301
|
Bidel LPR, Chomicki G, Bonini F, Mondolot L, Soulé J, Coumans M, La Fisca P, Baissac Y, Petit V, Loiseau A, Cerovic ZG, Gould KS, Jay-Allemand C. Dynamics of flavonol accumulation in leaf tissues under different UV-B regimes in Centella asiatica (Apiaceae). PLANTA 2015; 242:545-59. [PMID: 25896373 DOI: 10.1007/s00425-015-2291-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/30/2015] [Indexed: 05/02/2023]
Abstract
A cumulative effect of UV-B doses on epidermal flavonol accumulation was observed during the first week of a time course study in Centella asiatica (Apiaceae). However, once flavonol levels had peaked, additional accumulation was possible only if higher daily UV-B irradiances were applied. We aimed to understand the dynamics of flavonol accumulation in leaf tissues using non-destructive spectroscopy and HPLC-mass spectrometry. When leaves that had grown without UV-B were given brief daily exposures to low-irradiance UV-B, they accumulated flavonols, predominantly kaempferol-3-O-β-D-glucuronopyranoside and quercetin-3-O-β-D-glucuronopyranoside, in their exposed epidermis, reaching a plateau after 7 days. More prolonged UV-B exposures or higher doses eventually augmented flavonol concentrations even in non-exposed tissues. If UV-B irradiance was subsequently reduced, leaves appeared to lose their ability to accumulate further flavonols in their epidermis even if the duration of daily exposure was increased. A higher irradiance level was then necessary to further increase flavonol accumulation. When subsequently acclimated to higher UV-B irradiances, mature leaves accumulated less flavonols than did developing ones. Our study suggests that levels of epidermal flavonols in leaves are governed primarily by UV-B irradiance rather than by duration of exposure.
Collapse
Affiliation(s)
- Luc P R Bidel
- INRA, UMR AGAP, Centre de Recherche de Montpellier, 2 Place Pierre Viala-Bât. 21, 34060, Montpellier, France,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Liu J, Tie H, Chen H, Han R. The distribution of profilin in root-tip cells of wheat seedlings exposed to enhanced UV-B radiation. FRONTIERS IN LIFE SCIENCE 2015. [DOI: 10.1080/21553769.2015.1075434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
303
|
Klem K, Holub P, Štroch M, Nezval J, Špunda V, Tříska J, Jansen MAK, Robson TM, Urban O. Ultraviolet and photosynthetically active radiation can both induce photoprotective capacity allowing barley to overcome high radiation stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 93:74-83. [PMID: 25583309 DOI: 10.1016/j.plaphy.2015.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 01/06/2015] [Indexed: 05/05/2023]
Abstract
The main objective of this study was to determine the effects of acclimation to ultraviolet (UV) and photosynthetically active radiation (PAR) on photoprotective mechanisms in barley leaves. Barley plants were acclimated for 7 days under three combinations of high or low UV and PAR treatments ([UV-PAR-], [UV-PAR+], [UV+PAR+]). Subsequently, plants were exposed to short-term high radiation stress (HRS; defined by high intensities of PAR - 1000 μmol m(-2) s(-1), UV-A - 10 W m(-2) and UV-B 2 W m(-2) for 4 h), to test their photoprotective capacity. The barley variety sensitive to photooxidative stress (Barke) had low constitutive flavonoid content compared to the resistant variety (Bonus) under low UV and PAR intensities. The accumulation of lutonarin and 3-feruloylquinic acid, but not of saponarin, was greatly enhanced by high PAR and further increased by UV exposure. Acclimation of plants to both high UV and PAR intensities also increased the total pool of xanthophyll-cycle pigments (VAZ). Subsequent exposure to HRS revealed that prior acclimation to UV and PAR was able to ameliorate the negative consequences of HRS on photosynthesis. Both total contents of epidermal flavonols and the total pool of VAZ were closely correlated with small reductions in light-saturated CO2 assimilation rate and maximum quantum yield of photosystem II photochemistry caused by HRS. Based on these results, we conclude that growth under high PAR can substantially increase the photoprotective capacity of barley plants compared with plants grown under low PAR. However, additional UV radiation is necessary to fully induce photoprotective mechanisms in the variety Barke. This study demonstrates that UV-exposure can lead to enhanced photoprotective capacity and can contribute to the induction of tolerance to high radiation stress in barley.
Collapse
Affiliation(s)
- Karel Klem
- Global Change Research Center AS CR, v.v.i., Bělidla 4a, CZ 60300 Brno, Czech Republic
| | - Petr Holub
- Global Change Research Center AS CR, v.v.i., Bělidla 4a, CZ 60300 Brno, Czech Republic
| | - Michal Štroch
- Global Change Research Center AS CR, v.v.i., Bělidla 4a, CZ 60300 Brno, Czech Republic; University of Ostrava, 30. dubna 22, CZ 70103 Ostrava, Czech Republic
| | - Jakub Nezval
- University of Ostrava, 30. dubna 22, CZ 70103 Ostrava, Czech Republic
| | - Vladimír Špunda
- Global Change Research Center AS CR, v.v.i., Bělidla 4a, CZ 60300 Brno, Czech Republic; University of Ostrava, 30. dubna 22, CZ 70103 Ostrava, Czech Republic
| | - Jan Tříska
- Global Change Research Center AS CR, v.v.i., Bělidla 4a, CZ 60300 Brno, Czech Republic
| | - Marcel A K Jansen
- University of Cork, School of Biological, Earth and Environmental Science, Distillery Fields, Cork, Ireland
| | - T Matthew Robson
- University of Helsinki, Department of Biosciences, Plant Biology, P.O. Box 65, 00014 University of Helsinki, Finland
| | - Otmar Urban
- Global Change Research Center AS CR, v.v.i., Bělidla 4a, CZ 60300 Brno, Czech Republic.
| |
Collapse
|
304
|
Piofczyk T, Jeena G, Pecinka A. Arabidopsis thaliana natural variation reveals connections between UV radiation stress and plant pathogen-like defense responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 93:34-43. [PMID: 25656510 DOI: 10.1016/j.plaphy.2015.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/21/2015] [Indexed: 05/12/2023]
Abstract
UV radiation is a ubiquitous component of solar radiation that affects plant growth and development. Here we studied growth related traits of 345 Arabidopsis thaliana accessions in response to UV radiation stress. We analyzed the genetic basis of this natural variation by genome-wide association studies, which suggested a specific candidate genomic region. RNA-sequencing of three sensitive and three resistant accessions combined with mutant analysis revealed five large effect genes. Mutations in PHE ammonia lyase 1 (PAL1) and putative kinase At1g76360 rendered Arabidopsis hypersensitive to UV stress, while loss of function from putative methyltransferase At4g22530, novel plant snare 12 (NPSN12) and defense gene activated disease resistance 2 (ADR2) conferred higher UV stress resistance. Three sensitive accessions showed strong ADR2 transcriptional activation, accumulation of salicylic acid (SA) and dwarf growth upon UV stress, while these phenotypes were much less affected in resistant plants. The phenotype of sensitive accessions resembles autoimmune reactions due to overexpression of defense related genes, and suggests that natural variation in response to UV radiation stress is driven by pathogen-like responses in Arabidopsis.
Collapse
Affiliation(s)
- Thomas Piofczyk
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Ganga Jeena
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Ales Pecinka
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany.
| |
Collapse
|
305
|
Vidović M, Morina F, Milić S, Albert A, Zechmann B, Tosti T, Winkler JB, Jovanović SV. Carbon allocation from source to sink leaf tissue in relation to flavonoid biosynthesis in variegated Pelargonium zonale under UV-B radiation and high PAR intensity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 93:44-55. [PMID: 25661975 DOI: 10.1016/j.plaphy.2015.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 05/07/2023]
Abstract
We studied the specific effects of high photosynthetically active radiation (PAR, 400-700 nm) and ecologically relevant UV-B radiation (0.90 W m(-2)) on antioxidative and phenolic metabolism by exploiting the green-white leaf variegation of Pelargonium zonale plants. This is a suitable model system for examining "source-sink" interactions within the same leaf. High PAR intensity (1350 μmol m(-2) s(-1)) and UV-B radiation induced different responses in green and white leaf sectors. High PAR intensity had a greater influence on green tissue, triggering the accumulation of phenylpropanoids and flavonoids with strong antioxidative function. Induced phenolics, together with ascorbate, ascorbate peroxidase (APX, EC 1.11.1.11) and catalase (CAT, EC 1.11.1.6) provided efficient defense against potential oxidative pressure. UV-B-induced up-regulation of non-phenolic H2O2 scavengers in green leaf sectors was greater than high PAR-induced changes, indicating a UV-B role in antioxidative defense under light excess; on the contrary, minimal effects were observed in white tissue. However, UV-B radiation had greater influence on phenolics in white leaf sections compared to green ones, inducing accumulation of phenolic glycosides whose function was UV-B screening rather than antioxidative. By stimulation of starch and sucrose breakdown and carbon allocation in the form of soluble sugars from "source" (green) tissue to "sink" (white) tissue, UV-B radiation compensated the absence of photosynthetic activity and phenylpropanoid and flavonoid biosynthesis in white sectors.
Collapse
Affiliation(s)
- Marija Vidović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade, Serbia.
| | - Filis Morina
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade, Serbia.
| | - Sonja Milić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade, Serbia.
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Bernd Zechmann
- Baylor University, Center for Microscopy and Imaging, One Bear Place #97046, Waco, TX 76798-7046, USA.
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, PO Box 51, 11001 Belgrade, Serbia.
| | - Jana Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Sonja Veljović Jovanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade, Serbia.
| |
Collapse
|
306
|
Abstract
Plants are able to sense UV-B through the UV-B photoreceptor UVR8. UV-B photon absorption by a UVR8 homodimer leads to UVR8 monomerization and interaction with the downstream signaling factor COP1. This then initiates changes in gene expression, which lead to several metabolic and morphological alterations. A major response is the activation of mechanisms associated with UV-B acclimation and UV-B tolerance, including biosynthesis of sunscreen metabolites, antioxidants and DNA repair enzymes. To balance the response, UVR8 is inactivated by regulated re-dimerization. Apart from their importance for plants, UVR8 and its interacting protein COP1 have already proved useful for the optogenetic toolkit used to engineer synthetic light-dependent responses.
Collapse
Affiliation(s)
- Roman Ulm
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211, Geneva, 4, Switzerland.
| | - Gareth I Jenkins
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
307
|
Robson TM, Klem K, Urban O, Jansen MAK. Re-interpreting plant morphological responses to UV-B radiation. PLANT, CELL & ENVIRONMENT 2015; 38:856-66. [PMID: 24890713 DOI: 10.1111/pce.12374] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 05/08/2014] [Accepted: 05/11/2014] [Indexed: 05/02/2023]
Abstract
There is a need to reappraise the effects of UV-B radiation on plant morphology in light of improved mechanistic understanding of UV-B effects, particularly elucidation of the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor. We review responses at cell and organismal levels, and explore their underlying regulatory mechanisms, function in UV protection and consequences for plant fitness. UV-induced morphological changes include thicker leaves, shorter petioles, shorter stems, increased axillary branching and altered root:shoot ratios. At the cellular level, UV-B morphogenesis comprises changes in cell division, elongation and/or differentiation. However, notwithstanding substantial new knowledge of molecular, cellular and organismal UV-B responses, there remains a clear gap in our understanding of the interactions between these organizational levels, and how they control plant architecture. Furthermore, despite a broad consensus that UV-B induces relatively compact architecture, we note substantial diversity in reported phenotypes. This may relate to UV-induced morphological changes being underpinned by different mechanisms at high and low UV-B doses. It remains unproven whether UV-induced morphological changes have a protective function involving shading and decreased leaf penetration of UV-B, counterbalancing trade-offs such as decreased photosynthetic light capture and plant-competitive abilities. Future research will need to disentangle seemingly contradictory interactions occurring at the threshold UV dose where regulation and stress-induced morphogenesis overlap.
Collapse
Affiliation(s)
- T Matthew Robson
- Department of Biosciences, University of Helsinki, Helsinki, 00014, Finland
| | | | | | | |
Collapse
|
308
|
Vidović M, Morina F, Milić S, Zechmann B, Albert A, Winkler JB, Veljović Jovanović S. Ultraviolet-B component of sunlight stimulates photosynthesis and flavonoid accumulation in variegated Plectranthus coleoides leaves depending on background light. PLANT, CELL & ENVIRONMENT 2015; 38:968-79. [PMID: 25311561 DOI: 10.1111/pce.12471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 09/26/2014] [Accepted: 10/06/2014] [Indexed: 05/07/2023]
Abstract
We used variegated Plectranthus coleoides as a model plant with the aim of clarifying whether the effects of realistic ultraviolet-B (UV-B) doses on phenolic metabolism in leaves are mediated by photosynthesis. Plants were exposed to UV-B radiation (0.90 W m(-2) ) combined with two photosynthetically active radiation (PAR) intensities [395 and 1350 μmol m(-2) s(-1) , low light (LL) and high light (HL)] for 9 d in sun simulators. Our study indicates that UV-B component of sunlight stimulates CO2 assimilation and stomatal conductance, depending on background light. UV-B-specific induction of apigenin and cyanidin glycosides was observed in both green and white tissues. However, all the other phenolic subclasses were up to four times more abundant in green leaf tissue. Caffeic and rosmarinic acids, catechin and epicatechin, which are endogenous peroxidase substrates, were depleted at HL in green tissue. This was correlated with increased peroxidase and ascorbate peroxidase activities and increased ascorbate content. The UV-B supplement to HL attenuated antioxidative metabolism and partly recovered the phenolic pool indicating stimulation of the phenylpropanoid pathway. In summary, we propose that ortho-dihydroxy phenolics are involved in antioxidative defence in chlorophyllous tissue upon light excess, while apigenin and cyanidin in white tissue have preferentially UV-screening function.
Collapse
Affiliation(s)
- Marija Vidović
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, 11000, Serbia
| | | | | | | | | | | | | |
Collapse
|
309
|
Kaling M, Kanawati B, Ghirardo A, Albert A, Winkler JB, Heller W, Barta C, Loreto F, Schmitt-Kopplin P, Schnitzler JP. UV-B mediated metabolic rearrangements in poplar revealed by non-targeted metabolomics. PLANT, CELL & ENVIRONMENT 2015; 38:892-904. [PMID: 24738572 DOI: 10.1111/pce.12348] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 05/04/2023]
Abstract
Plants have to cope with various abiotic stresses including UV-B radiation (280-315 nm). UV-B radiation is perceived by a photoreceptor, triggers morphological responses and primes plant defence mechanisms such as antioxidant levels, photoreapir or accumulation of UV-B screening pigments. As poplar is an important model system for trees, we elucidated the influence of UV-B on overall metabolite patterns in poplar leaves grown under high UV-B radiation. Combining non-targeted metabolomics with gas exchange analysis and confocal microscopy, we aimed understanding how UV-B radiation triggers metabolome-wide changes, affects isoprene emission, photosynthetic performance, epidermal light attenuation and finally how isoprene-free poplars adjust their metabolome under UV-B radiation. Exposure to UV-B radiation caused a comprehensive rearrangement of the leaf metabolome. Several hundreds of metabolites were up- and down-regulated over various pathways. Our analysis, revealed the up-regulation of flavonoids, anthocyanins and polyphenols and the down-regulation of phenolic precursors in the first 36 h of UV-B treatment. We also observed a down-regulation of steroids after 12 h. The accumulation of phenolic compounds leads to a reduced light transmission in UV-B-exposed plants. However, the accumulation of phenolic compounds was reduced in non-isoprene-emitting plants suggesting a metabolic- or signalling-based interaction between isoprenoid and phenolic pathways.
Collapse
Affiliation(s)
- Moritz Kaling
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Robson TM, Hartikainen SM, Aphalo PJ. How does solar ultraviolet-B radiation improve drought tolerance of silver birch (Betula pendula Roth.) seedlings? PLANT, CELL & ENVIRONMENT 2015; 38:953-967. [PMID: 25041067 DOI: 10.1111/pce.12405] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 06/29/2014] [Indexed: 06/03/2023]
Abstract
We hypothesized that solar ultraviolet (UV) radiation would protect silver birch seedlings from the detrimental effects of water stress through a coordinated suite of trait responses, including morphological acclimation, improved control of water loss through gas exchange and hydraulic sufficiency. To better understand how this synergetic interaction works, plants were grown in an experiment under nine treatment combinations attenuating ultraviolet-A and ultraviolet-B (UVB) from solar radiation together with differential watering to create water-deficit conditions. In seedlings under water deficit, UV attenuation reduced height growth, leaf production and leaf length compared with seedlings receiving the full spectrum of solar radiation, whereas the growth and morphology of well-watered seedlings was largely unaffected by UV attenuation. There was an interactive effect of the treatment combination on water relations, which was more apparent as a change in the water potential at which leaves wilted or plants died than through differences in gas exchange. This suggests that changes occur in the cell wall elastic modulus or accumulation of osmolites in cells under UVB. Overall, the strong negative effects of water deficit are partially ameliorated by solar UV radiation, whereas well-watered silver birch seedlings are slightly disadvantaged by the solar UV radiation they receive.
Collapse
Affiliation(s)
- T Matthew Robson
- Department of Biosciences, Plant Biology, University of Helsinki, PO Box 65, 00014, Helsinki, Finland
| | | | | |
Collapse
|
311
|
Morales LO, Brosché M, Vainonen JP, Sipari N, Lindfors AV, Strid Å, Aphalo PJ. Are solar UV-B- and UV-A-dependent gene expression and metabolite accumulation in Arabidopsis mediated by the stress response regulator RADICAL-INDUCED CELL DEATH1? PLANT, CELL & ENVIRONMENT 2015; 38:878-891. [PMID: 24689869 DOI: 10.1111/pce.12341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/04/2014] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
Wavelengths in the ultraviolet (UV) region of the solar spectrum, UV-B (280-315 nm) and UV-A (315-400 nm), are key environmental signals modifying several aspects of plant physiology. Despite significant advances in the understanding of plant responses to UV-B and the identification of signalling components involved, there is limited information on the molecular mechanisms that control UV-B signalling in plants under natural sunlight. Here, we aimed to corroborate the previous suggested role for RADICAL-INDUCED CELL DEATH1 (RCD1) in UV-B signalling under full spectrum sunlight. Wild-type Arabidopsis thaliana and the rcd1-1 mutant were used in an experimental design outdoors where UV-B and UV-A irradiances were manipulated using plastic films, and gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation and metabolite profiles were analysed in the leaves. At the level of transcription, RCD1 was not directly involved in the solar UV-B regulation of genes with functions in UV acclimation, hormone signalling and stress-related markers. Furthermore, RCD1 had no role on PDX1 accumulation but modulated the UV-B induction of flavonoid accumulation in leaves of Arabidopsis exposed to solar UV. We conclude that RCD1 does not play an active role in UV-B signalling but rather modulates UV-B responses under full spectrum sunlight.
Collapse
Affiliation(s)
- Luis O Morales
- Division of Plant Biology, Department of Biosciences, University of Helsinki, FI-00014, Helsinki, Finland; School of Chemical Technology, Department of Forest Products Technology, Aalto University, FI-00076, Aalto, Finland
| | | | | | | | | | | | | |
Collapse
|
312
|
Wargent JJ, Nelson BCW, McGhie TK, Barnes PW. Acclimation to UV-B radiation and visible light in Lactuca sativa involves up-regulation of photosynthetic performance and orchestration of metabolome-wide responses. PLANT, CELL & ENVIRONMENT 2015; 38:929-40. [PMID: 24945714 DOI: 10.1111/pce.12392] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 05/07/2023]
Abstract
UV-B radiation is often viewed as a source of stress for higher plants. In particular, photosynthetic function has been described as a common target for UV-B impairment; yet as our understanding of UV-B photomorphogenesis increases, there are opportunities to expand the emerging paradigm of regulatory UV response. Lactuca sativa is an important dietary crop species and is often subjected to rapid sunlight exposure at field transfer. Acclimation to UV-B and visible light conditions in L. sativa was dissected using gas exchange and chlorophyll fluorescence measurements, in addition to non-destructive assessments of UV epidermal shielding (SUV ). After UV-B treatment, seedlings were subjected to wide-range metabolomic analysis using liquid chromatography hybrid quadrupole time-of-flight high-resolution mass spectrometry (LC-QTOF-HRMS). During the acclimation period, net photosynthetic rate increased in UV-treated plants, epidermal UV shielding increased in both subsets of plants transferred to the acclimatory conditions (UV+/UV- plants) and Fv /Fm declined slightly in UV+/UV- plants. Metabolomic analysis revealed that a key group of secondary compounds was up-regulated by higher light conditions, yet several of these compounds were elevated further by UV-B radiation. In conclusion, acclimation to UV-B radiation involves co-protection from the effects of visible light, and responses to UV-B radiation at a photosynthetic level may not be consistently viewed as damaging to plant development.
Collapse
Affiliation(s)
- J J Wargent
- Institute of Agriculture & Environment, Massey University, Palmerston North, 4410, New Zealand
| | | | | | | |
Collapse
|
313
|
Hagiwara K, Wright PR, Tabandera NK, Kelman D, Backofen R, Ómarsdóttir S, Wright AD. Comparative analysis of the antioxidant properties of Icelandic and Hawaiian lichens. Environ Microbiol 2015; 18:2319-25. [PMID: 25808912 DOI: 10.1111/1462-2920.12850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/13/2015] [Indexed: 11/27/2022]
Abstract
Antioxidant activity of symbiotic organisms known as lichens is an intriguing field of research because of its strong contribution to their ability to withstand extremes of physical and biological stress (e.g. desiccation, temperature, UV radiation and microbial infection). We present a comparative study on the antioxidant activities of 76 Icelandic and 41 Hawaiian lichen samples assessed employing the DPPH- and FRAP-based antioxidant assays. Utilizing this unprecedented sample size, we show that while highest individual sample activity is present in the Icelandic dataset, the overall antioxidant activity is higher for lichens found in Hawaii. Furthermore, we report that lichens from the genus Peltigera that have been described as strong antioxidant producers in studies on Chinese, Russian and Turkish lichens also show high antioxidant activities in both Icelandic and Hawaiian lichen samples. Finally, we show that opportunistic sampling of lichens in both Iceland and Hawaii will yield high numbers of lichen species that exclusively include green algae as photobiont.
Collapse
Affiliation(s)
- Kehau Hagiwara
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, HI, 96720, USA
| | - Patrick R Wright
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 106, Freiburg, D-79110, Germany
| | - Nicole K Tabandera
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, HI, 96720, USA
| | - Dovi Kelman
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, HI, 96720, USA
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 106, Freiburg, D-79110, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, D-79104, Germany
| | - Sesselja Ómarsdóttir
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hagi, Hofsvallagata 53, Reykjavik, IS-107, Iceland
| | - Anthony D Wright
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, HI, 96720, USA
| |
Collapse
|
314
|
Martínez-Lüscher J, Morales F, Delrot S, Sánchez-Díaz M, Gomès E, Aguirreolea J, Pascual I. Characterization of the adaptive response of grapevine (cv. Tempranillo) to UV-B radiation under water deficit conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 232:13-22. [PMID: 25617319 DOI: 10.1016/j.plantsci.2014.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 05/21/2023]
Abstract
This work aims to characterize the physiological response of grapevine (Vitis vinifera L.) cv. Tempranillo to UV-B radiation under water deficit conditions. Grapevine fruit-bearing cuttings were exposed to three levels of supplemental biologically effective UV-B radiation (0, 5.98 and 9.66kJm(-2)day(-1)) and two water regimes (well watered and water deficit), in a factorial design, from fruit-set to maturity under glasshouse-controlled conditions. UV-B induced a transient decrease in net photosynthesis (Anet), actual and maximum potential efficiency of photosystem II, particularly on well watered plants. Methanol extractable UV-B absorbing compounds (MEUVAC) concentration and superoxide dismutase activity increased with UV-B. Water deficit effected decrease in Anet and stomatal conductance, and did not change non-photochemical quenching and the de-epoxidation state of xanthophylls, dark respiration and photorespiration being alternative ways to dissipate the excess of energy. Little interactive effects between UV-B and drought were detected on photosynthesis performance, where the impact of UV-B was overshadowed by the effects of water deficit. Grape berry ripening was strongly delayed when UV-B and water deficit were applied in combination. In summary, deficit irrigation did not modify the adaptive response of grapevine to UV-B, through the accumulation of MEUVAC. However, combined treatments caused additive effects on berry ripening.
Collapse
Affiliation(s)
- J Martínez-Lüscher
- Grupo de Fisiología del Estrés en Plantas (Dpto. de Biología Ambiental), Unidad Asociada al CSIC, EEAD, Zaragoza e ICVV, Logroño, Facultades de Ciencias y Farmacia, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; INRA, Institut des Sciences de la Vigne et du Vin, UMR1287 EGFV, 210 Chemin de Leysotte, 33883 Villenave D'Ornon, France; University of Bordeaux, Institut des Sciences de la Vigne et du Vin, UMR1287 EGFV, 210 Chemin de Leysotte, 33883 Villenave D'Ornon, France
| | - F Morales
- Estación Experimental de Aula Dei (EEAD), CSIC, Dpto. Nutrición Vegetal, Apdo. 13034, 50080 Zaragoza, Spain; Grupo de Fisiología del Estrés en Plantas (Dpto. de Biología Ambiental), Unidad Asociada al CSIC, EEAD, Zaragoza e ICVV, Logroño, Facultades de Ciencias y Farmacia, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - S Delrot
- INRA, Institut des Sciences de la Vigne et du Vin, UMR1287 EGFV, 210 Chemin de Leysotte, 33883 Villenave D'Ornon, France; University of Bordeaux, Institut des Sciences de la Vigne et du Vin, UMR1287 EGFV, 210 Chemin de Leysotte, 33883 Villenave D'Ornon, France
| | - M Sánchez-Díaz
- Grupo de Fisiología del Estrés en Plantas (Dpto. de Biología Ambiental), Unidad Asociada al CSIC, EEAD, Zaragoza e ICVV, Logroño, Facultades de Ciencias y Farmacia, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - E Gomès
- INRA, Institut des Sciences de la Vigne et du Vin, UMR1287 EGFV, 210 Chemin de Leysotte, 33883 Villenave D'Ornon, France; University of Bordeaux, Institut des Sciences de la Vigne et du Vin, UMR1287 EGFV, 210 Chemin de Leysotte, 33883 Villenave D'Ornon, France
| | - J Aguirreolea
- Grupo de Fisiología del Estrés en Plantas (Dpto. de Biología Ambiental), Unidad Asociada al CSIC, EEAD, Zaragoza e ICVV, Logroño, Facultades de Ciencias y Farmacia, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - I Pascual
- Grupo de Fisiología del Estrés en Plantas (Dpto. de Biología Ambiental), Unidad Asociada al CSIC, EEAD, Zaragoza e ICVV, Logroño, Facultades de Ciencias y Farmacia, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| |
Collapse
|
315
|
Soledad ON, Florencia MM, Laura FM, Raúl DG, Balbina AA, Pía OF. Potassium phosphite increases tolerance to UV-B in potato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 88:1-8. [PMID: 25596554 DOI: 10.1016/j.plaphy.2015.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/08/2015] [Indexed: 05/05/2023]
Abstract
The use of biocompatible chemical compounds that enhance plant disease resistance through Induced Resistance (IR) is an innovative strategy to improve the yield and quality of crops. Phosphites (Phi), inorganic salts of phosphorous acid, are environment friendly, and have been described to induce disease control. Phi, similar to other plant inductors, are thought to be effective against different types of biotic and abiotic stress, and it is assumed that the underlying signaling pathways probably overlap and interact. The signaling pathways triggered by UV-B radiation, for instance, are known to crosstalk with other signaling routes that respond that biotic stress. In the present work, the effect of potassium phosphite (KPhi) pre-treatment on UV-B stress tolerance was evaluated in potato leaves. Plants were treated with KPhi and, after 3 days, exposed to 2 h/day of UV-B (1.5 Watt m(-2)) for 0, 3 and 6 days. KPhi pre-treatment had a beneficial effect on two photosynthetic parameters, specifically chlorophyll content and expression of the psbA gene. Oxidative stress caused by UV-B was also prevented by KPhi. A decrease in the accumulation of hydrogen peroxide (H2O2) in leaves and an increase in guaiacol peroxidase (POD) and superoxide dismutase (SOD) activities were also observed. In addition, the expression levels of a gene involved in flavonoid synthesis increased in UV-B-stressed plants only when pre-treated with KPhi. Finally, accumulation of glucanases and chitinases was induced by UV-B stress and markedly potentiated by KPhi pre-treatment. Altogether, this is the first report that shows a contribution of KPhi in UV-B stress tolerance in potato plants.
Collapse
Affiliation(s)
- Oyarburo Natalia Soledad
- Instituto de Investigaciones Biológicas, CONICET-UNMDP, Funes 3250 CC1245, 7600 Mar del Plata, Argentina
| | | | - Feldman Mariana Laura
- Instituto de Investigaciones Biológicas, CONICET-UNMDP, Funes 3250 CC1245, 7600 Mar del Plata, Argentina
| | - Daleo Gustavo Raúl
- Instituto de Investigaciones Biológicas, CONICET-UNMDP, Funes 3250 CC1245, 7600 Mar del Plata, Argentina
| | - Andreu Adriana Balbina
- Instituto de Investigaciones Biológicas, CONICET-UNMDP, Funes 3250 CC1245, 7600 Mar del Plata, Argentina
| | - Olivieri Florencia Pía
- Instituto de Investigaciones Biológicas, CONICET-UNMDP, Funes 3250 CC1245, 7600 Mar del Plata, Argentina
| |
Collapse
|
316
|
Gęgotek A, Skrzydlewska E. The role of transcription factor Nrf2 in skin cells metabolism. Arch Dermatol Res 2015; 307:385-96. [PMID: 25708189 PMCID: PMC4469773 DOI: 10.1007/s00403-015-1554-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/06/2015] [Accepted: 02/12/2015] [Indexed: 12/22/2022]
Abstract
Skin, which is a protective layer of the body, is in constant contact with physical and chemical environmental factors. Exposure of the skin to highly adverse conditions often leads to oxidative stress. Moreover, it has been observed that skin cells are also exposed to reactive oxygen species generated during cell metabolism particularly in relation to the synthesis of melanin or the metabolism in immune system cells. However, skin cells have special features that protect them against oxidative modifications including transcription factor Nrf2, which is responsible for the transcription of the antioxidant protein genes such as antioxidant enzymes, small molecular antioxidant proteins or interleukins, and multidrug response protein. In the present study, the mechanisms of Nrf2 activation have been compared in the cells forming the various layers of the skin: keratinocytes, melanocytes, and fibroblasts. The primary mechanism of control of Nrf2 activity is its binding by cytoplasmic inhibitor Keap1, while cells have also other controlling mechanisms, such as phosphorylation of Nrf2 and modifications of its activators (e.g., Maf, IKKβ) or inhibitors (e.g., Bach1, caveolae, TGF-β). Moreover, there are a number of drugs (e.g., ketoconazole) used in the pharmacotherapy of skin diseases based on the activation of Nrf2, but they may also induce oxidative stress. Therefore, it is important to look for compounds that cause a selective activation of Nrf2 particularly natural substances such as curcumin, sulforaphane, or extracts from the broccoli leaves without side effects. These findings could be helpful in the searching for new drugs for people with vitiligo or even melanoma.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Departments of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland,
| | | |
Collapse
|
317
|
Petrov V, Hille J, Mueller-Roeber B, Gechev TS. ROS-mediated abiotic stress-induced programmed cell death in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:69. [PMID: 25741354 PMCID: PMC4332301 DOI: 10.3389/fpls.2015.00069] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/26/2015] [Indexed: 05/18/2023]
Abstract
During the course of their ontogenesis plants are continuously exposed to a large variety of abiotic stress factors which can damage tissues and jeopardize the survival of the organism unless properly countered. While animals can simply escape and thus evade stressors, plants as sessile organisms have developed complex strategies to withstand them. When the intensity of a detrimental factor is high, one of the defense programs employed by plants is the induction of programmed cell death (PCD). This is an active, genetically controlled process which is initiated to isolate and remove damaged tissues thereby ensuring the survival of the organism. The mechanism of PCD induction usually includes an increase in the levels of reactive oxygen species (ROS) which are utilized as mediators of the stress signal. Abiotic stress-induced PCD is not only a process of fundamental biological importance, but also of considerable interest to agricultural practice as it has the potential to significantly influence crop yield. Therefore, numerous scientific enterprises have focused on elucidating the mechanisms leading to and controlling PCD in response to adverse conditions in plants. This knowledge may help develop novel strategies to obtain more resilient crop varieties with improved tolerance and enhanced productivity. The aim of the present review is to summarize the recent advances in research on ROS-induced PCD related to abiotic stress and the role of the organelles in the process.
Collapse
Affiliation(s)
- Veselin Petrov
- Institute of Molecular Biology and Biotechnology, PlovdivBulgaria
| | - Jacques Hille
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Groningen, GroningenNetherlands
| | - Bernd Mueller-Roeber
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-GolmGermany
| | - Tsanko S. Gechev
- Institute of Molecular Biology and Biotechnology, PlovdivBulgaria
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-GolmGermany
| |
Collapse
|
318
|
Del-Castillo-Alonso MÁ, Diago MP, Monforte L, Tardaguila J, Martínez-Abaigar J, Núñez-Olivera E. Effects of UV exclusion on the physiology and phenolic composition of leaves and berries of Vitis vinifera cv. Graciano. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:409-16. [PMID: 24820651 DOI: 10.1002/jsfa.6738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/30/2014] [Accepted: 05/07/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND Ultraviolet (UV) radiation induces adaptive responses that can be used for plant production improvement. The aim of this study was to assess the effect of solar UV exclusion on the physiology and phenolic compounds of leaves and berry skins of Vitis vinifera L. cv. Graciano under field conditions. Phenolic compounds were analyzed globally and individually in both the vacuolar fraction and, for the first time in grapevine, the cell wall-bound fraction. These different locations may represent diverse modalities of phenolic response to and protection against UV. RESULTS UV exclusion led to a decrease in Fv /Fm in leaves, revealing that solar UV is needed for adequate photoprotection. Only p-caffeoyl-tartaric acid from the soluble fraction of leaves and myricetin-3-O-glucoside from the soluble fraction of berry skins were significantly higher in the presence of UV radiation, and thus they could play a role in UV protection. Other hydroxycinnamic acids, flavonols, flavanols and stilbenes did not respond to UV exclusion. CONCLUSION UV exclusion led to subtle changes in leaves and berry skins of Graciano cultivar, which would be well adapted to current UV levels. This may help support decision-making on viticultural practices modifying UV exposure of leaves and berries, which could improve grape and wine quality.
Collapse
|
319
|
Trentin AR, Pivato M, Mehdi SMM, Barnabas LE, Giaretta S, Fabrega-Prats M, Prasad D, Arrigoni G, Masi A. Proteome readjustments in the apoplastic space of Arabidopsis thaliana ggt1 mutant leaves exposed to UV-B radiation. FRONTIERS IN PLANT SCIENCE 2015; 6:128. [PMID: 25852701 PMCID: PMC4371699 DOI: 10.3389/fpls.2015.00128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/17/2015] [Indexed: 05/14/2023]
Abstract
Ultraviolet-B radiation acts as an environmental stimulus, but in high doses it has detrimental effects on plant metabolism. Plasma membranes represent a major target for Reactive Oxygen Species (ROS) generated by this harmful radiation. Oxidative reactions occurring in the apoplastic space are counteracted by antioxidative systems mainly involving ascorbate and, to some extent, glutathione. The occurrence of the latter and its exact role in the extracellular space are not well documented, however. In Arabidopsis thaliana, the gamma-glutamyl transferase isoform (GGT1) bound to the cell wall takes part in the so-called gamma-glutamyl cycle for extracellular glutathione degradation and recovery, and may be implicated in redox sensing and balance. In this work, oxidative conditions were imposed with Ultraviolet-B radiation (UV-B) and studied in redox altered ggt1 mutants. The response of ggt1 knockout Arabidopsis leaves to UV-B radiation was assessed by investigating changes in extracellular glutathione and ascorbate content and their redox state, and in apoplastic protein composition. Our results show that, on UV-B exposure, soluble antioxidants respond to the oxidative conditions in both genotypes. Rearrangements occur in their apoplastic protein composition, suggesting an involvement of Hydrogen Peroxide (H2O2), which may ultimately act as a signal. Other important changes relating to hormonal effects, cell wall remodeling, and redox activities are discussed. We argue that oxidative stress conditions imposed by UV-B and disruption of the gamma-glutamyl cycle result in similar stress-induced responses, to some degree at least. Data are available via ProteomeXchange with identifier PXD001807.
Collapse
Affiliation(s)
- Anna Rita Trentin
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaPadova, Italy
| | - Micaela Pivato
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaPadova, Italy
- Proteomics Center of Padova UniversityPadova, Italy
| | - Syed M. M. Mehdi
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaPadova, Italy
| | | | - Sabrina Giaretta
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaPadova, Italy
| | - Marta Fabrega-Prats
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaPadova, Italy
| | - Dinesh Prasad
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaPadova, Italy
- Department of Bio-Engineering, Birla Institute of TechnologyRanchi, India
| | - Giorgio Arrigoni
- Proteomics Center of Padova UniversityPadova, Italy
- Department of Biomedical Sciences, University of PadovaPadova, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaPadova, Italy
- *Correspondence: Antonio Masi, Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Viale dell'Università 16, Legnaro (PD), 35020, Italy
| |
Collapse
|
320
|
Yokawa K, Kagenishi T, Baluška F. UV-B Induced Generation of Reactive Oxygen Species Promotes Formation of BFA-Induced Compartments in Cells of Arabidopsis Root Apices. FRONTIERS IN PLANT SCIENCE 2015; 6:1162. [PMID: 26793199 PMCID: PMC4710705 DOI: 10.3389/fpls.2015.01162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/07/2015] [Indexed: 05/10/2023]
Abstract
UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiation on the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism.
Collapse
Affiliation(s)
- Ken Yokawa
- Institute of Cellular and Molecular Botany, University of Bonn, BonnGermany
- Department of Biological Sciences, Tokyo Metropolitan UniversityTokyo, Japan
| | - Tomoko Kagenishi
- Institute of Cellular and Molecular Botany, University of Bonn, BonnGermany
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, BonnGermany
- *Correspondence: František Baluška,
| |
Collapse
|
321
|
Takáč T, Šamajová O, Vadovič P, Pechan T, Košútová P, Ovečka M, Husičková A, Komis G, Šamaj J. Proteomic and biochemical analyses show a functional network of proteins involved in antioxidant defense of the Arabidopsis anp2anp3 double mutant. J Proteome Res 2014; 13:5347-61. [PMID: 25325904 PMCID: PMC4423761 DOI: 10.1021/pr500588c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Disentanglement of functional complexity associated with plant mitogen-activated protein kinase (MAPK) signaling has benefited from transcriptomic, proteomic, phosphoproteomic, and genetic studies. Published transcriptomic analysis of a double homozygous recessive anp2anp3 mutant of two MAPK kinase kinase (MAPKKK) genes called Arabidopsis thaliana Homologues of Nucleus- and Phragmoplast-localized Kinase 2 (ANP2) and 3 (ANP3) showed the upregulation of stress-related genes. In this study, a comparative proteomic analysis of anp2anp3 mutant against its respective Wassilevskaja ecotype (Ws) wild type background is provided. Such differential proteomic analysis revealed overabundance of core enzymes such as FeSOD1, MnSOD, DHAR1, and FeSOD1-associated regulatory protein CPN20, which are involved in the detoxification of reactive oxygen species in the anp2anp3 mutant. The proteomic results were validated at the level of single protein abundance by Western blot analyses and by quantitative biochemical determination of antioxidant enzymatic activities. Finally, the functional network of proteins involved in antioxidant defense in the anp2anp3 mutant was physiologically linked with the increased resistance of mutant seedlings against paraquat treatment.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Pavol Vadovič
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Tibor Pechan
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Petra Košútová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Alexandra Husičková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
322
|
|
323
|
Zhang J, Chen C, Zhang D, Li H, Li P, Ma F. Reactive oxygen species produced via plasma membrane NADPH oxidase regulate anthocyanin synthesis in apple peel. PLANTA 2014; 240:1023-35. [PMID: 25000919 DOI: 10.1007/s00425-014-2120-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/02/2014] [Indexed: 05/12/2023]
Abstract
Solar ultraviolet irradiation regulates anthocyanin synthesis in apple peel by modulating the production of reactive oxygen species via plasma membrane NADPH oxidase instead of other pathways. The synthesis of anthocyanin in apple peels is dependent upon solar irradiation. Using 3-mm commercial glass to attenuate solar UV-A and UV-B light, we confirmed that solar UV irradiation regulated anthocyanin synthesis in apple peels after exposing previously bagged fruit to sunlight. During sunlight exposure, UV attenuation did not affect the expression of MdHY5, MdCOP1, or MdCRY2, but significantly lowered plasma membrane NADPH oxidase activity and superoxide anion concentrations. UV attenuation also reduced the expression levels of MdMYB10, MdPAL, MdCHS, MdF3H, MdDFR, MdANS and MdUFGT1, UDP-glycose:flavonoid 3-O-glycosyltransferase (UFGT) activity, and local concentrations of anthocyanin and quercetin-3-glycoside. In contrast, exogenous application of hydrogen peroxide could enhance anthocyanin and quercetin-3-glycoside synthesis. Xanthophyll cycle pool size on a chlorophyll basis was higher but its de-epoxidation was lower under direct sunlight irradiation than that under UV-attenuating conditions. This suggests that reactive oxygen species (ROS) produced in chloroplast are not major contributors to anthocyanin synthesis regulation. Inhibition of plasma membrane NADPH oxidase activity lowered the production of ROS through this mechanism, significantly inhibited the synthesis of anthocyanin, and increased the total production of ROS in apple peel under direct sunlight irradiation, suggesting that ROS produced via plasma membrane NADPH oxidase regulates anthocyanin synthesis. In summary, solar UV irradiation regulated anthocyanin synthesis in apple peels by modulating the production of ROS via plasma membrane NADPH oxidase.
Collapse
Affiliation(s)
- Jiangli Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Taicheng Rd. No. 3, Yangling, 712100, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
324
|
Tattini M, Di Ferdinando M, Brunetti C, Goti A, Pollastri S, Bellasio C, Giordano C, Fini A, Agati G. Esculetin and esculin (esculetin 6-O-glucoside) occur as inclusions and are differentially distributed in the vacuole of palisade cells in Fraxinus ornus leaves: A fluorescence microscopy analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 140:28-35. [DOI: 10.1016/j.jphotobiol.2014.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 11/26/2022]
|
325
|
Chen H, Feng Y, Wang L, Yonezawa T, Crabbe MJC, Zhang X, Zhong Y. Transcriptome profiling of the UV-B stress response in the desert shrub Lycium ruthenicum. Mol Biol Rep 2014; 42:639-49. [DOI: 10.1007/s11033-014-3809-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/27/2014] [Indexed: 11/25/2022]
|
326
|
Carletti G, Nervo G, Cattivelli L. Flavonoids and Melanins: a common strategy across two kingdoms. Int J Biol Sci 2014; 10:1159-70. [PMID: 25516714 PMCID: PMC4261200 DOI: 10.7150/ijbs.9672] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/08/2014] [Indexed: 12/16/2022] Open
Abstract
Ultraviolet (UV) radiations alter a number of metabolic functions in vivant. They produce damages to lipids, nucleic acids and proteins, generating reactive oxygen species such as singlet oxygen (O2), hydroxyl radical (HO) and superoxide anion (O2-). Plants and animals, after their water emersion, have developed biochemical mechanisms to protect themselves from that environmental threat through a common strategy. Melanins in animals and flavonoids in plants are antioxidant pigments acting as free radical scavenging mechanisms. Both are phenol compounds constitutively synthesized and enhanced after exposure to UV rays, often conferring a red-brown-dark tissue pigmentation. Noteworthy, beside anti-oxidant scavenging activity, melanins and flavonoids have acquired secondary functions that, both in plants and animals, concern reproductions and fitness. Plants highly pigmented are more resistant to biotic and abiotic stresses. Darker wild vertebrates are generally more aggressive, sexually active and resistant to stress than lighter individuals. Flavonoids have been associated with signal attraction between flowers and insects and with plant-plant interaction. Melanin pigmentation has been proposed as trait in bird communication, acting as honest signals of quality. This review shows how the molecular mechanisms leading to tissue pigmentation have many functional analogies between plants and animals and how their origin lies in simpler organisms such as Cyanobacteria. Comparative studies between plant and animal kingdoms can reveal new insight of the antioxidant strategies in vivant.
Collapse
Affiliation(s)
- Giorgia Carletti
- 1. Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Research Unit for Intensive Wood Production, Strada Frassineto 35, 15033 Casale Monferrato, AL, Italy
| | - Giuseppe Nervo
- 1. Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Research Unit for Intensive Wood Production, Strada Frassineto 35, 15033 Casale Monferrato, AL, Italy
| | - Luigi Cattivelli
- 2. Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Genomics Research Centre, via S Protaso 302, I-29107 Fiorenzuola d'Arda, PC, Italy
| |
Collapse
|
327
|
Cadmium telluride quantum dots (CdTe-QDs) and enhanced ultraviolet-B (UV-B) radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings. PLoS One 2014; 9:e110400. [PMID: 25329900 PMCID: PMC4203795 DOI: 10.1371/journal.pone.0110400] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/21/2014] [Indexed: 11/25/2022] Open
Abstract
Nanoparticles (NPs) are becoming increasingly widespread in the environment. Free cadmium ions released from commonly used NPs under ultraviolet-B (UV-B) radiation are potentially toxic to living organisms. With increasing levels of UV-B radiation at the Earth’s surface due to the depletion of the ozone layer, the potential additive effect of NPs and UV-B radiation on plants is of concern. In this study, we investigated the synergistic effect of CdTe quantum dots (CdTe-QDs), a common form of NP, and UV-B radiation on wheat seedlings. Graded doses of CdTe-QDs and UV-B radiation were tested, either alone or in combination, based on physical characteristics of 5-day-old seedlings. Treatments of wheat seedlings with either CdTe-QDs (200 mg/L) or UV-B radiation (10 KJ/m2/d) induced the activation of wheat antioxidant enzymes. CdTe-QDs accumulation in plant root cells resulted in programmed cell death as detected by DNA laddering. CdTe-QDs and UV-B radiation inhibited root and shoot growth, respectively. Additive inhibitory effects were observed in the combined treatment group. This research described the effects of UV-B and CdTe-QDs on plant growth. Furthermore, the finding that CdTe-QDs accumulate during the life cycle of plants highlights the need for sustained assessments of these interactions.
Collapse
|
328
|
Ouzounis T, Fretté X, Rosenqvist E, Ottosen CO. Spectral effects of supplementary lighting on the secondary metabolites in roses, chrysanthemums, and campanulas. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1491-9. [PMID: 25105234 DOI: 10.1016/j.jplph.2014.06.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 05/07/2023]
Abstract
To investigate the effect of the light spectrum on photosynthesis, growth, and secondary metabolites Rosa hybrida 'Scarlet', Chrysanthemum morifolium 'Coral Charm', and Campanula portenschlagiana 'BluOne' were grown at 24/18°C day/night temperature under purpose-built LED arrays yielding approximately 200 μmol m(-2)s(-1) at plant height for 16 h per day. The four light treatments were (1) 40% Blue/60% Red, (2) 20% Blue/80% Red, (3) 100% Red, and (4) 100% White (Control). The plant height was smallest in 40% Blue/60% Red in roses and chrysanthemums, while the biomass was smallest in the white control in roses and in 100% Red in chrysanthemums. The total biomass was unaffected by the spectrum in campanulas, while the leaf area was smallest in the 40% Blue/60% Red treatment. In 100% Red curled leaves and other morphological abnormalities were observed. Increasing the blue to red ratio increased the stomatal conductance though net photosynthesis was unaffected, indicating excess stomatal conductance in some treatments. With higher blue light ratio all phenolic acids and flavonoids increased. In view of the roles of these secondary metabolites as antioxidants, anti-pathogens, and light protectants, we hypothesize that blue light may predispose plants to better cope with stress.
Collapse
Affiliation(s)
- Theoharis Ouzounis
- Department of Chemical Engineering, Biotechnology, and Environmental Technology, University of Southern Denmark, Niels Bohrs Allé 1, Odense, Denmark.
| | - Xavier Fretté
- Department of Chemical Engineering, Biotechnology, and Environmental Technology, University of Southern Denmark, Niels Bohrs Allé 1, Odense, Denmark
| | - Eva Rosenqvist
- Plant and Environmental Sciences, Selection for Crop Sciences, University of Copenhagen, Hoejbakkegaard Alle 9, DK-2630 Taastrup, Denmark
| | - Carl-Otto Ottosen
- Department of Food Science, Aarhus University, Kirstinebjergvej 10, 5792 Aarslev, Denmark
| |
Collapse
|
329
|
Müller-Xing R, Xing Q, Goodrich J. Footprints of the sun: memory of UV and light stress in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:474. [PMID: 25278950 PMCID: PMC4165212 DOI: 10.3389/fpls.2014.00474] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/28/2014] [Indexed: 05/18/2023]
Abstract
Sunlight provides the necessary energy for plant growth via photosynthesis but high light and particular its integral ultraviolet (UV) part causes stress potentially leading to serious damage to DNA, proteins, and other cellular components. Plants show adaptation to environmental stresses, sometimes referred to as "plant memory." There is growing evidence that plants memorize exposure to biotic or abiotic stresses through epigenetic mechanisms at the cellular level. UV target genes such as CHALCONE SYNTHASE (CHS) respond immediately to UV treatment and studies of the recently identified UV-B receptor UV RESISTANCE LOCUS 8 (UVR8) confirm the expedite nature of UV signaling. Considering these findings, an UV memory seems redundant. However, several lines of evidence suggest that plants may develop an epigenetic memory of UV and light stress, but in comparison to other abiotic stresses there has been relatively little investigation. Here we summarize the state of knowledge about acclimation and adaptation of plants to UV light and discuss the possibility of chromatin based epigenetic memory.
Collapse
Affiliation(s)
- Ralf Müller-Xing
- Institute of Genetics, Heinrich-Heine-UniversityDüsseldorf, Germany
| | - Qian Xing
- Institute of Genetics, Heinrich-Heine-UniversityDüsseldorf, Germany
| | - Justin Goodrich
- Institute for Molecular Plant Sciences, The University of EdinburghEdinburgh, UK
| |
Collapse
|
330
|
Pandey N, Pandey-Rai S. Modulations of physiological responses and possible involvement of defense-related secondary metabolites in acclimation of Artemisia annua L. against short-term UV-B radiation. PLANTA 2014; 240:611-627. [PMID: 25023630 DOI: 10.1007/s00425-014-2114-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/21/2014] [Indexed: 06/03/2023]
Abstract
UV - B radiation exposure for upto 3 h did not cause direct damage to physiology, but adjusted secondary metabolism and metabolites accumulation as an effective acclimation mechanism to mitigate the adverse effects of radiation. Artemisia annua L. plants were irradiated with UV-B radiation (280-315 nm; 2.8 Wm(-2)) for different short-term (1, 2, 3 and 4 h) durations. UV-B irradiation of 3 h reduced the photosynthetic rate, stomatal conductance and transpiration rate. However, F v/F m, a sensitive indicator of photosynthetic inhibition, remained stable (0.78) upto 3 h, thereafter it declined sharply (0.72). Interestingly, transcript level of LHCB1, PSBA and PSBO genes related to photosystem II (PSII) were induced under UV-B exposure. In addition, genes coding for Rubisco small (RBCS1B) and large (RBCL) subunits were also upregulated upto 3 h. To mitigate the adverse effects of UV-B radiation, plants tremendously induced defense-related secondary metabolites such as antioxidative phenolics, UV-B absorbing flavonoids, anthocyanins and protective terpenes. The GC-MS analysis of essential oils revealed relatively higher production of monoterpenes over sesquiterpenes as well as 1.2-folds higher total oil yield under UV-B radiation. Owing to its diverse biological activities, the altered quantity and quality of essential oil of A. annua may contribute towards improving its therapeutic properties. The results suggest that UV-B irradiation upto 3 h reduced photosynthesis, probably due to stomatal limitations rather than any direct injury to photosynthetic apparatus as evident from stable F v/F m value, upregulated genes and greater accumulation of their corresponding proteins which gauge PSII health, elevated UV-B absorbing compounds and other protective metabolites. Correlation analysis indicates a significant positive correlation of photosynthetic rate with stomatal conductance while a negative correlation with anthocyanin and monoterpene contents under UV-B radiation. The present study provides first hand information regarding photosynthesis, related physiological parameters and essential oil profiling in response to UV-B radiation in A. annua.
Collapse
Affiliation(s)
- Neha Pandey
- Laboratory of Morphogenesis, Department of Botany, Faculty of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | | |
Collapse
|
331
|
Majer P, Czégény G, Sándor G, Dix PJ, Hideg E. Antioxidant defence in UV-irradiated tobacco leaves is centred on hydrogen-peroxide neutralization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:239-43. [PMID: 25000557 DOI: 10.1016/j.plaphy.2014.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/17/2014] [Indexed: 06/03/2023]
Abstract
Greenhouse grown tobacco (Nicotiana tabacum L. cv. Petit Havana) plants were exposed to supplemental UV centred at 318 nm and corresponding to 13.6 kJ m(-2) d(-1) biologically effective UV-B (280-315 nm) radiation. After 6 days this treatment decreased photosynthesis by 30%. Leaves responded by a large increase in UV-absorbing pigment content and antioxidant capacities. UV-stimulated defence against ROS was strongest in chloroplasts, since activities of plastid enzymes FeSOD and APX had larger relative increases than other, non-plastid specific SODs or peroxidases. In addition, non-enzymatic defence against hydroxyl radicals was doubled in UV treated leaves as compared to controls. In UV treated leaves, the extent of activation of ROS neutralizing capacities followed a peroxidases > hydroxyl-radical neutralization > SOD order. These results suggest that highly effective hydrogen peroxide neutralization is the focal point of surviving UV-inducible oxidative stress and argue against a direct signalling role of hydrogen peroxide in maintaining adaptation to UV, at least in laboratory experiments.
Collapse
Affiliation(s)
- Petra Majer
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Gyula Czégény
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; Department of Plant Biology, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Györgyi Sándor
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Philip J Dix
- Biology Department, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Eva Hideg
- Department of Plant Biology, Institute of Biology, University of Pécs, Pécs, Hungary.
| |
Collapse
|
332
|
Petruľová V, Dučaiová Z, Repčák M. Short-term UV-B dose stimulates production of protective metabolites in Matricaria chamomilla leaves. Photochem Photobiol 2014; 90:1061-8. [PMID: 24913599 DOI: 10.1111/php.12300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/01/2014] [Indexed: 11/27/2022]
Abstract
Physiological response of two cultivars of Matricaria chamomilla plants on UV irradiation was studied. The impact of used short-time UV dose was evaluated in three time points; 2, 24 and 48 h after irradiation. Used UV irradiation immediately resulted in changes in plant oxidative status monitored as increased concentration of H2 O2 . Decrease in chlorophyll a and b indicated the impact on photosynthetic apparatus. For phenolic secondary metabolites, an increase in total soluble phenols and AlCl3 -reactive flavonols was observed. The activity of main phenolic enzyme, phenylalanine ammonia-lyase, increased with time after irradiation. Significant changes, mainly decreasing trends, in the content of free coumarins and their glycosidic precursors were observed. Enhanced accumulation in chlorogenic and 1,5-dicaffeoylquinic acid and in (Z)-isoform of dicycloethers was detected. From these results, the redirecting precursors of coumarin biosynthesis to biosynthesis of substances with higher antioxidative potential can be assumed. Different reactions in diploid and tetraploid plants were recorded, too.
Collapse
Affiliation(s)
- Veronika Petruľová
- Department of Botany, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | | | | |
Collapse
|
333
|
Blande JD, Holopainen JK, Niinemets Ü. Plant volatiles in polluted atmospheres: stress responses and signal degradation. PLANT, CELL & ENVIRONMENT 2014; 37:1892-904. [PMID: 24738697 PMCID: PMC4289706 DOI: 10.1111/pce.12352] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 04/05/2014] [Indexed: 05/18/2023]
Abstract
Plants emit a plethora of volatile organic compounds, which provide detailed information on the physiological condition of emitters. Volatiles induced by herbivore feeding are among the best studied plant responses to stress and may constitute an informative message to the surrounding community and further function in plant defence processes. However, under natural conditions, plants are potentially exposed to multiple concurrent stresses with complex effects on the volatile emissions. Atmospheric pollutants are an important facet of the abiotic environment and can impinge on a plant's volatile-mediated defences in multiple ways at multiple temporal scales. They can exert changes in volatile emissions through oxidative stress, as is the case with ozone pollution. The pollutants, in particular, ozone, nitrogen oxides and hydroxyl radicals, also react with volatiles in the atmosphere. These reactions result in volatile breakdown products, which may themselves be perceived by community members as informative signals. In this review, we demonstrate the complex interplay among stresses, emitted signals, and modification in signal strength and composition by the atmosphere, collectively determining the responses of the biotic community to elicited signals.
Collapse
Affiliation(s)
- James D. Blande
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Jarmo K. Holopainen
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Ülo Niinemets
- Department of Plant Physiology, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| |
Collapse
|
334
|
Tong L, Wu S. ROS and p53 in regulation of UVB-induced HDM2 alternative splicing. Photochem Photobiol 2014; 91:221-4. [PMID: 24986024 DOI: 10.1111/php.12306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/29/2014] [Indexed: 11/30/2022]
Abstract
Alternative splicing plays an important role in proteasome diversity and gene expression regulation in eukaryotic cells. Hdm2, the human homolog of mdm2 (murine double minute oncogene 2), is known to be an oncogene as its role in suppression of p53. Hdm2 alternative splicing, occurs in both tumor and normal tissues, is believed to be a response of cells for cellular stress, and thus modulate p53 activity. Therefore, understanding the regulation of hdm2 splicing is critical in elucidating the mechanisms of tumor development and progression. In this study, we determined the effect of ultraviolet B light (UVB) on alternative splicing of hdm2. Our data indicated that UVB (50 mJ cm(-2)) alone is not a good inducer of alternative splicing of hdm2. The less effectiveness could be due to the induction of ROS and p53 by UVB because removing ROS by L-NAC (10 mm) in p53 null cells could lead to alternative splicing of hdm2 upon UVB irradiation.
Collapse
Affiliation(s)
- Lingying Tong
- Department of Chemistry and Biochemistry, and Molecular and Cellular Biology Program, Edison Biotechnology Institute, Ohio University, Athens, OH
| | | |
Collapse
|
335
|
Gutiérrez J, González-Pérez S, García-García F, Daly CT, Lorenzo O, Revuelta JL, McCabe PF, Arellano JB. Programmed cell death activated by Rose Bengal in Arabidopsis thaliana cell suspension cultures requires functional chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3081-95. [PMID: 24723397 PMCID: PMC4071827 DOI: 10.1093/jxb/eru151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Light-grown Arabidopsis thaliana cell suspension culture (ACSC) were subjected to mild photooxidative damage with Rose Bengal (RB) with the aim of gaining a better understanding of singlet oxygen-mediated defence responses in plants. Additionally, ACSC were treated with H2O2 at concentrations that induced comparable levels of protein oxidation damage. Under low to medium light conditions, both RB and H2O2 treatments activated transcriptional defence responses and inhibited photosynthetic activity, but they differed in that programmed cell death (PCD) was only observed in cells treated with RB. When dark-grown ACSC were subjected to RB in the light, PCD was suppressed, indicating that the singlet oxygen-mediated signalling pathway in ACSC requires functional chloroplasts. Analysis of up-regulated transcripts in light-grown ACSC, treated with RB in the light, showed that both singlet oxygen-responsive transcripts and transcripts with a key role in hormone-activated PCD (i.e. ethylene and jasmonic acid) were present. A co-regulation analysis proved that ACSC treated with RB exhibited higher correlation with the conditional fluorescence (flu) mutant than with other singlet oxygen-producing mutants or wild-type plants subjected to high light. However, there was no evidence for the up-regulation of EDS1, suggesting that activation of PCD was not associated with the EXECUTER- and EDS1-dependent signalling pathway described in the flu mutant. Indigo Carmine and Methylene Violet, two photosensitizers unable to enter chloroplasts, did not activate transcriptional defence responses in ACSC; however, whether this was due to their location or to their inherently low singlet oxygen quantum efficiencies was not determined.
Collapse
Affiliation(s)
- Jorge Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de merinas 52, 37008 Salamanca, Spain Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Sergio González-Pérez
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de merinas 52, 37008 Salamanca, Spain
| | - Francisco García-García
- Functional Genomics Node, INB, Computational Medicine, Prince Felipe Research Centre, Av. Autopista del Saler 16, Camino de las Moreras, 46012 Valencia, Spain
| | - Cara T Daly
- School of Science, Department of Chemical and Life Sciences, Waterford Institute of Technology, Cork Road, Waterford, Ireland School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Oscar Lorenzo
- Departamento de Fisiología Vegetal, Centro Hispano-Luso de Investigaciones Agrarias, Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - José L Revuelta
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Paul F McCabe
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Juan B Arellano
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de merinas 52, 37008 Salamanca, Spain
| |
Collapse
|
336
|
Gegas VC, Wargent JJ, Pesquet E, Granqvist E, Paul ND, Doonan JH. Endopolyploidy as a potential alternative adaptive strategy for Arabidopsis leaf size variation in response to UV-B. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2757-66. [PMID: 24470468 PMCID: PMC4047990 DOI: 10.1093/jxb/ert473] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The extent of endoreduplication in leaf growth is group- or even species-specific, and its adaptive role is still unclear. A survey of Arabidopsis accessions for variation at the level of endopolyploidy, cell number, and cell size in leaves revealed extensive genetic variation in endopolyploidy level. High endopolyploidy is associated with increased leaf size, both in natural and in genetically unstructured (mapping) populations. The underlying genes were identified as quantitative trait loci that control endopolyploidy in nature by modulating the progression of successive endocycles during organ development. This complex genetic architecture indicates an adaptive mechanism that allows differential organ growth over a broad geographic range and under stressful environmental conditions. UV-B radiation was identified as a significant positive climatic predictor for high endopolyploidy. Arabidopsis accessions carrying the increasing alleles for endopolyploidy also have enhanced tolerance to UV-B radiation. UV-absorbing secondary metabolites provide an additional protective strategy in accessions that display low endopolyploidy. Taken together, these results demonstrate that high constitutive endopolyploidy is a significant predictor for organ size in natural populations and is likely to contribute to sustaining plant growth under high incident UV radiation. Endopolyploidy may therefore form part of the range of UV-B tolerance mechanisms that exist in natural populations.
Collapse
Affiliation(s)
- Vasilis C Gegas
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jason J Wargent
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Edouard Pesquet
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Emma Granqvist
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Nigel D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - John H Doonan
- IBERS, Aberystwyth University, Aberystwyth SY23 2AX, UK
| |
Collapse
|
337
|
Czégény G, Wu M, Dér A, Eriksson LA, Strid Å, Hideg É. Hydrogen peroxide contributes to the ultraviolet-B (280-315 nm) induced oxidative stress of plant leaves through multiple pathways. FEBS Lett 2014; 588:2255-61. [PMID: 24846142 DOI: 10.1016/j.febslet.2014.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 04/14/2014] [Accepted: 05/02/2014] [Indexed: 11/28/2022]
Abstract
Solar UV-B (280-315 nm) radiation is a developmental signal in plants but may also cause oxidative stress when combined with other environmental factors. Using computer modeling and in solution experiments we show that UV-B is capable of photosensitizing hydroxyl radical production from hydrogen peroxide. We present evidence that the oxidative effect of UV-B in leaves is at least twofold: (i) it increases cellular hydrogen peroxide concentrations, to a larger extent in pyridoxine antioxidant mutant pdx1.3-1 Arabidopsis and; (ii) is capable of a partial photo-conversion of both 'natural' and 'extra' hydrogen peroxide to hydroxyl radicals. As stress conditions other than UV can increase cellular hydrogen peroxide levels, synergistic deleterious effects of various stresses may be expected already under ambient solar UV-B.
Collapse
Affiliation(s)
- Gyula Czégény
- Institute of Biology, University of Pécs, Pécs, Hungary; Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Min Wu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - András Dér
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Åke Strid
- Örebro Life Science Centre, School of Science & Technology, Örebro University, Örebro, Sweden
| | - Éva Hideg
- Institute of Biology, University of Pécs, Pécs, Hungary.
| |
Collapse
|
338
|
Wu M, Strid Å, Eriksson LA. Photochemical reaction mechanism of UV-B-induced monomerization of UVR8 dimers as the first signaling event in UV-B-regulated gene expression in plants. J Phys Chem B 2014; 118:951-65. [PMID: 24410443 DOI: 10.1021/jp4104118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Arabidopsis thaliana UV RESISTANCE LOCUS8 (UVR8) protein has been identified to specifically mediate photomorphogenic UV-B responses by acting as a UV-B photoreceptor. The dimeric structure of the UVR8 protein dissociates into signaling-active monomers upon UV-B exposure, and the monomers rapidly interact with downstream signaling components to regulate gene expression. UVR8 monomers revert to dimers in the absence of UV-B radiation, thereby reversing transcription activation. UVR8 amino acid residues W233 and W285 have been identified to play critical roles in the UVR8 dimer for the response to UV-B irradiation. In the present work, the photoreaction mechanism for UVR8 monomerization is explored with quantum chemical cluster calculations and evaluated by molecular dynamics simulations using the wild-type UVR8 dimer and novel force field parameters developed for intermediate radicals formed in the photochemical process. Three different models are investigated, which show that the preferred mechanism for UVR8 monomerization involves electron transfer from residue W233 to W285 and onward to R338 initiated by UV-B irradiation, coupled to simultaneous proton transfer from W233 to D129 leading to the formation of protonated D129, a deprotonated W233 radical, and a neutral R338 radical. Due to the formation of the neutral R338 radical, salt bridges involving this residue are disrupted together with the concomitant interruption of several other key salt bridges R286-D96, R286-D107, R338-D44, R354-E43, and R354-E53. The resulting large decrease in protein-protein interaction energy arising from this sequence of events leads to the monomerization of the UVR8 dimer. The mechanism presented is in accord with all experimental data available to date.
Collapse
Affiliation(s)
- Min Wu
- Department of Chemistry and Molecular Biology, University of Gothenburg , SE-412 96 Göteborg, Sweden
| | | | | |
Collapse
|
339
|
Steinebrunner I, Gey U, Andres M, Garcia L, Gonzalez DH. Divergent functions of the Arabidopsis mitochondrial SCO proteins: HCC1 is essential for COX activity while HCC2 is involved in the UV-B stress response. FRONTIERS IN PLANT SCIENCE 2014; 5:87. [PMID: 24723925 PMCID: PMC3971200 DOI: 10.3389/fpls.2014.00087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/24/2014] [Indexed: 05/07/2023]
Abstract
The two related putative cytochrome c oxidase (COX) assembly factors HCC1 and HCC2 from Arabidopsis thaliana are Homologs of the yeast Copper Chaperones Sco1p and Sco2p. The hcc1 null mutation was previously shown to be embryo lethal while the disruption of the HCC2 gene function had no obvious effect on plant development, but increased the expression of stress-responsive genes. Both HCC1 and HCC2 contain a thioredoxin domain, but only HCC1 carries a Cu-binding motif also found in Sco1p and Sco2p. In order to investigate the physiological implications suggested by this difference, various hcc1 and hcc2 mutants were generated and analyzed. The lethality of the hcc1 knockout mutation was rescued by complementation with the HCC1 gene under the control of the embryo-specific promoter ABSCISIC ACID INSENSITIVE 3. However, the complemented seedlings did not grow into mature plants, underscoring the general importance of HCC1 for plant growth. The HCC2 homolog was shown to localize to mitochondria like HCC1, yet the function of HCC2 is evidently different, because two hcc2 knockout lines developed normally and exhibited only mild growth suppression compared with the wild type (WT). However, hcc2 knockouts were more sensitive to UV-B treatment than the WT. Complementation of the hcc2 knockout with HCC2 rescued the UV-B-sensitive phenotype. In agreement with this, exposure of wild-type plants to UV-B led to an increase of HCC2 transcripts. In order to corroborate a function of HCC1 and HCC2 in COX biogenesis, COX activity of hcc1 and hcc2 mutants was compared. While the loss of HCC2 function had no significant effect on COX activity, the disruption of one HCC1 gene copy was enough to suppress respiration by more than half compared with the WT. Therefore, we conclude that HCC1 is essential for COX function, most likely by delivering Cu to the catalytic center. HCC2, on the other hand, seems to be involved directly or indirectly in UV-B-stress responses.
Collapse
Affiliation(s)
- Iris Steinebrunner
- Department of Biology, Technische Universität DresdenDresden, Germany
- *Correspondence: Iris Steinebrunner, Department of Biology, Technische Universität Dresden, Helmholtzstr. 10, 01062 Dresden, Germany e-mail:
| | - Uta Gey
- Department of Biology, Technische Universität DresdenDresden, Germany
| | - Manuela Andres
- Department of Biology, Technische Universität DresdenDresden, Germany
| | - Lucila Garcia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Universidad Nacional del LitoralSanta Fe, Argentina
| | - Daniel H. Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Universidad Nacional del LitoralSanta Fe, Argentina
| |
Collapse
|
340
|
Müller-Xing R, Xing Q, Goodrich J. Footprints of the sun: memory of UV and light stress in plants. FRONTIERS IN PLANT SCIENCE 2014. [PMID: 25278950 DOI: 10.3389/fpls.2014.00474/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sunlight provides the necessary energy for plant growth via photosynthesis but high light and particular its integral ultraviolet (UV) part causes stress potentially leading to serious damage to DNA, proteins, and other cellular components. Plants show adaptation to environmental stresses, sometimes referred to as "plant memory." There is growing evidence that plants memorize exposure to biotic or abiotic stresses through epigenetic mechanisms at the cellular level. UV target genes such as CHALCONE SYNTHASE (CHS) respond immediately to UV treatment and studies of the recently identified UV-B receptor UV RESISTANCE LOCUS 8 (UVR8) confirm the expedite nature of UV signaling. Considering these findings, an UV memory seems redundant. However, several lines of evidence suggest that plants may develop an epigenetic memory of UV and light stress, but in comparison to other abiotic stresses there has been relatively little investigation. Here we summarize the state of knowledge about acclimation and adaptation of plants to UV light and discuss the possibility of chromatin based epigenetic memory.
Collapse
Affiliation(s)
- Ralf Müller-Xing
- Institute of Genetics, Heinrich-Heine-University Düsseldorf, Germany
| | - Qian Xing
- Institute of Genetics, Heinrich-Heine-University Düsseldorf, Germany
| | - Justin Goodrich
- Institute for Molecular Plant Sciences, The University of Edinburgh Edinburgh, UK
| |
Collapse
|
341
|
Bandurska H, Niedziela J, Chadzinikolau T. Separate and combined responses to water deficit and UV-B radiation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 213:98-105. [PMID: 24157212 DOI: 10.1016/j.plantsci.2013.09.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/08/2013] [Accepted: 09/01/2013] [Indexed: 05/22/2023]
Abstract
Crops and other plants in natural conditions are routinely affected by several stresses acting simultaneously or in sequence. In areas affected by drought, plants may also be exposed to enhanced UV-B radiation (280-315nm). Each of these stress factors differently affects cellular metabolism. A common consequence of plant exposure to the separate action of water deficit and UV-B radiation is the enhanced generation of reactive oxygen species (ROS) causing damage to proteins, lipids, carbohydrates and DNA. Despite this destructive activity, ROS also act as signalling molecules in cellular processes responsible for defence responses. Plants have evolved many physiological and biochemical mechanisms that avoid or tolerate the effects of stress factors. Water deficit avoidance leads to stomatal closure, stimulation of root growth, and accumulation of free proline and other osmolytes. Secondary metabolites (flavonols, flavones and anthocyanins) that accumulate in epidermal cells effectively screen UV-B irradiation and reduce its penetration to mesophyll tissue. The coordinated increased activity of the enzymatic antioxidant defence system such as up-regulation of superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase and glutathione reductase is an important mechanism of tolerance to water deficit and UV-B radiation. The accumulation of low molecular antioxidants (proline, glycine betaine, ascorbate and glutathione) can also contribute to tolerance to water deficit. Polyamines, tocopherol, carotenoids, alkaloids, flavonoids and other secondary metabolites participate in the removal of ROS under conditions of increased UV-B radiation. The combination of water deficit and UV-B radiation induces responses that can be antagonistic, additive or synergistic in comparison with the action of single stresses. UV-B radiation may enhance resistance to water deficit and vice versa. Hydrogen peroxide, nitric oxide (NO), abscisic acid (ABA), jasmonic acid, ethylene, and salicylic acid participate in the activation of defence mechanisms. The involvement of these molecules in cross-resistance may rely on activation of enzymatic and non-enzymatic antioxidant systems, enzymes of flavonoid biosynthesis and the accumulation of low-molecular-weight osmolytes as well as regulation of stomatal closure. However, under the conditions of prolonged action of stressors or in the case where one of them is severe, the capacity of the defence system becomes exhausted, leading to damage and even death.
Collapse
Affiliation(s)
- Hanna Bandurska
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | | | | |
Collapse
|
342
|
Poschenrieder C, Cabot C, Martos S, Gallego B, Barceló J. Do toxic ions induce hormesis in plants? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 212:15-25. [PMID: 24094050 DOI: 10.1016/j.plantsci.2013.07.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/14/2013] [Accepted: 07/30/2013] [Indexed: 06/02/2023]
Abstract
The concept of hormesis in plants is critically reviewed, taking growth stimulation by low concentrations of toxic trace elements as a reference. The importance of both non-adaptive and adaptive mechanisms underlying ion-induced hormetic growth responses is highlighted. The activation of defense mechanisms by metal ions and pathogenic elicitors and the cross talk between the signals induced by metal ions and biotic stressors are considered. The production of reactive oxygen species and, consequently, the induction of stress-induced antioxidants, are key mechanisms in metal ion-induced hormesis in plants. It is concluded that in the current scientific literature, hormesis is used as an "umbrella" term that includes a wide range of different mechanisms. It is recommended that the term hormesis be used in plant toxicology as a descriptive term for the stimulated phase in growth response curves that is induced by low concentrations of toxic metal ions without evidence of the underlying mechanisms. If the mechanisms underlying the stimulated growth phase have been identified, specific terms, such as amelioration, defense gene activation, priming or acclimation, should be used.
Collapse
Affiliation(s)
- Charlotte Poschenrieder
- Lab. Fisiología Vegetal, Facultad Biociencias, Universidad Autónoma de Barcelona, E-08193 Bellaterra, Spain.
| | | | | | | | | |
Collapse
|
343
|
Wu M, Strid Å, Eriksson LA. Interactions and Stabilities of the UV RESISTANCE LOCUS8 (UVR8) Protein Dimer and Its Key Mutants. J Chem Inf Model 2013; 53:1736-46. [DOI: 10.1021/ci4001822] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Min Wu
- Department of Chemistry and
Molecular Biology, University of Gothenburg, SE-412 96 Göteborg,
Sweden
| | - Åke Strid
- School of Science
and Technology,
Örebro University, SE-70182 Örebro, Sweden
| | - Leif A. Eriksson
- Department of Chemistry and
Molecular Biology, University of Gothenburg, SE-412 96 Göteborg,
Sweden
| |
Collapse
|
344
|
Ultra-weak photon emission as a non-invasive tool for the measurement of oxidative stress induced by UVA radiation in Arabidopsis thaliana. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 123:59-64. [PMID: 23624533 DOI: 10.1016/j.jphotobiol.2013.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/20/2013] [Accepted: 03/27/2013] [Indexed: 12/18/2022]
Abstract
All living organisms emit ultra-weak photon emission as a result of oxidative processes caused by the physical or chemical stress factors. In the present study, the effect of oxidative stress induced by the exposure of the plant model Arabidopsis thaliana to ultraviolet A (UVA) radiation was studied using ultra-weak photon emission. When Arabidopsis plants and leaves were exposed to UVA radiation, two kinetically distinguished phases in the ultra-weak photon emission decay were observed: the fast decay phase (τ1=0.805±0.024 min) and slow decay phase (τ2=4.321±0.166 min). The spectral analysis of the UVA radiation-induced ultra-weak photon emission showed that the photon emission during the fast decay phase is from both blue-green and red regions of the spectrum, whereas the photon emission during the slow decay phase is solely from the blue-green region of the spectrum. These observations reveal that triplet excited carbonyls contribute to ultra-weak photon emission during both fast and slow decay phases, whereas chlorophylls participate in the ultra-weak photon emission solely during the fast decay phase. It is illustrated here that the ultra-weak photon emission serves as a non-invasive method for the monitoring of oxidative stress in plants caused by UVA radiation.
Collapse
|
345
|
Wargent JJ, Jordan BR. From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production. THE NEW PHYTOLOGIST 2013; 197:1058-1076. [PMID: 23363481 DOI: 10.1111/nph.12132] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/04/2012] [Indexed: 05/06/2023]
Abstract
Largely because of concerns regarding global climate change, there is a burgeoning interest in the application of fundamental scientific knowledge in order to better exploit environmental cues in the achievement of desirable endpoints in crop production. Ultraviolet (UV) radiation is an energetic driver of a diverse range of plant responses and, despite historical concerns regarding the damaging consequences of UV-B radiation for global plant productivity as related to stratospheric ozone depletion, current developments representative of a range of organizational scales suggest that key plant responses to UV-B radiation may be exploitable in the context of a sustainable contribution towards the strengthening of global crop production, including alterations in secondary metabolism, enhanced photoprotection, up-regulation of the antioxidative response and modified resistance to pest and disease attack. Here, we discuss the prospect of this paradigm shift in photobiology, and consider the linkages between fundamental plant biology and crop-level outcomes that can be applied to the plant UV-B response, in addition to the consequences for related biota and many other facets of agro-ecosystem processes.
Collapse
Affiliation(s)
- Jason J Wargent
- Institute of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Brian R Jordan
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, 7647, Christchurch, New Zealand
| |
Collapse
|
346
|
Qüesta JI, Fina JP, Casati P. DDM1 and ROS1 have a role in UV-B induced- and oxidative DNA damage in A. thaliana. FRONTIERS IN PLANT SCIENCE 2013; 4:420. [PMID: 24155752 PMCID: PMC3801088 DOI: 10.3389/fpls.2013.00420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/02/2013] [Indexed: 05/18/2023]
Abstract
Absorption of UV-B by DNA induces the formation of covalent bonds between adjacent pyrimidines. In maize and arabidopsis, plants deficient in chromatin remodeling show increased DNA damage compared to WT plants after a UV-B treatment. However, the role of enzymes that participate in DNA methylation in DNA repair after UV-B damage was not previously investigated. In this work, we analyzed how chromatin remodeling activities that have an effect on DNA methylation affects the repair of UV-B damaged DNA using plants deficient in the expression of DDM1 and ROS1. First, we analyzed their regulation by UV-B radiation in arabidopsis plants. Then, we demonstrated that ddm1 mutants accumulated more DNA damage after UV-B exposure compared to Col0 plants. Surprisingly, ros1 mutants show less CPDs and 6-4PPs than WT plants after the treatment under light conditions, while the repair under dark conditions is impaired. Transcripts for two photolyases are highly induced by UV-B in ros1 mutants, suggesting that the lower accumulation of photoproducts by UV-B is due to increased photorepair in these mutants. Finally, we demonstrate that oxidative DNA damage does not occur after UV-B exposure in arabidopsis plants; however, ros1 plants accumulate high levels of oxoproducts, while ddm1 mutants have less oxoproducts than Col0 plants, suggesting that both ROS1 and DDM1 have a role in the repair of oxidative DNA damage. Together, our data provide evidence that both DDM1 and ROS1, directly or indirectly, participate in UV-B induced- and oxidative DNA damage repair.
Collapse
Affiliation(s)
| | | | - Paula Casati
- *Correspondence: Paula Casati, Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina e-mail:
| |
Collapse
|