301
|
Wang WX, Prajapati P, Nelson PT, Springer JE. The Mitochondria-Associated ER Membranes Are Novel Subcellular Locations Enriched for Inflammatory-Responsive MicroRNAs. Mol Neurobiol 2020; 57:2996-3013. [PMID: 32451872 PMCID: PMC7320068 DOI: 10.1007/s12035-020-01937-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022]
Abstract
The mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are specific ER domains that contact the mitochondria and function to facilitate communication between ER and mitochondria. Disruption of contact between the mitochondria and ER is associated with a variety of pathophysiological conditions including neurodegenerative diseases. Considering the many cellular functions of MAMs, we hypothesized that MAMs play an important role in regulating microRNA (miRNA) activity linked to its unique location between mitochondria and ER. Here we present new findings from human and rat brains indicating that the MAMs are subcellular sites enriched for specific miRNAs. We employed subcellular fractionation and TaqMan® RT-qPCR miRNA analysis to quantify miRNA levels in subcellular fractions isolated from male rat brains and six human brain samples. We found that MAMs contain a substantial number of miRNAs and the profile differs significantly from that of cytosolic, mitochondria, or ER. Interestingly, MAMs are particularly enriched in inflammatory-responsive miRNAs, including miR-146a, miR-142-3p, and miR-142-5p in both human and rat brains; miR-223 MAM enrichment was observed only in human brain samples. Further, mitochondrial uncoupling or traumatic brain injury in male rats resulted in the alteration of inflammatory miRNA enrichment in the isolated subcellular fractions. These observations demonstrate that miRNAs are distributed differentially in organelles and may re-distribute between organelles and the cytosol in response to cellular stress and metabolic demands.
Collapse
Affiliation(s)
- Wang-Xia Wang
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone, Lexington, KY, 40536, USA.
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA.
- Pathology & Laboratory Medicine, University of Kentucky, Lexington, KY, 40536, USA.
| | - Paresh Prajapati
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
- Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone, Lexington, KY, 40536, USA
- Pathology & Laboratory Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Joe E Springer
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
- Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| |
Collapse
|
302
|
Rossini M, Pizzo P, Filadi R. Better to keep in touch: investigating inter‐organelle cross‐talk. FEBS J 2020; 288:740-755. [DOI: 10.1111/febs.15451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/28/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Michela Rossini
- Department of Biomedical Sciences University of Padua Padua Italy
| | - Paola Pizzo
- Department of Biomedical Sciences University of Padua Padua Italy
- Neuroscience Institute National Research Council (CNR) Padua Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences University of Padua Padua Italy
- Neuroscience Institute National Research Council (CNR) Padua Italy
| |
Collapse
|
303
|
Zhai X, Sterea AM, El Hiani Y. Lessons from the Endoplasmic Reticulum Ca 2+ Transporters-A Cancer Connection. Cells 2020; 9:E1536. [PMID: 32599788 PMCID: PMC7349521 DOI: 10.3390/cells9061536] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Ca2+ is an integral mediator of intracellular signaling, impacting almost every aspect of cellular life. The Ca2+-conducting transporters located on the endoplasmic reticulum (ER) membrane shoulder the responsibility of constructing the global Ca2+ signaling landscape. These transporters gate the ER Ca2+ release and uptake, sculpt signaling duration and intensity, and compose the Ca2+ signaling rhythm to accommodate a plethora of biological activities. In this review, we explore the mechanisms of activation and functional regulation of ER Ca2+ transporters in the establishment of Ca2+ homeostasis. We also contextualize the aberrant alterations of these transporters in carcinogenesis, presenting Ca2+-based therapeutic interventions as a means to tackle malignancies.
Collapse
Affiliation(s)
- Xingjian Zhai
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | | | - Yassine El Hiani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
304
|
Cho KF, Branon TC, Rajeev S, Svinkina T, Udeshi ND, Thoudam T, Kwak C, Rhee HW, Lee IK, Carr SA, Ting AY. Split-TurboID enables contact-dependent proximity labeling in cells. Proc Natl Acad Sci U S A 2020; 117:12143-12154. [PMID: 32424107 PMCID: PMC7275672 DOI: 10.1073/pnas.1919528117] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proximity labeling catalyzed by promiscuous enzymes, such as TurboID, have enabled the proteomic analysis of subcellular regions difficult or impossible to access by conventional fractionation-based approaches. Yet some cellular regions, such as organelle contact sites, remain out of reach for current PL methods. To address this limitation, we split the enzyme TurboID into two inactive fragments that recombine when driven together by a protein-protein interaction or membrane-membrane apposition. At endoplasmic reticulum-mitochondria contact sites, reconstituted TurboID catalyzed spatially restricted biotinylation, enabling the enrichment and identification of >100 endogenous proteins, including many not previously linked to endoplasmic reticulum-mitochondria contacts. We validated eight candidates by biochemical fractionation and overexpression imaging. Overall, split-TurboID is a versatile tool for conditional and spatially specific proximity labeling in cells.
Collapse
Affiliation(s)
- Kelvin F Cho
- Cancer Biology Program, Stanford University, Stanford, CA 94305
| | - Tess C Branon
- Department of Genetics, Stanford University, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sanjana Rajeev
- Department of Genetics, Stanford University, Stanford, CA 94305
| | | | | | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University, 37224 Daegu, South Korea
| | - Chulhwan Kwak
- Department of Chemistry, Seoul National University, 08826 Seoul, South Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44919 Ulsan, South Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, 08826 Seoul, South Korea
- School of Biological Sciences, Seoul National University, 08826 Seoul, South Korea
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, 37224 Daegu, South Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 41944 Daegu, South Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, 41944 Daegu, South Korea
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, CA 94305;
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
305
|
Silva-Palacios A, Zazueta C, Pedraza-Chaverri J. ER membranes associated with mitochondria: Possible therapeutic targets in heart-associated diseases. Pharmacol Res 2020; 156:104758. [PMID: 32200027 DOI: 10.1016/j.phrs.2020.104758] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
Cardiovascular system cell biology is tightly regulated and mitochondria play a relevant role in maintaining heart function. In recent decades, associations between such organelles and the sarco/endoplasmic reticulum (SR) have been raised great interest. Formally identified as mitochondria-associated SR membranes (MAMs), these structures regulate different cellular functions, including calcium management, lipid metabolism, autophagy, oxidative stress, and management of unfolded proteins. In this review, we highlight MAMs' alterations mainly in cardiomyocytes, linked with cardiovascular diseases, such as cardiac ischemia-reperfusion, heart failure, and dilated cardiomyopathy. We also describe proteins that are part of the MAMs' machinery, as the FUN14 domain containing 1 (FUNDC1), the sigma 1 receptor (Sig-1R) and others, which might be new molecular targets to preserve the function and structure of the heart in such diseases. Understanding the machinery of MAMs and its function demands our attention, as such knowledge might contribute to strengthen the role of these relative novel structures in heart diseases.
Collapse
Affiliation(s)
- Alejandro Silva-Palacios
- Department of Cardiovascular Biomedicine, National Institute of Cardiology-Ignacio Chávez, Mexico City, Mexico.
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology-Ignacio Chávez, Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Circuito Exterior S/N, C. U., 04510, Mexico City, Mexico.
| |
Collapse
|
306
|
Long MJC, Zhao Y, Aye Y. Neighborhood watch: tools for defining locale-dependent subproteomes and their contextual signaling activities. RSC Chem Biol 2020; 1:42-55. [PMID: 34458747 PMCID: PMC8341840 DOI: 10.1039/d0cb00041h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/16/2020] [Indexed: 12/21/2022] Open
Abstract
Transient associations between numerous organelles-e.g., the endoplasmic reticulum and the mitochondria-forge highly-coordinated, particular environments essential for cross-compartment information flow. Our perspective summarizes chemical-biology tools that have enabled identifying proteins present within these itinerant communities against the bulk proteome, even when a particular protein's presence is fleeting/substoichiometric. However, proteins resident at these ephemeral junctions also experience transitory changes to their interactomes, small-molecule signalomes, and, importantly, functions. Thus, a thorough census of sub-organellar communities necessitates functionally probing context-dependent signaling properties of individual protein-players. Our perspective accordingly further discusses how repurposing of existing tools could allow us to glean a functional understanding of protein-specific signaling activities altered as a result of organelles pulling together. Collectively, our perspective strives to usher new chemical-biology techniques that could, in turn, open doors to modulate functions of specific subproteomes/organellar junctions underlying the nuanced regulatory subsystem broadly termed as contactology.
Collapse
Affiliation(s)
| | - Yi Zhao
- Swiss Federal Institute of Technology Lausanne (EPFL), Institute of Chemical Sciences and Engineering 1015 Lausanne Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Institute of Chemical Sciences and Engineering 1015 Lausanne Switzerland
| |
Collapse
|
307
|
Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: recent advances. Mol Neurodegener 2020; 15:30. [PMID: 32471464 PMCID: PMC7257174 DOI: 10.1186/s13024-020-00376-6] [Citation(s) in RCA: 580] [Impact Index Per Article: 145.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases, characterized by impaired cognitive function due to progressive loss of neurons in the brain. Under the microscope, neuronal accumulation of abnormal tau proteins and amyloid plaques are two pathological hallmarks in affected brain regions. Although the detailed mechanism of the pathogenesis of AD is still elusive, a large body of evidence suggests that damaged mitochondria likely play fundamental roles in the pathogenesis of AD. It is believed that a healthy pool of mitochondria not only supports neuronal activity by providing enough energy supply and other related mitochondrial functions to neurons, but also guards neurons by minimizing mitochondrial related oxidative damage. In this regard, exploration of the multitude of mitochondrial mechanisms altered in the pathogenesis of AD constitutes novel promising therapeutic targets for the disease. In this review, we will summarize recent progress that underscores the essential role of mitochondria dysfunction in the pathogenesis of AD and discuss mechanisms underlying mitochondrial dysfunction with a focus on the loss of mitochondrial structural and functional integrity in AD including mitochondrial biogenesis and dynamics, axonal transport, ER-mitochondria interaction, mitophagy and mitochondrial proteostasis.
Collapse
Affiliation(s)
- Wenzhang Wang
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA.
| | - Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Xiaopin Ma
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA.
| |
Collapse
|
308
|
Overview of Mitochondrial E3 Ubiquitin Ligase MITOL/MARCH5 from Molecular Mechanisms to Diseases. Int J Mol Sci 2020; 21:ijms21113781. [PMID: 32471110 PMCID: PMC7312067 DOI: 10.3390/ijms21113781] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
The molecular pathology of diseases seen from the mitochondrial axis has become more complex with the progression of research. A variety of factors, including the failure of mitochondrial dynamics and quality control, have made it extremely difficult to narrow down drug discovery targets. We have identified MITOL (mitochondrial ubiquitin ligase: also known as MARCH5) localized on the mitochondrial outer membrane and previously reported that it is an important regulator of mitochondrial dynamics and mitochondrial quality control. In this review, we describe the pathological aspects of MITOL revealed through functional analysis and its potential as a drug discovery target.
Collapse
|
309
|
Bader V, Winklhofer KF. PINK1 and Parkin: team players in stress-induced mitophagy. Biol Chem 2020; 401:891-899. [DOI: 10.1515/hsz-2020-0135] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
AbstractMitochondria are highly vulnerable organelles based on their complex biogenesis, entailing dependence on nuclear gene expression and efficient import strategies. They are implicated in a wide spectrum of vital cellular functions, including oxidative phosphorylation, iron-sulfur cluster synthesis, regulation of calcium homeostasis, and apoptosis. Moreover, damaged mitochondria can release mitochondrial components, such as mtDNA or cardiolipin, which are sensed as danger-associated molecular patterns and trigger innate immune signaling. Thus, dysfunctional mitochondria pose a thread not only to the cellular but also to the organismal integrity. The elimination of dysfunctional and damaged mitochondria by selective autophagy, called mitophagy, is a major mechanism of mitochondrial quality control. Certain types of stress-induced mitophagy are regulated by the mitochondrial kinase PINK1 and the E3 ubiquitin ligase Parkin, which are both linked to autosomal recessive Parkinson’s disease.
Collapse
Affiliation(s)
- Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstrasse 150, D-44801, Bochum, Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstrasse 150, D-44801, Bochum, Germany
| |
Collapse
|
310
|
Zung N, Schuldiner M. New horizons in mitochondrial contact site research. Biol Chem 2020; 401:793-809. [PMID: 32324151 DOI: 10.1515/hsz-2020-0133] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
Abstract
Contact sites, areas where two organelles are held in close proximity through the action of molecular tethers, enable non-vesicular communication between compartments. Mitochondria have been center stage in the contact site field since the discovery of the first contact between mitochondria and the endoplasmic reticulum (ER) over 60 years ago. However, only now, in the last decade, has there been a burst of discoveries regarding contact site biology in general and mitochondrial contacts specifically. The number and types of characterized contacts increased dramatically, new molecular mechanisms enabling contact formation were discovered, additional unexpected functions for contacts were shown, and their roles in cellular and organismal physiology were emphasized. Here, we focus on mitochondria as we highlight the most recent developments, future goals and unresolved questions in the field.
Collapse
Affiliation(s)
- Naama Zung
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
311
|
Galectin-3 modulates epithelial cell adaptation to stress at the ER-mitochondria interface. Cell Death Dis 2020; 11:360. [PMID: 32398681 PMCID: PMC7217954 DOI: 10.1038/s41419-020-2556-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
Cellular stress response contributes to epithelial defense in adaptation to environment changes. Galectins play a pivotal role in the regulation of this response in malignant cells. However, precise underlying mechanisms are largely unknown. Here we demonstrate that Galectin-3, a pro and anti-apoptotic lectin, is required for setting up a correct cellular response to stress by orchestrating several effects. First, Galectin-3 constitutes a key post-transcriptional regulator of stress-related mRNA regulons coordinating the cell metabolism, the mTORC1 complex or the unfolded protein response (UPR). Moreover, we demonstrated the presence of Galectin-3 with mitochondria-associated membranes (MAM), and its interaction with proteins located at the ER or mitochondrial membranes. There Galectin-3 prevents the activation and recruitment at the mitochondria of the regulator of mitochondria fission DRP-1. Accordingly, loss of Galectin-3 impairs mitochondrial morphology, with more fragmented and round mitochondria, and dynamics both in normal and cancer epithelial cells in basal conditions. Importantly, Galectin-3 deficient cells also display changes of the activity of the mitochondrial respiratory chain complexes, of the mTORC1/S6RP/4EBP1 translation pathway and reactive oxygen species levels. Regarding the ER, Galectin-3 did not modify the activities of the 3 branches of the UPR in basal conditions. However, Galectin-3 favours an adaptative UPR following ER stress induction by Thapsigargin treatment. Altogether, at the ER-mitochondria interface, Galectin-3 coordinates the functioning of the ER and mitochondria, preserves the integrity of mitochondrial network and modulates the ER stress response.
Collapse
|
312
|
Balla T, Kim YJ, Alvarez-Prats A, Pemberton J. Lipid Dynamics at Contact Sites Between the Endoplasmic Reticulum and Other Organelles. Annu Rev Cell Dev Biol 2020; 35:85-109. [PMID: 31590585 DOI: 10.1146/annurev-cellbio-100818-125251] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phospholipids are synthesized primarily within the endoplasmic reticulum and are subsequently distributed to various subcellular membranes to maintain the unique lipid composition of specific organelles. As a result, in most cases, the steady-state localization of membrane phospholipids does not match their site of synthesis. This raises the question of how diverse lipid species reach their final membrane destinations and what molecular processes provide the energy to maintain the lipid gradients that exist between various membrane compartments. Recent studies have highlighted the role of inositol phospholipids in the nonvesicular transport of lipids at membrane contact sites. This review attempts to summarize our current understanding of these complex lipid dynamics and highlights their implications for defining future research directions.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
313
|
Ciscato F, Filadi R, Masgras I, Pizzi M, Marin O, Damiano N, Pizzo P, Gori A, Frezzato F, Chiara F, Trentin L, Bernardi P, Rasola A. Hexokinase 2 displacement from mitochondria-associated membranes prompts Ca 2+ -dependent death of cancer cells. EMBO Rep 2020; 21:e49117. [PMID: 32383545 PMCID: PMC7332982 DOI: 10.15252/embr.201949117] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/22/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer cells undergo changes in metabolic and survival pathways that increase their malignancy. Isoform 2 of the glycolytic enzyme hexokinase (HK2) enhances both glucose metabolism and resistance to death stimuli in many neoplastic cell types. Here, we observe that HK2 locates at mitochondria‐endoplasmic reticulum (ER) contact sites called MAMs (mitochondria‐associated membranes). HK2 displacement from MAMs with a selective peptide triggers mitochondrial Ca2+ overload caused by Ca2+ release from ER via inositol‐3‐phosphate receptors (IP3Rs) and by Ca2+ entry through plasma membrane. This results in Ca2+‐dependent calpain activation, mitochondrial depolarization and cell death. The HK2‐targeting peptide causes massive death of chronic lymphocytic leukemia B cells freshly isolated from patients, and an actionable form of the peptide reduces growth of breast and colon cancer cells allografted in mice without noxious effects on healthy tissues. These results identify a signaling pathway primed by HK2 displacement from MAMs that can be activated as anti‐neoplastic strategy.
Collapse
Affiliation(s)
- Francesco Ciscato
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| | - Ionica Masgras
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Oriano Marin
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| | - Nunzio Damiano
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| | - Alessandro Gori
- CNR Institute of Chemistry of Molecular Recognition (ICRM), Milano, Italy
| | - Federica Frezzato
- Hematology and Clinical Immunology Branch, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Federica Chiara
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, Padova, Italy
| | - Livio Trentin
- Hematology and Clinical Immunology Branch, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| |
Collapse
|
314
|
Boncompagni S, Pozzer D, Viscomi C, Ferreiro A, Zito E. Physical and Functional Cross Talk Between Endo-Sarcoplasmic Reticulum and Mitochondria in Skeletal Muscle. Antioxid Redox Signal 2020; 32:873-883. [PMID: 31825235 DOI: 10.1089/ars.2019.7934] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The physiological relevance of contacts between the sarcoplasmic reticulum (SR), a specialized domain of the endoplasmic reticulum (ER) in skeletal muscle, and mitochondria is still not clear. Recent Advances: An extensive close proximity of these two organelles is a late developmental event, which suggests that it does not have an essential function. Critical Issues: The intimate association of SR/mitochondria develops during murine postnatal differentiation and the recovery of denervated atrophic muscle, which suggests that this is a highly regulated process with a specific function. Analyses of mouse models for muscle diseases suggest that impaired ER/SR-mitochondrial contacts may be due to ER stress and lead to defective bioenergetics and insulin signaling. Future Directions: Future studies are necessary to identify the molecular determinants weakening insulin signaling upon impairment of ER/mitochondrial contacts in skeletal muscles as well as to analyze the distance between SR/ER and mitochondria in muscle diseases associated with ER stress.
Collapse
Affiliation(s)
- Simona Boncompagni
- CeSI-Met-Center for Research on Ageing and Translational Medicine, University G. d' Annunzio, Chieti, Italy.,DNICS-Department of Neuroscience, Imaging and Clinical Sciences, University G. d' Annunzio, Chieti, Italy
| | - Diego Pozzer
- Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Carlo Viscomi
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Ana Ferreiro
- Unit of Functional and Adaptive Biology, BFA, Pathophysiology of Striated Muscles Laboratory, University Paris Diderot/CNRS, Sorbonne Paris Cité, Paris, France.,AP-HP, Centre de Référence Maladies Neuromusculaires Paris-Est, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| |
Collapse
|
315
|
Dorn GW. Mitofusins as mitochondrial anchors and tethers. J Mol Cell Cardiol 2020; 142:146-153. [PMID: 32304672 DOI: 10.1016/j.yjmcc.2020.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/24/2020] [Accepted: 04/11/2020] [Indexed: 12/18/2022]
Abstract
Mitochondria have their own genomes and their own agendas. Like their primitive bacterial ancestors, mitochondria interact with their environment and organelle colleagues at their physical interfaces, the outer mitochondrial membrane. Among outer membrane proteins, mitofusins (MFN) are increasingly recognized for their roles as arbiters of mitochondria-mitochondria and mitochondria-reticular interactions. This review examines the roles of MFN1 and MFN2 in the heart and other organs as proteins that tether mitochondria to each other or to other organelles, and as mitochondrial anchoring proteins for various macromolecular complexes. The consequences of MFN-mediated tethering and anchoring on mitochondrial fusion, motility, mitophagy, and mitochondria-ER calcium cross-talk are reviewed. Pathophysiological implications are explored from the perspective of mitofusin common functioning as tethering and anchoring proteins, rather than as mediators of individual processes. Finally, some informed speculation is provided for why mouse MFN knockout studies show severe multi-system phenotypes whereas rare human diseases linked to MFN mutations are limited in scope.
Collapse
Affiliation(s)
- Gerald W Dorn
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
316
|
Mitochondria-Endoplasmic Reticulum Contacts in Reactive Astrocytes Promote Vascular Remodeling. Cell Metab 2020; 31:791-808.e8. [PMID: 32220306 PMCID: PMC7139200 DOI: 10.1016/j.cmet.2020.03.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/03/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Astrocytes have emerged for playing important roles in brain tissue repair; however, the underlying mechanisms remain poorly understood. We show that acute injury and blood-brain barrier disruption trigger the formation of a prominent mitochondrial-enriched compartment in astrocytic endfeet, which enables vascular remodeling. Integrated imaging approaches revealed that this mitochondrial clustering is part of an adaptive response regulated by fusion dynamics. Astrocyte-specific conditional deletion of Mitofusin 2 (Mfn2) suppressed perivascular mitochondrial clustering and disrupted mitochondria-endoplasmic reticulum (ER) contact sites. Functionally, two-photon imaging experiments showed that these structural changes were mirrored by impaired mitochondrial Ca2+ uptake leading to abnormal cytosolic transients within endfeet in vivo. At the tissue level, a compromised vascular complexity in the lesioned area was restored by boosting mitochondrial-ER perivascular tethering in MFN2-deficient astrocytes. These data unmask a crucial role for mitochondrial dynamics in coordinating astrocytic local domains and have important implications for repairing the injured brain.
Collapse
|
317
|
Gonzalez-Rodriguez P, Zampese E, Surmeier DJ. Selective neuronal vulnerability in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2020; 252:61-89. [PMID: 32247375 DOI: 10.1016/bs.pbr.2020.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, disabling millions worldwide. Despite the imperative PD poses, at present, there is no cure or means of slowing progression. This gap is attributable to our incomplete understanding of the factors driving pathogenesis. Research over the past several decades suggests that both cell-autonomous and non-cell autonomous processes contribute to the neuronal dysfunction underlying PD symptoms. The thesis of this review is that an intersection of these processes governs the pattern of pathology in PD. Studies of substantia nigra pars compacta (SNc) dopaminergic neurons, whose loss is responsible for the core motor symptoms of PD, suggest that they have a combination of traits-a long, highly branched axon, autonomous activity, and elevated mitochondrial oxidant stress-that predispose them to non-cell autonomous drivers of pathogenesis, like misfolded forms of alpha-synuclein (α-SYN) and inflammation. The literature surrounding these issues will be briefly summarized, and the translational implications of an intersectional hypothesis of PD pathogenesis discussed.
Collapse
Affiliation(s)
| | - Enrico Zampese
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
318
|
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 2020; 21:363-383. [PMID: 32231263 DOI: 10.1038/s41580-020-0230-3] [Citation(s) in RCA: 2301] [Impact Index Per Article: 575.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
'Reactive oxygen species' (ROS) is an umbrella term for an array of derivatives of molecular oxygen that occur as a normal attribute of aerobic life. Elevated formation of the different ROS leads to molecular damage, denoted as 'oxidative distress'. Here we focus on ROS at physiological levels and their central role in redox signalling via different post-translational modifications, denoted as 'oxidative eustress'. Two species, hydrogen peroxide (H2O2) and the superoxide anion radical (O2·-), are key redox signalling agents generated under the control of growth factors and cytokines by more than 40 enzymes, prominently including NADPH oxidases and the mitochondrial electron transport chain. At the low physiological levels in the nanomolar range, H2O2 is the major agent signalling through specific protein targets, which engage in metabolic regulation and stress responses to support cellular adaptation to a changing environment and stress. In addition, several other reactive species are involved in redox signalling, for instance nitric oxide, hydrogen sulfide and oxidized lipids. Recent methodological advances permit the assessment of molecular interactions of specific ROS molecules with specific targets in redox signalling pathways. Accordingly, major advances have occurred in understanding the role of these oxidants in physiology and disease, including the nervous, cardiovascular and immune systems, skeletal muscle and metabolic regulation as well as ageing and cancer. In the past, unspecific elimination of ROS by use of low molecular mass antioxidant compounds was not successful in counteracting disease initiation and progression in clinical trials. However, controlling specific ROS-mediated signalling pathways by selective targeting offers a perspective for a future of more refined redox medicine. This includes enzymatic defence systems such as those controlled by the stress-response transcription factors NRF2 and nuclear factor-κB, the role of trace elements such as selenium, the use of redox drugs and the modulation of environmental factors collectively known as the exposome (for example, nutrition, lifestyle and irradiation).
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany. .,Leibniz Research Institute for Environmental Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
319
|
Janssen-Heininger Y, Reynaert NL, van der Vliet A, Anathy V. Endoplasmic reticulum stress and glutathione therapeutics in chronic lung diseases. Redox Biol 2020; 33:101516. [PMID: 32249209 PMCID: PMC7251249 DOI: 10.1016/j.redox.2020.101516] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Yvonne Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA.
| | - Niki L Reynaert
- Department of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center, Maastricht, the Netherlands
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, 05405, USA
| |
Collapse
|
320
|
Shergalis AG, Hu S, Bankhead A, Neamati N. Role of the ERO1-PDI interaction in oxidative protein folding and disease. Pharmacol Ther 2020; 210:107525. [PMID: 32201313 DOI: 10.1016/j.pharmthera.2020.107525] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/04/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Protein folding in the endoplasmic reticulum is an oxidative process that relies on protein disulfide isomerase (PDI) and endoplasmic reticulum oxidase 1 (ERO1). Over 30% of proteins require the chaperone PDI to promote disulfide bond formation. PDI oxidizes cysteines in nascent polypeptides to form disulfide bonds and can also reduce and isomerize disulfide bonds. ERO1 recycles reduced PDI family member PDIA1 using a FAD cofactor to transfer electrons to oxygen. ERO1 dysfunction critically affects several diseases states. Both ERO1 and PDIA1 are overexpressed in cancers and implicated in diabetes and neurodegenerative diseases. Cancer-associated ERO1 promotes cell migration and invasion. Furthermore, the ERO1-PDIA1 interaction is critical for epithelial-to-mesenchymal transition. Co-expression analysis of ERO1A gene expression in cancer patients demonstrated that ERO1A is significantly upregulated in lung adenocarcinoma (LUAD), glioblastoma and low-grade glioma (GBMLGG), pancreatic ductal adenocarcinoma (PAAD), and kidney renal papillary cell carcinoma (KIRP) cancers. ERO1Α knockdown gene signature correlates with knockdown of cancer signaling proteins including IGF1R, supporting the search for novel, selective ERO1 inhibitors for the treatment of cancer. In this review, we explore the functions of ERO1 and PDI to support inhibition of this interaction in cancer and other diseases.
Collapse
Affiliation(s)
- Andrea G Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States
| | - Shuai Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Armand Bankhead
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States.
| |
Collapse
|
321
|
Rosa N, Sneyers F, Parys JB, Bultynck G. Type 3 IP 3 receptors: The chameleon in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 351:101-148. [PMID: 32247578 DOI: 10.1016/bs.ircmb.2020.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs), intracellular calcium (Ca2+) release channels, fulfill key functions in cell death and survival processes, whose dysregulation contributes to oncogenesis. This is essentially due to the presence of IP3Rs in microdomains of the endoplasmic reticulum (ER) in close proximity to the mitochondria. As such, IP3Rs enable efficient Ca2+ transfers from the ER to the mitochondria, thus regulating metabolism and cell fate. This review focuses on one of the three IP3R isoforms, the type 3 IP3R (IP3R3), which is linked to proapoptotic ER-mitochondrial Ca2+ transfers. Alterations in IP3R3 expression have been highlighted in numerous cancer types, leading to dysregulations of Ca2+ signaling and cellular functions. However, the outcome of IP3R3-mediated Ca2+ transfers for mitochondrial function is complex with opposing effects on oncogenesis. IP3R3 can either suppress cancer by promoting cell death and cellular senescence or support cancer by driving metabolism, anabolic processes, cell cycle progression, proliferation and invasion. The aim of this review is to provide an overview of IP3R3 dysregulations in cancer and describe how such dysregulations alter critical cellular processes such as proliferation or cell death and survival. Here, we pose that the IP3R3 isoform is not only linked to proapoptotic ER-mitochondrial Ca2+ transfers but might also be involved in prosurvival signaling.
Collapse
Affiliation(s)
- Nicolas Rosa
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Leuven, Belgium
| | - Flore Sneyers
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Leuven, Belgium.
| |
Collapse
|
322
|
PINK1/Parkin Mediated Mitophagy, Ca 2+ Signalling, and ER-Mitochondria Contacts in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21051772. [PMID: 32150829 PMCID: PMC7084677 DOI: 10.3390/ijms21051772] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
Endoplasmic reticulum (ER)–mitochondria contact sites are critical structures for cellular function. They are implicated in a plethora of cellular processes, including Ca2+ signalling and mitophagy, the selective degradation of damaged mitochondria. Phosphatase and tensin homolog (PTEN)-induced kinase (PINK) and Parkin proteins, whose mutations are associated with familial forms of Parkinson’s disease, are two of the best characterized mitophagy players. They accumulate at ER–mitochondria contact sites and modulate organelles crosstalk. Alterations in ER–mitochondria tethering are a common hallmark of many neurodegenerative diseases including Parkinson’s disease. Here, we summarize the current knowledge on the involvement of PINK1 and Parkin at the ER–mitochondria contact sites and their role in the modulation of Ca2+ signalling and mitophagy.
Collapse
|
323
|
da Silva DC, Valentão P, Andrade PB, Pereira DM. Endoplasmic reticulum stress signaling in cancer and neurodegenerative disorders: Tools and strategies to understand its complexity. Pharmacol Res 2020; 155:104702. [PMID: 32068119 DOI: 10.1016/j.phrs.2020.104702] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) comprises a network of tubules and vesicles that constitutes the largest organelle of the eukaryotic cell. Being the location where most proteins are synthesized and folded, it is crucial for the upkeep of cellular homeostasis. Disturbed ER homeostasis triggers the activation of a conserved molecular machinery, termed the unfolded protein response (UPR), that comprises three major signaling branches, initiated by the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1) and the activating transcription factor 6 (ATF6). Given the impact of this intricate signaling network upon an extensive list of cellular processes, including protein turnover and autophagy, ER stress is involved in the onset and progression of multiple diseases, including cancer and neurodegenerative disorders. There is, for this reason, an increasing number of publications focused on characterizing and/or modulating ER stress, which have resulted in a wide array of techniques employed to study ER-related molecular events. This review aims to sum up the essentials on the current knowledge of the molecular biology of endoplasmic reticulum stress, while highlighting the available tools used in studies of this nature.
Collapse
Affiliation(s)
- Daniela Correia da Silva
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-213, Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-213, Porto, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-213, Porto, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-213, Porto, Portugal.
| |
Collapse
|
324
|
Lucke J, Kaltofen S, Hansson BS, Wicher D. The role of mitochondria in shaping odor responses in Drosophila melanogaster olfactory sensory neurons. Cell Calcium 2020; 87:102179. [PMID: 32070926 DOI: 10.1016/j.ceca.2020.102179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 02/01/2023]
Abstract
Insects detect volatile chemosignals with olfactory sensory neurons (OSNs) that express olfactory receptors. Among them, the most sensitive receptors are the odorant receptors (ORs), which form cation channels passing also Ca2+. Here, we investigate if and how odor-induced Ca2+ signals in Drosophila melanogaster OSNs are controlled by intracellular Ca2+ stores, especially by mitochondria. Using an open antenna preparation that allows observation and pharmacological manipulation of OSNs we performed Ca2+ imaging to determine the role of Ca2+ influx and efflux pathways in OSN mitochondria. The results indicate that mitochondria participate in shaping the OR responses. The major players of this modulation are the mitochondrial Ca2+ uniporter and the mitochondrial permeability transition pore. Intriguingly, OR-induced Ca2+ signals were only mildly affected by modulating the Ca2+ management of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Jan Lucke
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll- Str. 8, D-07745 Jena, Germany
| | - Sabine Kaltofen
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll- Str. 8, D-07745 Jena, Germany
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll- Str. 8, D-07745 Jena, Germany
| | - Dieter Wicher
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll- Str. 8, D-07745 Jena, Germany.
| |
Collapse
|
325
|
Highlighting Curcumin-Induced Crosstalk between Autophagy and Apoptosis as Supported by Its Specific Subcellular Localization. Cells 2020; 9:cells9020361. [PMID: 32033136 PMCID: PMC7072416 DOI: 10.3390/cells9020361] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 12/31/2022] Open
Abstract
Curcumin, a major active component of turmeric (Curcuma longa, L.), is known to have various effects on both healthy and cancerous tissues. In vitro studies suggest that curcumin inhibits cancer cell growth by activating apoptosis, but the mechanism underlying the anticancer effect of curcumin is still unclear. Since there is a recent consensus about endoplasmic reticulum (ER) stress being involved in the cytotoxicity of natural compounds, we have investigated using Image flow cytometry the mechanistic aspects of curcumin's destabilization of the ER, but also the status of the lysosomal compartment. Curcumin induces ER stress, thereby causing an unfolded protein response and calcium release, which destabilizes the mitochondrial compartment and induce apoptosis. These events are also associated with secondary lysosomal membrane permeabilization that occurs later together with an activation of caspase-8, mediated by cathepsins and calpains that ended in the disruption of mitochondrial homeostasis. These two pathways of different intensities and momentum converge towards an amplification of cell death. In the present study, curcumin-induced autophagy failed to rescue all cells that underwent type II cell death following initial autophagic processes. However, a small number of cells were rescued (successful autophagy) to give rise to a novel proliferation phase.
Collapse
|
326
|
Federico M, Valverde CA, Mattiazzi A, Palomeque J. Unbalance Between Sarcoplasmic Reticulum Ca 2 + Uptake and Release: A First Step Toward Ca 2 + Triggered Arrhythmias and Cardiac Damage. Front Physiol 2020; 10:1630. [PMID: 32038301 PMCID: PMC6989610 DOI: 10.3389/fphys.2019.01630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
The present review focusses on the regulation and interplay of cardiac SR Ca2+ handling proteins involved in SR Ca2+ uptake and release, i.e., SERCa2/PLN and RyR2. Both RyR2 and SERCA2a/PLN are highly regulated by post-translational modifications and/or different partners' proteins. These control mechanisms guarantee a precise equilibrium between SR Ca2+ reuptake and release. The review then discusses how disruption of this balance alters SR Ca2+ handling and may constitute a first step toward cardiac damage and malignant arrhythmias. In the last part of the review, this concept is exemplified in different cardiac diseases, like prediabetic and diabetic cardiomyopathy, digitalis intoxication and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Marilén Federico
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina.,Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Buenos Aires, Argentina
| |
Collapse
|
327
|
Godai K, Takahashi K, Kashiwagi Y, Liu CH, Yi H, Liu S, Dong C, Lubarsky DA, Hao S. Ryanodine Receptor to Mitochondrial Reactive Oxygen Species Pathway Plays an Important Role in Chronic Human Immunodeficiency Virus gp120MN-Induced Neuropathic Pain in Rats. Anesth Analg 2020; 129:276-286. [PMID: 30507840 DOI: 10.1213/ane.0000000000003916] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Chronic pain is one of the most common complaints in patients with human immunodeficiency virus (HIV)-associated sensory neuropathy. Ryanodine receptor (RyR) and mitochondrial oxidative stress are involved in neuropathic pain induced by nerve injury. Here, we investigated the role of RyR and mitochondrial superoxide in neuropathic pain induced by repeated intrathecal HIV glycoprotein 120 (gp120) injection. METHODS Recombinant HIV glycoprotein gp120MN was intrathecally administered to induce neuropathic pain. Mechanical threshold was tested using von Frey filaments. Peripheral nerve fiber was assessed by the quantification of the intraepidermal nerve fiber density in the skin of the hindpaw. The expression of spinal RyR was examined using Western blots. Colocalization of RyR with neuronal nuclei (NeuN; neuron marker), glial fibrillary acidic protein (GFAP; astrocyte marker), or ionizing calcium-binding adaptor molecule 1 (Iba1; microglia marker) in the spinal cord was examined using immunohistochemistry. MitoSox-positive profiles (a mitochondrial-targeted fluorescent superoxide indicator) were examined. The antiallodynic effects of intrathecal administration of RyR antagonist, dantrolene (a clinical drug for malignant hyperthermia management), or selective mitochondrial superoxide scavenger, Mito-Tempol, were evaluated in the model. RESULTS We found that repeated but not single intrathecal injection of recombinant protein gp120 induced persistent mechanical allodynia. Intraepidermal nerve fibers in repeated gp120 group was lower than that in sham at 2 weeks, and the difference in means (95% confidence interval) was 8.495 (4.79-12.20), P = .0014. Repeated gp120 increased expression of RyR, and the difference in means (95% confidence interval) was 1.50 (0.504-2.495), P = .007. Repeated gp120 also increased mitochondrial superoxide cell number in the spinal cord, and the difference in means (95% confidence interval) was 6.99 (5.99-8.00), P < .0001. Inhibition of spinal RyR or selective mitochondrial superoxide scavenger dose dependently reduced mechanical allodynia induced by repeated gp120 injection. RyR and mitochondrial superoxide were colocalized in the neuron, but not glia. Intrathecal injection of RyR inhibitor lowered mitochondrial superoxide in the spinal cord dorsal horn in the gp120 neuropathic pain model. CONCLUSIONS These data suggest that repeated intrathecal HIV gp120 injection induced an acute to chronic pain translation in rats, and that neuronal RyR and mitochondrial superoxide in the spinal cord dorsal horn played an important role in the HIV neuropathic pain model. The current results provide evidence for a novel approach to understanding the molecular mechanisms of HIV chronic pain and treating chronic pain in patients with HIV.
Collapse
Affiliation(s)
| | | | | | | | - Hyun Yi
- From the Departments of Anesthesiology
| | - Shue Liu
- From the Departments of Anesthesiology
| | - Chuanhui Dong
- Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | | | | |
Collapse
|
328
|
Garrido-Maraver J, Loh SHY, Martins LM. Forcing contacts between mitochondria and the endoplasmic reticulum extends lifespan in a Drosophila model of Alzheimer's disease. Biol Open 2020; 9:bio.047530. [PMID: 31822473 PMCID: PMC6994956 DOI: 10.1242/bio.047530] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Eukaryotic cells are complex systems containing internal compartments with specialised functions. Among these compartments, the endoplasmic reticulum (ER) plays a major role in processing proteins for modification and delivery to other organelles, whereas mitochondria generate energy in the form of ATP. Mitochondria and the ER form physical interactions, defined as mitochondria–ER contact sites (MERCs) to exchange metabolites such as calcium ions (Ca2+) and lipids. Sites of contact between mitochondria and the ER can regulate biological processes such as ATP generation and mitochondrial division. The interactions between mitochondria and the ER are dynamic and respond to the metabolic state of cells. Changes in MERCs have been linked to metabolic pathologies such as diabetes, neurodegenerative diseases and sleep disruption. Here we explored the consequences of increasing contacts between mitochondria and the ER in flies using a synthetic linker. We showed that enhancing MERCs increases locomotion and extends lifespan. We also showed that, in a Drosophila model of Alzheimer's disease linked to toxic amyloid beta (Aβ), linker expression can suppress motor impairment and extend lifespan. We conclude that strategies for increasing contacts between mitochondria and the ER may improve symptoms of diseases associated with mitochondria dysfunction. A video abstract for this article is available at https://youtu.be/_YWA4oKZkes. This article has an associated First Person interview with the first author of the paper. Summary: Enhancing mitochondria–ER contacts ameliorates locomotor phenotypes and extends lifespan in a fly model of Alzheimer's disease.
Collapse
Affiliation(s)
- Juan Garrido-Maraver
- MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester LE1 9HN, UK
| | - Samantha H Y Loh
- MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester LE1 9HN, UK
| | - L Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester LE1 9HN, UK
| |
Collapse
|
329
|
Abstract
Ionized calcium (Ca2+) is the most versatile cellular messenger. All cells use Ca2+ signals to regulate their activities in response to extrinsic and intrinsic stimuli. Alterations in cellular Ca2+ signaling and/or Ca2+ homeostasis can subvert physiological processes into driving pathological outcomes. Imaging of living cells over the past decades has demonstrated that Ca2+ signals encode information in their frequency, kinetics, amplitude, and spatial extent. These parameters alter depending on the type and intensity of stimulation, and cellular context. Moreover, it is evident that different cell types produce widely varying Ca2+ signals, with properties that suit their physiological functions. This primer discusses basic principles and mechanisms underlying cellular Ca2+ signaling and Ca2+ homeostasis. Consequently, we have cited some historical articles in addition to more recent findings. A brief summary of the core features of cellular Ca2+ signaling is provided, with particular focus on Ca2+ stores and Ca2+ transport across cellular membranes, as well as mechanisms by which Ca2+ signals activate downstream effector systems.
Collapse
|
330
|
Takeuchi A, Kim B, Matsuoka S. Physiological functions of mitochondrial Na+-Ca2+ exchanger, NCLX, in lymphocytes. Cell Calcium 2020; 85:102114. [DOI: 10.1016/j.ceca.2019.102114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/30/2022]
|
331
|
SMP domain proteins in membrane lipid dynamics. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158447. [DOI: 10.1016/j.bbalip.2019.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 11/24/2022]
|
332
|
Vallese F, Barazzuol L, Maso L, Brini M, Calì T. ER-Mitochondria Calcium Transfer, Organelle Contacts and Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:719-746. [PMID: 31646532 DOI: 10.1007/978-3-030-12457-1_29] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is generally accepted that interorganellar contacts are central to the control of cellular physiology. Virtually, any intracellular organelle can come into proximity with each other and, by establishing physical protein-mediated contacts within a selected fraction of the membrane surface, novel specific functions are acquired. Endoplasmic reticulum (ER) contacts with mitochondria are among the best studied and have a major role in Ca2+ and lipid transfer, signaling, and membrane dynamics.Their functional (and structural) diversity, their dynamic nature as well as the growing number of new players involved in the tethering concurred to make their monitoring difficult especially in living cells. This review focuses on the most established examples of tethers/modulators of the ER-mitochondria interface and on the roles of these contacts in health and disease by specifically dissecting how Ca2+ transfer occurs and how mishandling eventually leads to disease. Additional functions of the ER-mitochondria interface and an overview of the currently available methods to measure/quantify the ER-mitochondria interface will also be discussed.
Collapse
Affiliation(s)
- Francesca Vallese
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Lorenzo Maso
- Department of Biology, University of Padua, Padua, Italy
| | - Marisa Brini
- Department of Biology, University of Padua, Padua, Italy.
| | - Tito Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy. .,Padua Neuroscience Center (PNC), Padua, Italy.
| |
Collapse
|
333
|
Cheng H, Gang X, He G, Liu Y, Wang Y, Zhao X, Wang G. The Molecular Mechanisms Underlying Mitochondria-Associated Endoplasmic Reticulum Membrane-Induced Insulin Resistance. Front Endocrinol (Lausanne) 2020; 11:592129. [PMID: 33329397 PMCID: PMC7719781 DOI: 10.3389/fendo.2020.592129] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria and the endoplasmic reticulum (ER) are connected at multiple sites via what are known as mitochondria-associated ER membranes (MAMs). These associations are known to play an important role in maintaining cellular homeostasis. Impaired MAM signaling has wide-ranging effects in many diseases, such as obesity, diabetes, and neurodegenerative disorders. Accumulating evidence has suggested that MAMs influence insulin signaling through different pathways, including those associated with Ca2+ signaling, lipid metabolism, mitochondrial function, ER stress responses, and inflammation. Altered MAM signaling is a common feature of insulin resistance in different tissues, including the liver, muscle, and even the brain. In the liver, MAMs are key glucose-sensing regulators and have been proposed to be a hub for insulin signaling. Impaired MAM integrity has been reported to disrupt hepatic responses to changes in glucose availability during nutritional transition and to induce hepatic insulin resistance. Meanwhile, these effects can be rescued by the reinforcement of MAM interactions. In contrast, several studies have proposed that enhanced ER-mitochondria connections are detrimental to hepatic insulin signaling and can lead to mitochondrial dysfunction. Thus, given these contradictory results, the role played by the MAM in the regulation of hepatic insulin signaling remains elusive. Similarly, in skeletal muscle, enhanced MAM formation may be beneficial in the early stage of diabetes, whereas continuous MAM enhancement aggravates insulin resistance. Furthermore, recent studies have suggested that ER stress may be the primary pathway through which MAMs induce brain insulin resistance, especially in the hypothalamus. This review will discuss the possible mechanisms underlying MAM-associated insulin resistance as well as the therapeutic potential of targeting the MAM in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | - Xue Zhao
- *Correspondence: Guixia Wang, ; Xue Zhao,
| | | |
Collapse
|
334
|
Prinz WA, Toulmay A, Balla T. The functional universe of membrane contact sites. Nat Rev Mol Cell Biol 2020; 21:7-24. [PMID: 31732717 PMCID: PMC10619483 DOI: 10.1038/s41580-019-0180-9] [Citation(s) in RCA: 358] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
Organelles compartmentalize eukaryotic cells, enhancing their ability to respond to environmental and developmental changes. One way in which organelles communicate and integrate their activities is by forming close contacts, often called 'membrane contact sites' (MCSs). Interest in MCSs has grown dramatically in the past decade as it is has become clear that they are ubiquitous and have a much broader range of critical roles in cells than was initially thought. Indeed, functions for MCSs in intracellular signalling (particularly calcium signalling, reactive oxygen species signalling and lipid signalling), autophagy, lipid metabolism, membrane dynamics, cellular stress responses and organelle trafficking and biogenesis have now been reported.
Collapse
Affiliation(s)
- William A Prinz
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Alexandre Toulmay
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
335
|
Flores-Romero H, Ros U, García-Sáez AJ. A lipid perspective on regulated cell death. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 351:197-236. [PMID: 32247580 DOI: 10.1016/bs.ircmb.2019.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipids are fundamental to life as structural components of cellular membranes and for signaling. They are also key regulators of different cellular processes such as cell division, proliferation, and death. Regulated cell death (RCD) requires the engagement of lipids and lipid metabolism for the initiation and execution of its killing machinery. The permeabilization of lipid membranes is a hallmark of RCD that involves, for each kind of cell death, a unique lipid profile. While the permeabilization of the mitochondrial outer membrane allows the release of apoptotic factors to the cytosol during apoptosis, permeabilization of the plasma membrane facilitates the release of intracellular content in other nonapoptotic types of RCD like necroptosis and ferroptosis. Lipids and lipid membranes are important accessory molecules required for the activation of protein executors of cell death such as BAX in apoptosis and MLKL in necroptosis. Peroxidation of membrane phospholipids and the subsequent membrane destabilization is a prerequisite to ferroptosis. Here, we discuss how lipids are essential players in apoptosis, the most common form of RCD, and also their role in necroptosis and ferroptosis. Altogether, we aim to highlight the contribution of lipids and membrane dynamics in cell death regulation.
Collapse
Affiliation(s)
- Hector Flores-Romero
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Uris Ros
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
336
|
Abstract
Calcium (Ca2+) signalling is of paramount importance to immunity. Regulated increases in cytosolic and organellar Ca2+ concentrations in lymphocytes control complex and crucial effector functions such as metabolism, proliferation, differentiation, antibody and cytokine secretion and cytotoxicity. Altered Ca2+ regulation in lymphocytes leads to various autoimmune, inflammatory and immunodeficiency syndromes. Several types of plasma membrane and organellar Ca2+-permeable channels are functional in T cells. They contribute highly localized spatial and temporal Ca2+ microdomains that are required for achieving functional specificity. While the mechanistic details of these Ca2+ microdomains are only beginning to emerge, it is evident that through crosstalk, synergy and feedback mechanisms, they fine-tune T cell signalling to match complex immune responses. In this article, we review the expression and function of various Ca2+-permeable channels in the plasma membrane, endoplasmic reticulum, mitochondria and endolysosomes of T cells and their role in shaping immunity and the pathogenesis of immune-mediated diseases.
Collapse
Affiliation(s)
- Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Jean-Pierre Kinet
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
337
|
Cserép C, Pósfai B, Lénárt N, Fekete R, László ZI, Lele Z, Orsolits B, Molnár G, Heindl S, Schwarcz AD, Ujvári K, Környei Z, Tóth K, Szabadits E, Sperlágh B, Baranyi M, Csiba L, Hortobágyi T, Maglóczky Z, Martinecz B, Szabó G, Erdélyi F, Szipőcs R, Tamkun MM, Gesierich B, Duering M, Katona I, Liesz A, Tamás G, Dénes Á. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 2019; 367:528-537. [PMID: 31831638 DOI: 10.1126/science.aax6752] [Citation(s) in RCA: 366] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/14/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Microglia are the main immune cells in the brain and have roles in brain homeostasis and neurological diseases. Mechanisms underlying microglia-neuron communication remain elusive. Here, we identified an interaction site between neuronal cell bodies and microglial processes in mouse and human brain. Somatic microglia-neuron junctions have a specialized nanoarchitecture optimized for purinergic signaling. Activity of neuronal mitochondria was linked with microglial junction formation, which was induced rapidly in response to neuronal activation and blocked by inhibition of P2Y12 receptors. Brain injury-induced changes at somatic junctions triggered P2Y12 receptor-dependent microglial neuroprotection, regulating neuronal calcium load and functional connectivity. Thus, microglial processes at these junctions could potentially monitor and protect neuronal functions.
Collapse
Affiliation(s)
- Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Rebeka Fekete
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Zsófia I László
- Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary.,Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Barbara Orsolits
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Molnár
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Steffanie Heindl
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University, Munich, Germany
| | - Anett D Schwarcz
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katinka Ujvári
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsuzsanna Környei
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztina Tóth
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Eszter Szabadits
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - László Csiba
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, Debrecen, Hungary
| | - Tibor Hortobágyi
- Institute of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, Stavanger, Norway
| | - Zsófia Maglóczky
- Human Brain Research Laboratory, Institute of Experimental Medicine, Budapest, Hungary
| | - Bernadett Martinecz
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Szabó
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Ferenc Erdélyi
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Róbert Szipőcs
- Institute for Solid State Physics and Optics of Wigner RCP, Budapest, Hungary
| | - Michael M Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Benno Gesierich
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University, Munich, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Gábor Tamás
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
338
|
Bargelloni L, Babbucci M, Ferraresso S, Papetti C, Vitulo N, Carraro R, Pauletto M, Santovito G, Lucassen M, Mark FC, Zane L, Patarnello T. Draft genome assembly and transcriptome data of the icefish Chionodraco myersi reveal the key role of mitochondria for a life without hemoglobin at subzero temperatures. Commun Biol 2019; 2:443. [PMID: 31815198 PMCID: PMC6884616 DOI: 10.1038/s42003-019-0685-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 11/08/2019] [Indexed: 11/10/2022] Open
Abstract
Antarctic fish belonging to Notothenioidei represent an extraordinary example of radiation in the cold. In addition to the absence of hemoglobin, icefish show a number of other striking peculiarities including large-diameter blood vessels, high vascular densities, mitochondria-rich muscle cells, and unusual mitochondrial architecture. In order to investigate the bases of icefish adaptation to the extreme Southern Ocean conditions we sequenced the complete genome of the icefish Chionodraco myersi. Comparative analyses of the icefish genome with those of other teleost species, including two additional white-blooded and five red-blooded notothenioids, provided a new perspective on the evolutionary loss of globin genes. Muscle transcriptome comparative analyses against red-blooded notothenioids as well as temperate fish revealed the peculiar regulation of genes involved in mitochondrial function in icefish. Gene duplication and promoter sequence divergence were identified as genome-wide patterns that likely contributed to the broad transcriptional program underlying the unique features of icefish mitochondria.
Collapse
Affiliation(s)
- Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
- Department of Land, Environment, Agriculture, and Forestry, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196 Rome, Italy
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Chiara Papetti
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196 Rome, Italy
- Department of Biology, University of Padova, Via G. Colombo 3, 35131 Padua, Italy
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Roberta Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Gianfranco Santovito
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196 Rome, Italy
| | - Magnus Lucassen
- Section of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz. Centre for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, 27570 Germany
| | - Felix Christopher Mark
- Section of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz. Centre for Polar and Marine Research, Am Handelshafen 12, Bremerhaven, 27570 Germany
| | - Lorenzo Zane
- Department of Land, Environment, Agriculture, and Forestry, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196 Rome, Italy
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Piazzale Flaminio 9, 00196 Rome, Italy
| |
Collapse
|
339
|
Boyman L, Karbowski M, Lederer WJ. Regulation of Mitochondrial ATP Production: Ca 2+ Signaling and Quality Control. Trends Mol Med 2019; 26:21-39. [PMID: 31767352 DOI: 10.1016/j.molmed.2019.10.007] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
Cardiac ATP production primarily depends on oxidative phosphorylation in mitochondria and is dynamically regulated by Ca2+ levels in the mitochondrial matrix as well as by cytosolic ADP. We discuss mitochondrial Ca2+ signaling and its dysfunction which has recently been linked to cardiac pathologies including arrhythmia and heart failure. Similar dysfunction in other excitable and long-lived cells including neurons is associated with neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Central to this new understanding is crucial Ca2+ regulation of both mitochondrial quality control and ATP production. Mitochondria-associated membrane (MAM) signaling from the sarcoplasmic reticulum (SR) and the endoplasmic reticulum (ER) to mitochondria is discussed. We propose future research directions that emphasize a need to define quantitatively the physiological roles of MAMs, as well as mitochondrial quality control and ATP production.
Collapse
Affiliation(s)
- Liron Boyman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mariusz Karbowski
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
340
|
3-Hydroxy-3-Methylglutaric Acid Impairs Redox and Energy Homeostasis, Mitochondrial Dynamics, and Endoplasmic Reticulum–Mitochondria Crosstalk in Rat Brain. Neurotox Res 2019; 37:314-325. [PMID: 31721046 DOI: 10.1007/s12640-019-00122-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/21/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
3-Hydroxy-3-methylglutaryl-CoA lyase (HL) deficiency is a neurometabolic disorder characterized by predominant accumulation of 3-hydroxy-3-methylglutaric acid (HMG) in tissues and biological fluids. Patients often present in the first year of life with metabolic acidosis, non-ketotic hypoglycemia, hypotonia, lethargy, and coma. Since neurological symptoms may be triggered or worsened during episodes of metabolic decompensation, which are characterized by high urinary excretion of organic acids, this study investigated the effects of HMG intracerebroventricular administration on redox homeostasis, citric acid cycle enzyme activities, dynamics (mitochondrial fusion and fission), and endoplasmic reticulum (ER)-mitochondria crosstalk in the brain of neonatal rats euthanized 1 (short term) or 20 days (long term) after injection. HMG induced lipid peroxidation and decreased the activities of glutathione peroxidase (GPx) and citric acid cycle enzymes, suggesting bioenergetic and redox disruption, 1 day after administration. Levels of VDAC1, Grp75, and mitofusin-1, proteins involved in ER-mitochondria crosstalk and mitochondrial fusion, were increased by HMG. Furthermore, HMG diminished synaptophysin levels and tau phosphorylation, and increased active caspase-3 content, indicative of cell damage. Finally, HMG decreased GPx activity and synaptophysin levels, and changed MAPK phosphorylation 20 days after injection, suggesting that long-term toxicity is further induced by this organic acid. Taken together, these data show that HMG induces oxidative stress and disrupts bioenergetics, dynamics, ER-mitochondria communication, and signaling pathways in the brain of rats soon after birth. It may be presumed that these mechanisms underlie the onset and progression of symptoms during decompensation occurring in HL-deficient patients during the neonatal period.
Collapse
|
341
|
Park S, Zuber C, Roth J. Selective autophagy of cytosolic protein aggregates involves ribosome-free rough endoplasmic reticulum. Histochem Cell Biol 2019; 153:89-99. [PMID: 31720797 DOI: 10.1007/s00418-019-01829-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Abstract
Autophagy is a degradative cellular process that can be both non-selective and selective and begins with the formation of a unique smooth double-membrane phagophore which wraps around a portion of the cytoplasm. Excess and damaged organelles and cytoplasmic protein aggregates are degraded by selective autophagy. Previously, we reported that in fed HepG2 cells, cytoplasmic aggregates of EDEM1 and surplus fibrinogen Aα-γ assembly intermediates are targets of selective autophagy receptors and become degraded by a selective autophagy called aggrephagy. Here, we show by multiple confocal immunofluorescence and colocalization panels the codistribution of cytoplasmic protein aggregates with the selective autophagy receptors p62/SQSTM1 and NBR1 and with the phagophore marker LC3, and that phagophores induced by vinblastine treatment contain complexes of protein aggregates and selective autophagy receptors. By combined serial ultrathin section analysis and immunoelectron microscopy, we found that in fed HepG2 cells, a basically ribosome-free subdomain of rough endoplasmic reticulum (RER) cisternae forms a cradle that engulfs the cytoplasmic protein aggregates. This RER subdomain appears structurally different from omegasomes formed by the RER, which were suggested to provide a membrane platform from which the phagophore is derived in starvation-induced autophagy. Taken together, our observations provide further evidence for the importance of RER subdomains as a site and membrane source for phagophore formation and show their involvement in selective autophagy.
Collapse
Affiliation(s)
- Sujin Park
- Biozentrum, University of Basel, 4056, Basel, Switzerland.,Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul, 120-749, South Korea
| | - Christian Zuber
- Division of Cell and Molecular Pathology, Department of Pathology, University of Zurich, 8091, Zurich, Switzerland
| | - Jürgen Roth
- Department of Integrated OMICS for Biomedical Science, WCU Program of Graduate School, Yonsei University, Seoul, 120-749, South Korea. .,Division of Cell and Molecular Pathology, Department of Pathology, University of Zurich, 8091, Zurich, Switzerland.
| |
Collapse
|
342
|
Madreiter-Sokolowski CT, Ramadani-Muja J, Ziomek G, Burgstaller S, Bischof H, Koshenov Z, Gottschalk B, Malli R, Graier WF. Tracking intra- and inter-organelle signaling of mitochondria. FEBS J 2019; 286:4378-4401. [PMID: 31661602 PMCID: PMC6899612 DOI: 10.1111/febs.15103] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/19/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
Mitochondria are as highly specialized organelles and masters of the cellular energy metabolism in a constant and dynamic interplay with their cellular environment, providing adenosine triphosphate, buffering Ca2+ and fundamentally contributing to various signaling pathways. Hence, such broad field of action within eukaryotic cells requires a high level of structural and functional adaptation. Therefore, mitochondria are constantly moving and undergoing fusion and fission processes, changing their shape and their interaction with other organelles. Moreover, mitochondrial activity gets fine-tuned by intra- and interorganelle H+ , K+ , Na+ , and Ca2+ signaling. In this review, we provide an up-to-date overview on mitochondrial strategies to adapt and respond to, as well as affect, their cellular environment. We also present cutting-edge technologies used to track and investigate subcellular signaling, essential to the understanding of various physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Corina T Madreiter-Sokolowski
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria.,Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Jeta Ramadani-Muja
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Gabriela Ziomek
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Sandra Burgstaller
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Helmut Bischof
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Zhanat Koshenov
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria.,BioTechMed, Graz, Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Austria.,BioTechMed, Graz, Austria
| |
Collapse
|
343
|
Martino Adami PV, Nichtová Z, Weaver DB, Bartok A, Wisniewski T, Jones DR, Do Carmo S, Castaño EM, Cuello AC, Hajnóczky G, Morelli L. Perturbed mitochondria-ER contacts in live neurons that model the amyloid pathology of Alzheimer's disease. J Cell Sci 2019; 132:jcs.229906. [PMID: 31515277 DOI: 10.1242/jcs.229906] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/02/2019] [Indexed: 01/05/2023] Open
Abstract
The use of fixed fibroblasts from familial and sporadic Alzheimer's disease patients has previously indicated an upregulation of mitochondria-ER contacts (MERCs) as a hallmark of Alzheimer's disease. Despite its potential significance, the relevance of these results is limited because they were not extended to live neurons. Here we performed a dynamic in vivo analysis of MERCs in hippocampal neurons from McGill-R-Thy1-APP transgenic rats, a model of Alzheimer's disease-like amyloid pathology. Live FRET imaging of neurons from transgenic rats revealed perturbed 'lipid-MERCs' (gap width <10 nm), while 'Ca2+-MERCs' (10-20 nm gap width) were unchanged. In situ TEM showed no significant differences in the lipid-MERCs:total MERCs or lipid-MERCs:mitochondria ratios; however, the average length of lipid-MERCs was significantly decreased in neurons from transgenic rats as compared to controls. In accordance with FRET results, untargeted lipidomics showed significant decreases in levels of 12 lipids and bioenergetic analysis revealed respiratory dysfunction of mitochondria from transgenic rats. Thus, our results reveal changes in MERC structures coupled with impaired mitochondrial functions in Alzheimer's disease-related neurons.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Pamela V Martino Adami
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina.,Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, 50937 Cologne, Germany
| | - Zuzana Nichtová
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David B Weaver
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam Bartok
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, NYU School of Medicine, New York, NY 10016, USA
| | - Drew R Jones
- NYU School of Medicine, Metabolomics Core Resource Laboratory at NYU Langone Health, 550 First Avenue, New York, NY 10016, USA
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building 3655 Prom. Sir-William-Osler, Montreal, QC H3G 1Y6, Canada
| | - Eduardo M Castaño
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building 3655 Prom. Sir-William-Osler, Montreal, QC H3G 1Y6, Canada
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Laura Morelli
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
344
|
Medkour Y, Mohammad K, Arlia-Ciommo A, Svistkova V, Dakik P, Mitrofanova D, Rodriguez MEL, Junio JAB, Taifour T, Escudero P, Goltsios FF, Soodbakhsh S, Maalaoui H, Simard É, Titorenko VI. Mechanisms by which PE21, an extract from the white willow Salix alba, delays chronological aging in budding yeast. Oncotarget 2019; 10:5780-5816. [PMID: 31645900 PMCID: PMC6791382 DOI: 10.18632/oncotarget.27209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023] Open
Abstract
We have recently found that PE21, an extract from the white willow Salix alba, slows chronological aging and prolongs longevity of the yeast Saccharomyces cerevisiae more efficiently than any of the previously known pharmacological interventions. Here, we investigated mechanisms through which PE21 delays yeast chronological aging and extends yeast longevity. We show that PE21 causes a remodeling of lipid metabolism in chronologically aging yeast, thereby instigating changes in the concentrations of several lipid classes. We demonstrate that such changes in the cellular lipidome initiate three mechanisms of aging delay and longevity extension. The first mechanism through which PE21 slows aging and prolongs longevity consists in its ability to decrease the intracellular concentration of free fatty acids. This postpones an age-related onset of liponecrotic cell death promoted by excessive concentrations of free fatty acids. The second mechanism of aging delay and longevity extension by PE21 consists in its ability to decrease the concentrations of triacylglycerols and to increase the concentrations of glycerophospholipids within the endoplasmic reticulum membrane. This activates the unfolded protein response system in the endoplasmic reticulum, which then decelerates an age-related decline in protein and lipid homeostasis and slows down an aging-associated deterioration of cell resistance to stress. The third mechanisms underlying aging delay and longevity extension by PE21 consists in its ability to change lipid concentrations in the mitochondrial membranes. This alters certain catabolic and anabolic processes in mitochondria, thus amending the pattern of aging-associated changes in several key aspects of mitochondrial functionality.
Collapse
Affiliation(s)
- Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | - Veronika Svistkova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Darya Mitrofanova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | - Tarek Taifour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Paola Escudero
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Fani-Fay Goltsios
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sahar Soodbakhsh
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Hana Maalaoui
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec J7A 4A5, Canada
| | | |
Collapse
|
345
|
Miro clusters regulate ER-mitochondria contact sites and link cristae organization to the mitochondrial transport machinery. Nat Commun 2019; 10:4399. [PMID: 31562315 PMCID: PMC6764964 DOI: 10.1038/s41467-019-12382-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 09/03/2019] [Indexed: 11/08/2022] Open
Abstract
Mitochondrial Rho (Miro) GTPases localize to the outer mitochondrial membrane and are essential machinery for the regulated trafficking of mitochondria to defined subcellular locations. However, their sub-mitochondrial localization and relationship with other critical mitochondrial complexes remains poorly understood. Here, using super-resolution fluorescence microscopy, we report that Miro proteins form nanometer-sized clusters along the mitochondrial outer membrane in association with the Mitochondrial Contact Site and Cristae Organizing System (MICOS). Using knockout mouse embryonic fibroblasts we show that Miro1 and Miro2 are required for normal mitochondrial cristae architecture and Endoplasmic Reticulum-Mitochondria Contacts Sites (ERMCS). Further, we show that Miro couples MICOS to TRAK motor protein adaptors to ensure the concerted transport of the two mitochondrial membranes and the correct distribution of cristae on the mitochondrial membrane. The Miro nanoscale organization, association with MICOS complex and regulation of ERMCS reveal new levels of control of the Miro GTPases on mitochondrial functionality. Mitochondrial cristae organization and ER-mitochondria contact sites are critical structures for cellular function. Here, the authors use super-resolution microscopy to show that Miro GTPases form clusters required for normal ER-mitochondria contact sites formation and to link cristae organization to the mitochondrial transport machinery.
Collapse
|
346
|
Singh-Mallah G, Nair S, Sandberg M, Mallard C, Hagberg H. The Role of Mitochondrial and Endoplasmic Reticulum Reactive Oxygen Species Production in Models of Perinatal Brain Injury. Antioxid Redox Signal 2019; 31:643-663. [PMID: 30957515 PMCID: PMC6657303 DOI: 10.1089/ars.2019.7779] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
Abstract
Significance: Perinatal brain injury is caused by hypoxia-ischemia (HI) in term neonates, perinatal arterial stroke, and infection/inflammation leading to devastating long-term neurodevelopmental deficits. Therapeutic hypothermia is the only currently available treatment but is not successful in more than 50% of term neonates suffering from hypoxic-ischemic encephalopathy. Thus, there is an urgent unmet need for alternative or adjunct therapies. Reactive oxygen species (ROS) are important for physiological signaling, however, their overproduction/accumulation from mitochondria and endoplasmic reticulum (ER) during HI aggravate cell death. Recent Advances and Critical Issues: Mechanisms underlying ER stress-associated ROS production have been primarily elucidated using either non-neuronal cells or adult neurodegenerative experimental models. Findings from mature brain cannot be simply transferred to the immature brain. Therefore, age-specific studies investigating ER stress modulators may help investigate ER stress-associated ROS pathways in the immature brain. New therapeutics such as mitochondrial site-specific ROS inhibitors that selectively inhibit superoxide (O2•-)/hydrogen peroxide (H2O2) production are currently being developed. Future Directions: Because ER stress and oxidative stress accentuate each other, a combinatorial therapy utilizing both antioxidants and ER stress inhibitors may prove to be more protective against perinatal brain injury. Moreover, multiple relevant targets need to be identified for targeting ROS before they are formed. The role of organelle-specific ROS in brain repair needs investigation. Antioxid. Redox Signal. 31, 643-663.
Collapse
Affiliation(s)
- Gagandeep Singh-Mallah
- Institute of Biomedicine, Department of Medical Biochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Syam Nair
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Sandberg
- Institute of Biomedicine, Department of Medical Biochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
347
|
ER-Mitochondria Communication in Cells of the Innate Immune System. Cells 2019; 8:cells8091088. [PMID: 31540165 PMCID: PMC6770024 DOI: 10.3390/cells8091088] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 01/06/2023] Open
Abstract
In cells the interorganelle communication comprises vesicular and non-vesicular mechanisms. Non-vesicular material transfer predominantly takes place at regions of close organelle apposition termed membrane contact sites and is facilitated by a growing number of specialized proteins. Contacts of the endoplasmic reticulum (ER) and mitochondria are now recognized to be essential for diverse biological processes such as calcium homeostasis, phospholipid biosynthesis, apoptosis, and autophagy. In addition to these universal roles, ER-mitochondria communication serves also cell type-specific functions. In this review, we summarize the current knowledge on ER-mitochondria contacts in cells of the innate immune system, especially in macrophages. We discuss ER- mitochondria communication in the context of macrophage fatty acid metabolism linked to inflammatory and ER stress responses, its roles in apoptotic cell engulfment, activation of the inflammasome, and antiviral defense.
Collapse
|
348
|
Induced cardiac pacemaker cells survive metabolic stress owing to their low metabolic demand. Exp Mol Med 2019; 51:1-12. [PMID: 31519870 PMCID: PMC6802647 DOI: 10.1038/s12276-019-0303-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 11/29/2022] Open
Abstract
Cardiac pacemaker cells of the sinoatrial node initiate each and every heartbeat. Compared with our understanding of the constituents of their electrical excitation, little is known about the metabolic underpinnings that drive the automaticity of pacemaker myocytes. This lack is largely owing to the scarcity of native cardiac pacemaker myocytes. Here, we take advantage of induced pacemaker myocytes generated by TBX18-mediated reprogramming (TBX18-iPMs) to investigate comparative differences in the metabolic program between pacemaker myocytes and working cardiomyocytes. TBX18-iPMs were more resistant to metabolic stresses, exhibiting higher cell viability upon oxidative stress. TBX18-induced pacemaker myocytes (iPMs) expensed a lower degree of oxidative phosphorylation and displayed a smaller capacity for glycolysis compared with control ventricular myocytes. Furthermore, the mitochondria were smaller in TBX18-iPMs than in the control. We reasoned that a shift in the balance between mitochondrial fusion and fission was responsible for the smaller mitochondria observed in TBX18-iPMs. We identified a mitochondrial inner membrane fusion protein, Opa1, as one of the key mediators of this process and demonstrated that the suppression of Opa1 expression increases the rate of synchronous automaticity in TBX18-iPMs. Taken together, our data demonstrate that TBX18-iPMs exhibit a low metabolic demand that matches their mitochondrial morphology and ability to withstand metabolic insult. The heart’s pacemaker cells contain mitochondria that are smaller than average and require less energy than other heart cells, properties that help make them naturally resilient to stress. Cardiac pacemaker cells constitute a tiny proportion of the heart’s cells, yet play a critical role in maintaining a steady heartbeat. However, quite how pacemaker cells maintain their automatic rhythm is unclear because their scarcity makes them difficult to study. To examine the cells’ metabolic state further, Hee Cheol Cho at Emory University, Atlanta, and Brian Foster at Johns Hopkins University School of Medicine, Baltimore, and co-workers therefore induced pacemaker cells by adding an embryonic protein to heart muscle cells. The induced pacemaker cells survived well under oxidative stress. The team identified a protein in the pacemakers’ mitochondrial membranes, the expression of which directly influences rhythm responses.
Collapse
|
349
|
Pulli I, Löf C, Blom T, Asghar M, Lassila T, Bäck N, Lin KL, Nyström J, Kemppainen K, Toivola D, Dufour E, Sanz A, Cooper H, Parys J, Törnquist K. Sphingosine kinase 1 overexpression induces MFN2 fragmentation and alters mitochondrial matrix Ca2+ handling in HeLa cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1475-1486. [DOI: 10.1016/j.bbamcr.2019.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/02/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023]
|
350
|
Network Analysis of a Membrane-Enriched Brain Proteome across Stages of Alzheimer's Disease. Proteomes 2019; 7:proteomes7030030. [PMID: 31461916 PMCID: PMC6789842 DOI: 10.3390/proteomes7030030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Previous systems-based proteomic approaches have characterized alterations in protein co-expression networks of unfractionated asymptomatic (AsymAD) and symptomatic Alzheimer’s disease (AD) brains. However, it remains unclear how sample fractionation and sub-proteomic analysis influences the organization of these protein networks and their relationship to clinicopathological traits of disease. In this proof-of-concept study, we performed a systems-based sub-proteomic analysis of membrane-enriched post-mortem brain samples from pathology-free control, AsymAD, and AD brains (n = 6 per group). Label-free mass spectrometry based on peptide ion intensity was used to quantify the 18 membrane-enriched fractions. Differential expression and weighted protein co-expression network analysis (WPCNA) were then used to identify and characterize modules of co-expressed proteins most significantly altered between the groups. We identified a total of 27 modules of co-expressed membrane-associated proteins. In contrast to the unfractionated proteome, these networks did not map strongly to cell-type specific markers. Instead, these modules were principally organized by their associations with a wide variety of membrane-bound compartments and organelles. Of these, the mitochondrion was associated with the greatest number of modules, followed by modules linked to the cell surface compartment. In addition, we resolved networks with strong associations to the endoplasmic reticulum, Golgi apparatus, and other membrane-bound organelles. A total of 14 of the 27 modules demonstrated significant correlations with clinical and pathological AD phenotypes. These results revealed that the proteins within individual compartments feature a heterogeneous array of AD-associated expression patterns, particularly during the preclinical stages of disease. In conclusion, this systems-based analysis of the membrane-associated AsymAD brain proteome yielded a unique network organization highly linked to cellular compartmentalization. Further study of this membrane-associated proteome may reveal novel insight into the complex pathways governing the earliest stages of disease.
Collapse
|