301
|
Abstract
Closure of the neural tube is essential for normal development of the brain and spinal cord. Failure of closure results in neural tube defects (NTDs), common and clinically severe congenital malformations whose molecular mechanisms remain poorly understood. On the other hand, it is increasingly well established that common molecular mechanisms are employed to regulate morphogenesis of multicellular organisms. For example, signaling triggered by polypeptide growth factors is highly conserved among species and utilized in multiple developmental processes. Recent studies have revealed that the Drosophila planar cell polarity (PCP) pathway, which directs position and direction of wing hairs on the surface of the fly wing, is well conserved, and orthologs of several genes encoding components of the pathway are also found in vertebrates. Interestingly, in vertebrates, this signaling pathway appears to be co-opted to regulate "convergent extension" cell movements during gastrulation. Disruption of vertebrate PCP genes in Xenopus laevis or zebrafish causes severe gastrulation defects or the shortening of the trunk, as well as mediolateral expansion of somites. In Xenopus, in which the neural tube closes by elevation and fusion of neural folds, inhibition of convergent extension can also prevent neural tube closure causing a "spina bifida-like" appearance. Furthermore, several of the genes involved in the PCP pathway have recently been shown to be required for neural tube closure in the mouse, since mutation of these genes causes NTDs. Therefore, understanding the mechanisms underlying the establishment of cell polarity in Drosophila may provide important clues to the molecular basis of NTDs.
Collapse
Affiliation(s)
- Naoto Ueno
- Department of Developmental Biology, National Institute for Basic Biology, and SOKENDAI, Okazaki, Japan.
| | | |
Collapse
|
302
|
Abstract
Several epitheliums exhibit a clear polarity that lies within the plane of the epithelium. This polarity, referred to as planar polarity or tissue polarity, is oriented perpendicular to the apical-basal polarity of the epithelium. Over the last two decades, the genetic and molecular bases of planar polarity have been intensively investigated in Drosophila. Recent studies have shown that establishment of planar polarity relies on the unipolar distribution of a small number of signaling molecules localizing at the apical cortex. Unipolar localization of planar polarity proteins defines two opposite and complementary cortical domains. These domains show a stereotyped orientation at the tissue level. Positioning of these cortical domains is coordinated at the tissue level by a second class of signaling molecules that form an activity gradient across the epithelium. Together these data have led to a general model of planar polarity establishment. Considering that planar polarity genes have been conserved from flies to vertebrates, this model may be useful for our understanding of epithelium biology in mammals.
Collapse
Affiliation(s)
- François Schweisguth
- Ecole Normale Supérieure, Cnrs UMR 8542, 46, rue d'Ulm, 75230 Paris Cedex France.
| |
Collapse
|
303
|
Bellaïche Y, Beaudoin-Massiani O, Stuttem I, Schweisguth F. The planar cell polarity protein Strabismus promotes Pins anterior localization during asymmetric division of sensory organ precursor cells in Drosophila. Development 2004; 131:469-78. [PMID: 14701683 DOI: 10.1242/dev.00928] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell fate diversity is generated in part by the unequal segregation of cell-fate determinants during asymmetric cell division. In the Drosophila bristle lineage, the sensory organ precursor (pI) cell is polarized along the anteroposterior (AP) axis by Frizzled (Fz) receptor signaling. We show here that Fz localizes at the posterior apical cortex of the pI cell prior to mitosis, whereas Strabismus (Stbm) and Prickle (Pk), which are also required for AP polarization of the pI cell, co-localize at the anterior apical cortex. Thus, asymmetric localization of Fz, Stbm and Pk define two opposite cortical domains prior to mitosis of the pI cell. At mitosis, Stbm forms an anterior crescent that overlaps with the distribution of Partner of Inscuteable (Pins) and Discs-large (Dlg), two components of the anterior Dlg-Pins-Galphai complex that regulates the localization of cell-fate determinants. At prophase, Stbm promotes the anterior localization of Pins. By contrast, Dishevelled (Dsh) acts antagonistically to Stbm by excluding Pins from the posterior cortex. We propose that the Stbm-dependent recruitment of Pins at the anterior cortex of the pI cell is a novel read-out of planar cell polarity.
Collapse
Affiliation(s)
- Yohanns Bellaïche
- Ecole Normale Supérieure, UMR 8542, 46, rue d'Ulm, 75230 Paris, Cedex 05, France
| | | | | | | |
Collapse
|
304
|
Abstract
Planar cell polarity (PCP) has been demonstrated in the epithelium of organisms from flies to humans. Recent research has revealed that the planar organization of cells requires a conserved set of genes, known as the PCP genes. Tbe PCP proteins Frizzled (Fz) and Dishevelled (Dsh) function as key players in PCP signalling. Although Fz and Dsh are also involved in Wingless (Wg)/Wnt signalling, these proteins have independent functions in a non-canonical pathway dedicated to PCP. Reorganization of the cell surface and cytoskeleton is required, and recent work has focused on how cell adhesion molecules (such as Fat, Dachsous and Flamingo) function in this process.
Collapse
Affiliation(s)
- Manolis Fanto
- Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | | |
Collapse
|
305
|
Abstract
The T-box gene family, encoding related DNA-binding transcriptional regulators, plays an essential role in controlling many aspects of embryogenesis in a wide variety of organisms. The T-box genes exhibit diverse patterns of spatial and temporal expression in the developing embryo, and both genetic and molecular embryological studies have demonstrated their importance in regulating cell fate decisions that establish the early body plan, and in later processes underlying organogenesis. Despite these studies, little is known of either the regulation of the T-box genes or the identities of their transcriptional targets. The aim of this review is to examine the diverse yet conserved roles of several T-box genes in regulating early patterning in chordates and to discuss possible mechanisms through which this functional diversity might arise. Developmental Dynamics 229:201-218, 2004.
Collapse
Affiliation(s)
- Chris Showell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
306
|
Lee H, Adler PN. The grainy head transcription factor is essential for the function of the frizzled pathway in the Drosophila wing. Mech Dev 2004; 121:37-49. [PMID: 14706698 DOI: 10.1016/j.mod.2003.11.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Drosophila wing is covered by an array of distally pointing hairs. This tissue planar polarity is regulated by the frizzled pathway. We have found that the function of the grainy head transcription factor is essential for the function of the frizzled pathway. grainy head mutant cells fail to localize planar polarity proteins at either the proximal or distal sides of wing cells and produce multiple hairs of abnormal polarity. Levels of the Starry night protein are strongly reduced in grainy head mutants in both larval wing discs and pupal wings, which is sufficient to account for much of the polarity phenotype. In addition, we found that grh has frizzled pathway independent functions during the development of the adult cuticle.
Collapse
Affiliation(s)
- Haeryun Lee
- Department of Biology and Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
| | | |
Collapse
|
307
|
Wong HC, Bourdelas A, Krauss A, Lee HJ, Shao Y, Wu D, Mlodzik M, Shi DL, Zheng J. Direct Binding of the PDZ Domain of Dishevelled to a Conserved Internal Sequence in the C-Terminal Region of Frizzled. Mol Cell 2003; 12:1251-60. [PMID: 14636582 PMCID: PMC4381837 DOI: 10.1016/s1097-2765(03)00427-1] [Citation(s) in RCA: 382] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cytoplasmic protein Dishevelled (Dvl) and the associated membrane-bound receptor Frizzled (Fz) are essential in canonical and noncanonical Wnt signaling pathways. However, the molecular mechanisms underlying this signaling are not well understood. By using NMR spectroscopy, we determined that an internal sequence of Fz binds to the conventional peptide binding site in the PDZ domain of Dvl; this type of site typically binds to C-terminal binding motifs. The C-terminal region of the Dvl inhibitor Dapper (Dpr) and Frodo bound to the same site. In Xenopus, Dvl binding peptides of Fz and Dpr/Frodo inhibited canonical Wnt signaling and blocked Wnt-induced secondary axis formation in a dose-dependent manner, but did not block noncanonical Wnt signaling mediated by the DEP domain. Together, our results identify a missing molecular connection within the Wnt pathway. Differences in the binding affinity of the Dvl PDZ domain and its binding partners may be important in regulating signal transduction by Dvl.
Collapse
Affiliation(s)
- Hing-C. Wong
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Audrey Bourdelas
- Laboratoire de Biologie du Dévelopment, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
| | - Anke Krauss
- Brookdale Department of Molecular, Cell and Developmental Biology, Mt. Sinai School of Medicine, New York, New York 10029
| | - Ho-Jin Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Youming Shao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Dianqing Wu
- Department of Genetics and Development Biology, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Marek Mlodzik
- Brookdale Department of Molecular, Cell and Developmental Biology, Mt. Sinai School of Medicine, New York, New York 10029
| | - De-Li Shi
- Laboratoire de Biologie du Dévelopment, CNRS UMR 7622, University Pierre et Marie Curie, 9 quai Saint-Bernard, 75005 Paris, France
- Correspondence: (J.Z.), (D.-L.S.)
| | - Jie Zheng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163
- Correspondence: (J.Z.), (D.-L.S.)
| |
Collapse
|
308
|
Abstract
A key aspect of animal development is the appropriate polarisation of different cell types in the right place at the right time. Such polarisation is often precisely coordinated relative to the axes of a tissue or organ, but the mechanisms underlying this coordination are still poorly understood. Nevertheless, genetic analysis of animal development has revealed some of the pathways involved. For example, a non-canonical Frizzled signalling pathway has been found to coordinate cell polarity throughout the insect cuticle, and recent work has implicated an analogous pathway in coordinated polarisation of cells during vertebrate development. This review discusses recent findings regarding non-canonical Frizzled signalling and cell polarisation.
Collapse
Affiliation(s)
- David Strutt
- Centre for Developmental Genetics, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
309
|
Carreira-Barbosa F, Concha ML, Takeuchi M, Ueno N, Wilson SW, Tada M. Prickle 1 regulates cell movements during gastrulation and neuronal migration in zebrafish. Development 2003; 130:4037-46. [PMID: 12874125 DOI: 10.1242/dev.00567] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During vertebrate gastrulation, mesodermal and ectodermal cells undergo convergent extension, a process characterised by prominent cellular rearrangements in which polarised cells intercalate along the medio-lateral axis leading to elongation of the antero-posterior axis. Recently, it has become evident that a noncanonical Wnt/Frizzled (Fz)/Dishevelled (Dsh) signalling pathway, which is related to the planar-cell-polarity (PCP) pathway in flies, regulates convergent extension during vertebrate gastrulation. Here we isolate and functionally characterise a zebrafish homologue of Drosophila prickle (pk), a gene that is implicated in the regulation of PCP. Zebrafish pk1 is expressed maternally and in moving mesodermal precursors. Abrogation of Pk1 function by morpholino oligonucleotides leads to defective convergent extension movements, enhances the silberblick (slb)/wnt11 and pipetail (Ppt)/wnt5 phenotypes and suppresses the ability of Wnt11 to rescue the slb phenotype. Gain-of-function of Pk1 also inhibits convergent extension movements and enhances the slb phenotype, most likely caused by the ability of Pk1 to block the Fz7-dependent membrane localisation of Dsh by downregulating levels of Dsh protein. Furthermore, we show that pk1 interacts genetically with trilobite (tri)/strabismus to mediate the caudally directed migration of cranial motor neurons and convergent extension. These results indicate that, during zebrafish gastrulation Pk1 acts, in part, through interaction with the noncanonical Wnt11/Wnt5 pathway to regulate convergent extension cell movements, but is unlikely to simply be a linear component of this pathway. In addition, Pk1 interacts with Tri to mediate posterior migration of branchiomotor neurons, probably independent of the noncanonical Wnt pathway.
Collapse
Affiliation(s)
- Filipa Carreira-Barbosa
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
310
|
Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 2003; 5:367-77. [PMID: 12967557 DOI: 10.1016/s1534-5807(03)00266-1] [Citation(s) in RCA: 1063] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
More is becoming known about so-called noncanonical Wnt pathways that signal independently of beta-catenin. Here we review recent developments in both the functions and mechanisms of noncanonical Wnt signaling. We also discuss some unresolved and vexing questions. How many noncanonical Wnt pathways are there? How extensive are the parallels between Drosophila planar polarization and vertebrate convergence and extension? Last, we will outline some challenges and difficulties we foresee for this exciting but still very young field.
Collapse
Affiliation(s)
- Michael T Veeman
- Howard Hughes Medical Institute, Department of Pharmacology, Center for Developmental Biology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | |
Collapse
|
311
|
Jenny A, Darken RS, Wilson PA, Mlodzik M. Prickle and Strabismus form a functional complex to generate a correct axis during planar cell polarity signaling. EMBO J 2003; 22:4409-20. [PMID: 12941693 PMCID: PMC202366 DOI: 10.1093/emboj/cdg424] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2003] [Revised: 07/07/2003] [Accepted: 07/08/2003] [Indexed: 11/15/2022] Open
Abstract
Frizzled (Fz) signaling regulates the establishment of planar cell polarity (PCP). The PCP genes prickle (pk) and strabismus (stbm) are thought to antagonize Fz signaling. We show that they act in the same cell, R4, adjacent to that in which the Fz/PCP pathway is required in the Drosophila eye. We demonstrate that Stbm and Pk interact physically and that Stbm recruits Pk to the cell membrane. Through this interaction, Pk affects Stbm membrane localization and can cause clustering of Stbm. Pk is also known to interact with Dsh and is thought to antagonize Dsh by affecting its membrane localization. Thus our data suggest that the Stbm/Pk complex modulates Fz/Dsh activity, resulting in a symmetry-breaking step during polarity signaling.
Collapse
Affiliation(s)
- Andreas Jenny
- Mount Sinai School of Medicine, Brookdale Department of Molecular, Cellular and Developmental Biology, 1 Gustave L.Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|
312
|
Bastock R, Strutt H, Strutt D. Strabismus is asymmetrically localised and binds to Prickle and Dishevelled during Drosophila planar polarity patterning. Development 2003; 130:3007-14. [PMID: 12756182 DOI: 10.1242/dev.00526] [Citation(s) in RCA: 259] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Planar polarity decisions in the wing of Drosophila involve the assembly of asymmetric protein complexes containing the conserved receptor Frizzled. In this study, we analyse the role of the Van Gogh/strabismus gene in the formation of these complexes and cell polarisation. We find that the Strabismus protein becomes asymmetrically localised to the proximal edge of cells. In the absence of strabismus activity, the planar polarity proteins Dishevelled and Prickle are mislocalised in the cell. We show that Strabismus binds directly to Dishevelled and Prickle and is able to recruit them to membranes. Furthermore, we demonstrate that the putative PDZ-binding motif at the C terminus of Strabismus is not required for its function. We propose a two-step model for assembly of Frizzledcontaining asymmetric protein complexes at cell boundaries. First, Strabismus acts together with Frizzled and the atypical cadherin Flamingo to mediate apicolateral recruitment of planar polarity proteins including Dishevelled and Prickle. In the second phase, Dishevelled and Prickle are required for these proteins to become asymmetrically distributed on the proximodistal axis.
Collapse
Affiliation(s)
- Rebecca Bastock
- Centre for Developmental Genetics, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | |
Collapse
|
313
|
Hocevar BA, Mou F, Rennolds JL, Morris SM, Cooper JA, Howe PH. Regulation of the Wnt signaling pathway by disabled-2 (Dab2). EMBO J 2003; 22:3084-94. [PMID: 12805222 PMCID: PMC162138 DOI: 10.1093/emboj/cdg286] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2002] [Revised: 04/04/2003] [Accepted: 04/23/2003] [Indexed: 02/06/2023] Open
Abstract
The adaptor molecule Disabled-2 (Dab2) has been shown to link cell surface receptors to downstream signaling pathways. Using a small-pool cDNA screening strategy, we identify that the N-terminal domain of Dab2 interacts with Dishevelled-3 (Dvl-3), a signaling mediator of the Wnt pathway. Ectopic expression of Dab2 in NIH-3T3 mouse fibroblasts attenuates canonical Wnt/beta-catenin-mediated signaling, including accumulation of beta-catenin, activation of beta-catenin/T-cell-specific factor/lymphoid enhancer-binding factor 1-dependent reporter constructs, and endogenous cyclin D1 induction. Wnt stimulation leads to a time-dependent dissociation of endogenous Dab2-Dvl-3 and Dvl-3-axin interactions in NIH-3T3 cells, while Dab2 overexpression leads to maintenance of Dab2-Dvl-3 association and subsequent loss of Dvl-3-axin interactions. In addition, we find that Dab2 can associate with axin in vitro and stabilize axin expression in vivo. Mouse embryo fibroblasts which lack Dab2 exhibit constitutive Wnt signaling as evidenced by increased levels of nuclear beta-catenin and cyclin D1 protein levels. Based on these results, we propose that Dab2 functions as a negative regulator of canonical Wnt signaling by stabilizing the beta-catenin degradation complex, which may contribute to its proposed role as a tumor suppressor.
Collapse
Affiliation(s)
- B A Hocevar
- Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
314
|
Sasakura Y, Yamada L, Takatori N, Satou Y, Satoh N. A genomewide survey of developmentally relevant genes in Ciona intestinalis. VII. Molecules involved in the regulation of cell polarity and actin dynamics. Dev Genes Evol 2003; 213:273-83. [PMID: 12740699 DOI: 10.1007/s00427-003-0325-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2003] [Accepted: 03/25/2003] [Indexed: 11/25/2022]
Abstract
In the present study, genes involved in the pathways that establish cell polarity and cascades regulating actin dynamics were identified in the completely sequenced genome of Ciona intestinalis, a basal chordate. It was revealed that the Ciona genome contains orthologous genes of each component of aPKC-Par and PCP pathways and WASP/WAVE/SCAR and ADF/cofilin cascades, with less redundancy than the vertebrate genomes, suggesting that the conserved pathways/cascades function in Ciona development. In addition, the present study found that the orthologous proteins of five gene groups (Tc10, WRCH, RhoD, PLC-L, and PSKH) are conserved in humans and Ciona but not in Drosophila melanogaster, suggesting a similarity in the gene composition of Ciona to that of vertebrates. Ciona intestinalis, therefore, may provide refined clues for the study of vertebrate development and evolution.
Collapse
Affiliation(s)
- Yasunori Sasakura
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
315
|
Dabdoub A, Donohue MJ, Brennan A, Wolf V, Montcouquiol M, Sassoon DA, Hseih JC, Rubin JS, Salinas PC, Kelley MW. Wnt signaling mediates reorientation of outer hair cell stereociliary bundles in the mammalian cochlea. Development 2003; 130:2375-84. [PMID: 12702652 DOI: 10.1242/dev.00448] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the mammalian cochlea, stereociliary bundles located on mechanosensory hair cells within the sensory epithelium are unidirectionally oriented. Development of this planar polarity is necessary for normal hearing as stereociliary bundles are only sensitive to vibrations in a single plane; however, the mechanisms governing their orientation are unknown. We report that Wnt signaling regulates the development of unidirectional stereociliary bundle orientation. In vitro application of Wnt7a protein or inhibitors of Wnt signaling, secreted Frizzled-related protein 1 or Wnt inhibitory factor 1, disrupts bundle orientation. Moreover, Wnt7a is expressed in a pattern consistent with a role in the polarization of the developing stereociliary bundles. We propose that Wnt signaling across the region of developing outer hair cells gives rise to planar polarity in the mammalian cochlea.
Collapse
Affiliation(s)
- Alain Dabdoub
- Section on Developmental Neuroscience, NIDCD, National Institutes of Health, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
316
|
Rawls AS, Wolff T. Strabismus requires Flamingo and Prickle function to regulate tissue polarity in the Drosophila eye. Development 2003; 130:1877-87. [PMID: 12642492 DOI: 10.1242/dev.00411] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tissue polarity in Drosophila is regulated by a number of genes that are thought to function in a complex, many of which interact genetically and/or physically, co-localize, and require other tissue polarity proteins for their localization. We report the enhancement of the strabismus tissue polarity phenotype by mutations in two other tissue polarity genes, flamingo and prickle. Flamingo is autonomously required for the establishment of ommatidial polarity. Its localization is dynamic throughout ommatidial development and is dependent on Frizzled and Notch. Flamingo and Strabismus co-localize for several rows posterior to the morphogenetic furrow and subsequently diverge. While neither of these proteins is required for the other's localization, Prickle localization is influenced by Strabismus function. Our data suggest that Strabismus, Flamingo and Prickle function together to regulate the establishment of tissue polarity in the Drosophila eye.
Collapse
Affiliation(s)
- Amy S Rawls
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
317
|
Ohkawara B, Yamamoto TS, Tada M, Ueno N. Role of glypican 4 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development 2003; 130:2129-38. [PMID: 12668627 DOI: 10.1242/dev.00435] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Coordinated morphogenetic cell movements during gastrulation are crucial for establishing embryonic axes in animals. Most recently, the non-canonical Wnt signaling cascade (PCP pathway) has been shown to regulate convergent extension movements in Xenopus and zebrafish. Heparan sulfate proteoglycans (HSPGs) are known as modulators of intercellular signaling, and are required for gastrulation movements in vertebrates. However, the function of HSPGs is poorly understood. We analyze the function of Xenopus glypican 4 (Xgly4), which is a member of membrane-associated HSPG family. In situ hybridization revealed that Xgly4 is expressed in the dorsal mesoderm and ectoderm during gastrulation. Reducing the levels of Xgly4 inhibits cell-membrane accumulation of Dishevelled (Dsh), which is a transducer of the Wnt signaling cascade, and thereby disturbs cell movements during gastrulation. Rescue analysis with different Dsh mutants and Wnt11 demonstrated that Xgly4 functions in the non-canonical Wnt/PCP pathway, but not in the canonical Wnt/beta-catenin pathway, to regulate gastrulation movements. We also provide evidence that the Xgly4 protein physically binds Wnt ligands. Therefore, our results suggest that Xgly4 functions as positive regulator in non-canonical Wnt/PCP signaling during gastrulation.
Collapse
Affiliation(s)
- Bisei Ohkawara
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | | | | | | |
Collapse
|
318
|
Veeman MT, Slusarski DC, Kaykas A, Louie SH, Moon RT. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol 2003; 13:680-5. [PMID: 12699626 DOI: 10.1016/s0960-9822(03)00240-9] [Citation(s) in RCA: 786] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to the canonical Wnt/beta-catenin signaling pathway, at least two noncanonical Wnt/Fz pathways have been described: the planar cell polarity (PCP) pathway in Drosophila [1] and the Wnt/calcium pathway in vertebrate embryos [2]. Recent work suggests that a vertebrate pathway homologous to the PCP pathway acts to regulate the convergent extension movements of gastrulation [3-7]. To further test this hypothesis, we have identified two zebrafish homologs of the Drosophila PCP gene prickle (pk) [8], both of which show discrete and dynamic expression patterns during gastrulation. Both gain and loss of pk1 function cause defects in convergent extension. Pk1 localizes to both the cytoplasm and the cell membrane, and its normal localization is partially dependent on its C-terminal prenylation motif. At the cell membrane, Pk1 is frequently localized asymmetrically around the cell and can colocalize with the signaling molecule Dishevelled (Dsh). In overexpression assays, Pk1 is able to activate AP-1-mediated transcription and inhibit activation of Wnt/beta-catenin signaling. Like noncanonical Wnts [9-10], overexpression of Pk1 increases the frequency of calcium transients in zebrafish blastulae. Our results support the idea that a vertebrate PCP pathway regulates gastrulation movements and suggest that there is overlap between the PCP and Wnt/calcium pathways.
Collapse
Affiliation(s)
- Michael T Veeman
- Department of Pharmacology, Center for Developmental Biology, Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
319
|
Takeuchi M, Nakabayashi J, Sakaguchi T, Yamamoto TS, Takahashi H, Takeda H, Ueno N. The prickle-related gene in vertebrates is essential for gastrulation cell movements. Curr Biol 2003; 13:674-9. [PMID: 12699625 DOI: 10.1016/s0960-9822(03)00245-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Involving dynamic and coordinated cell movements that cause drastic changes in embryo shape, gastrulation is one of the most important processes of early development. Gastrulation proceeds by various types of cell movements, including convergence and extension, during which polarized axial mesodermal cells intercalate in radial and mediolateral directions and thus elongate the dorsal marginal zone along the anterior-posterior axis [1,2]. Recently, it was reported that a noncanonical Wnt signaling pathway, which is known to regulate planar cell polarity (PCP) in Drosophila [3,4], participates in the regulation of convergent extension movements in Xenopus as well as in the zebrafish embryo [5-8]. The Wnt5a/Wnt11 signal is mediated by members of the seven-pass transmembrane receptor Frizzled (Fz) and the signal transducer Dishevelled (Dsh) through the Dsh domains that are required for the PCP signal [6-8]. It has also been shown that the relocalization of Dsh to the cell membrane is required for convergent extension movements in Xenopus gastrulae. Although it appears that signaling via these components leads to the activation of JNK [9,10] and rearrangement of microtubules, the precise interplay among these intercellular components is largely unknown. In this study, we show that Xenopus prickle (Xpk), a Xenopus homolog of a Drosophila PCP gene [11-13], is an essential component for gastrulation cell movement. Both gain-of-function and loss-of-function of Xpk severely perturbed gastrulation and caused spina bifida embryos without affecting mesodermal differentiation. We also demonstrate that XPK binds to Xenopus Dsh as well as to JNK. This suggests that XPK plays a pivotal role in connecting Dsh function to JNK activation.
Collapse
Affiliation(s)
- Masaki Takeuchi
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
320
|
Garvalov BK, Higgins TE, Sutherland JD, Zettl M, Scaplehorn N, Köcher T, Piddini E, Griffiths G, Way M. The conformational state of Tes regulates its zyxin-dependent recruitment to focal adhesions. J Cell Biol 2003; 161:33-9. [PMID: 12695497 PMCID: PMC2172870 DOI: 10.1083/jcb.200211015] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The function of the human Tes protein, which has extensive similarity to zyxin in both sequence and domain organization, is currently unknown. We now show that Tes is a component of focal adhesions that, when expressed, negatively regulates proliferation of T47D breast carcinoma cells. Coimmunoprecipitations demonstrate that in vivo Tes is complexed with actin, Mena, and vasodilator-stimulated phosphoprotein (VASP). Interestingly, the isolated NH2-terminal half of Tes pulls out alpha-actinin and paxillin from cell extracts in addition to actin. The COOH-terminal half recruits zyxin as well as Mena and VASP from cell extracts. These differences suggest that the ability of Tes to associate with alpha-actinin, paxillin, and zyxin is dependent on the conformational state of the molecule. Consistent with this hypothesis, we demonstrate that the two halves of Tes interact with each other in vitro and in vivo. Using fibroblasts lacking Mena and VASP, we show that these proteins are not required to recruit Tes to focal adhesions. However, using RNAi ablation, we demonstrate that zyxin is required to recruit Tes, as well as Mena and VASP, but not vinculin or paxillin, to focal adhesions.
Collapse
Affiliation(s)
- Boyan K Garvalov
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
321
|
Anderson KV, Ingham PW. The transformation of the model organism: a decade of developmental genetics. Nat Genet 2003; 33 Suppl:285-93. [PMID: 12610538 DOI: 10.1038/ng1105] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The past decade has seen the development of powerful techniques to dissect the molecular processes that regulate development. New tools have been used to reveal the basis of cell polarity, morphogen gradients and regulation of signaling in developing animals. Cell biology and developmental biology have become closely intertwined, and many genes that had been thought of as regulators of general cell biological (housekeeping) functions have been shown to act as specific developmental regulators. Vertebrate developmental genetics is now flourishing, with forward and reverse genetics in both zebrafish and the mouse providing new dimensions to our understanding of development.
Collapse
Affiliation(s)
- Kathryn V Anderson
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA.
| | | |
Collapse
|
322
|
Fanto M, Clayton L, Meredith J, Hardiman K, Charroux B, Kerridge S, McNeill H. The tumor-suppressor and cell adhesion molecule Fat controls planar polarity via physical interactions with Atrophin, a transcriptional co-repressor. Development 2003; 130:763-74. [PMID: 12506006 DOI: 10.1242/dev.00304] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fat is an atypical cadherin that controls both cell growth and planar polarity. Atrophin is a nuclear co-repressor that is also essential for planar polarity; however, it is not known what genes Atrophin controls in planar polarity, or how Atrophin activity is regulated during the establishment of planar polarity. We show that Atrophin binds to the cytoplasmic domain of Fat and that Atrophin mutants show strong genetic interactions with fat. We find that both Atrophin and fat clones in the eye have non-autonomous disruptions in planar polarity that are restricted to the polar border of clones and that there is rescue of planar polarity defects on the equatorial border of these clones. Both fat and Atrophin are required to control four-jointed expression. In addition our mosaic analysis demonstrates an enhanced requirement for Atrophin in the R3 photoreceptor. These data lead us to a model in which fat and Atrophin act twice in the determination of planar polarity in the eye: first in setting up positional information through the production of a planar polarity diffusible signal, and later in R3 fate determination.
Collapse
Affiliation(s)
- Manolis Fanto
- Cancer Research UK (ICRF), London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | | | |
Collapse
|
323
|
Ma D, Yang CH, McNeill H, Simon MA, Axelrod JD. Fidelity in planar cell polarity signalling. Nature 2003; 421:543-7. [PMID: 12540853 DOI: 10.1038/nature01366] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2002] [Accepted: 12/12/2002] [Indexed: 11/09/2022]
Abstract
The polarity of Drosophila wing hairs displays remarkable fidelity. Each of the approximately 30,000 wing epithelial cells constructs an actin-rich prehair that protrudes from its distal vertex and points distally. The distal location and orientation of the hairs is virtually error free, thus forming a nearly perfect parallel array. This process is controlled by the planar cell polarity signalling pathway. Here we show that interaction between two tiers of the planar cell polarity signalling mechanism results in the observed high fidelity. The first tier, mediated by the cadherin Fat, dictates global orientation by transducing a directional signal to individual cells. The second tier, orchestrated by the 7-pass transmembrane receptor Frizzled, aligns each cell's polarity with that of its neighbours through the action of an intercellular feedback loop, enabling polarity to propagate from cell to cell. We show that all cells need not respond correctly to the presumably subtle signal transmitted by Fat. Subsequent action of the Frizzled feedback loop is sufficient to align all the cells cooperatively. This economical system is therefore highly robust, and produces virtually error-free arrays.
Collapse
Affiliation(s)
- Dali Ma
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | | | | | | | | |
Collapse
|
324
|
Habas R, Dawid IB, He X. Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev 2003; 17:295-309. [PMID: 12533515 PMCID: PMC195976 DOI: 10.1101/gad.1022203] [Citation(s) in RCA: 458] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Wnt/Frizzled (Fz) signaling controls cell polarity/movements during vertebrate gastrulation via incompletely defined mechanisms. We demonstrated previously that Wnt/Fz activation of Rho, a GTPase and regulator of cytoskeletal architecture, is essential for vertebrate gastrulation. Here we report that in mammalian cells and Xenopus embryos, Wnt/Fz signaling coactivates Rho and Rac, another GTPase and distinct regulator of cytoskeletal architecture. Wnt/Fz activation of Rac is independent of Rho and mediates Wnt/Fz activation of Jun N-terminal kinase (JNK). Dishevelled (Dvl), a cytoplasmic protein downstream of Fz, forms a Wnt-induced complex with Rac independent of the Wnt-induced Dvl-Rho complex. Depletion or inhibition of Rac function perturbs Xenopus gastrulation without affecting Wnt/Fz activation of the Rho or beta-catenin pathway. We propose that parallel activation of Rac and Rho pathways by Wnt/Fz signaling is required for cell polarity and movements during vertebrate gastrulation.
Collapse
Affiliation(s)
- Raymond Habas
- Laboratory of Molecular Genetics, National Institutes of Child Health and Human Development, Bethesda, Maryland 20892-2790, USA
| | | | | |
Collapse
|
325
|
Wharton KA. Runnin' with the Dvl: proteins that associate with Dsh/Dvl and their significance to Wnt signal transduction. Dev Biol 2003; 253:1-17. [PMID: 12490194 DOI: 10.1006/dbio.2002.0869] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Wnt proteins transmit myriad intercellular signals crucial for the development and homeostasis of metazoan animals from Hydra to human. Abnormal Wnt signaling causes a growing number of diseases, including cancer and osteoporosis. Depending on the context, a given Wnt signal may denote: cell proliferation or apoptosis; cell fate determination, differentiation, or stem cell maintenance; a variety of changes in cell behavior; and/or coordinated interactions with its neighbors. Which event(s) occur in Wnt-responsive cells depends critically on the ability of Dishevelled (Dsh)/Dvl proteins to interpret distinct types of intracellular, receptor-generated stimuli and transmit them to at least two distinct sets of effector molecules, all while apparently ignoring a third type of Wnt-generated Ca(2+) signal. The three conserved domains present in Dsh/Dvl proteins uniquely function in each Wnt pathway, in part by association with 18 (and counting) Dsh/Dvl-associated proteins. The latest data suggest that Dsh/Dvl proteins organize dynamic, pathway-specific subcellular signaling complexes that ensure correct information routing, signal amplification, and dynamic control through feedback regulation. The biochemical and cell biological mechanisms by which Dsh/Dvl proteins accomplish these remarkable tasks remain obscure.
Collapse
Affiliation(s)
- Keith A Wharton
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390-9072, USA.
| |
Collapse
|
326
|
Affiliation(s)
- Ruth Anne Eatock
- The Bobby R. Alford Department of Otorhinolaryngology and Communicative Sciences, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
327
|
Heisenberg CP, Tada M. Zebrafish gastrulation movements: bridging cell and developmental biology. Semin Cell Dev Biol 2002; 13:471-9. [PMID: 12468250 DOI: 10.1016/s1084952102001003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During vertebrate gastrulation, large cellular rearrangements lead to the formation of the three germ layers, ectoderm, mesoderm and endoderm. Zebrafish offer many genetic and experimental advantages for studying vertebrate gastrulation movements. For instance, several mutants, including silberblick, knypek and trilobite, exhibit defects in morphogenesis during gastrulation. The identification of the genes mutated in these lines together with the analysis of the mutant phenotypes has provided new insights into the molecular and cellular mechanisms that underlie vertebrate gastrulation movements.
Collapse
Affiliation(s)
- Carl Philipp Heisenberg
- Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.
| | | |
Collapse
|
328
|
Green J. Morphogen gradients, positional information, and Xenopus: interplay of theory and experiment. Dev Dyn 2002; 225:392-408. [PMID: 12454918 DOI: 10.1002/dvdy.10170] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The idea of morphogen gradients has long been an important one in developmental biology. Studies with amphibians and with Xenopus in particular have made significant contributions to demonstrating the existence, identity, and mechanisms of action of morphogens. Mesoderm induction and patterning by activin, nodals, bone morphogenetic proteins, and fibroblast growth factors have been analyzed thoroughly and reveal recurrent and combinatorial roles for these protein growth factor morphogens and their antagonists. The dynamics of nodal-type signaling and the intersection of VegT and beta-catenin intracellular gradients reveal detailed steps in early long-range patterning. Interpretation of gradients requires sophisticated mechanisms for sharpening thresholds, and the activin-Xbra-Gsc system provides an example of this. The understanding of growth factor signal transduction has elucidated growth factor morphogen action and provided tools for dissecting their direct long-range action and distribution. The physical mechanisms of morphogen gradient establishment are the focus of new interest at both the experimental and theoretical level. General themes and emerging trends in morphogen gradient studies are discussed.
Collapse
Affiliation(s)
- Jeremy Green
- Dana Farber Cancer Institute, Harvard Medical School Department of Genetics, Boston, Massachusetts 02115, USA.
| |
Collapse
|
329
|
Strutt H, Strutt D. Nonautonomous planar polarity patterning in Drosophila: dishevelled-independent functions of frizzled. Dev Cell 2002; 3:851-63. [PMID: 12479810 DOI: 10.1016/s1534-5807(02)00363-5] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The frizzled (fz) gene of Drosophila is required for planar polarity establishment in the adult cuticle, acting both cell autonomously and nonautonomously. We demonstrate that these two activities of fz in planar polarity are temporally separable in both the eye and wing. The nonautonomous function is dishevelled (dsh) independent, and its loss results in polarity phenotypes that resemble those seen for mutations in dachsous (ds). Genetic interactions and epistasis analysis suggest that fz, ds, and fat (ft) act together in the long-range propagation of polarity signals in the eye and wing. We also find evidence that polarity information may be propagated by modulation of the binding affinities of the cadherins encoded by the ds and ft loci.
Collapse
Affiliation(s)
- Helen Strutt
- Centre for Developmental Genetics, Department of Biomedical Science, University of Sheffield, Western Bank, United Kingdom
| | | |
Collapse
|
330
|
Lewis J, Davies A. Planar cell polarity in the inner ear: how do hair cells acquire their oriented structure? JOURNAL OF NEUROBIOLOGY 2002; 53:190-201. [PMID: 12382275 DOI: 10.1002/neu.10124] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sensory hair cells in the ear and lateral line have an asymmetrical hair-bundle structure, essential for their function as directional mechanotransducers. We examine four questions: (1) how does the planar asymmetry of the individual hair cell originate? (2) How are the orientations of neighboring hair cells coordinated? (3) How is the orientation of a group of hair cells controlled in relation to the ear as a whole? (4) How does the initial cell asymmetry lead to creation of the asymmetrical hair bundle? Studies of the development of hairs and bristles in Drosophila, combined with genetic data from vertebrates, suggest that the answer to questions (1) and (2) lies in asymmetries that develop at the cell cortex and at cell-cell junctions, generated by products of a set of primary planar cell polarity genes, including the transmembrane receptor Frizzled. A separate and largely independent mechanism controls asymmmetric allocation of cell fate determinants such as Numb at mitosis, in Drosophila and possibly in the ear also. Little is known about long-range signals that might orient hair cells globally in the ear, but progress has been made in identifying a set of genes responsible for read-out of the primary polarity specification. These genes, in flies and vertebrates, provide a link to assembly of the polarized cytoskeleton; myosin VIIA appears to belong in this group. The mechanism creating the staircase pattern of stereocilium lengths is unknown, but could involve regulation of stereocilium growth by Ca(2+) ions entering via transduction channels.
Collapse
Affiliation(s)
- Julian Lewis
- Vertebrate Development Laboratory, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom.
| | | |
Collapse
|
331
|
|
332
|
Abstract
Hedgehog and Wnt proteins are signaling molecules that direct many aspects of metazoan development through signal transduction pathways that are just beginning to be understood. Recently, the common use of glycogen synthase kinase 3 and casein kinase 1 has been added to a growing list of straightforward similarities between Hedgehog and Wnt signaling pathways. These kinases silence both pathways by labeling a key transcription factor (Cubitus interruptus) or co-activator (beta-catenin) for proteolysis, and it is possible that reversal of these phosphorylation events is, in each case, central to pathway activation. This review compares the two pathways to explore whether our more extensive knowledge of Wnt pathways can be of predictive value for investigating Hedgehog signaling.
Collapse
Affiliation(s)
- Daniel Kalderon
- Department of Biological Sciences, Columbia University, New York NY 10027, USA.
| |
Collapse
|
333
|
Mlodzik M. Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation? Trends Genet 2002; 18:564-71. [PMID: 12414186 DOI: 10.1016/s0168-9525(02)02770-1] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many types of cell show different aspects of polarization. Epithelial cells display a ubiquitous apical-basolateral polarity but often are also polarized in the plane of the epithelium - a feature referred to as 'planar cell polarity' (PCP). In Drosophila all adult epithelial cuticular structures are polarized within the plane, whereas in vertebrates examples of PCP include aspects of skin development, features of the inner ear epithelium, and the morphology and behavior of mesenchymal cells undergoing the morphogenetic movement called 'convergent extension'. Recent advances in the study of PCP establishment are beginning to unravel the molecular mechanisms that underlie this aspect of cell and tissue differentiation. Here I discuss new developments in our molecular understanding of PCP in Drosophila and compare them towhat is known about the regulation of convergent extension in vertebrates.
Collapse
Affiliation(s)
- Marek Mlodzik
- Mount Sinai School of Medicine, Brookdale Department of Molecular, Cell & Developmental Biology, New York, NY 10029, USA.
| |
Collapse
|
334
|
Niswander L, Anderson KV. Hopeful monsters and morphogens at the beach. Nat Cell Biol 2002; 4:E259-62. [PMID: 12415285 DOI: 10.1038/ncb1102-e259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Santa Cruz Developmental Biology Conference (August 15-19, 2002) provided the latest insights into how a single cell is transformed into a complex organism. Organisms that flower, slither, walk and fly continue to provide new insights into the cell biological and molecular mechanisms that control cell movement, signalling pathways and post-transcriptional regulation; hopeful monsters sit at our doorstep to provide new insight into evolutionary change and human disease.
Collapse
Affiliation(s)
- Lee Niswander
- Developmental Biology Program at Sloan-Kettering Institute, New York NY 10021, USA.
| | | |
Collapse
|
335
|
Abstract
Vertebrate homologues of the Strabismus/van Gogh (stbm/vang) gene have been implicated in patterning and morphogenesis during gastrulation. Recent work shows that stbm/vang is mutated in zebrafish trilobite mutants and that stbm/vang is required for morphogenesis but not patterning during zebrafish gastrulation.
Collapse
Affiliation(s)
- Carl-Philipp Heisenberg
- Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.
| |
Collapse
|
336
|
Jessen JR, Topczewski J, Bingham S, Sepich DS, Marlow F, Chandrasekhar A, Solnica-Krezel L. Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nat Cell Biol 2002; 4:610-5. [PMID: 12105418 PMCID: PMC2219916 DOI: 10.1038/ncb828] [Citation(s) in RCA: 398] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Embryonic morphogenesis is driven by a suite of cell behaviours, including coordinated shape changes, cellular rearrangements and individual cell migrations, whose molecular determinants are largely unknown. In the zebrafish, Dani rerio, trilobite mutant embryos have defects in gastrulation movements and posterior migration of hindbrain neurons. Here, we have used positional cloning to demonstrate that trilobite mutations disrupt the transmembrane protein Strabismus (Stbm)/Van Gogh (Vang), previously associated with planar cell polarity (PCP) in Drosophila melanogaster, and PCP and canonical Wnt/beta-catenin signalling in vertebrates. Our genetic and molecular analyses argue that during gastrulation, trilobite interacts with the PCP pathway without affecting canonical Wnt signalling. Furthermore, trilobite may regulate neuronal migration independently of PCP molecules. We show that trilobite mediates polarization of distinct movement behaviours. During gastrulation convergence and extension movements, trilobite regulates mediolateral cell polarity underlying effective intercalation and directed dorsal migration at increasing velocities. In the hindbrain, trilobite controls effective migration of branchiomotor neurons towards posterior rhombomeres. Mosaic analyses show trilobite functions cell-autonomously and non-autonomously in gastrulae and the hindbrain. We propose Trilobite/Stbm mediates cellular interactions that confer directionality on distinct movements during vertebrate embryogenesis.
Collapse
Affiliation(s)
- Jason R. Jessen
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville, TN 37235, USA
| | - Jacek Topczewski
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville, TN 37235, USA
| | - Stephanie Bingham
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Diane S. Sepich
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville, TN 37235, USA
| | - Florence Marlow
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville, TN 37235, USA
| | - Anand Chandrasekhar
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Lilianna Solnica-Krezel
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville, TN 37235, USA
| |
Collapse
|
337
|
Lyczak R, Gomes JE, Bowerman B. Heads or tails: cell polarity and axis formation in the early Caenorhabditis elegans embryo. Dev Cell 2002; 3:157-66. [PMID: 12194847 DOI: 10.1016/s1534-5807(02)00226-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In C. elegans, the first embryonic axis is established shortly after fertilization and requires both the microtubule and microfilament cytoskeleton. Cues from sperm-donated centrosomes result in a cascade of events that polarize the distribution of widely conserved PAR proteins at the cell cortex. The PAR proteins in turn polarize the cytoplasm and position mitotic spindles. Lessons learned from C. elegans should improve our understanding of how cells become polarized and divide asymmetrically during development.
Collapse
Affiliation(s)
- Rebecca Lyczak
- Institute of Molecular Biology, University of Oregon, 1370 Franklin Boulevard, Eugene 97403, USA
| | | | | |
Collapse
|
338
|
Abstract
Recent studies have shown that many proteins that regulate planar polarity in the fly eye are organized into discrete membrane sites which may be crucial for coordinating groups of cells.
Collapse
Affiliation(s)
- Helen McNeill
- Cancer Research UK London Research Institute, (formally ICRF), Lincoln's Inn Fields Laboratories, London WC2A 3PX, UK
| |
Collapse
|
339
|
Affiliation(s)
- Ken M Cadigan
- Dept of Molecular, Cellular and Developmental Biology, University of Michigan, 48109-1048, Ann Arbor MI, USA.
| |
Collapse
|
340
|
Strutt D, Johnson R, Cooper K, Bray S. Asymmetric localization of frizzled and the determination of notch-dependent cell fate in the Drosophila eye. Curr Biol 2002; 12:813-24. [PMID: 12015117 DOI: 10.1016/s0960-9822(02)00841-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND During patterning of the Drosophila eye, a critical step is the Notch-mediated cell fate decision that determines the identities of the R3/R4 photoreceptor pair in each ommatidium. Depending on the decision taken, the ommatidium adopts either the dorsal or ventral chiral form. This decision is directed by the activity of the planar polarity genes, and, in particular, higher activity of the receptor Frizzled confers R3 fate. RESULTS We present evidence that Frizzled does not modulate Notch activity via Rho GTPases and a JNK cascade as previously proposed. We find that the planar polarity proteins Frizzled, Dishevelled, Flamingo, and Strabismus adopt asymmetric protein localizations in the developing photoreceptors. These protein localizations correlate with the bias of Notch activity between R3/R4, suggesting that they are necessary to modulate Notch activity between these cells. Additional data support a mechanism for regulation of Notch activity that could involve direct interactions between Dishevelled and Notch at the cell cortex. CONCLUSIONS In the light of our findings, we conclude that Rho GTPases/JNK cascades are not major effectors of planar polarity in the Drosophila eye. We propose a new model for the control of R3/R4 photoreceptor fate by Frizzled, whereby asymmetric protein localization is likely to be a critical step in modulation of Notch activity. This modulation may occur via direct interactions between Notch and Dishevelled.
Collapse
Affiliation(s)
- David Strutt
- Centre for Developmental Genetics, School of Medicine and Biomedical Science, University of Sheffield, Western Bank, S10 2TN, Sheffield, United Kingdom.
| | | | | | | |
Collapse
|
341
|
Abstract
Several recent papers reveal new insights into the mechanisms by which cells turn their perceptions about fate into action, focusing on the role of Wnt signal transduction in cell polarization and migration.
Collapse
Affiliation(s)
- Mark Peifer
- Department of Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599, USA.
| | | |
Collapse
|
342
|
Abstract
The regulatory mechanisms governing the parallel alignment of hairs, bristles, and ommatidia in Drosophila have all served as model systems for studying planar signaling and tissue level morphogenesis. Polarity in all three systems is mediated by the serpentine receptor Frizzled and a number of additional gene products. The localized accumulation of these proteins within cells plays a key role in the development of planar polarity. A comparison of the function of these gene products in the different cell types suggests cell-specific modifications of the pathway.
Collapse
Affiliation(s)
- Paul N Adler
- Biology Department and Cancer Center, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|