301
|
Li M, Li S, Du C, Zhang Y, Li Y, Chu L, Han X, Galons H, Zhang Y, Sun H, Yu P. Exosomes from different cells: Characteristics, modifications, and therapeutic applications. Eur J Med Chem 2020; 207:112784. [PMID: 33007722 DOI: 10.1016/j.ejmech.2020.112784] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Exosomes are cystic vesicles secreted by living cells with a phospholipid bilayer membrane. Importantly, these vesicles could serve to carry lipids, proteins, genetic materials, and transmit biological information in vivo. The cell-specific proteins and genetic materials in exosomes are capable of reflecting their cell origin and physiological status. Based on the different tissues and cells (macrophage, dendritic cells, tumor cells, mesenchymal stem cells, various body fluids, and so on), exosomes exhibit different characteristics and functions. Furthermore, owing to their high delivery efficiency, biocompatibility, and multifunctional properties, exosomes are expected to become a new means of drug delivery, disease diagnosis, immunotherapy, and precise treatment. At the same time, in order to supplement or enhance the therapeutic applicability of exosomes, chemical or biological modifications can be used to broaden, change or improve their therapeutic capabilities. This review focuses on three aspects: the characteristics and original functions of exosomes secreted by different cells, the modification and transformation of exosomes, and the application of exosomes in different diseases.
Collapse
Affiliation(s)
- Mingyuan Li
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
| | - Shuangshuang Li
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
| | - Chunyang Du
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
| | - Yinan Zhang
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
| | - Yuan Li
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
| | - Liqiang Chu
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiao Han
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Hervé Galons
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
| | - Yongmin Zhang
- Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 Place Jussieu, 75005, Paris, France
| | - Hua Sun
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China.
| | - Peng Yu
- College of Biotechnology, China International Science and Technology, Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China.
| |
Collapse
|
302
|
Macrophage-derived exosomes in cancers: Biogenesis, functions and therapeutic applications. Immunol Lett 2020; 227:102-108. [PMID: 32888974 DOI: 10.1016/j.imlet.2020.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
Macrophages are fundamental to promote tumorigenesis, tumor development and metastasis, and chemotherapy resistance through modulating tumor microenvironment and cancer cells. Recently, increasing studies have shown that exosomes could play a crucial role in orchestrating the crosstalk between macrophages and cancer cells. Exosomes, as one of the extracellular vehicles, deliver a diverse cast of molecules including lipids, proteins, and nucleic acids, etc. to the targeted cells to exert pleiotropic effects. The macrophage-derived exosomes have heterogeneity in different cancers and play paradoxical roles in suppressing and promoting tumors mainly via post-transcriptional control and regulating the phosphorylation of proteins in the recipient cells. Meanwhile, exosomes secreted by different phenotypes of macrophages provide diverse therapeutic options. Thus, in this review, we summarized the latest progress in outlining the current understanding of macrophage-derived exosomal biogenesis and mechanisms in mediating cancer progression, as well as their potential clinical applications.
Collapse
|
303
|
Yan W, Li T, Yin T, Hou Z, Qu K, Wang N, Durkan C, Dong L, Qiu J, Gregersen H, Wang G. M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation. Theranostics 2020; 10:10712-10728. [PMID: 32929376 PMCID: PMC7482821 DOI: 10.7150/thno.46143] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: For intravascular stent implantation to be successful, the processes of vascular tissue repair and therapy are considered to be critical. However, the mechanisms underlying the eventual fate of vascular smooth muscle cells (VSMCs) during vascular tissue repair remains elusive. In this study, we hypothesized that M2 macrophage-derived exosomes to mediate cell-to-cell crosstalk and induce dedifferentiation phenotypes in VSMCs. Methods: In vivo, 316L bare metal stents (BMS) were implanted from the left iliac artery into the abdominal aorta of 12-week-old male Sprague-Dawley (SD) rats for 7 and 28 days. Hematoxylin and eosin (HE) were used to stain the neointimal lesions. En-face immunofluorescence staining of smooth muscle 22 alpha (SM22α) and CD68 showed the rat aorta smooth muscle cells (RASMCs) and macrophages. Immunohistochemical staining of total galactose-specific lectin 3 (MAC-2) and total chitinase 3-like 3 (YM-1) showed the total macrophages and M2 macrophages. In vitro, exosomes derived from IL-4+IL-13-treated macrophages (M2Es) were isolated by ultracentrifugation and characterized based on their specific morphology. Ki-67 staining was conducted to assess the effects of the M2Es on the proliferation of RASMCs. An atomic force microscope (AFM) was used to detect the stiffness of the VSMCs. GW4869 was used to inhibit exosome release. RNA-seq was performed to determine the mRNA profiles of the RASMCs and M2Es-treated RASMCs. Quantitative real-time PCR (qRT-PCR) analysis was conducted to detect the expression levels of the mRNAs. Western blotting was used to detect the candidate protein expression levels. T-5224 was used to inhibit the DNA binding activity of AP-1 in RASMCs. Results: M2Es promote c-KIT expression and softening of nearby VSMCs, hence accelerating the vascular tissue repair process. VSMCs co-cultured in vitro with M2 macrophages presented an increased capacity for de-differentiation and softening, which was exosome dependent. In addition, the isolated M2Es helped to promote VSMC dedifferentiation and softening. Furthermore, the M2Es enhanced vascular tissue repair potency by upregulation of VSMCs c-KIT expression via activation of the c-Jun/activator protein 1 (AP-1) signaling pathway. Conclusions: The findings of this study emphasize the prominent role of M2Es during VSMC dedifferentiation and vascular tissue repair via activation of the c-Jun/AP-1 signaling pathway, which has a profound impact on the therapeutic strategies of coronary stenting techniques.
Collapse
|
304
|
Yan F, Zhong Z, Wang Y, Feng Y, Mei Z, Li H, Chen X, Cai L, Li C. Exosome-based biomimetic nanoparticles targeted to inflamed joints for enhanced treatment of rheumatoid arthritis. J Nanobiotechnology 2020; 18:115. [PMID: 32819405 PMCID: PMC7441703 DOI: 10.1186/s12951-020-00675-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glucocorticoids (GCs) show powerful treatment effect on rheumatoid arthritis (RA). However, the clinical application is limited by their nonspecific distribution after systemic administration, serious adverse reactions during long-term administration. To achieve better treatment, reduce side effect, we here established a biomimetic exosome (Exo) encapsulating dexamethasone sodium phosphate (Dex) nanoparticle (Exo/Dex), whose surface was modified with folic acid (FA)-polyethylene glycol (PEG)-cholesterol (Chol) compound to attain FPC-Exo/Dex active targeting drug delivery system. RESULTS The size of FPC-Exo/Dex was 128.43 ± 16.27 nm, with a polydispersity index (PDI) of 0.36 ± 0.05, and the Zeta potential was - 22.73 ± 0.91 mV. The encapsulation efficiency (EE) of the preparation was 10.26 ± 0.73%, with drug loading efficiency (DLE) of 18.81 ± 2.05%. In vitro study showed this system displayed enhanced endocytosis and excellent anti-inflammation effect against RAW264.7 cells by suppressing pro-inflammatory cytokines and increasing anti-inflammatory cytokine. Further biodistribution study showed the fluorescence intensity of FPC-Exo/Dex was stronger than other Dex formulations in joints, suggesting its enhanced accumulation to inflammation sites. In vivo biodistribution experiment displayed FPC-Exo/Dex could preserve the bone and cartilage of CIA mice better and significantly reduce inflamed joints. Next in vivo safety evaluation demonstrated this biomimetic drug delivery system had no obvious hepatotoxicity and exhibited desirable biocompatibility. CONCLUSION The present study provides a promising strategy for using exosome as nanocarrier to enhance the therapeutic effect of GCs against RA.
Collapse
Affiliation(s)
- Feili Yan
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China
| | - Yao Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China
| | - Yue Feng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, Luzhou, Sichuan, China
| | - Zhiqiang Mei
- The Research Center for Preclinical Medicine, Southwest Medical University, 646000, Luzhou, Sichuan, China
| | - Hui Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China
| | - Xiang Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China
| | - Liang Cai
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, 646000, Luzhou, Sichuan, China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 3-319 Zhongshan Road, 646000, Luzhou, Sichuan, People's Republic of China.
- Engineering Research Center in Biomaterials, Sichuan University, 610064, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
305
|
Li F, Zhao L, Shi Y, Liang J. Edaravone-Loaded Macrophage-Derived Exosomes Enhance Neuroprotection in the Rat Permanent Middle Cerebral Artery Occlusion Model of Stroke. Mol Pharm 2020; 17:3192-3201. [PMID: 32786956 DOI: 10.1021/acs.molpharmaceut.0c00245] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Edaravone (Edv) can inhibit tissue damage, cause cerebral edema, and delay neuronal death caused by acute cerebral infarction. Exosomes are considered as cargo carriers for intercellular communication and serve as important regulators in many pathological processes. Here, we developed macrophage-derived exosomes (Exo) containing Edv (Exo + Edv) to improve the bioavailability of Edv and enhance the neuroprotective effects in a rat model of permanent middle cerebral artery occlusion (PMCAO). The results showed that Exo + Edv significantly improved the bioavailability of Edv and prolonged half-life (t1/2). At the same time, Exo + Edv made Edv more easily reach the ischemic side of rats with PMCAO and was localized with neuronal cells and microglia, thus reducing the death of neuronal cells and promoting the polarization of microglia from M1 to M2. Taken together, Exo + Edv may become a potential clinical treatment option for PMCAO.
Collapse
Affiliation(s)
- Fang Li
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P. R. China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P. R. China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, P. R. China
| | - Jia Liang
- Life Science Institution, Jinzhou Medical University, Jinzhou 121000, P. R. China
| |
Collapse
|
306
|
Huang Y, Li R, Ye S, Lin S, Yin G, Xie Q. Recent Advances in the Use of Exosomes in Sjögren's Syndrome. Front Immunol 2020; 11:1509. [PMID: 32903777 PMCID: PMC7438915 DOI: 10.3389/fimmu.2020.01509] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/09/2020] [Indexed: 02/05/2023] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disorder of the exocrine glands mediated by lymphocytic infiltrates damaging the body tissues and affecting the life quality of patients. Although traditional methods of diagnosis and treatment for SS are effective, in the time of personalized medicine, new biomarkers, and novel approaches are required for the detection and treatment of SS. Exosomes represent an emerging field in the discovery of biomarkers and the management of SS. Exosomes, a subtype of extracellular vesicles, are secreted by various cell types and can be found in most bodily fluids. Exosomes are packed with cytokines and other proteins, bioactive lipids, and nucleic acids (mRNA, circular RNA, non-coding RNA, tRNA, microRNA, genomic DNA, and ssDNA), and transport such cargo between cells. Evidence has indicated that exosomes may play roles in processes such as the modulation of the immune response and activation of inflammation. Moreover, due to features such as stability, low immunogenicity and toxicity, long half-life, and the capacity to penetrate the blood-brain barrier, exosomes have also emerged as therapeutic tools for SS. In this review, we summarize existing literature regarding the biogenesis, isolation, and function of exosomes, specifically focusing on exosomes as novel biomarkers and their potential therapeutic uses in SS.
Collapse
Affiliation(s)
- Yupeng Huang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruicen Li
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China
| | - Sheng Ye
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Sang Lin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
307
|
He R, Jiang Y, Shi Y, Liang J, Zhao L. Curcumin-laden exosomes target ischemic brain tissue and alleviate cerebral ischemia-reperfusion injury by inhibiting ROS-mediated mitochondrial apoptosis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111314. [PMID: 32919674 DOI: 10.1016/j.msec.2020.111314] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
The pathogenesis of ischemic cerebrovascular disease has revealed that ischemia-reperfusion (I/R) injury often leads to aggravation of metabolic oxidative stress and blood-brain barrier (BBB) destruction, eventually causing secondary brain tissue damage. Accumulated reactive oxygen species (ROS) in focal ischemia activate mitochondria-mediated apoptosis and damage the BBB by degrading tight junction proteins (TJPs). Herein, we report macrophage-derived exosomes (Ex) loaded with curcumin (cur) as a multifunctional biomimetic delivery vehicle (Ex-cur) for targeting ischemic brain tissue and alleviating cerebral I/R injury by inhibiting ROS-mediated mitochondrial apoptosis in a transient cerebral ischemia rat model. The design principle relies on unique features of macrophage-derived exosomes and the natural ingredient cur. Specifically, cur can be entrapped within exosomes when incubated with murine macrophage RAW264.7 cells, and its stability is subsequently significantly improved. The resultant Ex-cur can target ischemic regions by leveraging the targeting migration capability of Ex driven by inflammation. Accumulated Ex-cur in ischemic regions is experimentally proven to be highly effective at reducing ROS accumulation by virtue of the antioxidant properties of cur. Using Ex-cur to down-regulate ROS accumulation in lesions, we alleviate BBB damage and suppress mitochondria-mediated neuronal apoptosis, which is confirmed by a series of relevant protein analysis. These findings demonstrate good therapeutic efficacy of Ex-cur for treating I/R injury, providing experimental evidence for the potential clinical benefits of Ex-cur for other modes of neuroprotection.
Collapse
Affiliation(s)
- Ruyi He
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Yibing Jiang
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Jia Liang
- Life Science Institution, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China.
| |
Collapse
|
308
|
Ju Y, Guo H, Edman M, Hamm-Alvarez SF. Application of advances in endocytosis and membrane trafficking to drug delivery. Adv Drug Deliv Rev 2020; 157:118-141. [PMID: 32758615 PMCID: PMC7853512 DOI: 10.1016/j.addr.2020.07.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Multidisciplinary research efforts in the field of drug delivery have led to the development of a variety of drug delivery systems (DDS) designed for site-specific delivery of diagnostic and therapeutic agents. Since efficient uptake of drug carriers into target cells is central to effective drug delivery, a comprehensive understanding of the biological pathways for cellular internalization of DDS can facilitate the development of DDS capable of precise tissue targeting and enhanced therapeutic outcomes. Diverse methods have been applied to study the internalization mechanisms responsible for endocytotic uptake of extracellular materials, which are also the principal pathways exploited by many DDS. Chemical inhibitors remain the most commonly used method to explore endocytotic internalization mechanisms, although genetic methods are increasingly accessible and may constitute more specific approaches. This review highlights the molecular basis of internalization pathways most relevant to internalization of DDS, and the principal methods used to study each route. This review also showcases examples of DDS that are internalized by each route, and reviews the general effects of biophysical properties of DDS on the internalization efficiency. Finally, options for intracellular trafficking and targeting of internalized DDS are briefly reviewed, representing an additional opportunity for multi-level targeting to achieve further specificity and therapeutic efficacy.
Collapse
Affiliation(s)
- Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Maria Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA.
| |
Collapse
|
309
|
Tang TT, Wang B, Wu M, Li ZL, Feng Y, Cao JY, Yin D, Liu H, Tang RN, Crowley SD, Lv LL, Liu BC. Extracellular vesicle-encapsulated IL-10 as novel nanotherapeutics against ischemic AKI. SCIENCE ADVANCES 2020; 6:eaaz0748. [PMID: 32851154 PMCID: PMC7423360 DOI: 10.1126/sciadv.aaz0748] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 06/26/2020] [Indexed: 05/07/2023]
Abstract
Recently, extracellular vesicles (EVs) have been attracting strong research interest for use as natural drug delivery systems. We report an approach to manufacturing interleukin-10 (IL-10)-loaded EVs (IL-10+ EVs) by engineering macrophages for treating ischemic acute kidney injury (AKI). Delivery of IL-10 via EVs enhanced not only the stability of IL-10, but also its targeting to the kidney due to the adhesive components on the EV surface. Treatment with IL-10+ EVs significantly ameliorated renal tubular injury and inflammation caused by ischemia/reperfusion injury, and potently prevented the transition to chronic kidney disease. Mechanistically, IL-10+ EVs targeted tubular epithelial cells, and suppressed mammalian target of rapamycin signaling, thereby promoting mitophagy to maintain mitochondrial fitness. Moreover, IL-10+ EVs efficiently drove M2 macrophage polarization by targeting macrophages in the tubulointerstitium. Our study demonstrates that EVs can serve as a promising delivery platform to manipulate IL-10 for the effective treatment of ischemic AKI.
Collapse
Affiliation(s)
- Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Min Wu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Ye Feng
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Jing-Yuan Cao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Di Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Ri-Ning Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Steven D. Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC, USA
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
- Corresponding author. (B.-C.L.); (L.-L.L.)
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
- Corresponding author. (B.-C.L.); (L.-L.L.)
| |
Collapse
|
310
|
Huang G, Lin G, Zhu Y, Duan W, Jin D. Emerging technologies for profiling extracellular vesicle heterogeneity. LAB ON A CHIP 2020; 20:2423-2437. [PMID: 32537618 DOI: 10.1039/d0lc00431f] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles secreted by most cell types and exist in virtually all bodily fluids. They carry on a wealth of proteomic and genetic information including proteins, lipids, miRNAs, mRNA, non-coding RNA and other molecules from parental cells. Increasing evidence shows that within populations of EVs, their biogenesis, physical characteristics (e.g. size, density, morphology) and cargos (e.g. protein, lipid content, nucleic acids) may vary substantially, which accordingly change their biological properties. To fully exploit the potential of EVs, it requires qualified methods to profile EV heterogeneity. In this review, we survey recent approaches for EV isolation with innovative discoveries in heterogeneity. The main challenges in EV heterogeneity research are identified, and the roles of single cell EV profiling and single EV imaging are highlighted. We further discuss promising opportunities for resolving the underlying complexity of EV heterogeneity.
Collapse
Affiliation(s)
- Guan Huang
- Institute for Biomedical Materials and Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | | | | | | | | |
Collapse
|
311
|
Tang TT, Wang B, Lv LL, Liu BC. Extracellular vesicle-based Nanotherapeutics: Emerging frontiers in anti-inflammatory therapy. Theranostics 2020; 10:8111-8129. [PMID: 32724461 PMCID: PMC7381724 DOI: 10.7150/thno.47865] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
Dysregulated inflammation is a complicated pathological process involved in various diseases, and the treatment of inflammation-linked disorders currently represents an enormous global burden. Extracellular vesicles (EVs) are nanosized, lipid membrane-enclosed vesicles secreted by virtually all types of cells, which act as an important intercellular communicative medium. Considering their capacity to transfer bioactive substances, both unmodified and engineered EVs are increasingly being explored as potential therapeutic agents or therapeutic vehicles. Moreover, as the nature's own delivery tool, EVs possess many desirable advantages, such as stability, biocompatibility, low immunogenicity, low toxicity, and biological barrier permeability. The application of EV-based therapy to combat inflammation, though still in an early stage of development, has profound transformative potential. In this review, we highlight the recent progress in EV engineering for inflammation targeting and modulation, summarize their preclinical applications in the treatment of inflammatory disorders, and present our views on the anti-inflammatory applications of EV-based nanotherapeutics.
Collapse
|
312
|
Advances in Exosomes Derived from Different Cell Sources and Cardiovascular Diseases. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7298687. [PMID: 32724810 PMCID: PMC7364237 DOI: 10.1155/2020/7298687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/16/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022]
Abstract
Exosomes can reach distant tissues through blood circulation to communicate directly with target cells and rapidly regulate intracellular signals. Exosomes play an important role in cardiovascular pathophysiology. Different exosomes derived from different sources, and their cargos have different mechanisms of action. In addition to being biomarkers, exosomes also have a certain significance in the diagnosis, treatment, and even prevention of cardiovascular diseases. Here, we provide a review of the up-to-date applications of exosomes, derived from various sources, in the prognosis and diagnosis of cardiovascular diseases.
Collapse
|
313
|
Donoso-Quezada J, Ayala-Mar S, González-Valdez J. State-of-the-art exosome loading and functionalization techniques for enhanced therapeutics: a review. Crit Rev Biotechnol 2020; 40:804-820. [DOI: 10.1080/07388551.2020.1785385] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Sergio Ayala-Mar
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, Mexico
| | | |
Collapse
|
314
|
Transport of Extracellular Vesicles across the Blood-Brain Barrier: Brain Pharmacokinetics and Effects of Inflammation. Int J Mol Sci 2020; 21:ijms21124407. [PMID: 32575812 PMCID: PMC7352415 DOI: 10.3390/ijms21124407] [Citation(s) in RCA: 270] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles can cross the blood–brain barrier (BBB), but little is known about passage. Here, we used multiple-time regression analysis to examine the ability of 10 exosome populations derived from mouse, human, cancerous, and non-cancerous cell lines to cross the BBB. All crossed the BBB, but rates varied over 10-fold. Lipopolysaccharide (LPS), an activator of the innate immune system, enhanced uptake independently of BBB disruption for six exosomes and decreased uptake for one. Wheatgerm agglutinin (WGA) modulated transport of five exosome populations, suggesting passage by adsorptive transcytosis. Mannose 6-phosphate inhibited uptake of J774A.1, demonstrating that its BBB transporter is the mannose 6-phosphate receptor. Uptake rates, patterns, and effects of LPS or WGA were not predicted by exosome source (mouse vs. human) or cancer status of the cell lines. The cell surface proteins CD46, AVβ6, AVβ3, and ICAM-1 were variably expressed but not predictive of transport rate nor responses to LPS or WGA. A brain-to-blood efflux mechanism variably affected CNS retention and explains how CNS-derived exosomes enter blood. In summary, all exosomes tested here readily crossed the BBB, but at varying rates and by a variety of vesicular-mediated mechanisms involving specific transporters, adsorptive transcytosis, and a brain-to-blood efflux system.
Collapse
|
315
|
Ni Z, Zhou S, Li S, Kuang L, Chen H, Luo X, Ouyang J, He M, Du X, Chen L. Exosomes: roles and therapeutic potential in osteoarthritis. Bone Res 2020; 8:25. [PMID: 32596023 PMCID: PMC7305215 DOI: 10.1038/s41413-020-0100-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
Exosomes participate in many physiological and pathological processes by regulating cell-cell communication, which are involved in numerous diseases, including osteoarthritis (OA). Exosomes are detectable in the human articular cavity and were observed to change with OA progression. Several joint cells, including chondrocytes, synovial fibroblasts, osteoblasts, and tenocytes, can produce and secrete exosomes that influence the biological effects of targeted cells. In addition, exosomes from stem cells can protect the OA joint from damage by promoting cartilage repair, inhibiting synovitis, and mediating subchondral bone remodeling. This review summarizes the roles and therapeutic potential of exosomes in OA and discusses the perspectives and challenges related to exosome-based treatment for OA patients in the future.
Collapse
Affiliation(s)
- Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Siru Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury; Medical Cformation of H-type vessel in subchondral enter of Trauma and War Injury; Daping Hospital, Army Medical University of PLA, Chongqing, China
| | - Song Li
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- Eleven Squadron Three Brigade, School of Basic Medical Science, Army Medical University, Chongqing, China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoqing Luo
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Junjie Ouyang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Mei He
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaolan Du
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
316
|
Yang J, Wu S, Hou L, Zhu D, Yin S, Yang G, Wang Y. Therapeutic Effects of Simultaneous Delivery of Nerve Growth Factor mRNA and Protein via Exosomes on Cerebral Ischemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:512-522. [PMID: 32682291 PMCID: PMC7365960 DOI: 10.1016/j.omtn.2020.06.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/26/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
Stroke is the leading neurological cause of death and disability all over the world, with few effective drugs. Nerve growth factor (NGF) is well known for its multifaceted neuroprotective functions post-ischemia. However, the lack of an efficient approach to systemically deliver bioactive NGF into ischemic region hinders its clinical application. In this study, we engineered the exosomes with RVG peptide on the surface for neuron targeting and loaded NGF into exosomes simultaneously, with the resultant exosomes denoted as NGF@ExoRVG. By systemic administration of NGF@ExoRVG, NGF was efficiently delivered into ischemic cortex, with a burst release of encapsulated NGF protein and de novo NGF protein translated from the delivered mRNA. Moreover, NGF@ExoRVG was found to be highly stable for preservation and function efficiently for a long time in vivo. Functional study revealed that the delivered NGF reduced inflammation by reshaping microglia polarization, promoted cell survival, and increased the population of doublecortin-positive cells, a marker of neuroblast. The results of our study suggest the potential therapeutic effects of NGF@ExoRVG for stroke. Moreover, the strategy proposed in our study may shed light on the clinical application of other neurotrophic factors for central nervous system diseases.
Collapse
Affiliation(s)
- Jialei Yang
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China; Beijing Institute of Biotechnology, Beijing, China
| | - Shipo Wu
- Beijing Institute of Biotechnology, Beijing, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing, China
| | - Danni Zhu
- Beijing Institute of Biotechnology, Beijing, China
| | - Shimin Yin
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Guodong Yang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| |
Collapse
|
317
|
Gangadaran P, Rajendran RL, Oh JM, Hong CM, Jeong SY, Lee SW, Lee J, Ahn BC. Extracellular vesicles derived from macrophage promote angiogenesis In vitro and accelerate new vasculature formation In vivo. Exp Cell Res 2020; 394:112146. [PMID: 32561287 DOI: 10.1016/j.yexcr.2020.112146] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ischemia is the partial or complete blockage of blood supply to tissues. Extracellular vesicles (EVs) are emerging as a therapeutic tool for ischemic diseases. Most EV-based ischemia therapies are based on various stem cells. Here, we propose an alternative cell source for the isolation of pro-angiogenic EVs. METHODS EVs were isolated from a mouse macrophage cell line (Raw 264.7). The characteristic features of the macrophage-derived EVs (MAC-EVs) were assessed using transmission electron microscopy, nanoparticle tracking analysis, and Western blotting (WB) analysis. WB and qRT-PCR were performed to identify the pro-angiogenic VEGF and Wnt3a proteins and microRNAs (miR-210, miR-126, and miR-130a) in the MAC-EVs. In vitro and in vivo Matrigel plug assays were performed to investigate the capacity of the MAC-EVs for tube (blood vessel-like) formation and new blood vessel formation and assessed by histology. RESULTS The MAC-EVs was positive for ALIX and negative for calnexin, with a round shape and an average size of 189 ± 65.1 nm. WB and qRT-PCR results revealed that VEGF, Wnt3a and miR-130a were more abundant in the MAC-EVs than cells. MAC-EVs treatment resulted in increased endothelial cellular proliferation, migration, and tube formation in vitro. In vivo assay results revealed that MAC-EVs increased the formation of new and larger blood vessels in the Matrigel plug of mice compared to the formation in the control group. CONCLUSION Our results suggest that MAC-EVs have the potential to induce angiogenesis in vitro and in vivo, could serve as a pro-angiogenic alternative for ischemic diseases.
Collapse
Affiliation(s)
- Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chae Moon Hong
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea.
| |
Collapse
|
318
|
Extracellular vesicles for tumor targeting delivery based on five features principle. J Control Release 2020; 322:555-565. [DOI: 10.1016/j.jconrel.2020.03.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
|
319
|
Haney MJ, Zhao Y, Jin YS, Batrakova EV. Extracellular Vesicles as Drug Carriers for Enzyme Replacement Therapy to Treat CLN2 Batten Disease: Optimization of Drug Administration Routes. Cells 2020; 9:cells9051273. [PMID: 32443895 PMCID: PMC7290714 DOI: 10.3390/cells9051273] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
CLN2 Batten disease (BD) is one of a broad class of lysosomal storage disorders that is characterized by the deficiency of lysosomal enzyme, TPP1, resulting in a build-up of toxic intracellular storage material in all organs and subsequent damage. A major challenge for BD therapeutics is delivery of enzymatically active TPP1 to the brain to attenuate progressive loss of neurological functions. To accomplish this daunting task, we propose the harnessing of naturally occurring nanoparticles, extracellular vesicles (EVs). Herein, we incorporated TPP1 into EVs released by immune cells, macrophages, and examined biodistribution and therapeutic efficacy of EV-TPP1 in BD mouse model, using various routes of administration. Administration through intrathecal and intranasal routes resulted in high TPP1 accumulation in the brain, decreased neurodegeneration and neuroinflammation, and reduced aggregation of lysosomal storage material in BD mouse model, CLN2 knock-out mice. Parenteral intravenous and intraperitoneal administrations led to TPP1 delivery to peripheral organs: liver, kidney, spleen, and lungs. A combination of intrathecal and intraperitoneal EV-TPP1 injections significantly prolonged lifespan in BD mice. Overall, the optimization of treatment strategies is crucial for successful applications of EVs-based therapeutics for BD.
Collapse
Affiliation(s)
- Matthew J. Haney
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Yuling Zhao
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Yeon S. Jin
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Elena V. Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Correspondence: ; Tel.: +919-537-3712
| |
Collapse
|
320
|
Haque S, Kodidela S, Sinha N, Kumar P, Cory TJ, Kumar S. Differential packaging of inflammatory cytokines/ chemokines and oxidative stress modulators in U937 and U1 macrophages-derived extracellular vesicles upon exposure to tobacco constituents. PLoS One 2020; 15:e0233054. [PMID: 32433651 PMCID: PMC7239484 DOI: 10.1371/journal.pone.0233054] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/27/2020] [Indexed: 12/19/2022] Open
Abstract
Smoking, which is highly prevalent in HIV-infected populations, has been shown to exacerbate HIV replication, in part via the cytochrome P450 (CYP)-induced oxidative stress pathway. Recently, we have shown that extracellular vesicles (EVs), derived from tobacco- and/or HIV-exposed macrophages, alter HIV replication in macrophages by cell-cell interactions. We hypothesize that cigarette smoke condensate (CSC) and/or HIV-exposed macrophage-derived EVs carry relatively high levels of pro-oxidant and pro-inflammatory cargos and/or low levels of antioxidant and anti-inflammatory cargos, which are key mediators for HIV pathogenesis. Therefore, in this study, we investigated differential packaging of pro- and anti-inflammatory cytokines/chemokines and pro- and anti-oxidant contents in EVs after CSC exposure to myeloid cells (uninfected U937 and HIV-infected U1 cells). Our results showed that relatively long to short exposures with CSC increased the expression of cytokines in EVs isolated from HIV-infected U1 macrophages. Importantly, pro-inflammatory cytokines, especially IL-6, were highly packaged in EVs isolated from HIV-infected U1 macrophages upon both long and short-term CSC exposures. In general, anti-inflammatory cytokines, particularly IL-10, had a lower packaging in EVs, while packaging of chemokines was mostly increased in EVs upon CSC exposure in both HIV-infected U1 and uninfected U937 macrophages. Moreover, we observed higher expression of CYPs (1A1 and 1B1) and lower expression of antioxidant enzymes (SOD-1 and catalase) in EVs from HIV-infected U1 macrophages than in uninfected U937 macrophages. Together, they are expected to increase oxidative stress factors in EVs derived from HIV-infected U1 cells. Taken together, our results suggest packaging of increased level of oxidative stress and inflammatory elements in the EVs upon exposure to tobacco constituents and/or HIV to myeloid cells, which would ultimately enhance HIV replication in macrophages via cell-cell interactions.
Collapse
Affiliation(s)
- Sanjana Haque
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Namita Sinha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Prashant Kumar
- Division of Pediatric Nephrology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Theodore J. Cory
- Department of Clinical Pharmacy and Translational Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States of America
| |
Collapse
|
321
|
Dhaliwal HK, Fan Y, Kim J, Amiji MM. Intranasal Delivery and Transfection of mRNA Therapeutics in the Brain Using Cationic Liposomes. Mol Pharm 2020; 17:1996-2005. [PMID: 32365295 DOI: 10.1021/acs.molpharmaceut.0c00170] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nucleic acid-based therapeutics, including the use of messenger RNA (mRNA) as a drug molecule, has tremendous potential in the treatment of chronic diseases, such as age-related neurodegenerative diseases. In this study, we have developed a cationic liposomal formulation of mRNA and evaluated the potential of intranasal delivery to the brain in murine model. Preliminary in vitro studies in J774A.1 murine macrophages showed GFP expression up to 24 h and stably expressed GFP protein in the cytosol. Upon intranasal administration of GFP-mRNA/cationic liposomes (3 mg/kg dose) in mice, there was significantly higher GFP-mRNA expression in the brain post 24 h as compared to either naked mRNA or the vehicle-treated group. Luciferase mRNA encapsulated in cationic liposomes was used for quantification of mRNA expression distribution in the brain. The results showed increased luciferase activity in the whole brain in a dose-dependent manner. Specifically, the luciferase-mRNA/cationic liposome group (3 mg/kg dose) showed significantly higher luciferase activity in the cortex, striatum, and midbrain regions as compared with the control groups, with minimal systemic exposure. Overall, the results of this study demonstrate the feasibility of brain-specific, nonviral mRNA delivery for the treatment of various neurological disorders.
Collapse
Affiliation(s)
- Harkiranpreet Kaur Dhaliwal
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yingfang Fan
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
322
|
Liu Y, Wang Y, Lv Q, Li X. Exosomes: From garbage bins to translational medicine. Int J Pharm 2020; 583:119333. [PMID: 32348800 DOI: 10.1016/j.ijpharm.2020.119333] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022]
Abstract
Exosomes are lipid bilayer-enclosed vesicles of endosomal origin, which initially considered as garbage bins to dispose unwanted cellular components, but they are now emerged as an intercellular communication system involved in several physiological and pathological conditions. With the increasing understanding that the healthy patients release exosomes with distinct proteins and RNAs, exosomes have been exploited as biomarkers for disease diagnosis and prognosis. Owing to the intrinsic immunomodulatory in a tumor microenvironment, exosomes have also been vaccinated into patients against malignant diseases. Moreover, the nano-metered exosomes are relatively stable in extracellular fluids. Thus they appear attractive in delivering "cargo" to destined cells with enhanced efficiency. In this review, we outline the current knowledge in exosomal biogenesis and isolation. Furthermore, the biological activities of exosomes are also discussed with a focus on their potentials to be employed in translational medicine, especially as biomarkers, vaccines and therapeutic delivery system.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuzhu Wang
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianzhou Lv
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xiaoyu Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
323
|
Mesenchymal Cell-Derived Exosomes as Novel Useful Candidates for Drug Delivery. ARCHIVES OF NEUROSCIENCE 2020. [DOI: 10.5812/ans.98722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
324
|
Grégoire H, Roncali L, Rousseau A, Chérel M, Delneste Y, Jeannin P, Hindré F, Garcion E. Targeting Tumor Associated Macrophages to Overcome Conventional Treatment Resistance in Glioblastoma. Front Pharmacol 2020; 11:368. [PMID: 32322199 PMCID: PMC7158850 DOI: 10.3389/fphar.2020.00368] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GB) is the most common and devastating form of brain cancer. Despite conventional treatments, progression or recurrences are systematic. In recent years, immunotherapies have emerged as an effective treatment in a number of cancers, leaving the question of their usefulness also faced with the particular case of brain tumors. The challenge here is major not only because the brain is the seat of our consciousness but also because of its isolation by the blood-brain barrier and the presence of a unique microenvironment that constitutes the central nervous system (CNS) with very specific constituent or patrolling cells. Much of the microenvironment is made up of immune cells or inflammation. Among these, tumor-associated macrophages (TAMs) are of significant interest as they are often involved in facilitating tumor progression as well as the development of resistance to standard therapies. In this review, the ubiquity of TAMs in GB will be discussed while the specific case of microglia resident in the brain will be also emphasized. In addition, the roles of TAMs as accomplices in the progression of GB and resistance to treatment will be presented. Finally, clinical trials targeting TAMs as a means of treating cancer will be discussed.
Collapse
Affiliation(s)
- Hélène Grégoire
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Loris Roncali
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Audrey Rousseau
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Département de Pathologie Cellulaire et Tissulaire, CHU Angers, Angers, France
| | - Michel Chérel
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Yves Delneste
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Laboratoire d'Immunologie et Allergologie, CHU d'Angers, Angers, France
| | - Pascale Jeannin
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Laboratoire d'Immunologie et Allergologie, CHU d'Angers, Angers, France
| | - François Hindré
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,PRIMEX, Plateforme de radiobiologie et d'imagerie expérimentale, SFR ICAT, Université d'Angers, Angers, France
| | - Emmanuel Garcion
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,PACeM, Plateforme d'analyses cellulaires et moléculaires, SFR ICAT, Université d'Angers, Angers, France
| |
Collapse
|
325
|
Haque S, Kodidela S, Gerth K, Hatami E, Verma N, Kumar S. Extracellular Vesicles in Smoking-Mediated HIV Pathogenesis and their Potential Role in Biomarker Discovery and Therapeutic Interventions. Cells 2020; 9:cells9040864. [PMID: 32252352 PMCID: PMC7226815 DOI: 10.3390/cells9040864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
In the last two decades, the mortality rate in people living with HIV/AIDS (PLWHA) has decreased significantly, resulting in an almost normal longevity in this population. However, a large portion of this population still endures a poor quality of life, mostly due to an increased inclination for substance abuse, including tobacco smoking. The prevalence of smoking in PLWHA is consistently higher than in HIV negative persons. A predisposition to cigarette smoking in the setting of HIV potentially leads to exacerbated HIV replication and a higher risk for developing neurocognitive and other CNS disorders. Oxidative stress and inflammation have been identified as mechanistic pathways in smoking-mediated HIV pathogenesis and HIV-associated neuropathogenesis. Extracellular vesicles (EVs), packaged with oxidative stress and inflammatory agents, show promise in understanding the underlying mechanisms of smoking-induced HIV pathogenesis via cell-cell interactions. This review focuses on recent advances in the field of EVs with an emphasis on smoking-mediated HIV pathogenesis and HIV-associated neuropathogenesis. This review also provides an overview of the potential applications of EVs in developing novel therapeutic carriers for the treatment of HIV-infected individuals who smoke, and in the discovery of novel biomarkers that are associated with HIV-smoking interactions in the CNS.
Collapse
|
326
|
Macrophage-Derived Extracellular Vesicle Promotes Hair Growth. Cells 2020; 9:cells9040856. [PMID: 32244824 PMCID: PMC7226775 DOI: 10.3390/cells9040856] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Hair loss is a common medical problem affecting both males and females. Dermal papilla (DP) cells are the ultimate reservoir of cells with the potential of hair regeneration in hair loss patients. Here, we analyzed the role of macrophage-derived Wnts (3a and 7b) and macrophage extracellular vesicles (MAC-EVs) in promoting hair growth. We studied the proliferation, migration, and expression of growth factors of human-DP cells in the presence or absence of MAC-EVs. Additionally, we tested the effect of MAC-EV treatment on hair growth in a mouse model and human hair follicles. Data from western blot and flow cytometry showed that MAC-EVs were enriched with Wnt3a and Wnt7b, and more than 95% were associated with their membrane. The results suggest that Wnt proteins in MAC-EVs activate the Wnt/β-catenin signaling pathways, which leads to activation of transcription factors (Axin2 and Lef1). The MAC-EVs significantly enhanced the proliferation, migration, and levels of hair-inductive markers of DP cells. Additionally, MAC-EVs phosphorylated AKT and increased the levels of the survival protein Bcl-2. The DP cells treated with MAC-EVs showed increased expression of vascular endothelial growth factor (VEGF) and keratinocyte growth factor (KGF). Treatment of Balb/c mice with MAC-EVs promoted hair follicle (HF) growth in vivo and also increased hair shaft size in a short period in human HFs. Our findings suggest that MAC-EV treatment could be clinically used as a promising novel anagen inducer in the treatment of hair loss.
Collapse
|
327
|
Erickson MA, Wilson ML, Banks WA. In vitro modeling of blood-brain barrier and interface functions in neuroimmune communication. Fluids Barriers CNS 2020; 17:26. [PMID: 32228633 PMCID: PMC7106666 DOI: 10.1186/s12987-020-00187-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroimmune communication contributes to both baseline and adaptive physiological functions, as well as disease states. The vascular blood-brain barrier (BBB) and associated cells of the neurovascular unit (NVU) serve as an important interface for immune communication between the brain and periphery through the blood. Immune functions and interactions of the BBB and NVU in this context can be categorized into at least five neuroimmune axes, which include (1) immune modulation of BBB impermeability, (2) immune regulation of BBB transporters, secretions, and other functions, (3) BBB uptake and transport of immunoactive substances, (4) immune cell trafficking, and (5) BBB secretions of immunoactive substances. These axes may act separately or in concert to mediate various aspects of immune signaling at the BBB. Much of what we understand about immune axes has been from work conducted using in vitro BBB models, and recent advances in BBB and NVU modeling highlight the potential of these newer models for improving our understanding of how the brain and immune system communicate. In this review, we discuss how conventional in vitro models of the BBB have improved our understanding of the 5 neuroimmune axes. We further evaluate the existing literature on neuroimmune functions of novel in vitro BBB models, such as those derived from human induced pluripotent stem cells (iPSCs) and discuss their utility in evaluating aspects of neuroimmune communication.
Collapse
Affiliation(s)
- Michelle A Erickson
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA, 98108, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA
| | - Miranda L Wilson
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA, 98108, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA, 98108, USA. .,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA.
| |
Collapse
|
328
|
Baig MS, Roy A, Rajpoot S, Liu D, Savai R, Banerjee S, Kawada M, Faisal SM, Saluja R, Saqib U, Ohishi T, Wary KK. Tumor-derived exosomes in the regulation of macrophage polarization. Inflamm Res 2020; 69:435-451. [DOI: 10.1007/s00011-020-01318-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/02/2020] [Accepted: 01/09/2020] [Indexed: 01/21/2023] Open
|
329
|
Abstract
The study of extracellular vesicles (EVs) has the potential to identify unknown cellular and molecular mechanisms in intercellular communication and in organ homeostasis and disease. Exosomes, with an average diameter of ~100 nanometers, are a subset of EVs. The biogenesis of exosomes involves their origin in endosomes, and subsequent interactions with other intracellular vesicles and organelles generate the final content of the exosomes. Their diverse constituents include nucleic acids, proteins, lipids, amino acids, and metabolites, which can reflect their cell of origin. In various diseases, exosomes offer a window into altered cellular or tissue states, and their detection in biological fluids potentially offers a multicomponent diagnostic readout. The efficient exchange of cellular components through exosomes can inform their applied use in designing exosome-based therapeutics.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- School of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Valerie S LeBleu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
330
|
Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood-brain barrier. Proc Natl Acad Sci U S A 2020; 117:3405-3414. [PMID: 32005712 DOI: 10.1073/pnas.1912012117] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Drug targeting to inflammatory brain pathologies such as stroke and traumatic brain injury remains an elusive goal. Using a mouse model of acute brain inflammation induced by local tumor necrosis factor alpha (TNFα), we found that uptake of intravenously injected antibody to vascular cell adhesion molecule 1 (anti-VCAM) in the inflamed brain is >10-fold greater than antibodies to transferrin receptor-1 and intercellular adhesion molecule 1 (TfR-1 and ICAM-1). Furthermore, uptake of anti-VCAM/liposomes exceeded that of anti-TfR and anti-ICAM counterparts by ∼27- and ∼8-fold, respectively, achieving brain/blood ratio >300-fold higher than that of immunoglobulin G/liposomes. Single-photon emission computed tomography imaging affirmed specific anti-VCAM/liposome targeting to inflamed brain in mice. Intravital microscopy via cranial window and flow cytometry showed that in the inflamed brain anti-VCAM/liposomes bind to endothelium, not to leukocytes. Anti-VCAM/LNP selectively accumulated in the inflamed brain, providing de novo expression of proteins encoded by cargo messenger RNA (mRNA). Anti-VCAM/LNP-mRNA mediated expression of thrombomodulin (a natural endothelial inhibitor of thrombosis, inflammation, and vascular leakage) and alleviated TNFα-induced brain edema. Thus VCAM-directed nanocarriers provide a platform for cerebrovascular targeting to inflamed brain, with the goal of normalizing the integrity of the blood-brain barrier, thus benefiting numerous brain pathologies.
Collapse
|
331
|
Pistono C, Bister N, Stanová I, Malm T. Glia-Derived Extracellular Vesicles: Role in Central Nervous System Communication in Health and Disease. Front Cell Dev Biol 2020. [PMID: 33569385 DOI: 10.3389/cell.2020.623771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Glial cells are crucial for the maintenance of correct neuronal functionality in a physiological state and intervene to restore the equilibrium when environmental or pathological conditions challenge central nervous system homeostasis. The communication between glial cells and neurons is essential and extracellular vesicles (EVs) take part in this function by transporting a plethora of molecules with the capacity to influence the function of the recipient cells. EVs, including exosomes and microvesicles, are a heterogeneous group of biogenetically distinct double membrane-enclosed vesicles. Once released from the cell, these two types of vesicles are difficult to discern, thus we will call them with the general term of EVs. This review is focused on the EVs secreted by astrocytes, oligodendrocytes and microglia, aiming to shed light on their influence on neurons and on the overall homeostasis of the central nervous system functions. We collect evidence on neuroprotective and homeostatic effects of glial EVs, including neuronal plasticity. On the other hand, current knowledge of the detrimental effects of the EVs in pathological conditions is addressed. Finally, we propose directions for future studies and we evaluate the potential of EVs as a therapeutic treatment for neurological disorders.
Collapse
Affiliation(s)
- Cristiana Pistono
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nea Bister
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Iveta Stanová
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
332
|
Charabati M, Rabanel JM, Ramassamy C, Prat A. Overcoming the Brain Barriers: From Immune Cells to Nanoparticles. Trends Pharmacol Sci 2019; 41:42-54. [PMID: 31839374 DOI: 10.1016/j.tips.2019.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/04/2023]
Abstract
Nanoparticulate carriers, often referred to as nanoparticles (NPs), represent an important pharmacological advance for drug protection and tissue-specific drug delivery. Accessing the central nervous system (CNS), however, is a complex process regulated by mainly three brain barriers. While some leukocyte (i.e., immune cell) subsets are equipped with the adequate molecular machinery to infiltrate the CNS in physiological and/or pathological contexts, the successful delivery of NPs into the CNS remains hindered by the tightness of the brain barriers. Here, we present an overview of the three major brain barriers and the mechanisms allowing leukocytes to migrate across each of them. We subsequently review different immune-inspired and -mediated strategies to deliver NPs into the CNS. Finally, we discuss the prospect of exploiting leukocyte trafficking mechanisms for further progress.
Collapse
Affiliation(s)
- Marc Charabati
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Neuroimmunology Unit, Centre de Recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | - Jean-Michel Rabanel
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531, Boulevard des Prairies, Laval, QC, Canada
| | - Charles Ramassamy
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531, Boulevard des Prairies, Laval, QC, Canada.
| | - Alexandre Prat
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Neuroimmunology Unit, Centre de Recherche du CHUM (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
333
|
Kim DH, Kothandan VK, Kim HW, Kim KS, Kim JY, Cho HJ, Lee YK, Lee DE, Hwang SR. Noninvasive Assessment of Exosome Pharmacokinetics In Vivo: A Review. Pharmaceutics 2019; 11:E649. [PMID: 31817039 PMCID: PMC6956244 DOI: 10.3390/pharmaceutics11120649] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/30/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
Exosomes, intraluminal vesicles that contain informative DNA, RNA, proteins, and lipid membranes derived from the original donor cells, have recently been introduced to therapy and diagnosis. With their emergence as an alternative to cell therapy and having undergone clinical trials, proper analytical standards for evaluating their pharmacokinetics must now be established. Molecular imaging techniques such as fluorescence imaging, magnetic resonance imaging, and positron emission tomography (PET) are helpful to visualizing the absorption, distribution, metabolism, and excretion of exosomes. After exosomes labelled with a fluorescer or radioisotope are administered in vivo, they are differentially distributed according to the characteristics of each tissue or lesion, and real-time biodistribution of exosomes can be noninvasively monitored. Quantitative analysis of exosome concentration in biological fluid or tissue samples is also needed for the clinical application and industrialization of exosomes. In this review, we will discuss recent pharmacokinetic applications to exosomes, including labelling methods for in vivo imaging and analytical methods for quantifying exosomes, which will be helpful for evaluating pharmacokinetics of exosomes and improving exosome development and therapy.
Collapse
Affiliation(s)
- Do Hee Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Vinoth Kumar Kothandan
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea;
| | - Hye Won Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Ki Seung Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Ji Young Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Hyeon Jin Cho
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, Chungbuk 27469, Korea;
| | - Dong-Eun Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk 56212, Korea;
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea;
| |
Collapse
|
334
|
Ng SY, Lee AYW. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front Cell Neurosci 2019; 13:528. [PMID: 31827423 PMCID: PMC6890857 DOI: 10.3389/fncel.2019.00528] [Citation(s) in RCA: 375] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of morbidity and mortality amongst civilians and military personnel globally. Despite advances in our knowledge of the complex pathophysiology of TBI, the underlying mechanisms are yet to be fully elucidated. While initial brain insult involves acute and irreversible primary damage to the parenchyma, the ensuing secondary brain injuries often progress slowly over months to years, hence providing a window for therapeutic interventions. To date, hallmark events during delayed secondary CNS damage include Wallerian degeneration of axons, mitochondrial dysfunction, excitotoxicity, oxidative stress and apoptotic cell death of neurons and glia. Extensive research has been directed to the identification of druggable targets associated with these processes. Furthermore, tremendous effort has been put forth to improve the bioavailability of therapeutics to CNS by devising strategies for efficient, specific and controlled delivery of bioactive agents to cellular targets. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by an update on novel therapeutic targets and agents. Recent development of various approaches of drug delivery to the CNS is also discussed.
Collapse
Affiliation(s)
- Si Yun Ng
- Neurobiology/Ageing Program, Centre for Life Sciences, Department of Physiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Alan Yiu Wah Lee
- Neurobiology/Ageing Program, Centre for Life Sciences, Department of Physiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
335
|
Ayala-Mar S, Perez-Gonzalez VH, Mata-Gómez MA, Gallo-Villanueva RC, González-Valdez J. Electrokinetically Driven Exosome Separation and Concentration Using Dielectrophoretic-Enhanced PDMS-Based Microfluidics. Anal Chem 2019; 91:14975-14982. [DOI: 10.1021/acs.analchem.9b03448] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sergio Ayala-Mar
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
| | - Victor H. Perez-Gonzalez
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
| | - Marco A. Mata-Gómez
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
| | - Roberto C. Gallo-Villanueva
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
| | - José González-Valdez
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
| |
Collapse
|
336
|
Chen YX, Wei CX, Lyu YQ, Chen HZ, Jiang G, Gao XL. Biomimetic drug-delivery systems for the management of brain diseases. Biomater Sci 2019; 8:1073-1088. [PMID: 31728485 DOI: 10.1039/c9bm01395d] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acting as a double-edged sword, the blood-brain barrier (BBB) is essential for maintaining brain homeostasis by restricting the entry of small molecules and most macromolecules from blood. However, it also largely limits the brain delivery of most drugs. Even if a drug can penetrate the BBB, its accumulation in the intracerebral pathological regions is relatively low. Thus, an optimal drug-delivery system (DDS) for the management of brain diseases needs to display BBB permeability, lesion-targeting capability, and acceptable safety. Biomimetic DDSs, developed by directly utilizing or mimicking the biological structures and processes, provide promising approaches for overcoming the barriers to brain drug delivery. The present review summarizes the biological properties and biomedical applications of the biomimetic DDSs including the cell membrane-based DDS, lipoprotein-based DDS, exosome-based DDS, virus-based DDS, protein template-based DDS and peptide template-based DDS for the management of brain diseases.
Collapse
Affiliation(s)
- Yao-Xing Chen
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Chen-Xuan Wei
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Ying-Qi Lyu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China. and Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201210, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Xiao-Ling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
337
|
Haney MJ, Zhao Y, Jin YS, Li SM, Bago JR, Klyachko NL, Kabanov AV, Batrakova EV. Macrophage-Derived Extracellular Vesicles as Drug Delivery Systems for Triple Negative Breast Cancer (TNBC) Therapy. J Neuroimmune Pharmacol 2019; 15:487-500. [DOI: 10.1007/s11481-019-09884-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/27/2019] [Indexed: 12/31/2022]
|
338
|
Qin X, Yu C, Wei J, Li L, Zhang C, Wu Q, Liu J, Yao SQ, Huang W. Rational Design of Nanocarriers for Intracellular Protein Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902791. [PMID: 31496027 DOI: 10.1002/adma.201902791] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Protein/antibody therapeutics have exhibited the advantages of high specificity and activity even at an extremely low concentration compared to small molecule drugs. However, they are accompanied by unfavorable physicochemical properties such as fragile tertiary structure, large molecular size, and poor penetration of the membrane, and thus the clinical use of protein drugs is hindered by inefficient delivery of proteins into the host cells. To overcome the challenges associated with protein therapeutics and enhance their biopharmaceutical applications, various protein-loaded nanocarriers with desired functions, such as lipid nanocapsules, polymeric nanoparticles, inorganic nanoparticles, and peptides, are developed. In this review, the different strategies for intracellular delivery of proteins are comprehensively summarized. Their designed routes, mechanisms of action, and potential therapeutics in live cells or in vivo are discussed in detail. Furthermore, the perspective on the new generation of delivery systems toward the emerging area of protein-based therapeutics is presented as well.
Collapse
Affiliation(s)
- Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jing Wei
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
339
|
Chung IM, Rajakumar G, Venkidasamy B, Subramanian U, Thiruvengadam M. Exosomes: Current use and future applications. Clin Chim Acta 2019; 500:226-232. [PMID: 31678573 DOI: 10.1016/j.cca.2019.10.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022]
Abstract
Exosomes are endosomal-derived vesicles that play a critical role in cell-to-cell communication and are secreted in several biological fluids including serum, saliva, urine, ascites, and cerebro-spinal fluid amongst others. Exosomes are small (30-150 nm diameter) with a distinctive bilipid protein structure. They can carry and exchange various cargos between cells and are used as a non-invasive biomarker for several diseases. Exosomes are considered the best biomarkers for cancer diagnosis, owing to their unique characteristics. Here, we provide a review of the up-to-date applications of exosomes, derived from various sources, in the prognosis and diagnosis of several diseases including cancer, cardiovascular and regenerative diseases as well as, arthritis, neurological diseases, and diabetes mellitus. The role of exosomes and their applications in biomedical research and preclinical trials have also been briefly discussed.
Collapse
Affiliation(s)
- Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Govindasamy Rajakumar
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Baskar Venkidasamy
- Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Umadevi Subramanian
- Translational Research Platform for Veterinary Biologicals, Central University Laboratory Building, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Madhavaram Milk Colony, Chennai 600051, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
340
|
Zhao Y, Haney MJ, Jin YS, Uvarov O, Vinod N, Lee YZ, Langworthy B, Fine JP, Rodriguez M, El-Hage N, Kabanov AV, Batrakova EV. GDNF-expressing macrophages restore motor functions at a severe late-stage, and produce long-term neuroprotective effects at an early-stage of Parkinson's disease in transgenic Parkin Q311X(A) mice. J Control Release 2019; 315:139-149. [PMID: 31678095 DOI: 10.1016/j.jconrel.2019.10.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
There is an unmet medical need in the area of Parkinson's disease (PD) to develop novel therapeutic approaches that can stop and reverse the underlying mechanisms responsible for the neuronal death. We previously demonstrated that systemically administered autologous macrophages transfected ex vivo to produce glial cell line-derived neurotrophic factor (GDNF) readily migrate to the mouse brain with acute toxin-induced neuroinflammation and ameliorate neurodegeneration in PD mouse models. We hypothesized that the high level of cytokines due to inflammatory process attracted GDNF-expressing macrophages and ensured targeted drug delivery to the PD brain. Herein, we validated a therapeutic potential of GDNF-transfected macrophages in a transgenic Parkin Q311X(A) mice with slow progression and mild brain inflammation. Systemic administration of GDNF-macrophages at a severe late stage of the disease leaded to a near complete restoration of motor functions in Parkin Q311X(A) mice and improved brain tissue integrity with healthy neuronal morphology. Furthermore, intravenous injections of GDNF-macrophages at an early stage of disease resulted in potent sustained therapeutic effects in PD mice for more than a year after the treatment. Importantly, multiple lines of evidence for therapeutic efficacy were observed including: diminished neuroinflammation and α-synuclein aggregation, increased survival of dopaminergic neurons, and improved locomotor functions. In summary, GDNF-transfected macrophages represent a promising therapeutic strategy for PD at both late- and early-stages of the disease.
Collapse
Affiliation(s)
- Yuling Zhao
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew J Haney
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yeon S Jin
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Olga Uvarov
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natasha Vinod
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yueh Z Lee
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin Langworthy
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason P Fine
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Myosotys Rodriguez
- Department of Immunology and Nano-medicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Nazira El-Hage
- Department of Immunology and Nano-medicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elena V Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
341
|
Ajikumar A, Long MB, Heath PR, Wharton SB, Ince PG, Ridger VC, Simpson JE. Neutrophil-Derived Microvesicle Induced Dysfunction of Brain Microvascular Endothelial Cells In Vitro. Int J Mol Sci 2019; 20:E5227. [PMID: 31652502 PMCID: PMC6834153 DOI: 10.3390/ijms20205227] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
The blood-brain barrier (BBB), composed of brain microvascular endothelial cells (BMEC) that are tightly linked by tight junction (TJ) proteins, restricts the movement of molecules between the periphery and the central nervous system. Elevated systemic levels of neutrophils have been detected in patients with altered BBB function, but the role of neutrophils in BMEC dysfunction is unknown. Neutrophils are key players of the immune response and, when activated, produce neutrophil-derived microvesicles (NMV). NMV have been shown to impact the integrity of endothelial cells throughout the body and we hypothesize that NMV released from circulating neutrophils interact with BMEC and induce endothelial cell dysfunction. Therefore, the current study investigated the interaction of NMV with human BMEC and determined whether they altered gene expression and function in vitro. Using flow cytometry and confocal imaging, NMV were shown to be internalized by the human cerebral microvascular endothelial cell line hCMEC/D3 via a variety of energy-dependent mechanisms, including endocytosis and macropinocytosis. The internalization of NMV significantly altered the transcriptomic profile of hCMEC/D3, specifically inducing the dysregulation of genes associated with TJ, ubiquitin-mediated proteolysis and vesicular transport. Functional studies confirmed NMV significantly increased permeability and decreased the transendothelial electrical resistance (TEER) of a confluent monolayer of hCMEC/D3. These findings indicate that NMV interact with and affect gene expression of BMEC as well as impacting their integrity. We conclude that NMV may play an important role in modulating the permeability of BBB during an infection.
Collapse
Affiliation(s)
- Anjana Ajikumar
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Merete B Long
- Department of Infection Immunity and Cardiovascular Diseases, University of Sheffield, Medical School, Sheffield S10 2RX, UK.
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Victoria C Ridger
- Department of Infection Immunity and Cardiovascular Diseases, University of Sheffield, Medical School, Sheffield S10 2RX, UK.
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| |
Collapse
|
342
|
Han EC, Choi SY, Lee Y, Park JW, Hong SH, Lee HJ. Extracellular RNAs in periodontopathogenic outer membrane vesicles promote TNF-α production in human macrophages and cross the blood-brain barrier in mice. FASEB J 2019; 33:13412-13422. [PMID: 31545910 DOI: 10.1096/fj.201901575r] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Among the main bacteria implicated in the pathology of periodontal disease, Aggregatibacter actinomycetemcomitans (Aa) is well known for causing loss of periodontal attachment and systemic disease. Recent studies have suggested that secreted extracellular RNAs (exRNAs) from several bacteria may be important in periodontitis, although their role is unclear. Emerging evidence indicates that exRNAs circulate in nanosized bilayered and membranous extracellular vesicles (EVs) known as outer membrane vesicles (OMVs) in gram-negative bacteria. In this study, we analyzed the small RNA expression profiles in activated human macrophage-like cells (U937) infected with OMVs from Aa and investigated whether these cells can harbor exRNAs of bacterial origin that have been loaded into the host RNA-induced silencing complex, thus regulating host target transcripts. Our results provide evidence for the cytoplasmic delivery and activity of microbial EV-derived small exRNAs in host gene regulation. The production of TNF-α was promoted by exRNAs via the TLR-8 and NF-κB signaling pathways. Numerous studies have linked periodontal disease to neuroinflammatory diseases but without elucidating specific mechanisms for the connection. We show here that intracardiac injection of Aa OMVs in mice showed successful delivery to the brain after crossing the blood-brain barrier, the exRNA cargos increasing expression of TNF-α in the mouse brain. The current study indicates that host gene regulation by microRNAs originating from OMVs of the periodontal pathogen Aa is a novel mechanism for host gene regulation and that the transfer of OMV exRNAs to the brain may cause neuroinflammatory diseases like Alzheimer's.-Han, E.-C., Choi, S.-Y., Lee, Y., Park, J.-W., Hong, S.-H., Lee, H.-J. Extracellular RNAs in periodontopathogenic outer membrane vesicles promote TNF-α production in human macrophages and cross the blood-brain barrier in mice.
Collapse
Affiliation(s)
- Eun-Chong Han
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Song-Yi Choi
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, South Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
343
|
Shahjin F, Chand S, Yelamanchili SV. Extracellular Vesicles as Drug Delivery Vehicles to the Central Nervous System. J Neuroimmune Pharmacol 2019; 15:443-458. [DOI: 10.1007/s11481-019-09875-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
|
344
|
Monfared H, Jahangard Y, Nikkhah M, Mirnajafi-Zadeh J, Mowla SJ. Potential Therapeutic Effects of Exosomes Packed With a miR-21-Sponge Construct in a Rat Model of Glioblastoma. Front Oncol 2019; 9:782. [PMID: 31482067 PMCID: PMC6710330 DOI: 10.3389/fonc.2019.00782] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/01/2019] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a grade 4 and the most aggressive form of glioma, with a poor response to current treatments. The expression of microRNAs (miRNAs) is widely dysregulated in various cancers, including GBM. One of the overexpressed miRNAs in GBM is miR-21 which promotes proliferation, invasion and metastatic behaviors of tumor cells. With a size of 30-100 nm, the extracellular vesicles "exosomes" have emerged as a novel and powerful drug delivering systems. Recently, exosomal transfer of miRNAs or anti-miRNAs to tumor cells has introduced a new approach for therapeutic application of miRNAs to combat cancer. Here, we have tried to down-regulate miR-21 expression in glioma cell lines, U87-MG, and C6, by using engineered exosomes, packed with a miR-21-sponge construct. Our data revealed that the engineered exosomes have the potential to suppress miR-21 and consequently to upregulate miR-21 target genes, PDCD4 and RECK. Interestingly, in cells treated with miR-21-sponge exosomes we observed a decline in proliferation and also an elevation in apoptotic rates. Finally, in a rat model of glioblastoma, administrating exosomes loaded with a miR-21-sponge construct leads to a significant reduction in the volume of the tumors. In brief, our findings suggest a new therapeutic strategy to use engineered exosomes to deliver a miR-21-sponge construct to GBM cells, in order to block its malignant behavior.
Collapse
Affiliation(s)
- Hamideh Monfared
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Yavar Jahangard
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
345
|
Zhu Z, Zheng L, Li Y, Huang T, Chao YC, Pan L, Zhu H, Zhao Y, Yu W, Li P. Potential Immunotherapeutic Targets on Myeloid Cells for Neurovascular Repair After Ischemic Stroke. Front Neurosci 2019; 13:758. [PMID: 31447626 PMCID: PMC6696904 DOI: 10.3389/fnins.2019.00758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
Neurological deficits and cognitive dysfunctions caused by acute ischemic stroke pose enormous burden to the stroke families and the communities. Restoration of the normal function of the neurovascular unit following ischemic stroke is critical for improving neurological recovery and cognitive functions after stroke. Recent evidence suggests that the myeloid cells including both the resident microglia and infiltrating monocytes/macrophages and neutrophils are highly plastic in response to the environmental cues. They intimately interact with multiple components of the neurovascular unit in response to the alarmins, danger associated pattern molecules (DAMPs) and other signals released from the ischemic brain. The aim of this review is to discuss the reciprocal interactions between the myeloid cells and the ischemic neurovascular unit during the late repair phase of cerebral ischemic stroke. We also summarize potential immunotherapeutic targets on myeloid cells and new therapeutic approaches targeting myeloid cells, such as cell transplantation, mitochondrial dynamic and extracellular vesicles-based therapy et al to enhance neurovascular repair for better stroke recovery.
Collapse
Affiliation(s)
- Ziyu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li Zheng
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Tingting Huang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu-Chieh Chao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lijun Pan
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hui Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanhua Zhao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
346
|
Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery. Acta Biomater 2019; 94:482-494. [PMID: 31129363 DOI: 10.1016/j.actbio.2019.05.054] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/01/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
Abstract
Extracellular vesicles (EVs) are phospholipid and protein constructs which are continuously secreted by cells in the form of smaller (30-200 nm) and larger (micron size) particles. While all of these vesicles are called as EVs, the smaller size are normally called as exosomes. Small EVs (sEVs) have now been explored as a potential candidate in therapeutics delivery owing to their endogenous functionality, intrinsic targeting property, and ability to cooperate with a host defense mechanism. Considering these potentials, we hypothesize that immune cell-derived sEVs can mimic immune cell to target cancer. However, different sEVs isolation technique reported poor yield and loss of functional properties. To solve this problem, herein we hybridized sEVs with synthetic liposome to engineer vesicles with size less than 200 nm to mimic the size of exosome and named as hybrid exosome (HE). To achieve this goal, sEVs from mouse macrophage was hybridized with synthetic liposome to engineer HE. The fluorescence-based experiment confirmed the successful hybridization process yielding HE with the size of 177 ± 21 nm. Major protein analysis from Blot techniques reveal the presence of EV marker proteins CD81, CD63, and CD9. Differential cellular interaction of HE was observed when treated with normal and cancerous cells thereby supporting our hypothesis. Moreover, a water-soluble doxorubicin was loaded in HE. Drug-loaded HE showed enhanced toxicity against cancer cells and pH-sensitive drug release in acidic condition, benefiting drug delivery to acidic cancer environment. These results suggest that the engineered HE would be an exciting platform for tumor-targeted drug delivery. STATEMENT OF SIGNIFICANCE: Extracellular vesicles (EVs) are phospholipid and protein constructs which are continuously secreted by cells in the human body. These vesicles can efficiently deliver their parental biomolecules to the recipient cells and assist in intracellular communication without a direct cell-to-cell contact. Moreover, they have the ability to perform some of the molecular task similar to that of its parent cells. For example, exosome derived from immune cells can seek for diseased and/or inflammatory cells by reading the cell surface proteins. However, different EVs isolation techniques reported poor yield and loss of functional properties. Therefore, to overcome this limitation, we herein propose to re-engineer immuno-exosome with a synthetic liposome as a refined biomimetic nanostructure for the delivery of doxorubicin (clinical drug) for breast cancer treatment.
Collapse
|
347
|
Nanoformulation properties, characterization, and behavior in complex biological matrices: Challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Adv Drug Deliv Rev 2019; 148:146-180. [PMID: 30797956 DOI: 10.1016/j.addr.2019.02.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/08/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
Nanocarriers (synthetic/cell-based have attracted enormous interest for various therapeutic indications, including neurodegenerative disorders. A broader understanding of the impact of nanomedicines design is now required to enhance their translational potential. Nanoformulations in vivo journey is significantly affected by their physicochemical properties including the size, shape, hydrophobicity, elasticity, and surface charge/chemistry/morphology, which play a role as an interface with the biological environment. Understanding protein corona formation is crucial in characterizing nanocarriers and evaluating their interactions with biological systems. In this review, the types and properties of the brain-targeted nanocarriers are discussed. The biological factors and nanocarriers properties affecting their in vivo behavior are elaborated. The compositional description of cell culture and biological matrices, including proteins potentially relevant to protein corona built-up on nanoformulation especially for brain administration, is provided. Analytical techniques of characterizing nanocarriers in complex matrices, their advantages, limitations, and implementation challenges in industrial GMP environment are discussed. The uses of orthogonal complementary characterization approaches of nanocarriers are also covered.
Collapse
|
348
|
Lee DS, Suh MI, Kang SY, Hwang DW. Physiologic constraints of using exosomes in vivo as systemic delivery vehicles. PRECISION NANOMEDICINE 2019. [DOI: 10.33218/prnano2(3)070819.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Systemic delivery of exosomes meets hurdles which had not been elucidated using live molecular imaging for their biodistribution. Production and uptake of endogenous exosomes are expected to be nonspecific and specific, respectively, where external stimuli of production of exosomes and their quantitative degree of productions are not understood. Despite this lack of understanding of basic physiology of in vivo behavior of exosomes including their possible paracrine or endocrine actions, many engineering efforts are taken to develop therapeutic vehicles. Especially, the fraction of exosomes’ taking the routes of waste disposal and exerting target actions are not characterized after systemic administration. Here, we reviewed the literature about in vivo distribution and disposal/excretion of exogenous or endogenous exosomes and, from these limited resources of knowledge currently available, summarized the knowledge and the uncertainties of exosomes on physiologic standpoints. An eloquent example of the investigations to understand the roles and confounders of exosomes’ action in the brain was highlighted with emphasis on the recent discovery of brain lymphatics and hypothesis of glymphatic/lymphatic clearance pathways in diseases as well as in physiologic processes. The possibility of delivering therapeutic exosomes through the systemic circulation, across blood-brain barriers and finally to target cells such as microglia, astrocytes and/or neurons is a good testbed in which the investigators can formulate problems to solve for both understanding (science) and application (engineering).
Collapse
Affiliation(s)
- Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - MInseok Suh
- 2Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University,
| | - Seo Young Kang
- Department of Nuclear Medicine, Ewha Womans University Medical Center, Seoul,
| | - Do Won Hwang
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
349
|
Milman N, Ginini L, Gil Z. Exosomes and their role in tumorigenesis and anticancer drug resistance. Drug Resist Updat 2019; 45:1-12. [PMID: 31369918 DOI: 10.1016/j.drup.2019.07.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 12/25/2022]
Abstract
Exosomes are a class of extracellular vesicles ranging in size from 40 to 100 nm, which are secreted by both cancer cells and multiple stromal cells in the tumor microenvironment. Following their secretion, exosomes partake in endocrine, paracrine and autocrine signaling. Internalization of exosomes by tumor cells influences several cellular pathways which alter cancer cell physiology. Tumor-derived exosomes secreted by cancer or stromal cells can also confer anticancer drug-resistant traits upon cancer cells. These exosomes promote chemoresistance by transferring their cargo which includes nucleic acids, proteins, and metabolites to cancer cells or act as a decoy for immunotherapeutic targets. Depletion of exosomes can reverse some of the detrimental effects on tumor metabolism and restore drug sensitivity to chemotherapeutic treatment. Herein we discuss various approaches that have been developed to deplete exosomes for therapeutic purposes. The natural composition, low immunogenicity and cytotoxicity of exosomes, along with their ability to specifically target tumor cells, render them an appealing platform for drug delivery. The ability of exosomes to mediate autocrine and paracrine signaling in target cells, along with their natural structure and low immunogenicity render them an attractive vehicle for the delivery of anticancer drugs to tumors.
Collapse
Affiliation(s)
- Neta Milman
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, The Clinical Research Institute at Rambam Healthcare Campus, Technion Integrated Cancer Center, Rappaport Institute of Medicine and Research, Technion, Israel Institute of Technology, Haifa, Israel
| | - Lana Ginini
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, The Clinical Research Institute at Rambam Healthcare Campus, Technion Integrated Cancer Center, Rappaport Institute of Medicine and Research, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ziv Gil
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, The Clinical Research Institute at Rambam Healthcare Campus, Technion Integrated Cancer Center, Rappaport Institute of Medicine and Research, Technion, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
350
|
Liu Z, Ren F, Zhang H, Yuan Q, Jiang Z, Liu H, Sun Q, Li Z. Boosting often overlooked long wavelength emissions of rare-earth nanoparticles for NIR-II fluorescence imaging of orthotopic glioblastoma. Biomaterials 2019; 219:119364. [PMID: 31352311 DOI: 10.1016/j.biomaterials.2019.119364] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/13/2019] [Accepted: 07/14/2019] [Indexed: 01/06/2023]
Abstract
Rare-earth nanoparticles (RE NPs) with narrow long wavelength emissions have been recently investigated for their potential application for fluorescence imaging in the second near-infrared window (NIR-II). Previously these RE NPs have a very limited application in the diagnosis and treatment of deep-seated tumors such as brain tumors, due to their weak fluorescence in the range of 1300-1700 nm. Herein, we report a significant enhancement of more than 10 times regular emission of NaNdF4 nanoparticles at 1340 nm wavelength by coating them with an inert layer of NaLuF4, followed by sensitizing with a near-infrared dye (IR-808). We deliver these highly bright nanoparticles into the brain by using focused ultrasound to temporarily open the blood-brain barrier (BBB), and then detect the orthotopic glioblastoma by fluorescence imaging at 1340 nm. The images obtained from long wavelength fluorescence (i.e. 1340 nm) exhibited better resolution and contrast compared to the short wavelength fluorescence (i.e. 1060 nm). Our study not only provides insights for enhancing often overlooked emissions of rare-earth nanoparticles for NIR-II fluorescence imaging of deep-seated tumors, but also demonstrates great potential of focused ultrasound based technology in delivering nanotheranostic agents.
Collapse
Affiliation(s)
- Zheng Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Feng Ren
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Qiang Yuan
- The Second Affiliated Hospital of Soochow University, Suzhou, 215004, PR China
| | - Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Hanghang Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, PR China.
| |
Collapse
|