse
Affiliation(s)
- Jingjing Qi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, PR China
| | - Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, PR China
| | - Guoping Shi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, PR China
| | - Xuefang Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, PR China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, PR China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, PR China
| | - Genhong Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, PR China; Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, PR China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, PR China.
| |
Collapse
|
321
|
Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother 2018; 106:1098-1107. [PMID: 30119176 DOI: 10.1016/j.biopha.2018.07.049] [Citation(s) in RCA: 1209] [Impact Index Per Article: 172.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/07/2018] [Accepted: 07/08/2018] [Indexed: 12/13/2022] Open
Abstract
Photodynamic therapy (PDT) is a modern and non-invasive form of therapy, used in the treatment of non-oncological diseases as well as cancers of various types and locations. It is based on the local or systemic application of a photosensitive compound - the photosensitizer, which is accumulated in pathological tissues. The photosensitizer molecules absorb the light of the appropriate wavelength, initiating the activation processes leading to the selective destruction of the inappropriate cells. The photocytotoxic reactions occur only within the pathological tissues, in the area of photosensitizer distribution, enabling selective destruction. Over the last decade, a significant acceleration in the development of nanotechnology has been observed. The combination of photosensitizers with nanomaterials can improve the photodynamic therapy efficiency and eliminate its side effects as well. The use of nanoparticles enables achievement a targeted method which is focused on specific receptors, and, as a result, increases the selectivity of the photodynamic therapy. The object of this review is the anticancer application of PDT, its advantages and possible modifications to potentiate its effects.
Collapse
Affiliation(s)
- Stanisław Kwiatkowski
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland
| | - Bartosz Knap
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Dawid Przystupski
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland; Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556, Wroclaw, Poland
| | - Ewa Kędzierska
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Karolina Knap-Czop
- Department of Clinical Genetics, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Jolanta Kotlińska
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Olga Michel
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland
| | - Krzysztof Kotowski
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland; Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556, Wroclaw, Poland.
| |
Collapse
|
322
|
Kerry RG, Patra JK, Gouda S, Park Y, Shin HS, Das G. Benefaction of probiotics for human health: A review. J Food Drug Anal 2018; 26:927-939. [PMID: 29976412 PMCID: PMC9303019 DOI: 10.1016/j.jfda.2018.01.002] [Citation(s) in RCA: 470] [Impact Index Per Article: 67.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/26/2017] [Accepted: 01/11/2018] [Indexed: 02/07/2023] Open
Abstract
Humans are a unique reservoir of heterogeneous and vivacious group of microbes, which together forms the human-microbiome superorganism. Human gut serves as a home to over 100-1000 microbial species, which primarily modulate the host internal environment and thereby, play a major role in host health. This spectacular symbiotic relationship has attracted extensive research in this field. More specifically, these organisms play key roles in defense function, eupepsia along with catabolism and anabolism, and impact brain-gut responses. The emergence of microbiota with resistance and tolerance to existing conventional drugs and antibiotics has decreased the drug efficacies. Furthermore, the modern biotechnology mediated nano-encapsulated multiplex supplements appear to be high cost and inconvenient. Henceforth, a simple, low-cost, receptive and intrinsic approach to achieve health benefits is vital in the present era. Supplementation with probiotics, prebiotics, and synbiotics has shown promising results against various enteric pathogens due to their unique ability to compete with pathogenic microbiota for adhesion sites, to alienate pathogens or to stimulate, modulate and regulate the host's immune response by initiating the activation of specific genes in and outside the host intestinal tract. Probiotics have also been shown to regulate fat storage and stimulate intestinal angiogenesis. Hence, this study aims to underline the possible beneficial impact of probiotics for human health and medical sectors and for better lifestyle.
Collapse
Affiliation(s)
- Rout George Kerry
- P.G. Department of Biotechnology, Academy of Management & Information Technology, Khurda, 752057, Odisha,
India
| | - Jayanta Kumar Patra
- P.G. Department of Biotechnology, Academy of Management & Information Technology, Khurda, 752057, Odisha,
India
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, 10326,
Republic of Korea
| | - Sushanto Gouda
- Amity Institute of Wildlife Science, Noida, 201303, Uttar Pradesh,
India
| | - Yooheon Park
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, 10326,
Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Gyeonggi-do, 10326,
Republic of Korea
| | - Gitishree Das
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, 10326,
Republic of Korea
| |
Collapse
|
323
|
Arthanareeswaran VKA, Berndt-Paetz M, Ganzer R, Stolzenburg JU, Ravichandran-Chandra A, Glasow A, Neuhaus J. Harnessing macrophages in thermal and non-thermal ablative therapies for urologic cancers – Potential for immunotherapy. LAPAROSCOPIC, ENDOSCOPIC AND ROBOTIC SURGERY 2018. [DOI: 10.1016/j.lers.2018.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
324
|
Pye H, Butt MA, Funnell L, Reinert HW, Puccio I, Rehman Khan SU, Saouros S, Marklew JS, Stamati I, Qurashi M, Haidry R, Sehgal V, Oukrif D, Gandy M, Whitaker HC, Rodriguez-Justo M, Novelli M, Hamoudi R, Yahioglu G, Deonarain MP, Lovat LB. Using antibody directed phototherapy to target oesophageal adenocarcinoma with heterogeneous HER2 expression. Oncotarget 2018; 9:22945-22959. [PMID: 29796164 PMCID: PMC5955430 DOI: 10.18632/oncotarget.25159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022] Open
Abstract
Early oesophageal adenocarcinoma (OA) and pre-neoplastic dysplasia may be treated with endoscopic resection and ablative techniques such as photodynamic therapy (PDT). Though effective, discrete areas of disease may be missed leading to recurrence. PDT further suffers from the side effects of off-target photosensitivity. A tumour specific and light targeted therapeutic agent with optimised pharmacokinetics could be used to destroy residual cancerous cells left behind after resection. A small molecule antibody-photosensitizer conjugate was developed targeting human epidermal growth factor receptor 2 (HER2). This was tested in an in vivo mouse model of human OA using a xenograft flank model with clinically relevant low level HER2 expression and heterogeneity. In vitro we demonstrate selective binding of the conjugate to tumour versus normal tissue. Light dependent cytotoxicity of the phototherapy agent in vitro was observed. In an in vivo OA mouse xenograft model the phototherapy agent had desirable pharmacokinetic properties for tumour uptake and blood clearance time. PDT treatment caused tumour growth arrest in all the tumours despite the tumours having a clinically defined low/negative HER2 expression level. This new phototherapy agent shows therapeutic potential for treatment of both HER2 positive and borderline/negative OA.
Collapse
Affiliation(s)
- Hayley Pye
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK
| | - Mohammed Adil Butt
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK.,Upper Gastrointestinal Service, University College London Hospitals NHS Foundation Trust, London, UK
| | - Laura Funnell
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK
| | - Halla W Reinert
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK
| | - Ignazio Puccio
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK
| | - Saif U Rehman Khan
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK
| | - Savvas Saouros
- Antikor BioPharma, Stevenage, UK.,Imperial College London, London, UK
| | | | | | - Maryam Qurashi
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK.,Imperial College London, London, UK
| | - Rehan Haidry
- Upper Gastrointestinal Service, University College London Hospitals NHS Foundation Trust, London, UK
| | - Vinay Sehgal
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK.,Upper Gastrointestinal Service, University College London Hospitals NHS Foundation Trust, London, UK
| | - Dahmane Oukrif
- Department of Pathology, University College London, London, UK
| | - Michael Gandy
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK
| | - Hayley C Whitaker
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK
| | | | - Marco Novelli
- Department of Pathology, University College London, London, UK
| | - Rifat Hamoudi
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK.,Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Gokhan Yahioglu
- Antikor BioPharma, Stevenage, UK.,Imperial College London, London, UK
| | - Mahendra P Deonarain
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK.,Antikor BioPharma, Stevenage, UK.,Imperial College London, London, UK
| | - Laurence B Lovat
- Department for Tissue and Energy, Division of Surgery and Interventional Science, University College London, London, UK.,Upper Gastrointestinal Service, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
325
|
Iacobaeus E, Douagi I, Jitschin R, Marcusson-Ståhl M, Andrén AT, Gavin C, Lefsihane K, Davies LC, Mougiakakos D, Kadri N, Le Blanc K. Phenotypic and functional alterations of myeloid-derived suppressor cells during the disease course of multiple sclerosis. Immunol Cell Biol 2018; 96:820-830. [PMID: 29569304 DOI: 10.1111/imcb.12042] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/20/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system involving dysregulated encephalitogenic T cells. Myeloid-derived suppressor cells (MDSCs) have been recognized for their important function in regulating T-cell responses. Recent studies have indicated a role for MDSCs in autoimmune diseases, but their significance in MS is not clear. Here, we assessed the frequencies of CD14+ HLA-DRlow monocytic MDSCs (Mo-MDSCs) and CD33+ CD15+ CD11b+ HLA-DRlow granulocytic MDSCs (Gr-MDSCs) and investigated phenotypic and functional differences of Mo-MDSCs at different clinical stages of MS and in healthy subjects (HC). Increased frequencies of Mo-MDSCs (P < 0.05) and Gr-MDSCs (P < 0.05) were observed in relapsing-remitting MS patients during relapse (RRMS-relapse) compared to stable RRMS (RRMS-rem). Secondary progressive MS (SPMS) patients displayed a decreased frequency of Mo-MDSCs and Gr-MDSCs compared to HC (P < 0.05). Mo-MDSCs within RRMS patients expressed significantly higher cell surface protein levels of CD86 and CD163 compared to SPMS patients. Mo-MDSCs within SPMS exhibited decreased mRNA expression of interleukin-10 and heme oxygenase 1 compared to RRMS and HC. Analysis of T-cell regulatory function of Mo-MDSCs demonstrated T-cell suppressive capacity in RRMS and HCs, while Mo-MDSCs of SPMS promoted autologous T-cell proliferation, which aligned with a differential cytokine profile compared to RRMS and HCs. This study is the first to show phenotypic and functional shifts of MDSCs between clinical stages of MS, suggesting a role for MDSCs as a therapeutic target to prevent MS disease progression.
Collapse
Affiliation(s)
- Ellen Iacobaeus
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Division of Neurology, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Iyadh Douagi
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Regina Jitschin
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Maritha Marcusson-Ståhl
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Anton Törnqvist Andrén
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Caroline Gavin
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Katia Lefsihane
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Lindsay C Davies
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Dimitrios Mougiakakos
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Nadir Kadri
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Katarina Le Blanc
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
326
|
Horiguchi H, Loftus TJ, Hawkins RB, Raymond SL, Stortz JA, Hollen MK, Weiss BP, Miller ES, Bihorac A, Larson SD, Mohr AM, Brakenridge SC, Tsujimoto H, Ueno H, Moore FA, Moldawer LL, Efron PA. Innate Immunity in the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome and Its Implications for Therapy. Front Immunol 2018; 9:595. [PMID: 29670613 PMCID: PMC5893931 DOI: 10.3389/fimmu.2018.00595] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/09/2018] [Indexed: 12/12/2022] Open
Abstract
Clinical and technological advances promoting early hemorrhage control and physiologic resuscitation as well as early diagnosis and optimal treatment of sepsis have significantly decreased in-hospital mortality for many critically ill patient populations. However, a substantial proportion of severe trauma and sepsis survivors will develop protracted organ dysfunction termed chronic critical illness (CCI), defined as ≥14 days requiring intensive care unit (ICU) resources with ongoing organ dysfunction. A subset of CCI patients will develop the persistent inflammation, immunosuppression, and catabolism syndrome (PICS), and these individuals are predisposed to a poor quality of life and indolent death. We propose that CCI and PICS after trauma or sepsis are the result of an inappropriate bone marrow response characterized by the generation of dysfunctional myeloid populations at the expense of lympho- and erythropoiesis. This review describes similarities among CCI/PICS phenotypes in sepsis, cancer, and aging and reviews the role of aberrant myelopoiesis in the pathophysiology of CCI and PICS. In addition, we characterize pathogen recognition, the interface between innate and adaptive immune systems, and therapeutic approaches including immune modulators, gut microbiota support, and nutritional and exercise therapy. Finally, we discuss the future of diagnostic and prognostic approaches guided by machine and deep-learning models trained and validated on big data to identify patients for whom these approaches will yield the greatest benefits. A deeper understanding of the pathophysiology of CCI and PICS and continued investigation into novel therapies harbor the potential to improve the current dismal long-term outcomes for critically ill post-injury and post-infection patients.
Collapse
Affiliation(s)
- Hiroyuki Horiguchi
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States.,Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Tyler J Loftus
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Russell B Hawkins
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Steven L Raymond
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Julie A Stortz
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - McKenzie K Hollen
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Brett P Weiss
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Elizabeth S Miller
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Azra Bihorac
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shawn D Larson
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Alicia M Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Scott C Brakenridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Hironori Tsujimoto
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Frederick A Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | | |
Collapse
|
327
|
Hacker B, Schultheiß C, Döring M, Kurzik-Dumke U. Molecular partners of hNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, suggest its involvement in distinct cellular processes relevant to congenital disorders of glycosylation, cancer, neurodegeneration and a variety of further pathologies. Hum Mol Genet 2018; 27:1858-1878. [DOI: 10.1093/hmg/ddy087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/06/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Benedikt Hacker
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Christoph Schultheiß
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Michael Döring
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Ursula Kurzik-Dumke
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
328
|
Korbelik M. Role of cell stress signaling networks in cancer cell death and antitumor immune response following proteotoxic injury inflicted by photodynamic therapy. Lasers Surg Med 2018; 50:491-498. [DOI: 10.1002/lsm.22810] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Mladen Korbelik
- Department of Integrative OncologyBritish Columbia Cancer Agency VancouverBritish ColumbiaCanada
| |
Collapse
|
329
|
Zöller M. Janus-Faced Myeloid-Derived Suppressor Cell Exosomes for the Good and the Bad in Cancer and Autoimmune Disease. Front Immunol 2018; 9:137. [PMID: 29456536 PMCID: PMC5801414 DOI: 10.3389/fimmu.2018.00137] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells originally described to hamper immune responses in chronic infections. Meanwhile, they are known to be a major obstacle in cancer immunotherapy. On the other hand, MDSC can interfere with allogeneic transplant rejection and may dampen autoreactive T cell activity. Whether MDSC-Exosomes (Exo) can cope with the dangerous and potentially therapeutic activities of MDSC is not yet fully explored. After introducing MDSC and Exo, it will be discussed, whether a blockade of MDSC-Exo could foster the efficacy of immunotherapy in cancer and mitigate tumor progression supporting activities of MDSC. It also will be outlined, whether application of native or tailored MDSC-Exo might prohibit autoimmune disease progression. These considerations are based on the steadily increasing knowledge on Exo composition, their capacity to distribute throughout the organism combined with selectivity of targeting, and the ease to tailor Exo and includes open questions that answers will facilitate optimizing protocols for a MDSC-Exo blockade in cancer as well as for strengthening their therapeutic efficacy in autoimmune disease.
Collapse
Affiliation(s)
- Margot Zöller
- Tumor Cell Biology, University Hospital of Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
330
|
Abrams SI, Netherby CS, Twum DYF, Messmer MN. Relevance of Interferon Regulatory Factor-8 Expression in Myeloid-Tumor Interactions. J Interferon Cytokine Res 2018; 36:442-53. [PMID: 27379866 DOI: 10.1089/jir.2015.0174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Perturbations in myelopoiesis are a common feature in solid tumor biology, reflecting the central premise that cancer is not only a localized affliction but also a systemic disease. Because the myeloid compartment is essential for the induction of adaptive immunity, these alterations in myeloid development contribute to the failure of the host to effectively manage tumor progression. These "dysfunctional" myeloid cells have been coined myeloid-derived suppressor cells (MDSCs). Interestingly, such cells not only arise in neoplasia but also are associated with many other inflammatory or pathologic conditions. MDSCs affect disease outcome through multiple mechanisms, including their ability to mediate generalized or antigen-specific immune suppression. Consequently, MDSCs pose a significant barrier to effective immunotherapy in multiple disease settings. Although much interest has been devoted to unraveling mechanisms by which MDSCs mediate immune suppression, a large gap has remained in our understanding of the mechanisms that drive their development in the first place. Investigations into this question have identified an unrecognized role of interferon regulatory factor-8 (IRF-8), a member of the IRF family of transcription factors, in tumor-induced myeloid dysfunction. Ordinarily, IRF-8 is involved in diverse stages of myelopoiesis, namely differentiation and lineage commitment toward monocytes, dendritic cells, and granulocytes. Several recent studies now support the hypothesis that IRF-8 functions as a "master" negative regulator of MDSC formation in vivo. This review focuses on IRF-8 as a potential target suppressed by tumors to cripple normal myelopoiesis, redirecting myeloid differentiation toward the emergence of MDSCs. Understanding the bases by which neoplasia drives MDSC accumulation has the potential to improve the efficacy of therapies that require a competent myeloid compartment.
Collapse
Affiliation(s)
- Scott I Abrams
- Department of Immunology, Roswell Park Cancer Institute , Buffalo, New York
| | - Colleen S Netherby
- Department of Immunology, Roswell Park Cancer Institute , Buffalo, New York
| | - Danielle Y F Twum
- Department of Immunology, Roswell Park Cancer Institute , Buffalo, New York
| | - Michelle N Messmer
- Department of Immunology, Roswell Park Cancer Institute , Buffalo, New York
| |
Collapse
|
331
|
Janket SJ, Nunn ME, Salih E, Baird AE. Evidence-Based Approach in Translational Dental Research. TRANSLATIONAL ORAL HEALTH RESEARCH 2018:81-101. [DOI: 10.1007/978-3-319-78205-8_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
332
|
Grandi V, Bacci S, Corsi A, Sessa M, Puliti E, Murciano N, Scavone F, Cappugi P, Pimpinelli N. ALA-PDT exerts beneficial effects on chronic venous ulcers by inducing changes in inflammatory microenvironment, especially through increased TGF-beta release: A pilot clinical and translational study. Photodiagnosis Photodyn Ther 2017; 21:252-256. [PMID: 29277361 DOI: 10.1016/j.pdpdt.2017.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 12/29/2022]
Abstract
A cohort of 19 patients affected by chronic venous ulcers was recruited from our centre. A 4-mm punch biopsy from wound bed was taken before application of ALA 20% gel and repeated one hour after the first PDT irradiation. We observed a significant and progressive reduction of wounds mean volumes right after three ALA-PDT sessions (once per week; 4479.9 +/- 345.5 mm3 vs 34599 +/- 190.3 mm3, p < .01). On immunofluorescence staining from biopsy specimens, we observed a change in all tested stains of post treatment specimens compared to pre-treatment ones. An increase of plasmacytoid dendritic cells (from 699 +/- 22 cells/0.018 mm2 to 1369 +/- 27 cells/0.018 mm2, p < .0001); MHC-II expression (260.39 +/- 99.7 Red, Green, Blue [RGB 0-255] to 370.2 +/- 162.6 RGB (0-255), p < .01), TNF-alpha positive mast cells expression (49 +/- 0.3 cells/0.018 mm2 to 69 +/- 0.4 cells/0.018 mm2, p < .001), TGF-beta expression (59.89 +/- 23.2 RGB (0-255)/cell vs 137.39 +/- 56.6 RGB (0-255)/cell, p < .01) and CD4+/CD25+ Treg cells (39 +/- 1 cells/0.018 mm2 vs 209 +/- 10 cells/0.018 mm2, p < .001) was observed. An increase of TGF-beta was correlated in a statistical significant manner with a reduction of wounds' mean volumes.
Collapse
Affiliation(s)
- Vieri Grandi
- Department of Surgery and Translational Medicine - Division of Dermatology, University of Florence, Italy.
| | - Stefano Bacci
- Department of Clinical and Experimental Medicine, Research Unit of Histology and Embriology, University of Florence, Italy
| | - Alessandro Corsi
- Emergency Unit, S. Maria Nuova Hospital, Tuscany Center Health District, Florence, Italy
| | - Maurizio Sessa
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| | - Elisa Puliti
- Department of Clinical and Experimental Medicine, Research Unit of Histology and Embriology, University of Florence, Italy
| | - Nicoletta Murciano
- Department of Clinical and Experimental Medicine, Research Unit of Histology and Embriology, University of Florence, Italy
| | - Francesca Scavone
- Department of Clinical and Experimental Medicine, Research Unit of Histology and Embriology, University of Florence, Italy
| | - Pietro Cappugi
- Department of Surgery and Translational Medicine - Division of Dermatology, University of Florence, Italy
| | - Nicola Pimpinelli
- Department of Surgery and Translational Medicine - Division of Dermatology, University of Florence, Italy
| |
Collapse
|
333
|
Meng Z, Hou W, Zhou H, Zhou L, Chen H, Wu C. Therapeutic Considerations and Conjugated Polymer-Based Photosensitizers for Photodynamic Therapy. Macromol Rapid Commun 2017; 39. [PMID: 29251383 DOI: 10.1002/marc.201700614] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/12/2017] [Indexed: 12/31/2022]
Abstract
Conjugated polymers have recently attracted a great deal of attention for applications in photodynamic therapy (PDT) because of their light-harvesting capability, efficient energy transfer, and singlet oxygen generation properties. This review describes recent advances in PDT development, including therapeutic mechanisms of PDT in cancer treatments, light excitation methods, and especially recent advances of conjugated polyelectrolytes and conjugated polymer nanoparticles as photosensitizers. The future direction on PDT and further development of conjugated polymer photosensitizers are discussed. The aim of this review is to stimulate innovative ideas to synthesize a new generation of conjugated polymer photosensitizers and promote their translation to clinical applications of PDT.
Collapse
Affiliation(s)
- Zihui Meng
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, 130033, China
| | - Weiying Hou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, China
| | - Hua Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, China
| | - Libo Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, China
| | - Haobin Chen
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
334
|
Wang Y, Tian J, Tang X, Rui K, Tian X, Ma J, Ma B, Xu H, Lu L, Wang S. Exosomes released by granulocytic myeloid-derived suppressor cells attenuate DSS-induced colitis in mice. Oncotarget 2017; 7:15356-68. [PMID: 26885611 PMCID: PMC4941246 DOI: 10.18632/oncotarget.7324] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/29/2016] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) have been described in inflammatory bowel disease (IBD), but their role in the disease remains controversial. We sought to define the effect of granulocytic MDSC-derived exosomes (G-MDSC exo) in dextran sulphate sodium (DSS)-induced murine colitis. G-MDSC exo-treated mice showed greater resistance to colitis, as reflected by lower disease activity index, decreased inflammatory cell infiltration damage. There was a decrease in the proportion of Th1 cells and an increase in the proportion of regulatory T cells (Tregs) in mesenteric lymph nodes (MLNs) from G-MDSC exo-treated colitis mice. Moreover, lower serum levels of interferon (IFN)-γ and tumor necrosis factor (TNF)-α were detected in G-MDSC exo-treated colitis mice. Interestingly, inhibition of arginase (Arg)-1 activity in G-MDSC exo partially abrogated the spontaneous improvement of colitis. In addition, G-MDSC exo could suppress CD4+ T cell proliferation and IFN-γ secretion in vitro and inhibit the delayed-type hypersensitivity (DTH) response, and these abilities were associated with Arg-1 activity. Moreover, G-MDSC exo promoted the expansion of Tregs in vitro. Taken together, these results suggest that G-MDSC exo attenuate DSS-induced colitis through inhibiting Th1 cells proliferation and promoting Tregs expansion.
Collapse
Affiliation(s)
- Yungang Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyi Tang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyu Tian
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Ma
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Bin Ma
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Huaxi Xu
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Liwei Lu
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
335
|
Zhao T, Ding X, Yan C, Du H. Endothelial Rab7 GTPase mediates tumor growth and metastasis in lysosomal acid lipase-deficient mice. J Biol Chem 2017; 292:19198-19208. [PMID: 28924047 PMCID: PMC5702662 DOI: 10.1074/jbc.m116.773093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 08/11/2017] [Indexed: 11/06/2022] Open
Abstract
Tumors depend on their microenvironment for sustained growth, invasion, and metastasis. In this environment, endothelial cells (ECs) are an important stromal cell type interacting with malignant cells to facilitate tumor angiogenesis and cancer cell extravasation. Of note, lysosomal acid lipase (LAL) deficiency facilitates melanoma growth and metastasis. ECs from LAL-deficient (lal-/-) mice possess enhanced proliferation, migration, and permeability of inflammatory cells by activating the mammalian target of rapamycin (mTOR) pathway. Here we report that lal-/- ECs facilitated in vivo tumor angiogenesis, growth, and metastasis, largely by stimulating tumor cell proliferation, migration, adhesion, and transendothelial migration via increased expression of IL-6 and monocyte chemoattractant protein 1 (MCP-1). This prompted us to look for lysosomal proteins that are involved in lal-/- EC dysfunctions. We found that lal-/- ECs displayed increased expression of Rab7, a late endosome/lysosome-associated small GTPase. Moreover, Rab7 and mTOR were co-increased and co-localized to lysosomes and physically interacted in lal-/- ECs. Rab7 inhibition reversed lal-/- EC dysfunctions, including decreasing their enhanced migration and permeability of tumor-stimulatory myeloid cells, and suppressed EC-mediated stimulation of in vitro tumor cell transmigration, proliferation, and migration and in vivo tumor growth and metastasis. Finally, Rab7 inhibition reduced overproduction of reactive oxygen species and increased IL-6 and MCP-1 secretion in lal-/- ECs. Our results indicate that metabolic reprogramming resulting from LAL deficiency enhances the ability of ECs to stimulate tumor cell proliferation and metastasis through stimulation of lysosome-anchored Rab7 activity.
Collapse
MESH Headings
- Animals
- Apoptosis
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/secondary
- Cell Movement
- Cell Proliferation
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/pathology
- Lysosomes/enzymology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/secondary
- Mice
- Mice, Knockout
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Neoplasm Invasiveness
- Neoplasm Metastasis
- Reactive Oxygen Species
- Signal Transduction
- Sterol Esterase/physiology
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Transendothelial and Transepithelial Migration
- Tumor Cells, Cultured
- Wolman Disease/complications
- Wolman Disease/physiopathology
- rab GTP-Binding Proteins/genetics
- rab GTP-Binding Proteins/metabolism
- rab7 GTP-Binding Proteins
- Wolman Disease
Collapse
Affiliation(s)
- Ting Zhao
- From the Department of Pathology and Laboratory Medicine and
| | - Xinchun Ding
- From the Department of Pathology and Laboratory Medicine and
| | - Cong Yan
- From the Department of Pathology and Laboratory Medicine and
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hong Du
- From the Department of Pathology and Laboratory Medicine and
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
336
|
Youssef SS, Hamdy NM. SOCS1 and pattern recognition receptors: TLR9 and RIG-I; novel haplotype associations in Egyptian fibrotic/cirrhotic patients with HCV genotype 4. Arch Virol 2017; 162:3347-3354. [PMID: 28762092 DOI: 10.1007/s00705-017-3498-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/24/2017] [Indexed: 01/08/2023]
Abstract
In this paper we explore the role of suppressor of cytokine signaling 1 (SOCS1) (rs243327), the regulator of toll-like receptor-9 (TLR9) (rs352140), retinoic acid inducible gene-I (RIG-I) (rs669260), and cluster of differentiation 152 (CD152) (rs231776) in fibrotic/cirrhotic patients. Single nucleotide polymorphisms (SNPs) within these genes as well as haplotype analyses were performed on a cohort of 120 Egyptian fibrotic patients. Fibrosis had progressed from HCV genotype 4 infections. Using RT-PCR, SNPs were evaluated in the DNA collected from each patient using TaqMan® genotyping assays. A regression model was used to evaluate allelic and haplotypic associations with a fibrosis/cirrhotic scale. The necroinflammatory A score was adjusted for non-genetic covariates. The genotype distributions for SOCS1 (rs243327) and TLR-9 (rs352140) differed significantly between the F1-F3 and F3-F4 groups. On the other hand, the genotype distributions for RIG-I (rs669260) and CD152 (rs231776) genes did not significantly differ. The allele frequency was calculated using Hardy-Weinberg Equilibrium (HWE) for the SOCS1 (rs243327), RIG-I (rs669260), and CD152 (rs231776) genes. These calculated frequency values indicated the need to compare them to another population for that locus. However, TLR9 (rs352140) did not show similar results. The A allele in SOCS1, TLR9, and RIG-I SNPs was an adverse prognostic factor for liver fibrosis and liver activity. Haplotype analysis revealed a significant association between SOCS1 and TLR9 in fibrotic/cirrhotic patients. This indicated the presence of the A allele in either gene, which is considered a risk factor for the progression of liver disease to cirrhosis. SOCS1 rs243327, TLR9 rs352140, and RIG-I rs669260 polymorphisms might affect liver pathophysiology and the cirrhotic outcome following genotype 4 HCV infection. Therefore, performing this specific SNP testing may be of value for the stratification of the population at risk.
Collapse
Affiliation(s)
- Samar S Youssef
- Genetic Engineering Division, Microbial Biotechnology Department, National Research Centre, El Behous st, Dokki, Cairo, Giza, 12311, Egypt.
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, 11566, Egypt.
| |
Collapse
|
337
|
Le PNT, Desbois AP. Antibacterial Effect of Eicosapentaenoic Acid against Bacillus cereus and Staphylococcus aureus: Killing Kinetics, Selection for Resistance, and Potential Cellular Target. Mar Drugs 2017; 15:md15110334. [PMID: 29104213 PMCID: PMC5706024 DOI: 10.3390/md15110334] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/04/2017] [Accepted: 10/23/2017] [Indexed: 11/17/2022] Open
Abstract
Polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA; C20:5n-3), are attracting interest as possible new topical antibacterial agents, particularly due to their potency and perceived safety. However, relatively little is known of the underlying mechanism of antibacterial action of EPA or whether bacteria can develop resistance quickly against this or similar compounds. Therefore, the aim of this present study was to determine the mechanism of antibacterial action of EPA and investigate whether bacteria could develop reduced susceptibility to this fatty acid upon repeated exposure. Against two common Gram-positive human pathogens, Bacillus cereus and Staphylococcus aureus, EPA inhibited bacterial growth with a minimum inhibitory concentration of 64 mg/L, while minimum bactericidal concentrations were 64 mg/L and 128 mg/L for B. cereus and S. aureus, respectively. Both species were killed completely in EPA at 128 mg/L within 15 min at 37 °C, while reduced bacterial viability was associated with increased release of 260-nm-absorbing material from the bacterial cells. Taken together, these observations suggest that EPA likely kills B. cereus and S. aureus by disrupting the cell membrane, ultimately leading to cell lysis. Serial passage of the strains in the presence of sub-inhibitory concentrations of EPA did not lead to the emergence or selection of strains with reduced susceptibility to EPA during 13 passages. This present study provides data that may support the development of EPA and other fatty acids as antibacterial agents for cosmetic and pharmaceutical applications.
Collapse
Affiliation(s)
- Phuc Nguyen Thien Le
- School of Biotechnology, International University-Vietnam National University HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam.
| | - Andrew P Desbois
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK.
| |
Collapse
|
338
|
Spiekermann C, Kuhlencord M, Huss S, Rudack C, Weiss D. Coexistence of sarcoidosis and metastatic lesions: A diagnostic and therapeutic dilemma. Oncol Lett 2017; 14:7643-7652. [PMID: 29344212 PMCID: PMC5755156 DOI: 10.3892/ol.2017.7247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/27/2017] [Indexed: 12/14/2022] Open
Abstract
Sarcoidosis, a chronic, inflammatory disease that affects various different organs, is characterized by noncaseating epitheloid granulomas. This systemic inflammatory process is associated with an increased risk of cancer. Several cases of sarcoidosis that mimic metastatic tumor progression in radiological findings have been reported so far. However, there are also cases that have presented a coexistence of sarcoidosis and metastasis, which have caused a diagnostic and therapeutic dilemma. Due to inadequate current therapies, a reliable differentiation between benign and malignant lesions is crucial. This review focuses on the residual risk of the coexistence of metastases within radiological suspicious lesions in patients with a history of solid tumors and sarcoidosis, as well as immunological findings, in order to explain the potential associations. Sarcoidosis has the potential to promote metastasis as it includes tumor-promoting and immune-regulating cell subsets. Notably, myeloid derived suppressor cells may serve a pivotal role in metastatic progression in patients with sarcoidosis. In addition, the present review also evaluates the potential novel diagnostic approaches, which may be able to differentiate between metastatic lesions and sarcoidosis. The risk of coexistent metastasis in sarcoidosis lesions must be considered by clinical practitioners, and a multidisciplinary approach may be required to avoid misdiagnosis and the subsequent unnecessary surgery or insufficient treatments.
Collapse
Affiliation(s)
- Christoph Spiekermann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Münster, D-48149 Münster, Germany.,Institute of Immunology, University Hospital Münster, D-48149 Münster, Germany
| | - Meike Kuhlencord
- Institute of Immunology, University Hospital Münster, D-48149 Münster, Germany
| | - Sebastian Huss
- Institute of Pathology, University Hospital Münster, D-48149 Münster, Germany
| | - Claudia Rudack
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Münster, D-48149 Münster, Germany
| | - Daniel Weiss
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Münster, D-48149 Münster, Germany
| |
Collapse
|
339
|
Schmitt C, Marie-Cardine A, Bensussan A. Therapeutic Antibodies to KIR3DL2 and Other Target Antigens on Cutaneous T-Cell Lymphomas. Front Immunol 2017; 8:1010. [PMID: 28912774 PMCID: PMC5582066 DOI: 10.3389/fimmu.2017.01010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/07/2017] [Indexed: 11/13/2022] Open
Abstract
KIR3DL2 is a member of the killer cell immunoglobulin-like receptor (KIR) family that was initially identified at the surface of natural killer (NK) cells. KIR3DL2, also known as CD158k, is expressed as a disulfide-linked homodimer. Each chain is composed of three immunoglobulin-like domains and a long cytoplasmic tail containing two immunoreceptor tyrosine-based inhibitory motifs. Beside its expression on NK cells, it is also found on rare circulating T lymphocytes, mainly CD8+. Although the KIR gene number varies between haplotype, KIR3DL2 is a framework gene present in all individuals. Together with the presence of genomic regulatory sequences unique to KIR3DL2, this suggests some particular functions for the derived protein in comparison with other KIR family members. Several ligands have been identified for KIR3DL2. As for other KIRs, binding to HLA class I molecules is essential for NK development by promoting phenomena such as licensing and driving NK cell maturation. For KIR3DL2, this includes binding to HLA-A3 and -A11 and to the free heavy chain form of HLA-B27. In addition, KIR3DL2 binds to CpG oligonucleotides (ODN) and ensures their transport to endosomal toll-like receptor 9 that promotes cell activation. These characteristics have implicated KIR3DL2 in several pathologies: ankylosing spondylitis and cutaneous T-cell lymphomas such as Sézary syndrome, CD30+ cutaneous lymphoma, and transformed mycosis fungoides. Consequently, a new generation of humanized monoclonal antibodies (mAbs) directed against KIR3DL2 has been helpful in the diagnosis, follow-up, and treatment of these diseases. In addition, preliminary clinical studies of a novel targeted immunotherapy for cutaneous T-cell lymphomas using the anti-KIR3DL2 mAb IPH4102 are now underway. In this review, we discuss the various aspects of KIR3DL2 on the functions of CD4+ T cells and how targeting this receptor helps to develop innovative therapeutic strategies.
Collapse
Affiliation(s)
- Christian Schmitt
- INSERM U976, Hôpital Saint-Louis, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Anne Marie-Cardine
- INSERM U976, Hôpital Saint-Louis, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Armand Bensussan
- INSERM U976, Hôpital Saint-Louis, Paris, France.,Paris Diderot University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
340
|
Glazer EC. Panchromatic Osmium Complexes for Photodynamic Therapy: Solutions to Existing Problems and New Questions. Photochem Photobiol 2017; 93:1326-1328. [PMID: 28543667 DOI: 10.1111/php.12796] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/03/2017] [Indexed: 01/08/2023]
Abstract
This article is a highlight of the paper by Lazic et al. in this issue of Photochemistry and Photobiology, https://doi.org/10.1111/php.12767. It describes the validation of osmium coordination complexes as photosensitizers for photodynamic therapy, with very promising in vivo results that demonstrate radical improvements in survival following irradiation with visible (635 nm) or near-IR (NIR; 808 nm) light. An unusual feature in the study is that the different complexes exhibit disparate photophysical and photobiological characteristics, despite sharing common structural motifs. These findings raise hopes for the development of novel photosensitizers that overcome the limitations of current commercially available systems for PDT, but also raise questions regarding the most efficacious biological mechanisms of action for this treatment modality.
Collapse
Affiliation(s)
- Edith C Glazer
- Department of Chemistry, University of Kentucky, Lexington, KY
| |
Collapse
|
341
|
Maldonado Alvarado E, Osorio Peralta MO, Moreno Vázquez A, Martínez Guzmán LA, Melo Petrone ME, Enriquez Mar ZI, Jovel Galdamez DE, Carrión Solana B, Balderas Martínez G, Parra E, Castellanos Oliveros RI, Bello Leiva RL, Espinosa Montesinos A, Barrera Mendoza C, Medina García SE, Ramón Gallegos E. Effectiveness of Photodynamic Therapy in Elimination of HPV-16 and HPV-18 Associated with CIN I in Mexican Women. Photochem Photobiol 2017; 93:1269-1275. [DOI: 10.1111/php.12769] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/26/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Elizabeth Maldonado Alvarado
- Laboratorio de Citopatología Ambiental; Departamento de Morfología; Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional (IPN); Ciudad de México México
| | | | - Alejandra Moreno Vázquez
- Departamento de Patología; Hospital de Cardiología; Centro Médico Nacional Siglo XXI; Ciudad de México México
| | | | | | - Zulma Iveth Enriquez Mar
- Comité para la Educación y Desarrollo Integral de la Mujer A.C.; San Andrés Tuxtla Veracruz México
| | | | - Bárbara Carrión Solana
- Comité para la Educación y Desarrollo Integral de la Mujer A.C.; San Andrés Tuxtla Veracruz México
| | | | - Eduarda Parra
- Comité para la Educación y Desarrollo Integral de la Mujer A.C.; San Andrés Tuxtla Veracruz México
| | | | - Rosa Linda Bello Leiva
- Laboratorio de Citopatología Ambiental; Departamento de Morfología; Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional (IPN); Ciudad de México México
| | | | - Citlalli Barrera Mendoza
- Laboratorio de Citopatología Ambiental; Departamento de Morfología; Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional (IPN); Ciudad de México México
| | - Selma Eugenia Medina García
- Laboratorio de Citopatología Ambiental; Departamento de Morfología; Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional (IPN); Ciudad de México México
| | - Eva Ramón Gallegos
- Laboratorio de Citopatología Ambiental; Departamento de Morfología; Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional (IPN); Ciudad de México México
| |
Collapse
|
342
|
Sica A, Massarotti M. Myeloid suppressor cells in cancer and autoimmunity. J Autoimmun 2017; 85:117-125. [PMID: 28728794 DOI: 10.1016/j.jaut.2017.07.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022]
Abstract
A bottleneck for immunotherapy of cancer is the immunosuppressive microenvironment in which the tumor cells proliferate. Cancers harness the immune regulatory mechanism that prevents autoimmunity from evading immunosurveillance and promoting immune destruction. Regulatory T cells, myeloid suppressor cells, inhibitory cytokines and immune checkpoint receptors are the major components of the immune system acting in concert with cancer cells and causing the subversion of anti-tumor immunity. This redundant immunosuppressive network poses an impediment to efficacious immunotherapy by facilitating tumor progression. Tumor-associated myeloid cells comprise heterogeneous populations acting systemically (myeloid-derived suppressor cells/MDSCs) and/or locally in the tumor microenvironment (MDSCs and tumor-associated macrophages/TAMs). Both populations promote cancer cell proliferation and survival, angiogenesis and lymphangiogenesis and elicit immunosuppression through different pathways, including the expression of immunosuppressive cytokines and checkpoint inhibitors. Several evidences have demonstrated that myeloid cells can express different functional programs in response to different microenvironmental signals, a property defined as functional plasticity. The opposed extremes of this functional flexibility are generally represented by the classical macrophage activation, which identifies inflammatory and cytotoxic M1 polarized macrophages, and the alternative state of macrophage activation, which identifies M2 polarized anti-inflammatory and immunosuppressive macrophages. Functional skewing of myeloid cells occurs in vivo under physiological and pathological conditions, including cancer and autoimmunity. Here we discuss how myeloid suppressor cells can on one hand support tumor growth and, on the other, limit autoimmune responses, indicating that their therapeutic reprogramming can generate opportunities in relieving immunosuppression in the tumor microenvironment or reinstating tolerance in autoimmune conditions.
Collapse
Affiliation(s)
- Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", via Bovio 6, Novara, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, CAAD, Novara, Italy.
| | - Marco Massarotti
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Rheumatology, University Hospitals of Morecambe Bay NHS Foundation Trust, Royal Lancaster Infirmary, Ashton Road, LA1 4RP Lancaster, United Kingdom
| |
Collapse
|
343
|
Kiro NE, Hamblin MR, Abrahamse H. Photobiomodulation of breast and cervical cancer stem cells using low-intensity laser irradiation. Tumour Biol 2017; 39:1010428317706913. [PMID: 28653884 PMCID: PMC5564223 DOI: 10.1177/1010428317706913] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Breast and cervical cancers are dangerous threats with regard to the health of women. The two malignancies have reached the highest record in terms of cancer-related deaths among women worldwide. Despite the use of novel strategies with the aim to treat and cure advanced stages of cancer, post-therapeutic relapse believed to be caused by cancer stem cells is one of the challenges encountered during tumor therapy. Therefore, further attention should be paid to cancer stem cells when developing novel anti-tumor therapeutic approaches. Low-intensity laser irradiation is a form of phototherapy making use of visible light in the wavelength range of 630-905 nm. Low-intensity laser irradiation has shown remarkable results in a wide range of medical applications due to its biphasic dose and wavelength effect at a cellular level. Overall, this article focuses on the cellular responses of healthy and cancer cells after treatment with low-intensity laser irradiation alone or in combination with a photosensitizer as photodynamic therapy and the influence that various wavelengths and fluencies could have on the therapeutic outcome. Attention will be paid to the biomodulative effect of low-intensity laser irradiation on cancer stem cells.
Collapse
Affiliation(s)
- N E Kiro
- 1 Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - M R Hamblin
- 1 Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa.,2 Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,3 Department of Dermatology, Harvard Medical School, Boston, MA, USA.,4 Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - H Abrahamse
- 1 Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
344
|
Lee YK, Kang M, Choi EY. TLR/MyD88-mediated Innate Immunity in Intestinal Graft-versus-Host Disease. Immune Netw 2017; 17:144-151. [PMID: 28680375 PMCID: PMC5484644 DOI: 10.4110/in.2017.17.3.144] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022] Open
Abstract
Graft-versus-host disease (GHVD) is a severe complication after allogeneic hematopoietic stem cell transplantation. The degree of inflammation in the gastrointestinal tract, a major GVHD target organ, correlates with the disease severity. Intestinal inflammation is initiated by epithelial damage caused by pre-conditioning irradiation. In combination with damages caused by donor-derived T cells, such damage disrupts the epithelial barrier and exposes innate immune cells to pathogenic and commensal intestinal bacteria, which release ligands for Toll-like receptors (TLRs). Dysbiosis of intestinal microbiota and signaling through the TLR/myeloid differentiation primary response gene 88 (MyD88) pathways contribute to the development of intestinal GVHD. Understanding the changes in the microbial flora and the roles of TLR signaling in intestinal GVHD will facilitate the development of preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Young-Kwan Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Myungsoo Kang
- BioMembrane Plasticity Research Center (MPRC), Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,BioMembrane Plasticity Research Center (MPRC), Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
345
|
Fusaric Acid immunotoxicity and MAPK activation in normal peripheral blood mononuclear cells and Thp-1 cells. Sci Rep 2017; 7:3051. [PMID: 28596589 PMCID: PMC5465181 DOI: 10.1038/s41598-017-03183-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/26/2017] [Indexed: 12/18/2022] Open
Abstract
Fusaric acid (FA), a food-borne mycotoxin, is a potent divalent metal chelator. The human immune system is complex and susceptible to environmental insult however, the immunotoxity of FA remains unknown. We investigated the immunotoxicity of FA on human peripheral blood mononuclear cells (PBMCs) and Thp-1 cells. FA was cytotoxic to PBMCs (IC50-240.8 μg/ml) and Thp-1 (IC50-107.7 μg/ml) cells at 24 h. FA induced early apoptosis but significantly decreased caspase activity in PBMCs, a characteristic of paraptosis. In Thp-1 cells, FA induced apoptosis and increased caspase -9 and -3/7 activities. In PBMCs, FA maintained mitochondrial membrane potential and decreased protein expression of Bax whilst increasing expression of p-Bcl-2; FA induced oxidative stress and depleted ATP levels in both cell types. In Thp-1 cells, FA increased mitochondrial membrane depolarization and decreased p-Bcl-2 expression. In PBMCs, FA significantly up-regulated the MAPK protein expression of p-ERK and p-JNK but down-regulated p-p38 expression. In Thp-1 cells, FA up-regulated MAPK protein expression of p-ERK whilst p-JNK and p-p38 expression were down-regulated. In conclusion FA induced programmed cell death and altered MAPK signaling in healthy PBMCs and Thp-1 cells strongly suggesting a possible mechanism of FA induced immunotoxicity in vitro.
Collapse
|
346
|
Granulocytic Myeloid-Derived Suppressor Cells Increased in Early Phases of Primary HIV Infection Depending on TRAIL Plasma Level. J Acquir Immune Defic Syndr 2017; 74:575-582. [PMID: 28060224 DOI: 10.1097/qai.0000000000001283] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND It has been demonstrated that myeloid-derived suppressor cells (MDSC) are expanded in HIV-1-infected individuals and correlated with disease progression. The phase of HIV infection during which MDSC expansion occurs, and the mechanisms that regulate this expansion remain to be established. In this study, we evaluated the frequency of MDSC in patients during primary HIV infection (PHI) and factors involved in MDSC control. METHODS Patients with PHI and chronic HIV infection (CHI) were enrolled. PHI staging was performed according to Fiebig classification, and circulating MDSC frequency and function were evaluated by flow cytometry. Cytokine levels were evaluated by Luminex technology. RESULTS We found that granulocytic MDSC (Gr-MDSC) frequency was higher in patients with PHI compared with healthy donors, but lower than that in patients with CHI. Interestingly, Gr-MDSC expansion was observed in the early phases of HIV infection (Fiebig II/III), but it was not associated with HIV viral load and CD4 T-cell count. Interestingly, in PHI, Gr-MDSC frequency was inversely correlated with plasmatic level of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), although a direct correlation was observed in CHI. Furthermore, lower level of Granulocyte Macrophage Colony Stimulating Factor (GM-CSF) was observed in PHI compared with that in CHI. In vitro experiments demonstrated that, differently from CHI, recombinant TRAIL-induced apoptosis of Gr-MDSC from PHI, an effect that can be abrogated by GM-CSF. CONCLUSION We found that Gr-MDSC are expanded early during PHI and may be regulated by TRAIL and GM-CSF levels. These findings shed light on the fine mechanisms regulating the immune system during HIV infection and open new perspectives for immune-based strategies.
Collapse
|
347
|
Wang B, Huo W, Lu Q, Li Z, Liu Y, Zhao D, Li Z. Passive smoking and influenza-like illness in housewives: A perspective of gene susceptibility. CHEMOSPHERE 2017; 176:67-73. [PMID: 28259080 DOI: 10.1016/j.chemosphere.2017.02.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 02/07/2017] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
Relation between influenza-like illness (ILI) and passive smoking remains a debate of subject. We aimed to determine an association of passive smoking with ILI risk of housewives in North China, and the modification effects of gene polymorphisms related to the metabolisms of smoking pollutants. We included 379 housewives for a cross-sectional study in Shanxi Province, China, including 118 with ILI frequency of "≥1 times per year" as the case group and 261 with ILI frequency of "<1 time per year" in the past 10 years as the control group. We collected their information on frequencies of passive smoking and ILI by questionnaires, as well as their single nucleotide polymorphisms (SNPs) of genes related to Phase I and Phase II metabolisms of smoking pollutants. Our results revealed a significant Spearman correlation between frequencies of ILI and passive smoking (r = 0.406, p < 0.001). Frequency of passive smoking was associated with an increased risk of ILI with adjusted OR [6.75 (95% confidence interval: 3.98-11.4)]. Dose-response association between the passive smoking and ILI risk was observed with or without adjusting for confounders. Mutant types of rs1041983 (N-acetyltransferase 2 gene, NAT2) had a synergetic effect with passive smoking on ILI frequency, while mutant types of rs1695 (glutathione S-transferase P1 gene, GSTP1) had an antagonistic effect. Overall, our study results supported the hypothesis that passive smoking was positively associated with ILI frequency in housewives and this effect was modified by gene polymorphisms of Phase II metabolism genes (NAT2 and GSTP1).
Collapse
Affiliation(s)
- Bin Wang
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, School of Public Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Wenhua Huo
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, School of Public Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Qun Lu
- Reproductive Medical Center, Peking University People's Hospital, Beijing, 100044, China
| | - Zhenjiang Li
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, School of Public Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yingying Liu
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, School of Public Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Dan Zhao
- Beijing MedNet Research Center, Zi Zhu Yuan RD, SuiteA-2104, Haidian District, Beijing, 100044, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, School of Public Health, Peking University, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| |
Collapse
|
348
|
Schakel L, Veldhuijzen DS, van Middendorp H, Prins C, Joosten SA, Ottenhoff THM, Visser LG, Evers AWM. The effects of a psychological intervention directed at optimizing immune function: study protocol for a randomized controlled trial. Trials 2017; 18:243. [PMID: 28549484 PMCID: PMC5446709 DOI: 10.1186/s13063-017-1983-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/10/2017] [Indexed: 01/21/2023] Open
Abstract
Background Previous research has provided evidence for the link between psychological processes and psychophysiological health outcomes. Psychological interventions, such as face-to-face or online cognitive behavioral therapy (CBT) and serious games aimed at improving health, have shown promising results in promoting health outcomes. Few studies so far, however, have examined whether Internet-based CBT combined with serious gaming elements is effective in modulating health outcomes. Moreover, studies often did not incorporate psychophysiological or immunological challenges in order to gain insight into physiological responses to real-life challenges after psychological interventions. The overall aim of this study is to investigate the effects of a psychological intervention on self-reported and physiological health outcomes in response to immune and psychophysiological challenges. Methods/design In a randomized controlled trial, 60 healthy men are randomly assigned to either an experimental condition, receiving guided Internet-based (e-health) CBT combined with health-related serious gaming elements for 6 weeks, or a control condition receiving no intervention. After the psychological intervention, self-reported vitality is measured, and participants are given an immunological challenge in the form of a Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccination. One day after the vaccination, participants are asked to perform several psychophysiological tasks in order to explore the effects of the psychological intervention on participants’ stress response following the immune challenge. To assess the delayed effects of vaccination on self-reported and physiological health outcomes, a follow-up visit is planned 4 weeks later. Total study duration is approximately 14 weeks. The primary outcome measure is self-reported vitality measured directly after the intervention. Secondary outcome measures include inflammatory and endocrine markers, as well as psychophysiological measures of heart rate and skin conductance in response to the psychophysiological tasks after the BCG vaccination. Discussion The innovative design features of this study – e.g., combining guided e-health CBT with health-related serious gaming elements and incorporating immunological and psychophysiological challenges – will provide valuable information on the effects of a psychological intervention on both self-reported and physiological health outcomes. This study will offer further insights into the mechanisms underlying the link between psychological factors and health outcomes and is anticipated to contribute to the optimization of health care strategies. Trial registration Nederlands Trial Register, NTR5610. Registered on 4 January 2016. Electronic supplementary material The online version of this article (doi:10.1186/s13063-017-1983-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lemmy Schakel
- Faculty of Social and Behavioural Sciences, Institute of Psychology, Health, Medical and Neuropsychology Unit, Leiden University, PO Box 9555, 2300 RB, Leiden, The Netherlands. .,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.
| | - Dieuwke S Veldhuijzen
- Faculty of Social and Behavioural Sciences, Institute of Psychology, Health, Medical and Neuropsychology Unit, Leiden University, PO Box 9555, 2300 RB, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Henriët van Middendorp
- Faculty of Social and Behavioural Sciences, Institute of Psychology, Health, Medical and Neuropsychology Unit, Leiden University, PO Box 9555, 2300 RB, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Corine Prins
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Leo G Visser
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Andrea W M Evers
- Faculty of Social and Behavioural Sciences, Institute of Psychology, Health, Medical and Neuropsychology Unit, Leiden University, PO Box 9555, 2300 RB, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.,Department of Psychiatry, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
349
|
Autoantibodies against complement components in systemic lupus erythematosus – role in the pathogenesis and clinical manifestations. Lupus 2017; 26:1550-1555. [DOI: 10.1177/0961203317709347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many complement structures and a number of additional factors, i.e. autoantibodies, receptors, hormones and cytokines, are implicated in the complex pathogenesis of systemic lupus erythematosus. Genetic defects in the complement as well as functional deficiency due to antibodies against its components lead to different pathological conditions, usually clinically presented. Among them hypocomplementemic urticarial vasculitis, different types of glomerulonephritis as dense deposit disease, IgA nephropathy, atypical haemolytic uremic syndrome and lupus nephritis are very common. These antibodies cause conformational changes leading to pathological activation or inhibition of complement with organ damage and/or limited capacity of the immune system to clear immune complexes and apoptotic debris. Finally, we summarize the role of complement antibodies in the pathogenesis of systemic lupus erythematosus and discuss the mechanism of some related clinical conditions such as infections, thyroiditis, thrombosis, acquired von Willebrand disease, etc.
Collapse
|
350
|
Yuan Y, Liu ZQ, Jin H, Sun S, Liu TJ, Wang X, Fan HJ, Hou SK, Ding H. Photodynamic antimicrobial chemotherapy with the novel amino acid-porphyrin conjugate 4I: In vitro and in vivo studies. PLoS One 2017; 12:e0176529. [PMID: 28493985 PMCID: PMC5426629 DOI: 10.1371/journal.pone.0176529] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/12/2017] [Indexed: 12/31/2022] Open
Abstract
Photodynamic antimicrobial chemotherapy (PACT), as a novel and effective therapeutic modality to eradicate drug resistant bacteria without provoking multidrug resistance, has attracted increasing attention. This study examined the antimicrobial efficacy of the novel cationic amino acid-porphyrin conjugate 4I with four lysine groups against two different clinical isolated strains (drug sensitive and multidrug resistant) of the Acinetobacter baumannii species and its toxicity on murine dermal fibroblasts in vitro, as well as the therapeutic effect of PACT on acute, potentially lethal multidrug resistant strain excisional wound infections in vivo. The PACT protocol exposed 4I to illumination, exhibiting high antimicrobial efficacy on two different strains due to a high yield of reactive oxygen species (ROS) and non-selectivity to microorganisms. The photoinactivation effects of 4I against two different strains were dose-dependent. At 3.9 μM and 7.8 μM, PACT induced 6 log units of inactivation of sensitive and multidrug resistant strains. In contrast, 4I alone and illumination alone treatments had no visibly antimicrobial effect. Moreover, cytotoxicity tests revealed the great safety of the photosensitizer 4I in mice. In the in vivo study, we found 4I-mediated PACT was not only able to kill bacteria but also accelerated wound recovery. Compared with non-treated mice, over 2.89 log reduction of multidrug resistant Acinetobacter baumannii strain was reached in PACT treat mice at 24 h post-treatment. These results imply that 4I-mediated PACT therapy is an effective and safe alternative to conventional antibiotic therapy and has clinical potential for superficial drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Yao Yuan
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of the Chinese People’s Armed Police Force (PAP), Tianjin, China
| | - Zi-Quan Liu
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of the Chinese People’s Armed Police Force (PAP), Tianjin, China
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Shi Sun
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Tian-Jun Liu
- Tianjin Key Laboratory of Biomedical Material, Institute of Biomedical Engineering, Peking Union Medical College – Chinese Academy of Medical Sciences, Tianjin, China
| | - Xue Wang
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of the Chinese People’s Armed Police Force (PAP), Tianjin, China
| | - Hao-Jun Fan
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of the Chinese People’s Armed Police Force (PAP), Tianjin, China
| | - Shi-Ke Hou
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of the Chinese People’s Armed Police Force (PAP), Tianjin, China
| | - Hui Ding
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of the Chinese People’s Armed Police Force (PAP), Tianjin, China
- * E-mail:
| |
Collapse
|