301
|
Casacuberta E, Pardue ML. Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilis group. Proc Natl Acad Sci U S A 2003; 100:3363-8. [PMID: 12626755 PMCID: PMC152298 DOI: 10.1073/pnas.0230353100] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomeres of most animals, plants, and unicellular eukaryotes are made up of tandem arrays of repeated DNA sequences produced by the enzyme telomerase. Drosophila melanogaster has an unusual variation on this theme; telomeres consist of tandem arrays of sequences produced by successive transpositions of two non-LTR retrotransposons, HeT-A and TART. To explore the phylogenetic distribution of these variant telomeres, we have looked for TART homologues in a distantly related Drosophila species, virilis. We have found elements that, despite many differences in nucleotide sequence, retain significant amino acid similarity to TART from D. melanogaster. These D. virilis TART elements have features that characterize TART elements in D. melanogaster: (i) they are found in tandem arrays on chromosome ends, (ii) they are not found in euchromatin, and (iii) they produce both sense and antisense transcripts, with the antisense RNA being in excess. The D. virilis TART elements have one surprising feature: both of the ORFs contain long stretches of the trinucleotide repeat CAX, encoding polyglutamine (with a few interspersed histidines). These long polyglutamine stretches are conserved in the three D. virilis elements sequenced. They do not interrupt any domains of known function in the TART proteins and are not seen in TART proteins from other species. Comparison of the D. virilis and D. melanogaster telomeres suggests that the retrotransposon mechanism of telomere maintenance may have arisen before the separation of the genus Drosophila.
Collapse
Affiliation(s)
- Elena Casacuberta
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
302
|
SuttonBrown M, Suchowersky O. Clinical and research advances in Huntington's disease. Can J Neurol Sci 2003; 30 Suppl 1:S45-52. [PMID: 12691476 DOI: 10.1017/s0317167100003231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by abnormalities of movement and dementia. No curative treatment is available and HD results in gradually increasing disability. Characterization of the genetic abnormality has dramatically increased our understanding of the underlying mechanisms of the disease process, and has resulted in the development of a number of genetic models. These research tools are forming the basis of advanced work into the diagnosis, pathophysiology, and potential treatment of the disease. Clinically, the availability of genetic testing has eased confirmation of diagnosis in symptomatic individuals. Presymptomatic testing allows at-risk individuals to make informed choices but requires supportive care from physicians. Current clinical treatment is focused on symptom control. Advances in research have resulted in the development of potential neuroprotective strategies which are undergoing clinical testing.
Collapse
Affiliation(s)
- M SuttonBrown
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
303
|
Driscoll M, Gerstbrein B. Dying for a cause: invertebrate genetics takes on human neurodegeneration. Nat Rev Genet 2003; 4:181-94. [PMID: 12610523 DOI: 10.1038/nrg1018] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
If invertebrate neurons are injured by hostile environments or aberrant proteins they die much like human neurons, indicating that the powerful advantages of invertebrate molecular genetics might be successfully used for testing specific hypotheses about human neurological diseases, for drug discovery and for non-biased screens for suppressors and enhancers of neurodegeneration. Recent molecular dissection of the genetic requirements for hypoxia, excitotoxicity and death in models of Alzheimer disease, polyglutamine-expansion disorders, Parkinson disease and more, is providing mechanistic insights into neurotoxicity and suggesting new therapeutic interventions. An emerging theme is that neuronal crises of distinct origins might converge to disrupt common cellular functions, such as protein folding and turnover.
Collapse
Affiliation(s)
- Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, A232 Nelson Biological Laboratories, 604 Allison Road, Piscataway, New Jersey 08855, USA.
| | | |
Collapse
|
304
|
Faber PW, Voisine C, King DC, Bates EA, Hart AC. Glutamine/proline-rich PQE-1 proteins protect Caenorhabditis elegans neurons from huntingtin polyglutamine neurotoxicity. Proc Natl Acad Sci U S A 2002; 99:17131-6. [PMID: 12486229 PMCID: PMC139281 DOI: 10.1073/pnas.262544899] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Huntington's disease is a progressive neurodegenerative disease caused by a polyglutamine (polyQ) repeat expansion in the huntingtin protein [Huntington's Disease Collaborative Research Group (1993) Cell 72, 971-983]. To understand the mechanism by which polyQ repeats cause neurodegeneration and cell death, we modeled polyQ neurotoxicity in Caenorhabditis elegans. In our model, expression of N-terminal fragments of human huntingtin causes polyQ-dependent degeneration of neurons. We conducted a genetic screen to identify proteins that protect neurons from the toxic effects of expanded polyQ tracts. Loss of polyQ enhancer-1 (pqe-1) gene function strongly and specifically exacerbates neurodegeneration and cell death, whereas overexpression of a pqe-1 cDNA protects C. elegans neurons from the toxic effects of expanded huntingtin fragments. A glutamineproline-rich domain, along with a charged domain, is critical for PQE-1 protein function. Analysis of pqe-1 suggests that proteins exist that specifically protect neurons from the toxic effects of expanded polyQ disease proteins.
Collapse
Affiliation(s)
- Peter W Faber
- Massachusetts General Hospital Cancer Center, 149-7202 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | |
Collapse
|
305
|
Abstract
Drosophila has emerged as a première model system for the study of human neurodegenerative disease. Genes associated with neurodegeneration can be expressed in flies, causing phenotypes remarkably similar to those of the counterpart human diseases. Because human neurodegenerative diseases, including Huntington's and Parkinson's diseases, are disorders for which few cures or treatments are available, Drosophila brings to bear powerful genetics to the problem of these diseases. The molecular chaperones were the first modifiers defined that interfere in the progression of such disease phenotypes in Drosophila. Hsp70 is a potent suppressor of both polyglutamine disease and Parkinson's disease in Drosophila. These studies provide the promise of treatments for human neurodegeneration through the up-regulation of stress and chaperone pathways.
Collapse
Affiliation(s)
- Nancy M Bonini
- Department of Biology, University of Pennsylvania, Howard Hughes Medical Institute, Philadelphia 19104-6018, USA.
| |
Collapse
|
306
|
Kimura Y, Koitabashi S, Kakizuka A, Fujita T. Circumvention of chaperone requirement for aggregate formation of a short polyglutamine tract by the co-expression of a long polyglutamine tract. J Biol Chem 2002; 277:37536-41. [PMID: 12161426 DOI: 10.1074/jbc.m201721200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polyglutamine disease is now recognized as one of the conformational, amyloid-related diseases. In this disease, polyglutamine expansion in proteins has toxic effects on cells and also results in the formation of aggregates. Polyglutamine aggregate formation is accompanied by conversion of the polyglutamine from a soluble to an insoluble form. In yeast, the efficiency of the aggregate formation is determined by the balance of various parameters, including the length of the polyglutamine tract, the function of Hsp104, and the level of polyglutamine expression. In this study, we found that the co-expression of a long polyglutamine tract, which formed aggregates independently of the function of Hsp104, enhanced the formation of aggregates of a short polyglutamine tract in wild-type cells as well as in Deltahsp104 mutant cells. Thus, the expression of a long polyglutamine tract would be an additional parameter determining the efficiency of aggregate formation of a short polyglutamine tract. The co-localization of aggregates of long and short polyglutamine tracts suggests the possibility that the enhancement occurs due to the seeding of aggregates of the long polyglutamine tracts.
Collapse
Affiliation(s)
- Yoko Kimura
- Department of Tumor Cell Biology, The Tokyo Metropolitan Institute of Medical Science, 3-18-22, Honkomagome, Bunkyo, Tokyo 113-8613, Japan.
| | | | | | | |
Collapse
|
307
|
Abstract
One of the most surprising discoveries of the past decade (at least in the field of neurodegeneration) was that protein misfolding underlies several seemingly disparate neurological diseases. Animal models were crucial to this discovery. In this article, we will discuss the CAG repeat diseases, the tauopathies and Parkinson disease, highlighting how mouse and fly models have contributed to our understanding of pathogenesis. In each case, we will stress what has been learned about the role of protein clearance and the questions that remain about how misfolded proteins acquire their toxicity.
Collapse
Affiliation(s)
- Huda Y Zoghbi
- Depts of Pediatrics, Neurology, and Molecular and Human Genetics, and Howard Hughes Medical Institute, Baylor College of Medicine, 77030, Houston, TX, USA
| | | |
Collapse
|
308
|
Takeyama KI, Ito S, Yamamoto A, Tanimoto H, Furutani T, Kanuka H, Miura M, Tabata T, Kato S. Androgen-dependent neurodegeneration by polyglutamine-expanded human androgen receptor in Drosophila. Neuron 2002; 35:855-64. [PMID: 12372281 DOI: 10.1016/s0896-6273(02)00875-9] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an X-linked, adult-onset, neurodegenerative disorder affecting only males and is caused by expanded polyglutamine (polyQ) stretches in the N-terminal A/B domain of human androgen receptor (hAR). Although no overt phenotype was detected in adult fly eye photoreceptor neurons expressing mutant hAR (polyQ 52), ingestion of androgen or its known antagonists caused marked neurodegeneration with nuclear localization and structural alteration of the hAR mutant. Ligand-independent toxicity was detected with a truncated polyQ-expanded A/B domain alone, which was attenuated with cytosolic trapping by coexpression of the unliganded hAR E/F ligand binding domain. Thus, our findings suggest that the full binding of androgen to the polyQ-expanded hAR mutants leads to structural alteration with nuclear translocation that eventually results in the onset of SBMA in male patients.
Collapse
Affiliation(s)
- Ken-ichi Takeyama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Yoshida H, Yoshizawa T, Shibasaki F, Shoji S, Kanazawa I. Chemical chaperones reduce aggregate formation and cell death caused by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Neurobiol Dis 2002; 10:88-99. [PMID: 12127147 DOI: 10.1006/nbdi.2002.0502] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Machado-Joseph disease/spinocerebellar ataxia-3 (MJD/SCA-3) is an inherited neurodegenerative disorder caused by expansion of the polyglutamine stretch in the MJD gene-encoded protein ataxin-3. The truncated form of mutated ataxin-3 causes aggregation and cell death in vitro and in vivo. Abnormal conformation and misfolding of the pathological protein are assumed critical to pathogenesis. To test this hypothesis, we transfected BHK-21 and Neuro2a cells transiently with N-terminal truncated ataxin-3 with an expanded polyglutamine stretch. We then studied the effects of organic solvent dimethyl sulfoxide (DMSO), cellular osmolytes glycerol, and trimethylamine N-oxide (TMAO) on aggregate formation and cell death. These reagents stabilize proteins in their native conformation and are called chemical chaperones based on their influence on protein folding. Aggregate formation and cytotoxicity induced by truncated expanded ataxin-3 were reduced by exposing cells to these chemical chaperones. Our results indicate the potentially useful therapeutic strategy of the chemical chaperones in preventing cell death in MJD.
Collapse
Affiliation(s)
- Hideaki Yoshida
- Department of Neurology, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | | | | | | | | |
Collapse
|
310
|
Palladino MJ, Hadley TJ, Ganetzky B. Temperature-sensitive paralytic mutants are enriched for those causing neurodegeneration in Drosophila. Genetics 2002; 161:1197-208. [PMID: 12136022 PMCID: PMC1462168 DOI: 10.1093/genetics/161.3.1197] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Age-dependent neurodegeneration is a pathological condition found in many metazoans. Despite the biological and medical significance of this condition, the cellular and molecular mechanisms underlying neurodegeneration are poorly understood. The availability of a large collection of mutants exhibiting neurodegeneration will provide a valuable resource to elucidate these mechanisms. We have developed an effective screen for isolating neurodegeneration mutants in Drosophila. This screen is based on the observation that neuronal dysfunction, which leads to observable behavioral phenotypes, is often associated with neurodegeneration. Thus, we used a secondary histological screen to examine a collection of mutants originally isolated on the basis of conditional paralytic phenotypes. Using this strategy, we have identified 15 mutations affecting at least nine loci that cause gross neurodegenerative pathology. Here, we present a genetic, behavioral, and anatomical analysis of vacuous (vacu), the first of these mutants to be characterized, and an overview of other mutants isolated in the screen. vacu is a recessive mutation located cytologically at 85D-E that causes locomotor defects in both larvae and adults as well as neuronal hyperactivity. In addition, vacu exhibits extensive age-dependent neurodegeneration throughout the central nervous system. We also identified mutations in at least eight other loci that showed significant levels of neurodegeneration with a diverse array of neuropathological phenotypes. These results demonstrate the effectiveness of our screen in identifying mutations causing neurodegeneration. Further studies of vacu and the other neurodegenerative mutants isolated should ultimately help dissect the biochemical pathways leading to neurodegeneration.
Collapse
|
311
|
Reiter LT, Bier E. Using Drosophila melanogaster to uncover human disease gene function and potential drug target proteins. Expert Opin Ther Targets 2002; 6:387-99. [PMID: 12223075 DOI: 10.1517/14728222.6.3.387] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The fruit fly Drosophila melanogaster is a powerful genetic model organism, which has been instrumental in the determination of essential developmental and neurological pathways conserved from invertebrates to humans. With the completion of both the human and Drosophila genomes, the revelation that we are more similar to this simple organism than previously suspected was realised. 75% of human genetic disease genes have clear homologues in the fly. By utilising an array of genetic tools available to disrupt or misexpress these proteins, it is now feasible to perform large-scale genetic screens in Drosophila to identify other members of a particular human genetic pathway. This review outlines some of the reasons Drosophila is a useful tool for the discovery of therapeutic targets, covers some of the tools available to manipulate this organism and discusses specific examples of how to use Drosophila as a genetic test tube for revealing proteins which act in a common pathway.
Collapse
Affiliation(s)
- Lawrence T Reiter
- University of California, San Diego, Section of Cell and Developmental Biology, La Jolla, California 92093-0349, USA.
| | | |
Collapse
|
312
|
Machado RC, Pereira RNR, Costa MSA, Ramos RGP. "In vivo" toxicity of a truncated version of the Drosophila Rst-IrreC protein is dependent on the presence of a glutamine-rich region in its intracellular domain. AN ACAD BRAS CIENC 2002; 74:285-95. [PMID: 12098754 DOI: 10.1590/s0001-37652002000200007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The roughest-irregular chiasm C ( rst-irreC) gene of Drosophila melanogaster encodes a transmembrane glycoprotein containing five immunoglobulin-like domains in its extracellular portion and an intracytoplasmic tail rich in serine and threonine as well some conserved motifs suggesting signal transduction activity. In the compound eye, loss-of-function rst-irreC mutants lack the characteristic wave of programmed cell death happening in early pupa and which is essential for the elimination of the surplus interommatidial cells. Here we report an investigation on the role played by the Rst-irreC molecule in triggering programmed cell death. "In vivo" transient expression assays showed that deletion of the last 80 amino acids of the carboxyl terminus produces a form of the protein that is highly toxic to larvae. This toxicity is suppressed if an additional 47 amino acid long, glutamine-rich region ("opa-like domain"), is also removed from the protein. The results suggest the possibility that the opa-like domain and the carboxyl terminus act in concert to modulate rst-irreC function in apoptosis, and we discuss this implication in the context of the general mechanisms causing glutamine-rich neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Ricardo C Machado
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-900
| | | | | | | |
Collapse
|
313
|
Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S, Kakizuka A, Ichijo H. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 2002; 16:1345-55. [PMID: 12050113 PMCID: PMC186318 DOI: 10.1101/gad.992302] [Citation(s) in RCA: 1084] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Expansion of CAG trinucleotide repeats that encode polyglutamine is the underlying cause of at least nine inherited human neurodegenerative disorders, including Huntington's disease and spinocerebellar ataxias. PolyQ fragments accumulate as aggregates in the cytoplasm and/or in the nucleus, and induce neuronal cell death. However, the molecular mechanism of polyQ-induced cell death is controversial. Here, we show the following: (1) polyQ with pathogenic repeat length triggers ER stress through proteasomal dysfunction; (2) ER stress activates ASK 1 through formation of an IRE1-TRAF2-ASK1 complex; and (3) ASK1(-/-) primary neurons are defective in polyQ-, proteasome inhibitor-, and ER stress-induced JNK activation and cell death. These findings suggest that ASK1 is a key element in ER stress-induced cell death that plays an important role in the neuropathological alterations in polyQ diseases.
Collapse
Affiliation(s)
- Hideki Nishitoh
- Laboratory of Cell Signaling, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku 113-8549, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Jackson GR, Wiedau-Pazos M, Sang TK, Wagle N, Brown CA, Massachi S, Geschwind DH. Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 2002; 34:509-19. [PMID: 12062036 DOI: 10.1016/s0896-6273(02)00706-7] [Citation(s) in RCA: 379] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pathologic alterations in the microtubule-associated protein tau have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and frontotemporal dementia (FTD). Here, we show that tau overexpression, in combination with phosphorylation by the Drosophila glycogen synthase kinase-3 (GSK-3) homolog and wingless pathway component (Shaggy), exacerbated neurodegeneration induced by tau overexpression alone, leading to neurofibrillary pathology in the fly. Furthermore, manipulation of other wingless signaling molecules downstream from shaggy demonstrated that components of the Wnt signaling pathway modulate neurodegeneration induced by tau pathology in vivo but suggested that tau phosphorylation by GSK-3beta differs from canonical Wnt effects on beta-catenin stability and TCF activity. The genetic system we have established provides a powerful reagent for identification of novel modifiers of tau-induced neurodegeneration that may serve as future therapeutic targets.
Collapse
Affiliation(s)
- George R Jackson
- Neurogenetics Program, Department of Neurology, University of California-Los Angeles, School of Medicine, 710 Westwood Plaza, 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
315
|
Kanuka H, Miura M. Functional DNA array' in the fly: implication for neuronal degeneration. Cell Death Differ 2002; 9:231-3. [PMID: 11859404 DOI: 10.1038/sj.cdd.4400985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
316
|
Higashiyama H, Hirose F, Yamaguchi M, Inoue YH, Fujikake N, Matsukage A, Kakizuka A. Identification of ter94, Drosophila VCP, as a modulator of polyglutamine-induced neurodegeneration. Cell Death Differ 2002; 9:264-73. [PMID: 11859409 DOI: 10.1038/sj.cdd.4400955] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2001] [Accepted: 09/05/2001] [Indexed: 11/09/2022] Open
Abstract
We have successfully generated a Drosophila model of human polyglutamine (polyQ) diseases by the targeted expression of expanded-polyQ (ex-polyQ) in the Drosophila compound eye. The resulting eye degeneration is progressive and ex-polyQ dosage- and ex-polyQ length-dependent. Furthermore, intergenerational changes in repeat length were observed in homozygotes, with concomitant changes in the levels of degeneration. Through genetic screening, using this fly model, we identified loss-of-function mutants of the ter94 gene that encodes the Drosophila homolog of VCP/CDC48, a member of the AAA+ class of the ATPase protein family, as dominant suppressors. The suppressive effects of the ter94 mutants on ex-polyQ-induced neurodegeneration correlated well with the degrees of loss-of-function, but appeared not to result from the inhibition of ex-polyQ aggregate formation. In the ex-polyQ-expressing cells of the late pupa, an upregulation of ter94 expression was observed prior to cell death. Co-expression of ter94 with ex-polyQ severely enhanced eye degeneration. Interestingly, when ter94 was overexpressed in the eye by increasing the transgene copies, severe eye degeneration was induced. Furthermore, genetical studies revealed that ter94 was not involved in grim-, reaper-, hid-, ced4-, or p53-induced cell death pathways. From these observations, we propose that VCP is a novel cell death effector molecule in ex-polyQ-induced neurodegeneration, where the amount of VCP is critical. Control of VCP expression may thus be a potential therapeutic target in ex-polyQ-induced neurodegeneration.
Collapse
Affiliation(s)
- H Higashiyama
- The Fourth Department, Osaka Bioscience Institute, 565-0874 Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
317
|
Muqit MMK, Feany MB. Modelling neurodegenerative diseases in Drosophila: a fruitful approach? Nat Rev Neurosci 2002; 3:237-43. [PMID: 11994755 DOI: 10.1038/nrn751] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human neurodegenerative diseases are characterized by the progressive loss of specific neuronal populations, resulting in substantial disability and early death. The identification of causative single-gene mutations in families with inherited neurodegenerative disorders has facilitated the modelling of these diseases in experimental organisms, including the fruitfly Drosophila melanogaster. Many neurodegenerative diseases have now been successfully modelled in Drosophila, and genetic analysis is under way in each of these models. Using fruitfly genetics to define the molecular pathways that underlie the neurodegenerative process is likely to improve substantially our understanding of the pathogenesis of the human diseases, and to provide new therapeutic targets.
Collapse
Affiliation(s)
- Miratul M K Muqit
- Department of Pathology, Division of Neuropathy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
318
|
Abstract
Within the closing decade of the twentieth century, 14 neurological disorders were shown to result from the expansion of unstable trinucleotide repeats, establishing this once unique mutational mechanism as the basis of an expanding class of diseases. Trinucleotide repeat diseases can be categorized into two subclasses based on the location of the trinucleotide repeats: diseases involving noncoding repeats (untranslated sequences) and diseases involving repeats within coding sequences (exonic). The large body of knowledge accumulating in this fast moving field has provided exciting clues and inspired many unresolved questions about the pathogenesis of diseases caused by expanded trinucleotide repeats. This review summarizes the current understanding of the molecular pathology of each of these diseases, starting with a clinical picture followed by a focused description of the disease genes, the proteins involved, and the studies that have lent insight into their pathophysiology.
Collapse
Affiliation(s)
- C J Cummings
- Program in Cell and Molecular Biology, Department of Pediatrics, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
319
|
Auluck PK, Chan HYE, Trojanowski JQ, Lee VMY, Bonini NM. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 2002; 295:865-8. [PMID: 11823645 DOI: 10.1126/science.1067389] [Citation(s) in RCA: 928] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Parkinson's disease is a movement disorder characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta. Dopaminergic neuronal loss also occurs in Drosophila melanogaster upon directed expression of alpha-synuclein, a protein implicated in the pathogenesis of Parkinson's disease and a major component of proteinaceous Lewy bodies. We report that directed expression of the molecular chaperone Hsp70 prevented dopaminergic neuronal loss associated with alpha-synuclein in Drosophila and that interference with endogenous chaperone activity accelerated alpha-synuclein toxicity. Furthermore, Lewy bodies in human postmortem tissue immunostained for molecular chaperones, also suggesting that chaperones may play a role in Parkinson's disease progression.
Collapse
Affiliation(s)
- Pavan K Auluck
- Department of Neuroscience, University of Pennsylvania and University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
320
|
Abstract
In the 1980s, linkage emerged as a route to discovering genetic defects, spurring the rise of genomics and making gene-based approaches available to previously phenotype-orientated researchers. In the post-genomics era, genetics is fundamental to understanding disease at all stages of the pathogenic process.
Collapse
Affiliation(s)
- James Gusella
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
321
|
Bonini NM, Fortini ME. Applications of the Drosophila retina to human disease modeling. Results Probl Cell Differ 2002; 37:257-75. [PMID: 25707079 DOI: 10.1007/978-3-540-45398-7_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nancy M Bonini
- Department of Biology, Howard Hughes Medical Institute, University of Pennsylvania, 415 S. University Avenue, Philadelphia, Pennsylvania 19104-6018, USA
| | | |
Collapse
|
322
|
Shahbazian MD, Orr HT, Zoghbi HY. Reduction of Purkinje cell pathology in SCA1 transgenic mice by p53 deletion. Neurobiol Dis 2001; 8:974-81. [PMID: 11741393 DOI: 10.1006/nbdi.2001.0444] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expansion of a polyglutamine tract in the ataxin-1 protein beyond a critical threshold causes spinocerebellar ataxia type 1 (SCA1). To investigate the mechanism of neuronal degeneration in SCA1, we analyzed the phenotype of an SCA1 transgenic mouse model in the absence of p53, an important regulator of cell death. p53 deficiency did not affect the early features of SCA1 mice such as impaired motor coordination and ataxin-1 nuclear inclusion formation but caused a notable reduction in later pathological features, including Purkinje cell heterotopia, dendritic thinning, and molecular layer shrinkage. To determine if this protective effect was mediated by an anti-apoptotic property of p53 deficiency, we looked for apoptosis in SCA1 mice but failed to detect any evidence of it even in the presence of p53. We propose that p53 acts after the initial pathogenic events in SCA1 to promote the progression of neuronal degeneration in SCA1 mice, but this activity may be unrelated to apoptosis.
Collapse
Affiliation(s)
- M D Shahbazian
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
323
|
Gunawardena S, Goldstein LS. Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 2001; 32:389-401. [PMID: 11709151 DOI: 10.1016/s0896-6273(01)00496-2] [Citation(s) in RCA: 320] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We tested the hypothesis that amyloid precursor protein (APP) and its relatives function as vesicular receptor proteins for kinesin-I. Deletion of the Drosophila APP-like gene (Appl) or overexpression of human APP695 or APPL constructs caused axonal transport phenotypes similar to kinesin and dynein mutants. Genetic reduction of kinesin-I expression enhanced while genetic reduction of dynein expression suppressed these phenotypes. Deletion of the C terminus of APP695 or APPL, including the kinesin binding region, disrupted axonal transport of APP695 and APPL and abolished the organelle accumulation phenotype. Neuronal apoptosis was induced only by overexpression of constructs containing both the C-terminal and Abeta regions of APP695. We discuss the possibility that axonal transport disruption may play a role in the neurodegenerative pathology of Alzheimer's disease.
Collapse
Affiliation(s)
- S Gunawardena
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0683, USA
| | | |
Collapse
|
324
|
Hughes RE, Lo RS, Davis C, Strand AD, Neal CL, Olson JM, Fields S. Altered transcription in yeast expressing expanded polyglutamine. Proc Natl Acad Sci U S A 2001; 98:13201-6. [PMID: 11687606 PMCID: PMC60848 DOI: 10.1073/pnas.191498198] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2001] [Indexed: 11/18/2022] Open
Abstract
Expanded polyglutamine tracts are responsible for at least eight fatal neurodegenerative diseases. In mouse models, proteins with expanded polyglutamine cause transcriptional dysregulation before onset of symptoms, suggesting that this dysregulation may be an early event in polyglutamine pathogenesis. Transcriptional dysregulation and cellular toxicity may be due to interaction between expanded polyglutamine and the histone acetyltransferase CREB-binding protein. To determine whether polyglutamine-mediated transcriptional dysregulation occurs in yeast, we expressed polyglutamine tracts in Saccharomyces cerevisiae. Gene expression profiles were determined for strains expressing either a cytoplasmic or nuclear protein with 23 or 75 glutamines, and these profiles were compared to existing profiles of mutant yeast strains. Transcriptional induction of genes encoding chaperones and heat-shock factors was caused by expression of expanded polyglutamine in either the nucleus or cytoplasm. Transcriptional repression was most prominent in yeast expressing nuclear expanded polyglutamine and was similar to profiles of yeast strains deleted for components of the histone acetyltransferase complex Spt/Ada/Gcn5 acetyltransferase (SAGA). The promoter from one affected gene (PHO84) was repressed by expanded polyglutamine in a reporter gene assay, and this effect was mitigated by the histone deacetylase inhibitor, Trichostatin A. Consistent with an effect on SAGA, nuclear expanded polyglutamine enhanced the toxicity of a deletion in the SAGA component SPT3. Thus, an early component of polyglutamine toxicity, transcriptional dysregulation, is conserved in yeast and is pharmacologically antagonized by a histone deacetylase inhibitor. These results suggest a therapeutic approach for treatment of polyglutamine diseases and provide the potential for yeast-based screens for agents that reverse polyglutamine toxicity.
Collapse
Affiliation(s)
- R E Hughes
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357360, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
325
|
Abstract
During the past year, the Drosophila genome has been sequenced. More than 60% of genes implicated in human disease have Drosophila orthologues. Developments in RNA-mediated interference and homologous recombination have made 'reverse genetics' feasible in Drosophila. Conventional Drosophila genetics is being used increasingly to place human disease genes of unknown function in the context of functional pathways.
Collapse
Affiliation(s)
- A Bernards
- Massachusetts General Hospital Cancer Center, Building 149, 13th Street, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
326
|
Bhandari P, Shashidhara LS. Studies on human colon cancer gene APC by targeted expression in Drosophila. Oncogene 2001; 20:6871-80. [PMID: 11687966 DOI: 10.1038/sj.onc.1204849] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2001] [Revised: 07/09/2001] [Accepted: 07/17/2001] [Indexed: 12/16/2022]
Abstract
Mutations in human Adenomatous Polyposis Coli (APC) gene are associated with both familial and sporadic colorectal tumors. APC is known to down regulate beta-catenin levels, a transducer of Wnt signaling. The aim of this study is to provide transgenic Drosophila expressing either full-length or truncated forms of human APC (hAPC) protein and methods for using them in functional genomics and drug screening. Consistent with its biochemical properties, targeted expression of either full-length hAPC or its beta-catenin binding domain alone negatively regulated the function of the beta-catenin homologue, Armadillo (Arm) and thereby, inhibited Wnt/Wg signaling during fly development. hAPC inhibited Arm function even in the absence of GSK-3beta activity, although the latter was required to mediate the degradation of Arm. Consistent with this, hAPC suppressed the phenotypes induced by the over-expression of degradation-resistant forms of Arm. Subsequently, using hAPC-induced eye phenotypes as the assay in a suppressor-enhancer screen, we have identified two new loci in Drosophila, which modulate Wnt/Wg signaling. In addition, an anti-colon cancer drug, indomethacin, specifically enhanced hAPC-induced phenotypes.
Collapse
Affiliation(s)
- P Bhandari
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India 500 007
| | | |
Collapse
|
327
|
Kimura Y, Koitabashi S, Kakizuka A, Fujita T. Initial process of polyglutamine aggregate formation in vivo. Genes Cells 2001; 6:887-97. [PMID: 11683917 DOI: 10.1046/j.1365-2443.2001.00472.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Polyglutamine expansion in protein is responsible for several inherited neuro-degenerative diseases. The expansion has toxic effects on neural cells as well as results in forming aggregates. Using yeast, we examined the initial process of polyglutamine aggregate formation in vivo. RESULTS Following expression, polyglutamine tracts were of a soluble form during a lag period, and then formed insoluble complexes. The lag was prolonged and the formation of insoluble complex became slower by decreasing the number of polyglutamine tracts and by a treatment with guanidine hydrochloride. Gel filtration analysis revealed that the soluble polyglutamine existed in a small form. Formation of polyglutamine aggregates appeared to follow similar kinetics reported in the in vitro studies, where polyglutamine tracts self-aggregate in a length-, concentration- and time-dependent manner. However, in vivo, Hsp104 was required for the conversion from a soluble to an insoluble state. Without Hsp104, polyglutamine tracts tended to remain in a small soluble form, prolonging the lag. Moreover, the dependency on Hsp104 for aggregate formation was strong with the short polyglutamine tract, and decreased with the long polyglutamine tract. CONCLUSION For polyglutamine aggregate formation, a balance of parameters including the length of the polyglutamine tract, Hsp104, and level of polyglutamine expression determined its efficiency.
Collapse
Affiliation(s)
- Y Kimura
- Department of Tumor Cell Biology, The Tokyo Metropolitan Institute of Medical Science, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan.
| | | | | | | |
Collapse
|
328
|
Abstract
Transgenic Drosophila melanogaster and Caenorhabditis elegans strains have been engineered to express human proteins associated with neurodegenerative diseases. These model systems include transgenic animals expressing beta-amyloid peptide (Alzheimer's disease), polyglutamine repeat proteins (Huntington's disease, Spinocerebellar ataxia), and alpha-synuclein (Parkinson's disease). In most of these invertebrate models, some aspects of the human diseases are reproduced. Although expression of all these proteins in transgenic mice has been instructive, the invertebrate models offer experimental advantages (e.g. forward genetic screens) that can potentially address some of the outstanding questions regarding the cellular processes underlying these diseases. This review considers what has been learned from these invertebrate models, and speculates what further insight may be gained from them.
Collapse
Affiliation(s)
- C D Link
- Institute for Behavioral Genetics, University of Colorado, Campus Box 447, Boulder, CO 80309, USA.
| |
Collapse
|
329
|
Wells T, Carter DA. Genetic engineering of neural function in transgenic rodents: towards a comprehensive strategy? J Neurosci Methods 2001; 108:111-30. [PMID: 11478971 DOI: 10.1016/s0165-0270(01)00391-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As mammalian genome projects move towards completion, the attention of molecular neuroscientists is currently moving away from gene identification towards both cell-specific gene expression patterns (neuronal transcriptions) and protein expression/interactions (neuronal proteomics). In the long term, attention will increasingly be directed towards experimental interventions which are able to question neuronal function in a sophisticated manner that is cognisant of both transcriptomic and proteomic organization. Central to this effort will be the application of a new generation of transgenic approaches which are now evolving towards an appropriate level of molecular, temporal and spatial resolution. In this review, we summarize recent developments in transgenesis, and show how they have been applied in the principal model species for neuroscience, namely rats and mice. Current concepts of transgene design are also considered together with an overview of new genetically-encoded tools including both cellular indicators such as fluorescent activity reporters, and cellular regulators such as dominant negative signalling factors. Application of these tools in a whole animal context can be used to question both basic concepts of brain function, and also current concepts of underlying dysfuction in neurological diseases.
Collapse
Affiliation(s)
- T Wells
- School of Biosciences, Cardiff University, PO Box 911, Museum Avenue, Cardiff CF10 3US, UK
| | | |
Collapse
|
330
|
Chun W, Lesort M, Tucholski J, Faber PW, MacDonald ME, Ross CA, Johnson GV. Tissue transglutaminase selectively modifies proteins associated with truncated mutant huntingtin in intact cells. Neurobiol Dis 2001; 8:391-404. [PMID: 11442349 DOI: 10.1006/nbdi.2001.0390] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cause of Huntington's disease (HD) is a pathological expansion of the polyglutamine domain within the N-terminal region of huntingtin. Neuronal intranuclear inclusions and cytoplasmic aggregates composed of the mutant huntingtin within certain neuronal populations are a characteristic hallmark of HD. However, how the expanded polyglutamine repeats of mutant huntingtin cause HD is not known. Because in vitro expanded polyglutamine repeats are excellent glutaminyl-donor substrates of tissue transglutaminase (tTG), it has been hypothesized that tTG may contribute to the formation of these aggregates in HD. However, an association between huntingtin and tTG or modification of huntingtin by tTG has not been demonstrated in cells. To examine the interactions between tTG and huntingtin human neuroblastoma SH-SY5Y cells were stably transfected with full-length huntingtin containing 23 (FL-Q23) (wild type) or 82 (FL-Q82) (mutant) glutamine repeats or a truncated N-terminal huntingtin construct containing 23 (Q23) (wild type) or 62 (Q62) (mutant) glutamine repeats. Aggregates were rarely observed in the cells expressing full-length mutant huntingtin, and no specific colocalization of full-length huntingtin and tTG was observed. In contrast, in cells expressing truncated mutant huntingtin (Q62) there were numerous complexes of truncated mutant huntingtin and many of these complexes co-localized with tTG. However, the complexes were not insoluble structures. Further, truncated huntingtin coimmunoprecipitated with tTG, and this association increased when tTG was activated. Activation of tTG did not result in the modification of either truncated or full-length huntingtin, however proteins that were associated with truncated mutant huntingtin were selectively modified by tTG. This study is the first to demonstrate that tTG specifically interacts with a truncated form of huntingtin, and that activated tTG selectively modifies mutant huntingtin-associated proteins. These data suggest that proteolysis of full-length mutant huntingtin likely precedes its interaction with tTG and this process may facilitate the modification of huntingtin-associated proteins and thus contribute to the etiology of HD.
Collapse
Affiliation(s)
- W Chun
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA
| | | | | | | | | | | | | |
Collapse
|
331
|
Mozer BA. Dominant Drop mutants are gain-of-function alleles of the muscle segment homeobox gene (msh) whose overexpression leads to the arrest of eye development. Dev Biol 2001; 233:380-93. [PMID: 11336502 DOI: 10.1006/dbio.2001.0229] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dominant Drop (Dr) mutations are nearly eyeless and have additional recessive phenotypes including lethality and patterning defects in eye and sensory bristles due to cis-regulatory lesions in the cell cycle regulator string (stg). Genetic analysis demonstrates that the dominant small eye phenotype is the result of separate gain-of-function mutations in the closely linked muscle segment homeobox (msh) gene, encoding a homeodomain transcription factor required for patterning of muscle and nervous system. Reversion of the Dr(Mio) allele was coincident with the generation of lethal loss-of-function mutations in msh in cis, suggesting that the dominant eye phenotype is the result of ectopic expression. Molecular genetic analysis revealed that two dominant Dr alleles contain lesions upstream of the msh transcription start site. In the Dr(Mio) mutant, a 3S18 retrotransposon insertion is the target of second-site mutations (P-element insertions or deletions) which suppress the dominant eye phenotype following reversion. The pattern of 3S18 expression and the absence of msh in eye imaginal discs suggest that transcriptional activation of the msh promoter accounts for ectopic expression. Dr dominant mutations arrest eye development by blocking the progression of the morphogenetic furrow leading to photoreceptor cell loss via apoptosis. Gal4-mediated ubiquitous expression of msh in third-instar larvae was sufficient to arrest the morphogenetic furrow in the eye imaginal disc and resulted in lethality prior to eclosion. Dominant mutations in the human msx2 gene, one of the vertebrate homologs of msh, are associated with craniosynostosis, a disease affecting cranial development. The Dr mutations are the first example of gain-of-function mutations in the msh/msx gene family identified in a genetically tractible model organism and may serve as a useful tool to identify additional genes that regulate this class of homeodomain proteins.
Collapse
Affiliation(s)
- B A Mozer
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
332
|
Pichaud F, Desplan C. A new visualization approach for identifying mutations that affect differentiation and organization of the Drosophila ommatidia. Development 2001; 128:815-26. [PMID: 11222137 DOI: 10.1242/dev.128.6.815] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila eye is widely used as a model system to study neuronal differentiation, survival and axon projection. Photoreceptor differentiation starts with the specification of a founder cell R8, which sequentially recruits other photoreceptor neurons to the ommatidium. The eight photoreceptors that compose each ommatidium exist in two chiral forms organized along two axes of symmetry and this pattern represents a paradigm to study tissue polarity. We have developed a method of fluoroscopy to visualize the different types of photoreceptors and the organization of the ommatidia in living animals. This allowed us to perform an F(1) genetic screen to isolate mutants affecting photoreceptor differentiation, survival or planar polarity. We illustrate the power of this detection system using known genetic backgrounds and new mutations that affect ommatidial differentiation, morphology or chirality.
Collapse
Affiliation(s)
- F Pichaud
- Laboratory of Molecular Genetics, Department of Biology, New York University, 100 Washington Square East, New York NY 10003, USA
| | | |
Collapse
|
333
|
The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathologic and genetic evidence for a role in Huntington's disease pathogenesis. Proc Natl Acad Sci U S A 2001; 98. [PMID: 11172033 PMCID: PMC29339 DOI: 10.1073/pnas.041566798] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by polyglutamine expansion in the protein huntingtin (htt). Pathogenesis in HD appears to involve the formation of ubiquitinated neuronal intranuclear inclusions containing N-terminal mutated htt, abnormal protein interactions, and the aggregate sequestration of a variety of proteins (noticeably, transcription factors). To identify novel htt-interacting proteins in a simple model system, we used a yeast two-hybrid screen with a Caenorhabditis elegans activation domain library. We found a predicted WW domain protein (ZK1127.9) that interacts with N-terminal fragments of htt in two-hybrid tests. A human homologue of ZK1127.9 is CA150, a transcriptional coactivator with a N-terminal insertion that contains an imperfect (Gln-Ala)(38) tract encoded by a polymorphic repeat DNA. CA150 interacted in vitro with full-length htt from lymphoblastoid cells. The expression of CA150, measured immunohistochemically, was markedly increased in human HD brain tissue compared with normal age-matched human brain tissue, and CA150 showed aggregate formation with partial colocalization to ubiquitin-positive aggregates. In 432 HD patients, the CA150 repeat length explains a small, but statistically significant, amount of the variability in the onset age. Our data suggest that abnormal expression of CA150, mediated by interaction with polyglutamine-expanded htt, may alter transcription and have a role in HD pathogenesis.
Collapse
|
334
|
Holbert S, Denghien I, Kiechle T, Rosenblatt A, Wellington C, Hayden MR, Margolis RL, Ross CA, Dausset J, Ferrante RJ, Néri C. The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: Neuropathologic and genetic evidence for a role in Huntington's disease pathogenesis. Proc Natl Acad Sci U S A 2001; 98:1811-6. [PMID: 11172033 PMCID: PMC29339 DOI: 10.1073/pnas.98.4.1811] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by polyglutamine expansion in the protein huntingtin (htt). Pathogenesis in HD appears to involve the formation of ubiquitinated neuronal intranuclear inclusions containing N-terminal mutated htt, abnormal protein interactions, and the aggregate sequestration of a variety of proteins (noticeably, transcription factors). To identify novel htt-interacting proteins in a simple model system, we used a yeast two-hybrid screen with a Caenorhabditis elegans activation domain library. We found a predicted WW domain protein (ZK1127.9) that interacts with N-terminal fragments of htt in two-hybrid tests. A human homologue of ZK1127.9 is CA150, a transcriptional coactivator with a N-terminal insertion that contains an imperfect (Gln-Ala)(38) tract encoded by a polymorphic repeat DNA. CA150 interacted in vitro with full-length htt from lymphoblastoid cells. The expression of CA150, measured immunohistochemically, was markedly increased in human HD brain tissue compared with normal age-matched human brain tissue, and CA150 showed aggregate formation with partial colocalization to ubiquitin-positive aggregates. In 432 HD patients, the CA150 repeat length explains a small, but statistically significant, amount of the variability in the onset age. Our data suggest that abnormal expression of CA150, mediated by interaction with polyglutamine-expanded htt, may alter transcription and have a role in HD pathogenesis.
Collapse
Affiliation(s)
- S Holbert
- Laboratory of Genomic Biology, Fondation Jean Dausset, Centre d'Etude du Polymorphisme Humain, 75010 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
335
|
Abstract
A milestone in Huntington's disease (HD) research is represented by the identification of the causative gene. With the genetics at hand, a series of transgenic cellular and animal models has been developed, which has greatly contributed to understanding of HD. All these models are described in this review, and are compared to each other, along with the information they have generated. Although the mechanism by which progressive loss of striatal neurons occurs in HD remains uncertain, hypotheses on mutant huntingtin toxicity involve impaired vescicular trafficking, transcriptional dysregulation, and/or activation of apoptotic pathways. The development of inducible HD mice has shown that neurodegeneration in HD may be at least partially blocked. Although traditionally considered a "gain-of-function" disease, the recent finding that normal huntingtin has an important role in neuronal survival suggests that loss of function of the normal protein might contribute to HD as well, also discloseing new perspectives on the therapeutical approach to the pathology.
Collapse
Affiliation(s)
- S Sipione
- Department of Pharmacological Sciences, University of Milano, Center of Excellence on Neurodegenerative Diseases, Italy
| | | |
Collapse
|
336
|
|
337
|
Neuronal Death in Huntington’s Disease: Multiple Pathways for One Issue? RESEARCH AND PERSPECTIVES IN NEUROSCIENCES 2001. [DOI: 10.1007/978-3-662-04333-2_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
338
|
Abstract
The fruit fly Drosophila melanogaster has become such a popular model organism for studying human disease that it is often described as a little person with wings. This view has been strengthened with the sequencing of the Drosophila genome and the discovery that 60% of human disease genes have homologues in the fruit fly. In this review, I discuss the approach of using Drosophila not only as a model for metazoans in general but as a model insect in particular. Specifically, I discuss recent work on the use of Drosophila to study the transmission of disease by insect vectors and to investigate insecticide function and development.
Collapse
Affiliation(s)
- D Schneider
- Whitehead Institute, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.
| |
Collapse
|
339
|
Abstract
Caspases are a large family of evolutionarily conserved proteases found from Caenorhabditis elegans to humans. Although the first caspase was identified as a processing enzyme for interleukin-1beta, genetic and biochemical data have converged to reveal that many caspases are key mediators of apoptosis, the intrinsic cell suicide program essential for development and tissue homeostasis. Each caspase is a cysteine aspartase; it employs a nucleophilic cysteine in its active site to cleave aspartic acid peptide bonds within proteins. Caspases are synthesized as inactive precursors termed procaspases; proteolytic processing of procaspase generates the tetrameric active caspase enzyme, composed of two repeating heterotypic subunits. Based on kinetic data, substrate specificity, and procaspase structure, caspases have been conceptually divided into initiators and effectors. Initiator caspases activate effector caspases in response to specific cell death signals, and effector caspases cleave various cellular proteins to trigger apoptosis. Adapter protein-mediated oligomerization of procaspases is now recognized as a universal mechanism of initiator caspase activation and underlies the control of both cell surface death receptor and mitochondrial cytochrome c-Apaf-1 apoptosis pathways. Caspase substrates have bene identified that induce each of the classic features of apoptosis, including membrane blebbing, cell body shrinkage, and DNA fragmentation. Mice deficient for caspase genes have highlighted tissue- and signal-specific pathways for apoptosis and demonstrated an independent function for caspase-1 and -11 in cytokine processing. Dysregulation of caspases features prominently in many human diseases, including cancer, autoimmunity, and neurodegenerative disorders, and increasing evidence shows that altering caspase activity can confer therapeutic benefits.
Collapse
Affiliation(s)
- H Y Chang
- Harvard-MIT Division of Health Science and Technology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
340
|
Paulson HL, Bonini NM, Roth KA. Polyglutamine disease and neuronal cell death. Proc Natl Acad Sci U S A 2000; 97:12957-8. [PMID: 11058149 PMCID: PMC34075 DOI: 10.1073/pnas.210395797] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- H L Paulson
- Department of Neurology, University of Iowa College of Medicine, Iowa City, IA 52252, USA
| | | | | |
Collapse
|
341
|
Fernandez-Funez P, Nino-Rosales ML, de Gouyon B, She WC, Luchak JM, Martinez P, Turiegano E, Benito J, Capovilla M, Skinner PJ, McCall A, Canal I, Orr HT, Zoghbi HY, Botas J. Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 2000; 408:101-6. [PMID: 11081516 DOI: 10.1038/35040584] [Citation(s) in RCA: 479] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A growing number of human neurodegenerative diseases result from the expansion of a glutamine repeat in the protein that causes the disease. Spinocerebellar ataxia type 1 (SCA1) is one such disease-caused by expansion of a polyglutamine tract in the protein ataxin-1. To elucidate the genetic pathways and molecular mechanisms underlying neuronal degeneration in this group of diseases, we have created a model system for SCA1 by expressing the full-length human SCA1 gene in Drosophila. Here we show that high levels of wild-type ataxin-1 can cause degenerative phenotypes similar to those caused by the expanded protein. We conducted genetic screens to identify genes that modify SCA1-induced neurodegeneration. Several modifiers highlight the role of protein folding and protein clearance in the development of SCA1. Furthermore, new mechanisms of polyglutamine pathogenesis were revealed by the discovery of modifiers that are involved in RNA processing, transcriptional regulation and cellular detoxification. These findings may be relevant to the treatment of polyglutamine diseases and, perhaps, to other neurodegenerative diseases, such as Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- P Fernandez-Funez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
342
|
Gusella JF, MacDonald ME. Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nat Rev Neurosci 2000; 1:109-15. [PMID: 11252773 DOI: 10.1038/35039051] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two decades ago, molecular genetic analysis provided a new approach for defining the roots of inherited disorders. This strategy has proved particularly powerful because, with only a description of the inheritance pattern, it can uncover previously unsuspected mechanisms of pathogenesis that are not implicated by known biological pathways or by the disease manifestations. Nowhere has the impact of molecular genetics been more evident than in the dominantly inherited neurodegenerative disorders, where eight unrelated diseases have been revealed to possess the same type of mutation--an expanded polyglutamine encoding sequence--affecting different genes.
Collapse
Affiliation(s)
- J F Gusella
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
343
|
Abstract
New methods enable the identification of compounds that both induce a specific cellular state and lead to identification of proteins that regulate that state. Together, developments in three critical areas: chemical diversity, phenotype-based screening and target identification, enable the systematic application of this chemical genetic approach to almost any biological problem or disease process.
Collapse
Affiliation(s)
- B R Stockwell
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, MA 02142, USA.
| |
Collapse
|
344
|
Abstract
Drosophila has provided a powerful genetic system in which to elucidate fundamental cellular pathways in the context of a developing and functioning nervous system. Recently, Drosophila has been applied toward elucidating mechanisms of human neurodegenerative disease, including Alzheimer's, Parkinson's and Huntington's diseases. Drosophila allows study of the normal function of disease proteins, as well as study of effects of familial mutations upon targeted expression of human mutant forms in the fly. These studies have revealed new insight into the normal functions of such disease proteins, as well as provided models in Drosophila that will allow genetic approaches to be applied toward elucidating ways to prevent or delay toxic effects of such disease proteins. These, and studies to come that follow from the recently completed sequence of the Drosophila genome, underscore the contributions that Drosophila as a model genetic system stands to contribute toward the understanding of human neurodegenerative disease.
Collapse
Affiliation(s)
- H Y Chan
- Howard Hughes Medical Institute, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104-6018, USA
| | | |
Collapse
|
345
|
Abstract
Invertebrate models of several human neurodegenerative diseases have recently been described. These models faithfully replicate key neuropathological features of the human disorders. Because the basic cell biology of the nervous system is very similar in vertebrates and invertebrates, the sophisticated and rapid genetic analysis feasible in Drosophila and C. elegans promises significant insight into human neurodegenerative syndromes. In addition, the short lifespan, small size, and ease of culturing make worms and flies ideal for drug testing.
Collapse
Affiliation(s)
- M B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
346
|
Cowan WM, Harter DH, Kandel ER. The emergence of modern neuroscience: some implications for neurology and psychiatry. Annu Rev Neurosci 2000; 23:343-91. [PMID: 10845068 DOI: 10.1146/annurev.neuro.23.1.343] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the most significant developments in biology in the past half century was the emergence, in the late 1950s and early 1960s, of neuroscience as a distinct discipline. We review here factors that led to the convergence into a common discipline of the traditional fields of neurophysiology, neuroanatomy, neurochemistry, and behavior, and we emphasize the seminal roles played by David McKenzie Rioch, Francis O Schmitt, and especially Stephen W Kuffler in creating neuroscience as we now know it. The application of the techniques of molecular and cellular biology to the study of the nervous system has greatly accelerated our understanding of the mechanisms involved in neuronal signaling, neural development, and the function of the major sensory and motor systems of the brain. The elucidation of the underlying causes of most neurological and psychiatric disorders has proved to be more difficult; but striking progress is now being made in determining the genetic basis of such disorders as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and a number of ion channel and mitochondrial disorders, and a significant start has been made in identifying genetic factors in the etiology of such disorders as manic depressive illness and schizophrenia. These developments presage the emergence in the coming decades of a new nosology, certainly in neurology and perhaps also in psychiatry, based not on symptomatology but on the dysfunction of specific genes, molecules, neuronal organelles and particular neural systems.
Collapse
Affiliation(s)
- W M Cowan
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | | | | |
Collapse
|
347
|
Abstract
A growing number of neurodegenerative diseases have been found to result from the expansion of an unstable trinucleotide repeat. Over the past 6 years, researchers have focused on identifying the mechanism by which the expanded polyglutamine tract renders a protein toxic to a subset of vulnerable neurons. In this review, we summarize the clinicopathologic features of these disorders (spinobulbar muscular atrophy, Huntington disease, and the spinocerebellar ataxias, including dentatorubropallidoluysian atrophy), describe the genes involved and what is known about their products, and discuss the model systems that have lent insight into pathogenesis. The review concludes with a model for pathogenesis that illuminates the unifying features of these polyglutamine disorders. This model may prove relevant to other neurodegenerative disorders as well.
Collapse
Affiliation(s)
- H Y Zoghbi
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
348
|
Abstract
Although the gene responsible for Huntington's disease was discovered in 1993, the pathogenic mechanisms by which mutant huntingtin causes neuronal dysfunction and death remain unclear. However, increasing evidence suggests that mutant huntingtin disrupts the normal transcriptional program of susceptible neurons. Thus, transcriptional dysregulation might be an important pathogenic mechanism in Huntington's disease.
Collapse
Affiliation(s)
- J H Cha
- Dept. of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
349
|
Wanker EE. Protein aggregation and pathogenesis of Huntington's disease: mechanisms and correlations. Biol Chem 2000; 381:937-42. [PMID: 11076024 DOI: 10.1515/bc.2000.114] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The formation of insoluble protein aggregates is a hallmark of Huntington's disease (HD) and related neurodegenerative disorders, such as dentatorubral pallidoluysian atrophy (DRPLA), spinal bulbar muscular atrophy (SBMA) and the spinocerebellar ataxia (SCA) type 1, 2, 3, 6 and 7. These disorders are caused by an expanded polyglutamine (polyQ) tract in otherwise unrelated proteins. They are characterized by late-onset, selective neuropathology, a pathogenic polyQ threshold and a relationship between polyQ length and disease progression. Thus, molecular models of HD and related glutamine-repeat disorders must account for these characteristic features. During the last three years, considerable effort has been invested in the development of in vitro and in vivo model systems to study the mechanisms of protein aggregation in glutamine-repeat disorders and its potential effects on disease progression and neurodegeneration. A selection of these studies is reviewed here. Furthermore, the correlation between aggregate formation and development of HD is discussed.
Collapse
Affiliation(s)
- E E Wanker
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| |
Collapse
|
350
|
Fortini ME, Skupski MP, Boguski MS, Hariharan IK. A survey of human disease gene counterparts in the Drosophila genome. J Cell Biol 2000; 150:F23-30. [PMID: 10908582 PMCID: PMC2180233 DOI: 10.1083/jcb.150.2.f23] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2000] [Accepted: 06/26/2000] [Indexed: 11/22/2022] Open
Affiliation(s)
- M E Fortini
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|