301
|
Diaz M, Pecinka A. Scaffolding for Repair: Understanding Molecular Functions of the SMC5/6 Complex. Genes (Basel) 2018; 9:genes9010036. [PMID: 29329249 PMCID: PMC5793187 DOI: 10.3390/genes9010036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
Chromosome organization, dynamics and stability are required for successful passage through cellular generations and transmission of genetic information to offspring. The key components involved are Structural maintenance of chromosomes (SMC) complexes. Cohesin complex ensures proper chromatid alignment, condensin complex chromosome condensation and the SMC5/6 complex is specialized in the maintenance of genome stability. Here we summarize recent knowledge on the composition and molecular functions of SMC5/6 complex. SMC5/6 complex was originally identified based on the sensitivity of its mutants to genotoxic stress but there is increasing number of studies demonstrating its roles in the control of DNA replication, sister chromatid resolution and genomic location-dependent promotion or suppression of homologous recombination. Some of these functions appear to be due to a very dynamic interaction with cohesin or other repair complexes. Studies in Arabidopsis indicate that, besides its canonical function in repair of damaged DNA, the SMC5/6 complex plays important roles in regulating plant development, abiotic stress responses, suppression of autoimmune responses and sexual reproduction.
Collapse
Affiliation(s)
- Mariana Diaz
- Institute of Experimental Botany of the Czech Academy of Sciences (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 77900 Olomouc-Holice, Czech Republic.
- Max Planck Institute for Plant Breeding Research (MPIPZ), Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| | - Ales Pecinka
- Institute of Experimental Botany of the Czech Academy of Sciences (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 77900 Olomouc-Holice, Czech Republic.
| |
Collapse
|
302
|
Shukla A, Chatterjee A, Kondabagil K. The number of genes encoding repeat domain-containing proteins positively correlates with genome size in amoebal giant viruses. Virus Evol 2018; 4:vex039. [PMID: 29308275 PMCID: PMC5753266 DOI: 10.1093/ve/vex039] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Curiously, in viruses, the virion volume appears to be predominantly driven by genome length rather than the number of proteins it encodes or geometric constraints. With their large genome and giant particle size, amoebal viruses (AVs) are ideally suited to study the relationship between genome and virion size and explore the role of genome plasticity in their evolutionary success. Different genomic regions of AVs exhibit distinct genealogies. Although the vertically transferred core genes and their functions are universally conserved across the nucleocytoplasmic large DNA virus (NCLDV) families and are essential for their replication, the horizontally acquired genes are variable across families and are lineage-specific. When compared with other giant virus families, we observed a near–linear increase in the number of genes encoding repeat domain-containing proteins (RDCPs) with the increase in the genome size of AVs. From what is known about the functions of RDCPs in bacteria and eukaryotes and their prevalence in the AV genomes, we envisage important roles for RDCPs in the life cycle of AVs, their genome expansion, and plasticity. This observation also supports the evolution of AVs from a smaller viral ancestor by the acquisition of diverse gene families from the environment including RDCPs that might have helped in host adaption.
Collapse
Affiliation(s)
- Avi Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Anirvan Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
303
|
Xu Y, Liu F, Zhu S, Li X. The Maize NBS-LRR Gene ZmNBS25 Enhances Disease Resistance in Rice and Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:1033. [PMID: 30065743 PMCID: PMC6056734 DOI: 10.3389/fpls.2018.01033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/25/2018] [Indexed: 05/05/2023]
Abstract
Nucleotide-binding site-leucine-rich repeat (NBS-LRR) domain proteins are immune sensors and play critical roles in plant disease resistance. In this study, we cloned and characterized a novel NBS-LRR gene ZmNBS25 in maize. We found that ZmNBS25 could response to pathogen inoculation and salicylic acid (SA) treatment in maize, and transient overexpression of ZmNBS25 induced a hypersensitive response in tobacco. High-performance liquid chromatography (HPLC) analysis showed that, compared to control plants, ZmNBS25 overexpression (ZmNBS25-OE) in Arabidopsis and rice resulted in higher SA levels. By triggering the expression of certain defense-responsive genes, ZmNBS25-OE enhanced the resistance of Arabidopsis and rice to Pseudomonas syringae pv. tomato DC3000 and sheath blight disease, respectively. Moreover, we found little change of grain size and 1000-grain weight between ZmNBS25-OE rice lines and controls. Together, our results suggest that ZmNBS25 can function as a disease resistance gene across different species, being a valuable candidate for engineering resistance in breeding programs.
Collapse
Affiliation(s)
- Yunjian Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Fang Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Suwen Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Xiaoyu Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- *Correspondence: Xiaoyu Li, ;
| |
Collapse
|
304
|
Sarkar S, Das A, Khandagale P, Maiti IB, Chattopadhyay S, Dey N. Interaction of Arabidopsis TGA3 and WRKY53 transcription factors on Cestrum yellow leaf curling virus (CmYLCV) promoter mediates salicylic acid-dependent gene expression in planta. PLANTA 2018; 247:181-199. [PMID: 28913593 DOI: 10.1007/s00425-017-2769-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/28/2017] [Indexed: 05/08/2023]
Abstract
This paper highlighted a salicylic acid-inducible Caulimoviral promoter fragment from Cestrum yellow leaf curling virus (CmYLCV). Interaction of Arabidopsis transcription factors TGA3 and WRKY53 on CmYLCV promoter resulted in the enhancement of the promoter activity via NPR1-dependent salicylic acid signaling. Several transcriptional promoters isolated from plant-infecting Caulimoviruses are being presently used worldwide as efficient tools for plant gene expression. The CmYLCV promoter has been isolated from the Cestrum yellow leaf curling virus (Caulimoviruses) and characterized more than 12 years ago; also we have earlier reported a near-constitutive, pathogen-inducible CmYLCV promoter fragment (-329 to +137 from transcription start site; TSS) that enhances stronger (3×) expression than the previously reported fragments; all these fragments are highly efficient in monocot and dicot plants (Sahoo et al. Planta 240: 855-875, 2014). Here, we have shown that the full-length CmYLCV promoter fragment (-729 to +137 from TSS) is salicylic acid (SA) inducible. In this context, we have performed an in-depth study to elucidate the factors responsible for SA-inducibility of the CmYLCV promoter. We found that the as-1 1 and W-box1 elements (located at -649 and -640 from the TSS) of the CmYLCV promoter are required for SA-induced activation by recruiting Arabidopsis TGA3 and WRKY53 transcription factors. Consequently, as a nascent observation, we established the physical interaction between TGA3 and WYKY53; also demonstrated that the N-terminal domain of TGA3 is sufficient for the interaction with the full-length WRKY53. Such interaction synergistically activates the CmYLCV promoter activity in planta. Further, we found that activation of the CmYLCV promoter by SA through TGA3 and WRKY53 interaction depends on NPR1. Finally, the findings presented here provide strong support for the direct regulatory roles of TGA3 and WRKY53 in the SA and NPR1-dependent activation of a Caulimoviral promoter (CmYLCV).
Collapse
Affiliation(s)
- Shayan Sarkar
- Department of Gene Function and Regulation, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Abhimanyu Das
- Department of Gene Function and Regulation, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Prashant Khandagale
- Department of Gene Function and Regulation, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Indu B Maiti
- KTRDC, College of Agriculture-Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
| | - Nrisingha Dey
- Department of Gene Function and Regulation, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, Odisha, India.
| |
Collapse
|
305
|
Fister AS, Landherr L, Maximova SN, Guiltinan MJ. Transient Expression of CRISPR/Cas9 Machinery Targeting TcNPR3 Enhances Defense Response in Theobroma cacao. FRONTIERS IN PLANT SCIENCE 2018; 9:268. [PMID: 29552023 PMCID: PMC5841092 DOI: 10.3389/fpls.2018.00268] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/14/2018] [Indexed: 05/19/2023]
Abstract
Theobroma cacao, the source of cocoa, suffers significant losses to a variety of pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this tropical tree crop. In this study, we present the first application of genome editing technology in cacao, using Agrobacterium-mediated transient transformation to introduce CRISPR/Cas9 components into cacao leaves and cotyledon cells. As a first proof of concept, we targeted the cacao Non-Expressor of Pathogenesis-Related 3 (TcNPR3) gene, a suppressor of the defense response. After demonstrating activity of designed single-guide RNAs (sgRNA) in vitro, we used Agrobacterium to introduce a CRISPR/Cas9 system into leaf tissue, and identified the presence of deletions in 27% of TcNPR3 copies in the treated tissues. The edited tissue exhibited an increased resistance to infection with the cacao pathogen Phytophthora tropicalis and elevated expression of downstream defense genes. Analysis of off-target mutagenesis in sequences similar to sgRNA target sites using high-throughput sequencing did not reveal mutations above background sequencing error rates. These results confirm the function of NPR3 as a repressor of the cacao immune system and demonstrate the application of CRISPR/Cas9 as a powerful functional genomics tool for cacao. Several stably transformed and genome edited somatic embryos were obtained via Agrobacterium-mediated transformation, and ongoing work will test the effectiveness of this approach at a whole plant level.
Collapse
Affiliation(s)
- Andrew S. Fister
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
| | - Lena Landherr
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
| | - Siela N. Maximova
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Mark J. Guiltinan
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Mark J. Guiltinan
| |
Collapse
|
306
|
Fuechtbauer W, Yunusov T, Bozsóki Z, Gavrin A, James EK, Stougaard J, Schornack S, Radutoiu S. LYS12 LysM receptor decelerates Phytophthora palmivora disease progression in Lotus japonicus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:297-310. [PMID: 29171909 DOI: 10.1111/tpj.13785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 05/19/2023]
Abstract
Phytophthora palmivora is a devastating oomycete plant pathogen. We found that P. palmivora induces disease in Lotus japonicus and used this interaction to identify cellular and molecular events in response to this oomycete, which has a broad host range. Transcript quantification revealed that Lys12 was highly and rapidly induced during P. palmivora infection. Mutants of Lys12 displayed accelerated disease progression, earlier plant death and a lower level of defence gene expression than the wild type, while the defence program after chitin, laminarin, oligogalacturonide or flg22 treatment and the root symbioses with nitrogen-fixing rhizobia and arbuscular mycorrhiza were similar to the wild type. On the microbial side, we found that P. palmivora encodes an active chitin synthase-like protein, and mycelial growth is impaired after treatment with a chitin-synthase inhibitor. However, wheat germ agglutinin-detectable N-acetyl-glucosamine (GlcNAc) epitopes were not identified when the oomycete was grown in vitro or while infecting the roots. This indicates that conventional GlcNAc-mers are unlikely to be produced and/or accumulate in P. palmivora cell walls and that LYS12 might perceive an unknown carbohydrate. The impact of Lys12 on progression of root rot disease, together with the finding that similar genes are present in other P. palmivora hosts, suggests that LYS12 might mediate a common early response to this pathogen.
Collapse
Affiliation(s)
- Winnie Fuechtbauer
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Temur Yunusov
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Zoltán Bozsóki
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Aleksandr Gavrin
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Sebastian Schornack
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| |
Collapse
|
307
|
Vahabi K, Reichelt M, Scholz SS, Furch ACU, Matsuo M, Johnson JM, Sherameti I, Gershenzon J, Oelmüller R. Alternaria Brassicae Induces Systemic Jasmonate Responses in Arabidopsis Which Travel to Neighboring Plants via a Piriformsopora Indica Hyphal Network and Activate Abscisic Acid Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:626. [PMID: 29868082 PMCID: PMC5952412 DOI: 10.3389/fpls.2018.00626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/20/2018] [Indexed: 05/20/2023]
Abstract
Stress information received by a particular local plant tissue is transferred to other tissues and neighboring plants, but how the information travels is not well understood. Application of Alternaria Brassicae spores to Arabidopsis leaves or roots stimulates local accumulation of jasmonic acid (JA), the expression of JA-responsive genes, as well as of NITRATE TRANSPORTER (NRT)2.5 and REDOX RESPONSIVE TRANSCRIPTION FACTOR1 (RRTF1). Infection information is systemically spread over the entire seedling and propagates radially from infected to non-infected leaves, axially from leaves to roots, and vice versa. The local and systemic NRT2.5 responses are reduced in the jar1 mutant, and the RRTF1 response in the rbohD mutant. Information about A. brassicae infection travels slowly to uninfected neighboring plants via a Piriformospora Indica hyphal network, where NRT2.5 and RRTF1 are up-regulated. The systemic A. brassicae-induced JA response in infected plants is converted to an abscisic acid (ABA) response in the neighboring plant where ABA and ABA-responsive genes are induced. We propose that the local threat information induced by A. brassicae infection is spread over the entire plant and transferred to neighboring plants via a P. indica hyphal network. The JA-specific response is converted to a general ABA-mediated stress response in the neighboring plant.
Collapse
Affiliation(s)
- Khabat Vahabi
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Sandra S. Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Alexandra C. U. Furch
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mitsuhiro Matsuo
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Joy M. Johnson
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Irena Sherameti
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
- *Correspondence: Ralf Oelmüller
| |
Collapse
|
308
|
Hussain RMF, Sheikh AH, Haider I, Quareshy M, Linthorst HJM. Arabidopsis WRKY50 and TGA Transcription Factors Synergistically Activate Expression of PR1. FRONTIERS IN PLANT SCIENCE 2018; 9:930. [PMID: 30057584 PMCID: PMC6053526 DOI: 10.3389/fpls.2018.00930] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/11/2018] [Indexed: 05/18/2023]
Abstract
Arabidopsis PR1 is a salicylic acid (SA) inducible marker gene for systemic acquired resistance (SAR). However, the regulation of PR1 in plants is poorly understood. In this study, we showed that AtWRKY50 transcription factor binds to two promoter elements of PR1 via its DNA binding domain. Interestingly, the DNA-binding sites for AtWRKY50 deviate significantly from the consensus WRKY binding W-box. The binding sites are located in close proximity to the binding sites for TGA transcription factors. Transactivation experiments in Arabidopsis protoplasts derived from wild type, npr1-1 and tga256 mutant plants indicated that AtWRKY50 alone was able to induce expression of a PR1::β-glucuronidase (GUS) reporter gene, independent of TGAs or NPR1. However, co-expression of TGA2 or TGA5 with AtWRKY50 synergistically enhanced expression to high levels. Yeast-2-hybrid assays and bimolecular fluorescence complementation (BiFC) experiments revealed that AtWRKY50 could interact with TGA2 and TGA5. Using electrophoretic mobility shift assays (EMSA) it was established that AtWRKY50 and TGA2 or TGA5 simultaneously bind to the PR1 promoter. Taken together, these results support a role of AtWRKY50 in SA-induced expression of PR1. Highlights: AtWRKY50 specifically binds to LS10 region of PR1 promoter and interacts with TGAs to synergistically activate PR1 expression.
Collapse
Affiliation(s)
| | - Arsheed H. Sheikh
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- *Correspondence: Arsheed H. Sheikh,
| | - Imran Haider
- Institute of Biology, Leiden University, Leiden, Netherlands
- Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
309
|
Li M, Chen H, Chen J, Chang M, Palmer IA, Gassmann W, Liu F, Fu ZQ. TCP Transcription Factors Interact With NPR1 and Contribute Redundantly to Systemic Acquired Resistance. FRONTIERS IN PLANT SCIENCE 2018; 9:1153. [PMID: 30154809 PMCID: PMC6102491 DOI: 10.3389/fpls.2018.01153] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/19/2018] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, TEOSINTE BRANCHED 1, CYCLOIDEA, PCF1 (TCP) transcription factors (TF) play critical functions in developmental processes. Recent studies suggest they also function in plant immunity, but whether they play an important role in systemic acquired resistance (SAR) is still unknown. NON-EXPRESSER OF PR GENES 1 (NPR1), as an essential transcriptional regulatory node in SAR, exerts its regulatory role in downstream genes expression through interaction with TFs. In this work, we provide biochemical and genetic evidence that TCP8, TCP14, and TCP15 are involved in the SAR signaling pathway. TCP8, TCP14, and TCP15 physically interacted with NPR1 in yeast two-hybrid assays, and these interactions were further confirmed in vivo. SAR against the infection of virulent strain Pseudomonas syringae pv. maculicola (Psm) ES4326 in the triple T-DNA insertion mutant tcp8-1 tcp14-5 tcp15-3 was partially compromised compared with Columbia 0 (Col-0) wild type plants. The induction of SAR marker genes PR1, PR2, and PR5 in local and systemic leaves was dramatically decreased in the tcp8-1 tcp14-5 tcp15-3 mutant compared with that in Col-0 after local treatment with Psm ES4326 carrying avrRpt2. Results from yeast one-hybrid and chromatin immunoprecipitation (ChIP) assays demonstrated that TCP15 can bind to a conserved TCP binding motif, GCGGGAC, within the promoter of PR5, and this binding was enhanced by NPR1. Results from RT-qPCR assays showed that TCP15 promotes the expression of PR5 in response to salicylic acid induction. Taken together, these data reveal that TCP8, TCP14, and TCP15 physically interact with NPR1 and function redundantly to establish SAR, that TCP15 promotes the expression of PR5 through directly binding a TCP binding site within the promoter of PR5, and that this binding is enhanced by NPR1.
Collapse
Affiliation(s)
- Min Li
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huan Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ming Chang
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ian A. Palmer
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Walter Gassmann
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- *Correspondence: Fengquan Liu
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Zheng Qing Fu
| |
Collapse
|
310
|
Peng Y, Sun T, Zhang Y. Perception of Salicylic Acid in Physcomitrella patens. FRONTIERS IN PLANT SCIENCE 2017; 8:2145. [PMID: 29326742 PMCID: PMC5741644 DOI: 10.3389/fpls.2017.02145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 12/04/2017] [Indexed: 05/26/2023]
Abstract
Salicylic acid (SA) is a key signaling molecule in plant immunity. Two types of SA receptors, NPR1 and NPR3/NPR4, were reported to be involved in the perception of SA in Arabidopsis. SA is also synthesized in the non-vascular moss Physcomitrella patens following pathogen infection. Sequence analysis revealed that there is only one NPR1/NPR3/NPR4-like protein in P. patens. This agrees with the phylogenetic study that showed the divergence of NPR1 and NPR3/NPR4 from the same ancestor during the evolution of higher plants. Intriguingly, expression of the P. patens NPR1/NPR3/NPR4-like gene in Arabidopsis does not complement the constitutive defense phenotype of the npr3 npr4 double mutant, but can partially rescue the mutant phenotypes of npr1-1, suggesting that it functions as an NPR1-like positive regulator of SA-mediated immunity and P. patens does not have an SA receptor functioning similarly as NPR3/NPR4. Future characterization of the P. patens NPR1-like protein and analysis of its functions through knockout and biochemical approaches will help us better understand how SA is perceived and what its functions are in P. patens.
Collapse
|
311
|
Martínez-Raudales I, De La Cruz-Rodríguez Y, Alvarado-Gutiérrez A, Vega-Arreguín J, Fraire-Mayorga A, Alvarado-Rodríguez M, Balderas-Hernández V, Fraire-Velázquez S. Draft genome sequence of Bacillus velezensis 2A-2B strain: a rhizospheric inhabitant of Sporobolus airoides (Torr.) Torr ., with antifungal activity against root rot causing phytopathogens. Stand Genomic Sci 2017; 12:73. [PMID: 29225729 PMCID: PMC5717847 DOI: 10.1186/s40793-017-0289-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 11/24/2017] [Indexed: 12/13/2022] Open
Abstract
A Bacillus velezensis strain from the rhizosphere of Sporobolus airoides (Torr.) Torr., a grass in central-north México, was isolated during a biocontrol of phytopathogens scrutiny study. The 2A-2B strain exhibited at least 60% of growth inhibition of virulent isolates of phytopathogens causing root rot. These phytopathogens include Phytophthora capsici, Fusarium solani, Fusarium oxysporum and Rhizoctonia solani. Furthermore, the 2A-2B strain is an indolacetic acid producer, and a plant inducer of PR1, which is an induced systemic resistance related gene in chili pepper plantlets. Whole genome sequencing was performed to generate a draft genome assembly of 3.953 MB with 46.36% of GC content, and a N50 of 294,737. The genome contains 3713 protein coding genes and 89 RNA genes. Moreover, comparative genome analysis revealed that the 2A-2B strain had the greatest identity (98.4%) with Bacillus velezensis.
Collapse
Affiliation(s)
- Inés Martínez-Raudales
- Laboratorio Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, Zac. CP, -98067 Zacatecas, Mexico
| | - Yumiko De La Cruz-Rodríguez
- Laboratorio Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, Zac. CP, -98067 Zacatecas, Mexico
| | - Alejandro Alvarado-Gutiérrez
- Laboratorio Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, Zac. CP, -98067 Zacatecas, Mexico
| | | | - Ahuitz Fraire-Mayorga
- Laboratorio Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, Zac. CP, -98067 Zacatecas, Mexico
| | - Miguel Alvarado-Rodríguez
- Laboratorio Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, Zac. CP, -98067 Zacatecas, Mexico
| | - Victor Balderas-Hernández
- Laboratorio Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, Zac. CP, -98067 Zacatecas, Mexico
| | - Saúl Fraire-Velázquez
- Laboratorio Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col. Agronómica, Zac. CP, -98067 Zacatecas, Mexico
| |
Collapse
|
312
|
A Bacterial Type III Effector Targets the Master Regulator of Salicylic Acid Signaling, NPR1, to Subvert Plant Immunity. Cell Host Microbe 2017; 22:777-788.e7. [DOI: 10.1016/j.chom.2017.10.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/10/2017] [Accepted: 10/25/2017] [Indexed: 11/19/2022]
|
313
|
Silva KJP, Brunings AM, Pereira JA, Peres NA, Folta KM, Mou Z. The Arabidopsis ELP3/ELO3 and ELP4/ELO1 genes enhance disease resistance in Fragaria vesca L. BMC PLANT BIOLOGY 2017; 17:230. [PMID: 29191170 PMCID: PMC5709926 DOI: 10.1186/s12870-017-1173-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 11/13/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Plant immune response is associated with a large-scale transcriptional reprogramming, which is regulated by numerous transcription regulators such as the Elongator complex. Elongator is a multitasking protein complex involved in diverse cellular processes, including histone modification, DNA methylation, and tRNA modification. In recent years, Elongator is emerging as a key regulator of plant immune responses. However, characterization of Elongator's function in plant immunity has been conducted only in the model plant Arabidopsis thaliana. It is thus unclear whether Elongator's role in plant immunity is conserved in higher plants. The objective of this study is to characterize transgenic woodland strawberry (Fragaria vesca L.) overexpressing the Arabidopsis Elongator (AtELP) genes, AtELP3 and AtELP4, and to determine whether F. vesca carries a functional Elongator complex. METHODS Transgenic F. vesca and Arabidopsis plants were produced via Agrobacterium-mediated genetic transformation and characterized by morphology, PCR, real-time quantitative PCR, and disease resistance test. The Student's t test was used to analyze the data. RESULTS Overexpression of AtELP3 and AtELP4 in F. vesca impacts plant growth and development and confers enhanced resistance to anthracnose crown rot, powdery mildew, and angular leaf spot, which are caused by the hemibiotrophic fungal pathogen Colletotrichum gloeosporioides, the obligate biotrophic fungal pathogen Podosphaera aphanis, and the hemibiotrophic bacterial pathogen Xanthomonas fragariae, respectively. Moreover, the F. vesca genome encodes all six Elongator subunits by single-copy genes with the exception of FvELP4, which is encoded by two homologous genes, FvELP4-1 and FvELP4-2. We show that FvELP4-1 complemented the Arabidopsis Atelp4/elo1-1 mutant, indicating that FvELP4 is biologically functional. CONCLUSIONS This is the first report on overexpression of Elongator genes in plants. Our results indicate that the function of Elongator in plant immunity is most likely conserved in F. vesca and suggest that Elongator genes may hold potential for helping mitigate disease severity and reduce the use of fungicides in strawberry industry.
Collapse
Affiliation(s)
- Katchen Julliany P. Silva
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611 USA
| | - Asha M. Brunings
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611 USA
| | - Juliana A. Pereira
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611 USA
| | - Natalia A. Peres
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598 USA
| | - Kevin M. Folta
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611 USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
314
|
Yocgo RE, Geza E, Chimusa ER, Mazandu GK. A post-gene silencing bioinformatics protocol for plant-defence gene validation and underlying process identification: case study of the Arabidopsis thaliana NPR1. BMC PLANT BIOLOGY 2017; 17:218. [PMID: 29169324 PMCID: PMC5701366 DOI: 10.1186/s12870-017-1151-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Advances in forward and reverse genetic techniques have enabled the discovery and identification of several plant defence genes based on quantifiable disease phenotypes in mutant populations. Existing models for testing the effect of gene inactivation or genes causing these phenotypes do not take into account eventual uncertainty of these datasets and potential noise inherent in the biological experiment used, which may mask downstream analysis and limit the use of these datasets. Moreover, elucidating biological mechanisms driving the induced disease resistance and influencing these observable disease phenotypes has never been systematically tackled, eliciting the need for an efficient model to characterize completely the gene target under consideration. RESULTS We developed a post-gene silencing bioinformatics (post-GSB) protocol which accounts for potential biases related to the disease phenotype datasets in assessing the contribution of the gene target to the plant defence response. The post-GSB protocol uses Gene Ontology semantic similarity and pathway dataset to generate enriched process regulatory network based on the functional degeneracy of the plant proteome to help understand the induced plant defence response. We applied this protocol to investigate the effect of the NPR1 gene silencing to changes in Arabidopsis thaliana plants following Pseudomonas syringae pathovar tomato strain DC3000 infection. Results indicated that the presence of a functionally active NPR1 reduced the plant's susceptibility to the infection, with about 99% of variability in Pseudomonas spore growth between npr1 mutant and wild-type samples. Moreover, the post-GSB protocol has revealed the coordinate action of target-associated genes and pathways through an enriched process regulatory network, summarizing the potential target-based induced disease resistance mechanism. CONCLUSIONS This protocol can improve the characterization of the gene target and, potentially, elucidate induced defence response by more effectively utilizing available phenotype information and plant proteome functional knowledge.
Collapse
Affiliation(s)
- Rosita E. Yocgo
- African Institute for Mathematical Sciences (AIMS), AIMS South Africa and AIMS Ghana, Cape Town, South Africa
- Biomathematics Division, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Ephifania Geza
- African Institute for Mathematical Sciences (AIMS), AIMS South Africa and AIMS Ghana, Cape Town, South Africa
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Medical School, Anzio Road, Observatory, Cape Town, 7925 South Africa
| | - Emile R. Chimusa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Medical School, Anzio Road, Observatory, Cape Town, 7925 South Africa
| | - Gaston K. Mazandu
- African Institute for Mathematical Sciences (AIMS), AIMS South Africa and AIMS Ghana, Cape Town, South Africa
- Biomathematics Division, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Medical School, Anzio Road, Observatory, Cape Town, 7925 South Africa
| |
Collapse
|
315
|
Wang L, Guo Z, Zhang Y, Wang Y, Wang L, Yang G, Li W, Wang R, Xie Z. Characterization of LhSorTGA2, a novel TGA2-like protein that interacts with LhSorNPR1 in oriental hybrid lily Sorbonne. BOTANICAL STUDIES 2017; 58:46. [PMID: 29127659 PMCID: PMC5681460 DOI: 10.1186/s40529-017-0201-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Non-expressor of pathogenesis-related genes 1 (NPR1) regulates expression of pathogenesis-related (PR) genes by interacting with TGA family proteins during systemic acquired resistance (SAR). However, no TGA-like proteins or their interacting partners have been characterized in lily. RESULTS In the present study, LhSorTGA2, a novel TGA-like protein, was identified as an interacting partner of LhSorNPR1 (an NPR-like protein) by bimolecular fluorescence complementation (BIFC) and yeast two-hybrid assay (Y2H). Subcellular localization of GFP-tagged proteins targeted LhSorTGA2 to the nucleus, whereas GFP-labeled LhSorNPR1 was observed both in the nucleus and at the cytomembrane. Sequence alignment revealed that LhSorTGA2 was featured with a basic leucine zipper (bZIP) domain and two glutamine rich acid domains (QI and QII). Further phylogenetic analysis showed that TGA family proteins can be grouped into three subclades, within which LhSorTGA2 was clustered into subclade I, together with AtTGA2/5/6. Expression of LhSorTGA2 was investigated in different tissues by qPCR, and the highest expression level was observed in stem. Besides, when treated with phytohormones (SA, MeJA, ETH and ABA) or fungal pathogen Botrytis elliptica, LhSorTGA2 expression was also induced at different time points post treatments. CONCLUSIONS Collectively, these results suggested that LhSorTGA2 was an interacting partner of LhSorNPR1, which might function in regulating expression of PR genes in lily during SAR.
Collapse
Affiliation(s)
- Le Wang
- Gaolan Station of the Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhihong Guo
- Gaolan Station of the Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Yubao Zhang
- Gaolan Station of the Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Yajun Wang
- Gaolan Station of the Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Li Wang
- The Forest Tree Seedling Station of the Alxa League, Alxa League, 750300 China
| | - Guo Yang
- Gaolan Station of the Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Wenmei Li
- Gaolan Station of the Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ruoyu Wang
- Gaolan Station of the Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Zhongkui Xie
- Gaolan Station of the Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| |
Collapse
|
316
|
Guo T, Mao X, Zhang H, Zhang Y, Fu M, Sun Z, Kuai P, Lou Y, Fang Y. Lamin-like Proteins Negatively Regulate Plant Immunity through NAC WITH TRANSMEMBRANE MOTIF1-LIKE9 and NONEXPRESSOR OF PR GENES1 in Arabidopsis thaliana. MOLECULAR PLANT 2017; 10:1334-1348. [PMID: 28943325 DOI: 10.1016/j.molp.2017.09.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 05/22/2023]
Abstract
Nuclear lamins are involved in multiple biological processes in metazoan cells. The proteins of the CROWDED NUCLEI (CRWN) family are considered lamin-like candidates in Arabidopsis, although the functions of these proteins are largely unknown. In this article we show that crwn1 crwn2 double mutant displays an enhanced resistance against virulent bacterial pathogens, and both virulent bacteria and salicylic acid (SA) induce transcription of CRWN1 gene as well as proteasome-mediated degradation of CRWN1 protein. We also show that CRWN1 interacts with NAC WITH TRANSMEMBRANE MOTIF1-LIKE9 (NTL9), a NAC transcription factor involved in plant immunity. The interaction between CRWN1 and NTL9 enhances the binding of NTL9 to the promoter of the PATHOGENESIS-RELATED1 (PR1) gene, and inhibits PR1 expression. Further genetic experiments indicated that the defense-related phenotypes of crwn1 crwn2 double mutant are dependent on NONEXPRESSOR OF PR GENES1 (NPR1), a transcriptional cofactor of PR1. These findings revealed a regulatory network composed of lamin-like protein CRWN1, NTL9, and NPR1 for the regulation of PR1 expression.
Collapse
Affiliation(s)
- Tongtong Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuegao Mao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Mengdi Fu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenfei Sun
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Kuai
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuda Fang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
317
|
Kuai X, Barraco C, Després C. Combining Fungicides and Prospective NPR1-Based "Just-in-Time" Immunomodulating Chemistries for Crop Protection. FRONTIERS IN PLANT SCIENCE 2017; 8:1715. [PMID: 29046686 PMCID: PMC5632739 DOI: 10.3389/fpls.2017.01715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Each year, crop yield is lost to weeds competing for resources, insect herbivory and diseases caused by pathogens. To thwart these insults and preserve yield security and a high quality of traits, conventional agriculture makes use of improved cultivars combined with fertilizer and agrochemical applications. However, given that regulatory bodies and consumers are demanding environmentally safer agrochemicals, while at the same time resistance to agrochemicals is mounting, it is crucial to adopt a "holistic" approach to agriculture by not excluding any number of management tools at our disposal. One such tool includes chemicals that stimulate plant immunity. The development of this particular type of alternative crop protection strategy has been of great interest to us. We have approached this paradigm by studying plant immunity, specifically systemic acquired resistance (SAR). The deployment of SAR immunity requires the production by the crop plant of an endogenous small molecule metabolite called salicylic acid (SA). Furthermore, immunity can only be deployed if SA can bind to its receptor and activate the genes responsible for the SAR program. The key receptor for SAR is a transcription coactivator called NPR1. Since discovering this NPR1-SA receptor-ligand pair, we have embarked on a journey to develop novel chemistries capable of deploying SAR in the field. The journey begins with the development of a scalable assay to identify these novel chemistries. One such assay, presented here, is based on differential scanning fluorimetry technology and demonstrates that NPR1 is destabilized by binding to SA.
Collapse
|
318
|
Jeon EJ, Tadamura K, Murakami T, Inaba JI, Kim BM, Sato M, Atsumi G, Kuchitsu K, Masuta C, Nakahara KS. rgs-CaM Detects and Counteracts Viral RNA Silencing Suppressors in Plant Immune Priming. J Virol 2017; 91:e00761-17. [PMID: 28724770 PMCID: PMC5599751 DOI: 10.1128/jvi.00761-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/13/2017] [Indexed: 01/13/2023] Open
Abstract
Primary infection of a plant with a pathogen that causes high accumulation of salicylic acid in the plant typically via a hypersensitive response confers enhanced resistance against secondary infection with a broad spectrum of pathogens, including viruses. This phenomenon is called systemic acquired resistance (SAR), which is a plant priming for adaption to repeated biotic stress. However, the molecular mechanisms of SAR-mediated enhanced inhibition, especially of virus infection, remain unclear. Here, we show that SAR against cucumber mosaic virus (CMV) in tobacco plants (Nicotiana tabacum) involves a calmodulin-like protein, rgs-CaM. We previously reported the antiviral function of rgs-CaM, which binds to and directs degradation of viral RNA silencing suppressors (RSSs), including CMV 2b, via autophagy. We found that rgs-CaM-mediated immunity is ineffective against CMV infection in normally growing tobacco plants but is activated as a result of SAR induction via salicylic acid signaling. We then analyzed the effect of overexpression of rgs-CaM on salicylic acid signaling. Overexpressed and ectopically expressed rgs-CaM induced defense reactions, including cell death, generation of reactive oxygen species, and salicylic acid signaling. Further analysis using a combination of the salicylic acid analogue benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) and the Ca2+ ionophore A23187 revealed that rgs-CaM functions as an immune receptor that induces salicylic acid signaling by simultaneously perceiving both viral RSS and Ca2+ influx as infection cues, implying its autoactivation. Thus, secondary infection of SAR-induced tobacco plants with CMV seems to be effectively inhibited through 2b recognition and degradation by rgs-CaM, leading to reinforcement of antiviral RNA silencing and other salicylic acid-mediated antiviral responses.IMPORTANCE Even without an acquired immune system like that in vertebrates, plants show enhanced whole-plant resistance against secondary infection with pathogens; this so-called systemic acquired resistance (SAR) has been known for more than half a century and continues to be extensively studied. SAR-induced plants strongly and rapidly express a number of antibiotics and pathogenesis-related proteins targeted against secondary infection, which can account for enhanced resistance against bacterial and fungal pathogens but are not thought to control viral infection. This study showed that enhanced resistance against cucumber mosaic virus is caused by a tobacco calmodulin-like protein, rgs-CaM, which detects and counteracts the major viral virulence factor (RNA silencing suppressor) after SAR induction. rgs-CaM-mediated SAR illustrates the growth versus defense trade-off in plants, as it targets the major virulence factor only under specific biotic stress conditions, thus avoiding the cost of constitutive activation while reducing the damage from virus infection.
Collapse
Affiliation(s)
- Eun Jin Jeon
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuki Tadamura
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Taiki Murakami
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jun-Ichi Inaba
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Bo Min Kim
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masako Sato
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Go Atsumi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science and Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kenji S Nakahara
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
319
|
Wang L, Guo Z, Zhang Y, Wang Y, Yang G, Yang L, Wang L, Wang R, Xie Z. Overexpression of LhSorNPR1, a NPR1-like gene from the oriental hybrid lily 'Sorbonne', conferred enhanced resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:793-808. [PMID: 29158629 PMCID: PMC5671448 DOI: 10.1007/s12298-017-0466-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/30/2017] [Accepted: 08/29/2017] [Indexed: 05/03/2023]
Abstract
The non-expressor of the pathogenesis-related genes 1 (NPR1) is a master regulator in defense signaling of plants and plays a key role in basal and systemic acquired resistance. In this study, we isolated a NPR1-like gene from the oriental hybrid lily 'Sorbonne' (designated as LhSorNPR1) using rapid amplification of cDNA ends (RACE). The open reading frame of LhSorNPR1 consisted of 1854 bp, encoding a protein of 617 amino acids. Multiple sequence alignment revealed that LhSorNPR1 shares high similarity to NPR1-like proteins and characteristics of the BTB/POZ domain and ankyrin repeats. A comparison between the intron/exon organization of LhSorNPR1 and orthologs from other plant species demonstrated that NPR1 genomic fragments (including LhSorNPR1) are all composed of 4 exons and 3 introns. We also identified sequence motifs involved in hormone response and binding sites for RAV1 proteins and WRKY transcription factors through the prediction of cis-regulatory elements in the LhSorNPR1 promoter. Our gene expression analysis showed that LhSorNPR1 transcript levels significantly differed in various tissues, and that LhSorNPR1 expressions were induced by sodium salicylate, ethephon, and methyl jasmonate. Furthermore, we transformed LhSorNPR1 into Col-0 wild-type Arabidopsis to conduct function analysis, and we observed enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 in the Arabidopsis expressing LhSorNPR1 gene. The enhanced disease resistance of LhSorNPR1 expressing plants could correlate to elevated expression levels in pathogenesis-related genes (PR1, PR2, and PR5) in vivo.
Collapse
Affiliation(s)
- Le Wang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhihong Guo
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Yubao Zhang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Yajun Wang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Guo Yang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Liu Yang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Li Wang
- Forest Tree Seedling Station of Alashan League, Alashan League, 750300 China
| | - Ruoyu Wang
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Zhongkui Xie
- Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000 China
| |
Collapse
|
320
|
SDE5, a putative RNA export protein, participates in plant innate immunity through a flagellin-dependent signaling pathway in Arabidopsis. Sci Rep 2017; 7:9859. [PMID: 28851870 PMCID: PMC5574965 DOI: 10.1038/s41598-017-07918-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/15/2017] [Indexed: 12/02/2022] Open
Abstract
In eukaryotes, RNA silencing, mediated by small interfering RNAs, is an evolutionarily widespread and versatile silencing mechanism that plays an important role in various biological processes. Increasing evidences suggest that various components of RNA silencing pathway are involved in plant defense machinery against microbial pathogens in Arabidopsis thaliana. Here, we show genetic and molecular evidence that Arabidopsis SDE5 is required to generate an effective resistance against the biotrophic bacteria Pseudomonas syringae pv. tomato DC3000 and for susceptibility to the necrotrophic bacteria Erwinia caratovora pv. caratovora. SDE5, encodes a putative mRNA export factor that is indispensable for transgene silencing and the production of trans-acting siRNAs. SDE5 expression is rapidly induced by exogenous application of phytohormone salicylic acid (SA), methyl jasmonate (MeJA), phytopathogenic bacteria, and flagellin. We further report that SDE5 is involved in basal plant defense and mRNA export. Our genetic data suggests that SDE5 and Nonexpressor of PR Gene1 (NPR1) may contribute to the same SA-signaling pathway. However, SDE5 over-expressing transgenic plant exhibits reduced defense responsive phenotype after flagellin treatment. Taken together, these results support the conclusion that SDE5 contributes to plant innate immunity in Arabidopsis.
Collapse
|
321
|
Ueno Y, Matsushita A, Inoue H, Yoshida R, Jiang CJ, Takatsuji H. WRKY45 phosphorylation at threonine 266 acts negatively on WRKY45-dependent blast resistance in rice. PLANT SIGNALING & BEHAVIOR 2017; 12:e1356968. [PMID: 28758876 PMCID: PMC5616141 DOI: 10.1080/15592324.2017.1356968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
WRKY45 is a central regulator of disease resistance mediated by salicylic acid signaling in rice and its activation involves phosphorylation by OsMPK6. OsMPK6 phosphorylates WRKY45 at Thr266, Ser294, and Ser299 in vitro. Phosphorylation of Ser294 and/or Ser299 is required for full activation of WRKY45, but the importance of Thr266 phosphorylation has remained unknown. Here, we report on the characterization of Thr266 phosphorylation of WRKY45 in rice. Transient expression of mutant WRKY45 revealed that Thr266 is phosphorylated in vivo, together with Ser294/299. Replacement of Thr266 by Asn did not affect the enhanced Magnaporthe oryzae resistance afforded by WRKY45 overexpression. By contrast, replacement by Asp negated the enhancement of M. oryzae resistance. These results suggest that Thr266 phosphorylation acts negatively on WRKY45-dependent disease resistance.
Collapse
Affiliation(s)
- Yoshihisa Ueno
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
- Department of Agriculture, Ryukoku University, Yokatani 1-5, Seta Ohe-cho, Otsu-shi, Shiga, Japan
| | - Akane Matsushita
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Haruhiko Inoue
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Riichiro Yoshida
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Chang-Jie Jiang
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Hiroshi Takatsuji
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
- CONTACT Hiroshi Takatsuji , Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2–1–2 Kannondai, Tsukuba, Ibaraki 305–8602, Japan
| |
Collapse
|
322
|
β-carbonic anhydrases play a role in salicylic acid perception in Arabidopsis. PLoS One 2017; 12:e0181820. [PMID: 28753666 PMCID: PMC5533460 DOI: 10.1371/journal.pone.0181820] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/07/2017] [Indexed: 11/19/2022] Open
Abstract
The plant hormone salicylic acid (SA) is required for defense responses. NON EXPRESSER OFPATHOGENESISRELATED1 (NPR1) and NONRECOGNITION OFBTH-4 (NRB4) are required for the response to SA in Arabidopsis (Arabidopsis thaliana). Here, we isolated several interactors of NRB4 using yeast two-hybrid assays. Two of these interactors, βCA1 and βCA2, are β-carbonic anhydrase family proteins. Since double mutant βca1 βca2 plants did not show any obvious phenotype, we investigated other βCAs and found that NRB4 also interacts with βCA3 and βCA4. Moreover, several βCAs interacted with NPR1 in yeast, including one that interacted in a SA-dependent manner. This interaction was abolished in loss-of-function alleles of NPR1. Interactions between βCAs and both NRB4 and NPR1 were also detected in planta, with evidence for a triple interaction, NRB4-βCA1-NPR1. The quintuple mutant βca1 βca2 βca3 βca4 βca6 showed partial insensitivity to SA. These findings suggest that one of the functions of carbonic anhydrases is to modulate the perception of SA in plants.
Collapse
|
323
|
Li P, Chen X, Sun F, Dong H. Tobacco TTG2 and ARF8 function concomitantly to control flower colouring by regulating anthocyanin synthesis genes. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:525-532. [PMID: 28247955 DOI: 10.1111/plb.12560] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/22/2017] [Indexed: 05/07/2023]
Abstract
Recently we elucidated that tobacco TTG2 cooperates with ARF8 to regulate the vegetative growth and seed production. Here we show that TTG2 and ARF8 control flower colouring by regulating expression of ANS and DFR genes, which function in anthocyanin biosynthesis. Genetic modifications that substantially altered expression levels of the TTG2 gene and production quantities of TTG2 protein were correlated with flower development and colouring. Degrees of flower colour were increased by TTG2 overexpression but decreased through TTG2 silencing, in coincidence with high and low concentrations of anthocyanins in flowers. Of five genes involved in the anthocyanin biosynthesis pathway, only ANS and DFR were TTG2-regulated and displayed enhancement and diminution of expression with TTG2 overexpression and silencing, respectively. The floral expression of ANS and DFR also needed a functional ARF8 gene, as ANS and DFR expression were attenuated by ARF8 silencing, which concomitantly diminished the role of TTG2 in anthocyanin production. While ARF8 required TTG2 to be expressed by itself and to regulate ANS and DFR expression, the concurrent presence of normally functional TTG2 and ARF8 was critical for floral production of anthocyanins and also for flower colouration. Our data suggest that TTG2 functions concomitantly with ARF8 to control degrees of flower colour by regulating expression of ANS and DFR, which are involved in the anthocyanin biosynthesis pathway. ARF8 depends on TTG2 to regulate floral expression of ANS and DFR with positive effects on anthocyanin production and flower colour.
Collapse
Affiliation(s)
- P Li
- Plant Growth and Defense Signaling Laboratory, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - X Chen
- Plant Growth and Defense Signaling Laboratory, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - F Sun
- Plant Growth and Defense Signaling Laboratory, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - H Dong
- Plant Growth and Defense Signaling Laboratory, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
324
|
Kong P, McDowell JM, Hong C. Zoospore exudates from Phytophthora nicotianae affect immune responses in Arabidopsis. PLoS One 2017; 12:e0180523. [PMID: 28662148 PMCID: PMC5491255 DOI: 10.1371/journal.pone.0180523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/17/2017] [Indexed: 11/19/2022] Open
Abstract
Zoospore exudates play important roles in promoting zoospore communication, homing and germination during plant infection by Phytophthora. However, it is not clear whether exudates affect plant immunity. Zoospore-free fluid (ZFF) and zoospores of P. nicotianae were investigated comparatively for effects on resistance of Arabidopsis thaliana Col-0 and mutants that affect signaling mediated by salicylic acid (SA) and jasmonic acid (JA): eds16 (enhanced disease susceptibility16), pad4 (phytoalexin deficient4), and npr1 (nonexpressor of pathogenesis-related genes1). Col-0 attracted more zoospores and had severe tissue damage when flooded with a zoospore suspension in ZFF. Mutants treated with ZFF alone developed disease symptoms similar to those inoculated with zoospores and requirements of EDS16 and PAD4 for plant responses to zoospores and the exudates was apparent. Zoospore and ZFFs also induced expression of the PR1 and PDF1.2 marker genes for defense regulated by SA and JA, respectively. However, ZFF affected more JA defense signaling, down regulating PR1 when SA signaling or synthesis is deficient, which may be responsible for Arabidopsis mutant plants more susceptible to infection by high concentration of P. nicotianae zoospores. These results suggest that zoospore exudates can function as virulence factors and inducers of plant immune responses during plant infection by Phytophthora.
Collapse
Affiliation(s)
- Ping Kong
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, Virginia, United States of America
- * E-mail:
| | - John M. McDowell
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Chuanxue Hong
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, Virginia, United States of America
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
325
|
Fan S, Dong L, Han D, Zhang F, Wu J, Jiang L, Cheng Q, Li R, Lu W, Meng F, Zhang S, Xu P. GmWRKY31 and GmHDL56 Enhances Resistance to Phytophthora sojae by Regulating Defense-Related Gene Expression in Soybean. FRONTIERS IN PLANT SCIENCE 2017; 8:781. [PMID: 28553307 PMCID: PMC5427154 DOI: 10.3389/fpls.2017.00781] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/25/2017] [Indexed: 05/23/2023]
Abstract
Phytophthora root and stem rot of soybean [Glycine max (L.) Merr.] caused by the oomycete Phytophthora sojae, is a destructive disease worldwide. The molecular mechanism of the soybean response to P. sojae is largely unclear. We report a novel WRKY transcription factor (TF) in soybean, GmWRKY31, in the host response to P. sojae. Overexpression and RNA interference analysis demonstrated that GmWRKY31 enhanced resistance to P. sojae in transgenic soybean plants. GmWRKY31 was targeted to the nucleus, where it bound to the W-box and acted as an activator of gene transcription. Moreover, we determined that GmWRKY31 physically interacted with GmHDL56, which improved resistance to P. sojae in transgenic soybean roots. GmWRKY31 and GmHDL56 shared a common target GmNPR1 which was induced by P. sojae. Overexpression and RNA interference analysis demonstrated that GmNPR1 enhanced resistance to P. sojae in transgenic soybean plants. Several pathogenesis-related (PR) genes were constitutively activated, including GmPR1a, GmPR2, GmPR3, GmPR4, GmPR5a, and GmPR10, in soybean plants overexpressing GmNPR1 transcripts. By contrast, the induction of PR genes was compromised in transgenic GmNPR1-RNAi lines. Taken together, these findings suggested that the interaction between GmWRKY31 and GmHDL56 enhances resistance to P. sojae by regulating defense-related gene expression in soybean.
Collapse
Affiliation(s)
- Sujie Fan
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural UniversityHarbin, China
- Center for Plant Biotechnology, College of Agronomy, Jilin Agricultural UniversityChangchun, China
| | - Lidong Dong
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural UniversityHarbin, China
| | - Dan Han
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural UniversityHarbin, China
| | - Feng Zhang
- First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Junjiang Wu
- Soybean Research Institute, Key Laboratory of Soybean Cultivation of Ministry of Agriculture, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Liangyu Jiang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural UniversityHarbin, China
- Center for Plant Biotechnology, College of Agronomy, Jilin Agricultural UniversityChangchun, China
| | - Qun Cheng
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural UniversityHarbin, China
| | - Rongpeng Li
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural UniversityHarbin, China
| | - Wencheng Lu
- Heihe Branch of Heilongjiang Academy of Agricultural SciencesHeihe, China
| | - Fanshan Meng
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural UniversityHarbin, China
| | - Shuzhen Zhang
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural UniversityHarbin, China
| | - Pengfei Xu
- Soybean Research Institute, Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural UniversityHarbin, China
| |
Collapse
|
326
|
An C, Wang C, Mou Z. The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121. THE NEW PHYTOLOGIST 2017; 214:1245-1259. [PMID: 28134437 DOI: 10.1111/nph.14442] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/16/2016] [Indexed: 05/17/2023]
Abstract
Although in recent years nonhost resistance has attracted considerable attention for its broad spectrum and durability, the genetic and mechanistic components of nonhost resistance have not been fully understood. We used molecular and histochemical approaches including quantitative PCR, chromatin immunoprecipitation, and 3,3'-diaminobenzidine and aniline blue staining. The evolutionarily conserved histone acetyltransferase complex Elongator was identified as a major component of nonhost resistance against Xanthomonas citri subsp. citri (Xcc) and Pseudomonas syringae pv. phaseolicola (Psp) NPS3121. Mutations in Elongator genes inhibit Xcc-, Psp NPS3121- and/or flg22-induced defense responses including defense gene expression, callose deposition, and reactive oxygen species (ROS) and salicylic acid (SA) accumulation. Mutations in Elongator also attenuate the ROS-SA amplification loop. We show that suppressed ROS and SA accumulation in Elongator mutants is correlated with reduced expression of the Arabidopsis respiratory burst oxidase homologue AtrbohD and the SA biosynthesis gene ISOCHORISMATE SYNTHASE1 (ICS1). Furthermore, we found that the Elongator subunit ELP2 is associated with the chromatin of AtrbohD and ICS1 and is required for maintaining basal histone H3 acetylation levels in these key defense genes. As both AtrbohD and ICS1 contribute to nonhost resistance against Xcc, our results reveal an epigenetic mechanism by which Elongator regulates nonhost resistance in Arabidopsis.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL, 32611, USA
| |
Collapse
|
327
|
Peng J, Qi X, Chen X, Li N, Yu J. ZmDof30 Negatively Regulates the Promoter Activity of the Pollen-Specific Gene Zm908. FRONTIERS IN PLANT SCIENCE 2017; 8:685. [PMID: 28507558 PMCID: PMC5410603 DOI: 10.3389/fpls.2017.00685] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/13/2017] [Indexed: 05/20/2023]
Abstract
The maize (Zea mays) pollen-predominant gene Zm908, a novel small-peptide gene, was reported to play critical roles in pollen germination and pollen tube growth in our previous work. In this study, we aimed to explore the regulatory mechanism of Zm908. The putative promoter of Zm908 was cloned and analyzed. The activity analysis of a series of promoter truncations in different tissues of transgenic tobacco plants indicated that the Zm908 promoter is pollen-specific and that the -126 to -68 region is crucial for pollen expression. The 5' deletion analysis of the -126 to -68 region revealed that the -126 to -102 region functions as a transcriptional suppression element. ZmDof30, which is predominantly expressed in pollen and whole anthers, was cloned and characterized. ZmDof30-GFP localized to the nuclei of maize protoplasts and possessed no transcriptional activation activity in a yeast system. ZmDof30 could bind to the AAAG elements in p184 sequence containing the -126 to +58 region of the Zm908 promoter in vitro and in vivo, and negatively regulated p184 activity in tobacco leaves. Collectively, ZmDof30 may function as a Zm908 transcriptional repressor in pollen, and these results may provide a better understanding of the regulation of the Zm908 gene. Additionally, the pollen-specific Zm908 promoter may be valuable for genetically engineering male sterility.
Collapse
Affiliation(s)
| | | | | | | | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| |
Collapse
|
328
|
Singh A, Lim GH, Kachroo P. Transport of chemical signals in systemic acquired resistance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:336-344. [PMID: 28304135 DOI: 10.1111/jipb.12537] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/14/2017] [Indexed: 06/06/2023]
Abstract
Systemic acquired resistance (SAR) is a form of broad-spectrum resistance induced in response to local infections that protects uninfected parts against subsequent secondary infections by related or unrelated pathogens. SAR signaling requires two parallel branches, one regulated by salicylic acid (SA), and the other by azelaic acid (AzA) and glycerol-3-phosphate (G3P). AzA and G3P function downstream of the free radicals nitric oxide (NO) and reactive oxygen species (ROS). During SAR, SA, AzA and G3P accumulate in the infected leaves, but only a small portion of these is transported to distal uninfected leaves. SA is preferentially transported via the apoplast, whereas phloem loading of AzA and G3P occurs via the symplast. The symplastic transport of AzA and G3P is regulated by gating of the plasmodesmata (PD). The PD localizing proteins, PDLP1 and PDLP5, regulate SAR by regulating PD gating as well as the subcellular partitioning of a SAR-associated protein.
Collapse
Affiliation(s)
- Archana Singh
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Gah-Hyun Lim
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
329
|
Peters LP, Carvalho G, Vilhena MB, Creste S, Azevedo RA, Monteiro-Vitorello CB. Functional analysis of oxidative burst in sugarcane smut-resistant and -susceptible genotypes. PLANTA 2017; 245:749-764. [PMID: 28004180 DOI: 10.1007/s00425-016-2642-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 12/13/2016] [Indexed: 05/13/2023]
Abstract
Smut pathogen induced an early modulation of the production and scavenging of reactive oxygen species during defence responses in resistant sugarcane that coincided with the developmental stages of fungal growth. Sporisorium scitamineum is the causal agent of sugarcane smut disease. In this study, we characterized sugarcane reactive oxygen species (ROS) metabolism in response to the pathogen in smut-resistant and -susceptible genotypes. Sporisorium scitamineum teliospore germination and appressorium formation coincided with H2O2 accumulation in resistant plants. The superoxide dismutase (SOD) activity was not responsive in any of the genotypes; however, a higher number of isoenzymes were detected in resistant plants. In addition, related to resistance were lipid peroxidation, a decrease in catalase (CAT), and an increase in glutathione S-transferase (GST) activities and an earlier transcript accumulation of ROS marker genes (CAT3, CATA, CATB, GST31, GSTt3, and peroxidase 5-like). Furthermore, based on proteomic data, we suggested that the source of the increased hydrogen peroxide (H2O2) may be due to a protein of the class III peroxidase, which was inhibited in the susceptible genotype. H2O2 is sensed and probably transduced through overlapping systems related to ascorbate-glutathione and thioredoxin to influence signalling pathways, as revealed by the presence of thioredoxin h-type, ascorbate peroxidase, and guanine nucleotide-binding proteins in the infected resistant plants. Altogether, our data depicted the balance of the oxidative burst and antioxidant enzyme activity in the outcome of this interaction.
Collapse
Affiliation(s)
- Leila P Peters
- Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo, Av. Pádua Dias 11, PO BOX 83, Piracicaba, SP, 13400-970, Brazil
| | - Giselle Carvalho
- Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo, Av. Pádua Dias 11, PO BOX 83, Piracicaba, SP, 13400-970, Brazil
- Current address: Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Ilha Solteira, SP, 15385-000, Brazil
| | - Milca B Vilhena
- Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo, Av. Pádua Dias 11, PO BOX 83, Piracicaba, SP, 13400-970, Brazil
| | - Silvana Creste
- Centro Avançado de Pesquisa Tecnológica do Agronegócio de Cana-IAC/APTA, Rod. Antonio Duarte Nogueira, Km 321, Ribeirão Preto, SP, Brazil
| | - Ricardo A Azevedo
- Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo, Av. Pádua Dias 11, PO BOX 83, Piracicaba, SP, 13400-970, Brazil
| | - Claudia B Monteiro-Vitorello
- Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo, Av. Pádua Dias 11, PO BOX 83, Piracicaba, SP, 13400-970, Brazil.
| |
Collapse
|
330
|
Yang J, Sun C, Fu D, Yu T. Test for l-glutamate inhibition of growth of Alternaria alternata by inducing resistance in tomato fruit. Food Chem 2017; 230:145-153. [PMID: 28407895 DOI: 10.1016/j.foodchem.2017.03.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/20/2017] [Accepted: 03/07/2017] [Indexed: 11/16/2022]
Abstract
Although numerous studies have reported the involvement of glutamate in plant abiotic stress, relatively little is known about the role of glutamate in plant defence against pathogens. To gain further knowledge, we investigated the effect of glutamate on Alternaria alternata in tomato fruit. A multidisciplinary approach was pursued, combining exogenous glutamate applications, enzymatic activity measurements and real-time quantitative PCR analysis. The results showed glutamate significantly reduced the disease incidence in tomato caused by A. alternata, by inducing resistance (Duncan's test, p<0.05). A large variety of defence-related enzymes and genes involved in the glutamine synthetase/glutamate synthase cycle, energy-generated metabolism, such as the γ-aminobutyric acid shunt, glycolysis and the tricarboxylic acid cycle, and the salicylic acid signalling pathway were activated by glutamate. The activation of these pathways as mentioned above might play a potential role in the resistance mechanisms underpinning glutamate-induced plant immunity.
Collapse
Affiliation(s)
- Jiali Yang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Cui Sun
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Da Fu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ting Yu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
331
|
Wang L, Xie X, Yao W, Wang J, Ma F, Wang C, Yang Y, Tong W, Zhang J, Xu Y, Wang X, Zhang C, Wang Y. RING-H2-type E3 gene VpRH2 from Vitis pseudoreticulata improves resistance to powdery mildew by interacting with VpGRP2A. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1669-1687. [PMID: 28369599 DOI: 10.1093/jxb/erx033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Grapevine is one of the world's most important fruit crops. European cultivated grape species have the best fruit quality but show almost no resistance to powdery mildew (PM). PM caused by Uncinula necator is a harmful disease that has a significant impact on the economic value of the grape crop. In this study, we examined a RING-H2-type ubiquitin ligase gene VpRH2 that is associated with significant PM-resistance of Chinese wild-growing grape Vitis pseudoreticulata accession Baihe-35-1. The expression of VpRH2 was clearly induced by U. necator inoculation compared with its homologous gene VvRH2 in a PM-susceptible grapevine V. vinifera cv. Thompson Seedless. Using a yeast two-hybrid assay we confirmed that VpRH2 interacted with VpGRP2A, a glycine-rich RNA-binding protein. The degradation of VpGRP2A was inhibited by treatment with the proteasome inhibitor MG132 while VpRH2 did not promote the degradation of VpGRP2A. Instead, the transcripts of VpRH2 were increased by over-expressing VpGRP2A while VpRH2 suppressed the expression of VpGRP2A. Furthermore, VpGRP2A was down-regulated in both Baihe-35-1 and Thompson Seedless after U. necator inoculation. Specifically, we generated VpRH2 overexpression transgenic lines in Thompson Seedless and found that the transgenic plants showed enhanced resistance to powdery mildew compared with the wild-type. In summary, our results indicate that VpRH2 interacts with VpGRP2A and plays a positive role in resistance to powdery mildew.
Collapse
Affiliation(s)
- Lei Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Xiaoqing Xie
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Wenkong Yao
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Jie Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Fuli Ma
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Chen Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Yazhou Yang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Weihuo Tong
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Jianxia Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Yan Xu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Xiping Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Chaohong Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, the People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, the People's Republic of China
| |
Collapse
|
332
|
Lin CW, Huang LY, Huang CL, Wang YC, Lai PH, Wang HV, Chang WC, Chiang TY, Huang HJ. Common Stress Transcriptome Analysis Reveals Functional and Genomic Architecture Differences Between Early and Delayed Response Genes. PLANT & CELL PHYSIOLOGY 2017; 58:546-559. [PMID: 28115496 DOI: 10.1093/pcp/pcx002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
To identify the similarities among responses to diverse environmental stresses, we analyzed the transcriptome response of rice roots to three rhizotoxic perturbations (chromium, ferulic acid and mercury) and identified common early-transient, early-constant and delayed gene inductions. Common early response genes were mostly associated with signal transduction and hormones, and delayed response genes with lipid metabolism. Network component analysis revealed complicated interactions among common genes, the most highly connected signaling hubs being PP2C68, MPK5, LRR-RLK and NPR1. Gene architecture studies revealed different conserved promoter motifs and a different ratio of CpG island distribution between early and delayed genes. In addition, early-transient genes had more exons and a shorter first exon. IMEter was used to calculate the transcription regulation effects of introns, with greater effects for the first introns of early-transient than delayed genes. The higher Ka/Ks (non-synonymous/synonymous mutation) ratio of early-constant genes than early-transient, delayed and the genome median demonstrates the rapid evolution of early-constant genes. Our results suggest that finely tuned transcriptional control in response to environmental stress in rice depends on genomic architecture and signal intensity and duration.
Collapse
Affiliation(s)
- Chung-Wen Lin
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Li-Yao Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Li Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yong-Chuan Wang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Hsuan Lai
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Ven Wang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chi Chang
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Tzen-Yuh Chiang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
333
|
Tamaoki M, Maruyama-Nakashita A. Molecular Mechanisms of Selenium Responses and Resistance in Plants. PLANT ECOPHYSIOLOGY 2017. [DOI: 10.1007/978-3-319-56249-0_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
334
|
Liu Q, Liu Y, Tang Y, Chen J, Ding W. Overexpression of NtWRKY50 Increases Resistance to Ralstonia solanacearum and Alters Salicylic Acid and Jasmonic Acid Production in Tobacco. FRONTIERS IN PLANT SCIENCE 2017; 8:1710. [PMID: 29075272 PMCID: PMC5641554 DOI: 10.3389/fpls.2017.01710] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 09/19/2017] [Indexed: 05/03/2023]
Abstract
WRKY transcription factors (TFs) modulate plant responses to biotic and abiotic stresses. Here, we characterized a WRKY IIc TF, NtWRKY50, isolated from tobacco (Nicotiana tabacum) plants. The results showed that NtWRKY50 is a nuclear-localized protein and that its gene transcript is induced in tobacco when inoculated with the pathogenic bacterium Ralstonia solanacearum. Overexpression of NtWRKY50 enhanced bacterial resistance, which correlated with enhanced SA and JA/ET signaling genes. However, silencing of the NtWRKY50 gene had no obvious effects on plant disease resistance, implying functional redundancy of NtWRKY50 with other TFs. In addition, it was found that NtWRKY50 can be induced by various biotic or abiotic stresses, such as Potato virus Y, Rhizoctonia solani, Phytophthora parasitica, hydrogen peroxide, heat, cold, and wounding as well as the hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). Importantly, additional analysis suggests that NtWRKY50 overexpression markedly promotes SA levels but prevents pathogen-induced JA production. These data indicate that NtWRKY50 overexpression leads to altered SA and JA content, increased expression of defense-related genes and enhanced plant resistance to R. solanacearum. These probably due to increased activity of endogenous NtWRKY50 gene or could be gain-of-function phenotypes by altering the profile of genes affected by NtWRKY50.
Collapse
|
335
|
Hedtmann C, Guo W, Reifschneider E, Heiber I, Hiltscher H, van Buer J, Barsch A, Niehaus K, Rowan B, Lortzing T, Steppuhn A, Baier M. The Plant Immunity Regulating F-Box Protein CPR1 Supports Plastid Function in Absence of Pathogens. FRONTIERS IN PLANT SCIENCE 2017; 8:1650. [PMID: 29018463 PMCID: PMC5615928 DOI: 10.3389/fpls.2017.01650] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/08/2017] [Indexed: 05/04/2023]
Abstract
The redox imbalanced 6 mutant (rimb6) of Arabidopsis thaliana was isolated in a genetic screening approach for mutants with defects in chloroplast-to-nucleus redox signaling. It has an atypically low activation status of the 2-Cys peroxiredoxin-A promoter in the seedling stage. rimb6 shows wildtype-like germination, seedling development and greening, but slower growth and reduced biomass in the rosette stage. Mapping of the casual mutation revealed that rimb6 carries a single nucleotide polymorphism in the gene encoding CONSTITUTIVE EXPRESSER OF PATHOGENESIS RELATED (PR) GENES 1, CPR1 (At4g12560), leading to a premature stop codon. CPR1 is known as a repressor of pathogen signaling and regulator of microtubule organization. Allelism of rimb6 and cpr1 revealed a function of CPR1 in chloroplast stress protection. Expression studies in pathogen signaling mutants demonstrated that CPR1-mediated activation of genes for photosynthesis and chloroplast antioxidant protection is, in contrast to activation of pathogen responses, regulated independently from PAD4-controlled salicylic acid (SA) accumulation. We conclude that the support of plastid function is a basic, SA-independent function of CPR1.
Collapse
Affiliation(s)
- Christiane Hedtmann
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of BerlinBerlin, Germany
| | - Wei Guo
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of BerlinBerlin, Germany
| | - Elena Reifschneider
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of BerlinBerlin, Germany
| | - Isabelle Heiber
- Plant Physiology and Biochemistry, Bielefeld UniversityBielefeld, Germany
| | - Heiko Hiltscher
- Plant Sciences, Heinrich Heine University of DüsseldorfDüsseldorf, Germany
| | - Jörn van Buer
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of BerlinBerlin, Germany
| | - Aiko Barsch
- Proteom- und Metabolomforschung, Bielefeld UniversityBielefeld, Germany
| | - Karsten Niehaus
- Proteom- und Metabolomforschung, Bielefeld UniversityBielefeld, Germany
| | - Beth Rowan
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingen, Germany
| | - Tobias Lortzing
- Department of Molecular Ecology, Free University of BerlinBerlin, Germany
| | - Anke Steppuhn
- Department of Molecular Ecology, Free University of BerlinBerlin, Germany
| | - Margarete Baier
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of BerlinBerlin, Germany
- *Correspondence: Margarete Baier
| |
Collapse
|
336
|
Yu LX, Zheng P, Bhamidimarri S, Liu XP, Main D. The Impact of Genotyping-by-Sequencing Pipelines on SNP Discovery and Identification of Markers Associated with Verticillium Wilt Resistance in Autotetraploid Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:89. [PMID: 28223988 PMCID: PMC5293825 DOI: 10.3389/fpls.2017.00089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/16/2017] [Indexed: 05/08/2023]
Abstract
Verticillium wilt (VW) of alfalfa is a soilborne disease causing severe yield loss in alfalfa. To identify molecular markers associated with VW resistance, we used an integrated framework of genome-wide association study (GWAS) with high-throughput genotyping by sequencing (GBS) to identify loci associated with VW resistance in an F1 full-sib alfalfa population. Phenotyping was performed using manual inoculation of the pathogen to cloned plants of each individual and disease severity was scored using a standard scale. Genotyping was done by GBS, followed by genotype calling using three bioinformatics pipelines including the TASSEL-GBS pipeline (TASSEL), the Universal Network Enabled Analysis Kit (UNEAK), and the haplotype-based FreeBayes pipeline (FreeBayes). The resulting numbers of SNPs, marker density, minor allele frequency (MAF) and heterozygosity were compared among the pipelines. The TASSEL pipeline generated more markers with the highest density and MAF, whereas the highest heterozygosity was obtained by the UNEAK pipeline. The FreeBayes pipeline generated tetraploid genotypes, with the least number of markers. SNP markers generated from each pipeline were used independently for marker-trait association. Markers significantly associated with VW resistance identified by each pipeline were compared. Similar marker loci were found on chromosomes 5, 6, and 7, whereas different loci on chromosome 1, 2, 3, and 4 were identified by different pipelines. Most significant markers were located on chromosome 6 and they were identified by all three pipelines. Of those identified, several loci were linked to known genes whose functions are involved in the plants' resistance to pathogens. Further investigation on these loci and their linked genes would provide insight into understanding molecular mechanisms of VW resistance in alfalfa. Functional markers closely linked to the resistance loci would be useful for MAS to improve alfalfa cultivars with enhanced resistance to the disease.
Collapse
Affiliation(s)
- Long-Xi Yu
- Plant Germplasm Introduction and Testing Research, United States Department of Agriculture-Agricultural Research Service, ProsserWA, USA
- *Correspondence: Long-Xi Yu,
| | - Ping Zheng
- Department of Horticulture, Washington State University, PullmanWA, USA
| | | | - Xiang-Ping Liu
- Plant Germplasm Introduction and Testing Research, United States Department of Agriculture-Agricultural Research Service, ProsserWA, USA
| | - Dorie Main
- Department of Horticulture, Washington State University, PullmanWA, USA
| |
Collapse
|
337
|
Toum L, Torres PS, Gallego SM, Benavídes MP, Vojnov AA, Gudesblat GE. Coronatine Inhibits Stomatal Closure through Guard Cell-Specific Inhibition of NADPH Oxidase-Dependent ROS Production. FRONTIERS IN PLANT SCIENCE 2016; 7:1851. [PMID: 28018388 PMCID: PMC5155495 DOI: 10.3389/fpls.2016.01851] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/23/2016] [Indexed: 05/19/2023]
Abstract
Microbes trigger stomatal closure through microbe-associated molecular patterns (MAMPs). The bacterial pathogen Pseudomonas syringae pv. tomato (Pst) synthesizes the polyketide toxin coronatine, which inhibits stomatal closure by MAMPs and by the hormone abscisic acid (ABA). The mechanism by which coronatine, a jasmonic acid-isoleucine analog, achieves this effect is not completely clear. Reactive oxygen species (ROS) are essential second messengers in stomatal immunity, therefore we investigated the possible effect of coronatine on their production. We found that coronatine inhibits NADPH oxidase-dependent ROS production induced by ABA, and by the flagellin-derived peptide flg22. This toxin also inhibited NADPH oxidase-dependent stomatal closure induced by darkness, however, it failed to prevent stomatal closure by exogenously applied H2O2 or by salicylic acid, which induces ROS production through peroxidases. Contrary to what was observed on stomata, coronatine did not affect the oxidative burst induced by flg22 in leaf disks. Additionally, we observed that in NADPH oxidase mutants atrbohd and atrbohd/f, as well as in guard cell ABA responsive but flg22 insensitive mutants mpk3, mpk6, npr1-3, and lecrk-VI.2-1, the inhibition of ABA stomatal responses by both coronatine and the NADPH oxidase inhibitor diphenylene iodonium was markedly reduced. Interestingly, coronatine still impaired ABA-induced ROS synthesis in mpk3, mpk6, npr1-3, and lecrk-VI.2-1, suggesting a possible feedback regulation of ROS on other guard cell ABA signaling elements in these mutants. Altogether our results show that inhibition of NADPH oxidase-dependent ROS synthesis in guard cells plays an important role during endophytic colonization by Pst through stomata.
Collapse
Affiliation(s)
- Laila Toum
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Pablo S. Torres
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Susana M. Gallego
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos AiresBuenos Aires, Argentina
| | - María P. Benavídes
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Adrián A. Vojnov
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Gustavo E. Gudesblat
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada, Departamento de Biodiversidad y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos Aires, Argentina
| |
Collapse
|
338
|
Wang X, Yang B, Li K, Kang Z, Cantu D, Dubcovsky J. A Conserved Puccinia striiformis Protein Interacts with Wheat NPR1 and Reduces Induction of Pathogenesis-Related Genes in Response to Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:977-989. [PMID: 27898286 DOI: 10.1094/mpmi-10-16-0207-r] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In Arabidopsis, NPR1 is a key transcriptional coregulator of systemic acquired resistance. Upon pathogen challenge, NPR1 translocates from the cytoplasm to the nucleus, in which it interacts with TGA-bZIP transcription factors to activate the expression of several pathogenesis-related (PR) genes. In a screen of a yeast two-hybrid library from wheat leaves infected with Puccinia striiformis f. sp. tritici, we identified a conserved rust protein that interacts with wheat NPR1 and named it PNPi (for Puccinia NPR1 interactor). PNPi interacts with the NPR1/NIM1-like domain of NPR1 via its C-terminal DPBB_1 domain. Using bimolecular fluorescence complementation assays, we detected the interaction between PNPi and wheat NPR1 in the nucleus of Nicotiana benthamiana protoplasts. A yeast three-hybrid assay showed that PNPi interaction with NPR1 competes with the interaction between wheat NPR1 and TGA2.2. In barley transgenic lines overexpressing PNPi, we observed reduced induction of multiple PR genes in the region adjacent to Pseudomonas syringae pv. tomato DC3000 infection. Based on these results, we hypothesize that PNPi has a role in manipulating wheat defense response via its interactions with NPR1.
Collapse
Affiliation(s)
- Xiaodong Wang
- 1 Department of Plant Science, University of California, Davis, CA 95616, U.S.A
- 2 State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, P. R. China
- 3 College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Agriculture University of Hebei, Baoding, Hebei 071000, P. R. China
| | - Baoju Yang
- 1 Department of Plant Science, University of California, Davis, CA 95616, U.S.A
| | - Kun Li
- 1 Department of Plant Science, University of California, Davis, CA 95616, U.S.A
| | - Zhensheng Kang
- 2 State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, P. R. China
| | - Dario Cantu
- 4 Department of Viticulture and Enology, University of California, Davis, CA 95616, U.S.A
| | - Jorge Dubcovsky
- 1 Department of Plant Science, University of California, Davis, CA 95616, U.S.A
- 5 Howard Hughes Medical Institute (HHMI), Chevy Chase, MD 20815, U.S.A
| |
Collapse
|
339
|
Mei S, Hou S, Cui H, Feng F, Rong W. Characterization of the interaction between Oidium heveae and Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2016; 17:1331-1343. [PMID: 26724785 PMCID: PMC6638524 DOI: 10.1111/mpp.12363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 05/03/2023]
Abstract
Oidium heveae, an obligate biotrophic pathogen of rubber trees (Hevea brasiliensis), causes significant yield losses of rubber worldwide. However, the molecular mechanisms underlying the interplay between O. heveae and rubber trees remain largely unknown. In this study, we isolated an O. heveae strain, named HN1106, from cultivated H. brasiliensis in Hainan, China. We found that O. heveae HN1106 triggers the hypersensitive response in a manner that depends on the effector-triggered immunity proteins EDS1 (Enhanced Disease Susceptibility 1) and PAD4 (Phytoalexin Deficient 4) and on salicylic acid (SA) in the model plant Arabidopsis thaliana. However, SA-independent resistance also appears to limit O. heveae infection of Arabidopsis, because the pathogen does not produce conidiospores on npr1 (nonexpressor of pr1), sid2 (SA induction deficient 2) and NahG plants, which show disruptions in SA signalling. Furthermore, we found that the callose synthase PMR4 (Powdery Mildew Resistant 4) prevents O. heveae HN1106 penetration into leaves in the early stages of infection. To elucidate the potential mechanism of resistance of Arabidopsis to O. heveae HN1106, we inoculated 47 different Arabidopsis accessions with the pathogen, and analysed the plant disease symptoms and O. heveae HN1106 hyphal growth and conidiospore formation on the leaves. We found that the accession Lag2-2 showed significant susceptibility to O. heveae HN1106. Overall, this study provides a basis for future research aimed at combatting powdery mildew caused by O. heveae in rubber trees.
Collapse
Affiliation(s)
- Shuangshuang Mei
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourceHainan UniversityHaikouHainan570228China
- College of Environment and Plant ProtectionHainan UniversityHaikouHainan 570228China
| | - Shuguo Hou
- School of Municipal and Environmental EngineeringShandong Jianzhu University, Ligang Developmental ZoneJinanShandong 250100China
| | - Haitao Cui
- Department of Plant–Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 1050829KölnGermany
| | - Feng Feng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing100101China
| | - Wei Rong
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourceHainan UniversityHaikouHainan570228China
| |
Collapse
|
340
|
Ngaki MN, Wang B, Sahu BB, Srivastava SK, Farooqi MS, Kambakam S, Swaminathan S, Bhattacharyya MK. Tanscriptomic Study of the Soybean-Fusarium virguliforme Interaction Revealed a Novel Ankyrin-Repeat Containing Defense Gene, Expression of Whose during Infection Led to Enhanced Resistance to the Fungal Pathogen in Transgenic Soybean Plants. PLoS One 2016; 11:e0163106. [PMID: 27760122 PMCID: PMC5070833 DOI: 10.1371/journal.pone.0163106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/04/2016] [Indexed: 12/13/2022] Open
Abstract
Fusarium virguliforme causes the serious disease sudden death syndrome (SDS) in soybean. Host resistance to this pathogen is partial and is encoded by a large number of quantitative trait loci, each conditioning small effects. Breeding SDS resistance is therefore challenging and identification of single-gene encoded novel resistance mechanisms is becoming a priority to fight this devastating this fungal pathogen. In this transcriptomic study we identified a few putative soybean defense genes, expression of which is suppressed during F. virguliforme infection. The F. virguliforme infection-suppressed genes were broadly classified into four major classes. The steady state transcript levels of many of these genes were suppressed to undetectable levels immediately following F. virguliforme infection. One of these classes contains two novel genes encoding ankyrin repeat-containing proteins. Expression of one of these genes, GmARP1, during F. virguliforme infection enhances SDS resistance among the transgenic soybean plants. Our data suggest that GmARP1 is a novel defense gene and the pathogen presumably suppress its expression to establish compatible interaction.
Collapse
Affiliation(s)
- Micheline N. Ngaki
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Bing Wang
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Binod B. Sahu
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Subodh K. Srivastava
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Mohammad S. Farooqi
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Sekhar Kambakam
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | | | | |
Collapse
|
341
|
Rocheta M, Coito JL, Ramos MJN, Carvalho L, Becker JD, Carbonell-Bejerano P, Amâncio S. Transcriptomic comparison between two Vitis vinifera L. varieties (Trincadeira and Touriga Nacional) in abiotic stress conditions. BMC PLANT BIOLOGY 2016; 16:224. [PMID: 27733112 PMCID: PMC5062933 DOI: 10.1186/s12870-016-0911-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/28/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Predicted climate changes announce an increase of extreme environmental conditions including drought and excessive heat and light in classical viticultural regions. Thus, understanding how grapevine responds to these conditions and how different genotypes can adapt, is crucial for informed decisions on accurate viticultural actions. Global transcriptome analyses are useful for this purpose as the response to these abiotic stresses involves the interplay of complex and diverse cascades of physiological, cellular and molecular events. The main goal of the present work was to evaluate the response to diverse imposed abiotic stresses at the transcriptome level and to compare the response of two grapevine varieties with contrasting physiological trends, Trincadeira (TR) and Touriga Nacional (TN). RESULTS Leaf transcriptomic response upon heat, high light and drought treatments in growth room controlled conditions, as well as full irrigation and non-irrigation treatments in the field, was compared in TR and TN using GrapeGene GeneChips®. Breakdown of metabolism in response to all treatments was evidenced by the functional annotation of down-regulated genes. However, circa 30 % of the detected stress-responsive genes are still annotated as «Unknown» function. Selected differentially expressed genes from the GrapeGene GeneChip® were analysed by RT-qPCR in leaves of growth room plants under the combination of individual stresses and of field plants, in both varieties. The transcriptomic results correlated better with those obtained after each individual stress than with the results of plants from field conditions. CONCLUSIONS From the transcriptomic comparison between the two Portuguese grapevine varieties Trincadeira and Touriga Nacional under abiotic stress main conclusions can be drawn: 1. A different level of tolerance to stress is evidenced by a lower transcriptome reprogramming in TN than in TR. Interestingly, this lack of response in TN associates with its higher adaptation to extreme conditions including environmental conditions in a changing climate; 2. A complex interplay between stress transcriptional cascades is evidenced by antagonistic and, in lower frequency, synergistic effects on gene expression when several stresses are imposed together; 3. The grapevine responses to stress under controlled conditions are not fully extrapolated to the complex vineyard scenario and should be cautiously considered for agronomic management decision purposes.
Collapse
Affiliation(s)
- Margarida Rocheta
- Instituto Superior de Agronomia, LEAF, Linking Landscape, Environment, Agriculture and Food, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - João L. Coito
- Instituto Superior de Agronomia, LEAF, Linking Landscape, Environment, Agriculture and Food, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Miguel J. N. Ramos
- Instituto Superior de Agronomia, LEAF, Linking Landscape, Environment, Agriculture and Food, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Luísa Carvalho
- Instituto Superior de Agronomia, LEAF, Linking Landscape, Environment, Agriculture and Food, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Jörg D. Becker
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino, CSIC-Universidad de La Rioja-Gobierno de la Rioja, 26007 Logroño, Spain
| | - Sara Amâncio
- Instituto Superior de Agronomia, LEAF, Linking Landscape, Environment, Agriculture and Food, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| |
Collapse
|
342
|
Mohan R, Tai T, Chen A, Arnoff T, Fu ZQ. Overexpression of Arabidopsis NIMIN1 results in salicylate intolerance. PLANT SIGNALING & BEHAVIOR 2016; 11:e1211222. [PMID: 27429420 PMCID: PMC5117087 DOI: 10.1080/15592324.2016.1211222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The transcriptional regulator NPR1 mediates salicylic acid (SA)-induced plant immunity. NPR1 is also required for tolerance to high concentrations of SA. NPR1-interacting protein, NIMIN1, represses immune response by interacting with and negating NPR1. We tested the salicylic acid tolerance of transgenic plants overexpressing NIMIN1 and found that these plants displayed SA intolerance, similar to the npr1 mutant, due to sequestration of NPR1 by NIMIN1. Plants overexpressing mutated NIMIN1 that cannot interact with NPR1 showed no SA tolerance defect. Gene expression analysis showed that NPR1 is required for SA-stress induced as well as pathogen-induced NIMIN1 expression. These results indicate that over-accumulation of a negative regulator renders plants hypersensitive to SA by limiting NPR1 function. Furthermore, NPR1 activates negative regulators such as NIMIN1 for feedback inhibition of SA signaling to maintain immune homeostasis.
Collapse
Affiliation(s)
- Rajinikanth Mohan
- Department of Biology, Hamilton College, Clinton, NY, USA
- CONTACT Rajinikanth Mohan Department of Biology, Hamilton College, Clinton, NY 13323 USA
| | - Thomson Tai
- Department of Biology, Hamilton College, Clinton, NY, USA
| | - Andy Chen
- Department of Biology, Hamilton College, Clinton, NY, USA
| | - Taylor Arnoff
- Department of Biology, Hamilton College, Clinton, NY, USA
| | - Zheng-Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
343
|
Yang L, Xu Y, Liu Y, Meng D, Jin T, Zhou X. HC-Pro viral suppressor from tobacco vein banding mosaic virus interferes with DNA methylation and activates the salicylic acid pathway. Virology 2016; 497:244-250. [DOI: 10.1016/j.virol.2016.07.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/08/2016] [Accepted: 07/24/2016] [Indexed: 11/30/2022]
|
344
|
Cochliobolus lunatus down-regulates proteome at late stage of colonization and transiently alters StNPR1 expression in Solanum tuberosum L. Arch Microbiol 2016; 199:237-246. [DOI: 10.1007/s00203-016-1297-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/17/2016] [Accepted: 09/21/2016] [Indexed: 10/20/2022]
|
345
|
Ma H, Song T, Wang T, Wang S. Influence of Human p53 on Plant Development. PLoS One 2016; 11:e0162840. [PMID: 27648563 PMCID: PMC5029891 DOI: 10.1371/journal.pone.0162840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/29/2016] [Indexed: 11/19/2022] Open
Abstract
Mammalian p53 is a super tumor suppressor and plays a key role in guarding genome from DNA damage. However, p53 has not been found in plants which do not bear cancer although they constantly expose to ionizing radiation of ultraviolet light. Here we introduced p53 into the model plant Arabidopsis and examined p53-conferred phenotype in plant. Most strikingly, p53 caused early senescence and fasciation. In plants, fasciation has been shown as a result of the elevated homologous DNA recombination. Consistently, a reporter with overlapping segments of the GUS gene (1445) showed that the frequency of homologous recombination was highly induced in p53-transgenic plants. In contrast to p53, SUPPRESSOR OF NPR1-1 INDUCIBLE 1 (SNI1), as a negative regulator of homologous recombination in plants, is not present in mammals. Comet assay and clonogenic survival assay demonstrated that SNI1 inhibited DNA damage repair caused by either ionizing radiation or hydroxyurea in human osteosarcoma U2OS cancer cells. RAD51D is a recombinase in homologous recombination and functions downstream of SNI1 in plants. Interestingly, p53 rendered the sni1 mutants madly branching of inflorescence, a phenotype of fasciation, whereas rad51d mutant fully suppressed the p53-induced phenotype, indicating that human p53 action in plant is mediated by the SNI1-RAD51D signaling pathway. The reciprocal species-swap tests of p53 and SNI1 in human and Arabidopsis manifest that these species-specific proteins play a common role in homologous recombination across kingdoms of animals and plants.
Collapse
Affiliation(s)
- Huimin Ma
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Teng Song
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tianhua Wang
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shui Wang
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
- * E-mail:
| |
Collapse
|
346
|
Molla KA, Karmakar S, Chanda PK, Sarkar SN, Datta SK, Datta K. Tissue-specific expression of Arabidopsis NPR1 gene in rice for sheath blight resistance without compromising phenotypic cost. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:105-114. [PMID: 27457988 DOI: 10.1016/j.plantsci.2016.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 05/20/2023]
Abstract
Rice sheath blight disease, caused by the fungus Rhizoctonia solani, is considered the second most important disease of rice after blast. NPR1 (non expressor of PR1) is the central regulator of systemic acquired resistance (SAR) conferring broad spectrum resistance to various pathogens. Previous reports have indicated that constitutive expression of the Arabidopsis thaliana NPR1 (AtNPR1) gene results in disease resistance in rice but has a negative impact on growth and agronomic traits. Here, we report that green tissue-specific expression of AtNPR1 in rice confers resistance to the sheath blight pathogen, with no concomitant abnormalities in plant growth and yield parameters. Elevated levels of NPR1 activated the defence pathway in the transgenic plants by inducing expression of endogenous genes such as PR1b, RC24, and PR10A. Enhanced sheath blight resistance of the transgenic plants was evaluated using three different bioassay systems. A partially isolated toxin from R. solani was used in the bioassays to measure the resistance level. Studies of the phenotype and yield showed that the transgenic plants did not exhibit any kind of phenotypic imbalances. Our results demonstrate that green tissue-specific expression of AtNPR1 is an effective strategy for controlling the sheath blight pathogen. The present work in rice can be extended to other crop plants severely damaged by the pathogen.
Collapse
Affiliation(s)
- Kutubuddin Ali Molla
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India; Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - Subhasis Karmakar
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Palas Kumar Chanda
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India; Center for Diabetes Research, The Methodist Hospital Research Institute, 6670 Bertner, Houston, TX 77030, USA
| | - Sailendra Nath Sarkar
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Swapan Kumar Datta
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India; Visva Bharati University, Santiniketan, India
| | - Karabi Datta
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
347
|
Choi DS, Lim CW, Hwang BK. Proteomics and functional analyses of Arabidopsis nitrilases involved in the defense response to microbial pathogens. PLANTA 2016; 244:449-465. [PMID: 27095107 DOI: 10.1007/s00425-016-2525-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
Proteomics and functional analyses of the Arabidopsis - Pseudomonas syringae pv. tomato interactions reveal that Arabidopsis nitrilases are required for plant defense and R gene-mediated resistant responses to microbial pathogens. A high-throughput in planta proteome screen has identified Arabidopsis nitrilase 2 (AtNIT2), which was de novo-induced by Pseudomonas syringae pv. tomato (Pst) infection. The AtNIT2, AtNIT3, and AtNIT4 genes, but not AtNIT1, were distinctly induced in Arabidopsis leaves by Pst infection. Notably, avirulent Pst DC3000 (avrRpt2) infection led to significant induction of AtNIT2 and AtNIT4 in leaves. Pst DC3000 and Pst DC3000 (avrRpt2) significantly grew well in leaves of nitrilase transgenic (nit2i-2) and mutant (nit1-1 and nit3-1) lines compared to the wild-type leaves. In contrast, NIT2 overexpression in nit2 mutants led to significantly high growth of the two Pst strains in leaves. The nitrilase transgenic and mutant lines exhibited enhanced susceptibility to Hyaloperonospora arabidopsidis infection. The nit2 mutation enhanced Pst DC3000 (avrRpt2) growth in salicylic acid (SA)-deficient NahG transgenic and sid2 and npr1 mutant lines. Infection with Pst DC3000 or Pst DC3000 (avrRpt2) induced lower levels of indole-3-acetic acid (IAA) in nit2i and nit2i NahG plants than in wild-type plants, but did not alter the IAA level in NahG transgenic plants. This suggests that Arabidopsis nitrilase 2 is involved in IAA signaling of defense and R gene-mediated resistance responses to Pst infection. Quantification of SA in these transgenic and mutant plants demonstrates that Arabidopsis nitrilase 2 is not required for SA-mediated defense response to the virulent Pst DC3000 but regulates SA-mediated resistance to the avirulent Pst DC3000 (avrRpt2). These results collectively suggest that Arabidopsis nitrilase genes are involved in plant defense and R gene-mediated resistant responses to microbial pathogens.
Collapse
Affiliation(s)
- Du Seok Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 02841, Republic of Korea
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, CA, 92521, USA
| | - Chae Woo Lim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 02841, Republic of Korea
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 02841, Republic of Korea.
| |
Collapse
|
348
|
Jung GY, Park JY, Choi HJ, Yoo SJ, Park JK, Jung HW. A Rice Gene Homologous to Arabidopsis AGD2-LIKE DEFENSE1 Participates in Disease Resistance Response against Infection with Magnaporthe oryzae. THE PLANT PATHOLOGY JOURNAL 2016; 32:357-62. [PMID: 27493611 PMCID: PMC4968646 DOI: 10.5423/ppj.nt.10.2015.0213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/24/2016] [Accepted: 04/01/2016] [Indexed: 05/08/2023]
Abstract
ALD1 (ABERRANT GROWTH AND DEATH2 [AGD2]-LIKE DEFENSE1) is one of the key defense regulators in Arabidopsis thaliana and Nicotiana benthamiana. In these model plants, ALD1 is responsible for triggering basal defense response and systemic resistance against bacterial infection. As well ALD1 is involved in the production of pipecolic acid and an unidentified compound(s) for systemic resistance and priming syndrome, respectively. These previous studies proposed that ALD1 is a potential candidate for developing genetically modified (GM) plants that may be resistant to pathogen infection. Here we introduce a role of ALD1-LIKE gene of Oryza sativa, named as OsALD1, during plant immunity. OsALD1 mRNA was strongly transcribed in the infected leaves of rice plants by Magnaporthe oryzae, the rice blast fungus. OsALD1 proteins predominantly localized at the chloroplast in the plant cells. GM rice plants over-expressing OsALD1 were resistant to the fungal infection. The stable expression of OsALD1 also triggered strong mRNA expression of PATHOGENESIS-RELATED PROTEIN1 genes in the leaves of rice plants during infection. Taken together, we conclude that OsALD1 plays a role in disease resistance response of rice against the infection with rice blast fungus.
Collapse
Affiliation(s)
- Ga Young Jung
- Department of Genetic Engineering, Dong-A University, Busan 49315,
Korea
| | - Ju Yeon Park
- Department of Applied Biosciences, Dong-A University, Busan 49315,
Korea
| | - Hyo Ju Choi
- Department of Genetic Engineering, Dong-A University, Busan 49315,
Korea
| | - Sung-Je Yoo
- Department of Genetic Engineering, Dong-A University, Busan 49315,
Korea
| | - Jung-Kwon Park
- Department of Applied Biosciences, Dong-A University, Busan 49315,
Korea
| | - Ho Won Jung
- Department of Genetic Engineering, Dong-A University, Busan 49315,
Korea
- Department of Applied Biosciences, Dong-A University, Busan 49315,
Korea
- Corresponding author. Phone) +82-51-200-7546, FAX) +82-51-200-7505, E-mail)
| |
Collapse
|
349
|
Bektas Y, Rodriguez-Salus M, Schroeder M, Gomez A, Kaloshian I, Eulgem T. The Synthetic Elicitor DPMP (2,4-dichloro-6-{(E)-[(3-methoxyphenyl)imino]methyl}phenol) Triggers Strong Immunity in Arabidopsis thaliana and Tomato. Sci Rep 2016; 6:29554. [PMID: 27412821 PMCID: PMC4944173 DOI: 10.1038/srep29554] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/17/2016] [Indexed: 11/30/2022] Open
Abstract
Synthetic elicitors are drug-like compounds that are structurally distinct from natural defense elicitors. They can protect plants from diseases by activating host immune responses and can serve as tools for the dissection of the plant immune system as well as leads for the development of environmentally-safe pesticide alternatives. By high-throughput screening, we previously identified 114 synthetic elicitors that activate expression of the pathogen-responsive CaBP22−333::GUS reporter gene in Arabidopsis thaliana (Arabidopsis), 33 of which are [(phenylimino)methyl]phenol (PMP) derivatives or PMP-related compounds. Here we report on the characterization of one of these compounds, 2,4-dichloro-6-{(E)-[(3-methoxyphenyl)imino]methyl}phenol (DPMP). DPMP strongly triggers disease resistance of Arabidopsis against bacterial and oomycete pathogens. By mRNA-seq analysis we found transcriptional profiles triggered by DPMP to resemble typical defense-related responses.
Collapse
Affiliation(s)
- Yasemin Bektas
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California at Riverside, CA 92521, USA.,Department of Botany and Plant Sciences, University of California at Riverside, CA 92521, USA
| | - Melinda Rodriguez-Salus
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California at Riverside, CA 92521, USA.,Department of Botany and Plant Sciences, University of California at Riverside, CA 92521, USA.,ChemGen Intergrative Graduate Education and Research Traineeship program, program, University of California at Riverside, CA 92521, USA
| | - Mercedes Schroeder
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California at Riverside, CA 92521, USA.,Department of Botany and Plant Sciences, University of California at Riverside, CA 92521, USA.,ChemGen Intergrative Graduate Education and Research Traineeship program, program, University of California at Riverside, CA 92521, USA
| | - Adilene Gomez
- Department of Botany and Plant Sciences, University of California at Riverside, CA 92521, USA
| | - Isgouhi Kaloshian
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California at Riverside, CA 92521, USA.,Department of Nematology, University of California at Riverside, CA 92521, USA
| | - Thomas Eulgem
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California at Riverside, CA 92521, USA.,Department of Botany and Plant Sciences, University of California at Riverside, CA 92521, USA.,ChemGen Intergrative Graduate Education and Research Traineeship program, program, University of California at Riverside, CA 92521, USA
| |
Collapse
|
350
|
Zhang Y, Barthe G, Grosser JW, Wang N. Transcriptome analysis of root response to citrus blight based on the newly assembled Swingle citrumelo draft genome. BMC Genomics 2016; 17:485. [PMID: 27391971 PMCID: PMC4938905 DOI: 10.1186/s12864-016-2779-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Citrus blight is a citrus tree overall decline disease and causes serious losses in the citrus industry worldwide. Although it was described more than one hundred years ago, its causal agent remains unknown and its pathophysiology is not well determined, which hampers our understanding of the disease and design of suitable disease management. RESULTS In this study, we sequenced and assembled the draft genome for Swingle citrumelo, one important citrus rootstock. The draft genome is approximately 280 Mb, which covers 74 % of the estimated Swingle citrumelo genome and the average coverage is around 15X. The draft genome of Swingle citrumelo enabled us to conduct transcriptome analysis of roots of blight and healthy Swingle citrumelo using RNA-seq. The RNA-seq was reliable as evidenced by the high consistence of RNA-seq analysis and quantitative reverse transcription PCR results (R(2) = 0.966). Comparison of the gene expression profiles between blight and healthy root samples revealed the molecular mechanism underneath the characteristic blight phenotypes including decline, starch accumulation, and drought stress. The JA and ET biosynthesis and signaling pathways showed decreased transcript abundance, whereas SA-mediated defense-related genes showed increased transcript abundance in blight trees, suggesting unclassified biotrophic pathogen was involved in this disease. CONCLUSIONS Overall, the Swingle citrumelo draft genome generated in this study will advance our understanding of plant biology and contribute to the citrus breeding. Transcriptome analysis of blight and healthy trees deepened our understanding of the pathophysiology of citrus blight.
Collapse
Affiliation(s)
- Yunzeng Zhang
- />Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL USA
| | - Gary Barthe
- />Citrus Research and Education Center, Department of Horticultural Sciences, University of Florida, Lake Alfred, FL USA
| | - Jude W. Grosser
- />Citrus Research and Education Center, Department of Horticultural Sciences, University of Florida, Lake Alfred, FL USA
| | - Nian Wang
- />Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL USA
| |
Collapse
|