301
|
Bogiel T, Depka D, Rzepka M, Mikucka A. Decoding Genetic Features and Antimicrobial Susceptibility of Pseudomonas aeruginosa Strains Isolated from Bloodstream Infections. Int J Mol Sci 2022; 23:ijms23169208. [PMID: 36012468 PMCID: PMC9409454 DOI: 10.3390/ijms23169208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative rod and an etiological factor of opportunistic infections. The infections of this etiology appear mostly among hospitalized patients and are relatively hard to treat due to widespread antimicrobial resistance. Many virulence factors are involved in the pathogenesis of P. aeruginosa infection, the coexistence of which have a significant impact on the course of an infection with a particular localization. The aim of this study was to assess the antimicrobial susceptibility profiles and the frequency of genes encoding selected virulence factors in clinical P. aeruginosa strains isolated from bloodstream infections (BSIs). The following genes encoding virulence factors of enzymatic activity were assessed: lasB, plC H, plC N, nan1, nan2, aprA and phzM. The frequency of the genes encoding the type III secretion system effector proteins (exoU and exoS) and the genes encoding pilin structural subunits (pilA and pilB) were also investigated. The occurrence of virulence-factor genes was assessed using polymerase chain reactions, each in a separate reaction. Seventy-one P. aeruginosa strains, isolated from blood samples of patients with confirmed bacteremia hospitalized at the University Hospital No. 1 of Dr. Antoni Jurasz in Bydgoszcz, Poland, were included in the study. All the investigated strains were susceptible to colistin, while the majority of the strains presented resistance to ticarcillin/clavulanate (71.8%), piperacillin (60.6 %), imipenem (57.7%) and piperacillin/tazobactam (52.1%). The presence of the lasB and plC H genes was noted in all the tested strains, while the plC N, nan2, aprA, phzM and nan1 genes were identified in 68 (95.8%), 66 (93.0%), 63 (88.7%), 55 (77.5%) and 34 (47.9%) isolates, respectively. In 44 (62.0%) and 41 (57.7%) strains, the presence of the exoU and exoS genes was confirmed, while the pilA and pilB genes were noted only in 14 (19.7%) and 3 (4.2%) isolates, respectively. This may be due to the diverse roles of these proteins in the development and maintenance of BSIs. Statistically significant correlations were observed between particular gene pairs’ coexistence (e.g., alkaline protease and neuraminidase 2). Altogether, twenty-seven distinctive genotypes were observed among the studied strains, indicating the vast variety of genetic compositions of P. aeruginosa strains causing BSIs.
Collapse
|
302
|
Yuan Y, Yang X, Zeng Q, Li H, Fu R, Du L, Liu W, Zhang Y, Zhou X, Chu Y, Zhang X, Zhao K. Repurposing Dimetridazole and Ribavirin to disarm Pseudomonas aeruginosa virulence by targeting the quorum sensing system. Front Microbiol 2022; 13:978502. [PMID: 36046018 PMCID: PMC9421001 DOI: 10.3389/fmicb.2022.978502] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022] Open
Abstract
Pseudomonas aeruginosa relies on its complex cellular regulatory network to produce a series of virulence factors and to cause various acute and chronic infections in a wide range of hosts. Compared with traditional antibiotics which frequently accompany with widespread antibiotic resistance, crippling the virulence system of bacteria is expected to be a promising anti-infective strategy. In this study, Dimetridazole and Ribavirin, which had poor antibacterial activities on P. aeruginosa reference isolate PAO1 in nutrient medium but significantly inhibited the growth of P. aeruginosa PAO1 in M9-adenosine, were selected from 40 marketed compounds with similar core structure (furan, benzofuran, or flavonoids) to the acyl-homoserine lactone signals of P. aeruginosa quorum sensing (QS) system. The production of QS-controlled proteases, pyocyanin, and biofilm formation of P. aeruginosa PAO1 and the clinical isolates were significantly decreased by the presence of Dimetridazole or Ribavirin. Correspondingly, the majority of QS-activated genes in P. aeruginosa, including the key regulatory genes lasR, rhlR, and pqsR and their downstream genes, were significantly inhibited by Ribavirin or Dimetridazole, as determined by RNA-sequencing and quantitative PCR. Furthermore, the susceptibilities of drug-resistant P. aeruginosa isolates to polymyxin B, meropenem, and kanamycin were remarkably promoted by the synergistic application of Dimetridazole or Ribavirin. Finally, the treatment of Ribavirin or Dimetridazole effectively protected Caenorhabditis elegans and mice from P. aeruginosa infection. In conclusion, this study reports the antivirulence potentials of Dimetridazole and Ribavirin on P. aeruginosa and provides structural basis and methodological reference for the development of anti-pseudomonal drugs.
Collapse
Affiliation(s)
- Yang Yuan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital/Clinical College of Chengdu University, Chengdu, Sichuan, China
| | - Xiting Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital/Clinical College of Chengdu University, Chengdu, Sichuan, China
| | - Qianglin Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital/Clinical College of Chengdu University, Chengdu, Sichuan, China
| | - Heyue Li
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Ruyi Fu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital/Clinical College of Chengdu University, Chengdu, Sichuan, China
| | - Lianming Du
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital/Clinical College of Chengdu University, Chengdu, Sichuan, China
| | - Wei Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital/Clinical College of Chengdu University, Chengdu, Sichuan, China
| | - Yamei Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital/Clinical College of Chengdu University, Chengdu, Sichuan, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital/Clinical College of Chengdu University, Chengdu, Sichuan, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Xiuyue Zhang,
| | - Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital/Clinical College of Chengdu University, Chengdu, Sichuan, China
- *Correspondence: Kelei Zhao,
| |
Collapse
|
303
|
Lin S, Chen S, Li L, Cao H, Li T, Hu M, Liao L, Zhang LH, Xu Z. Genome characterization of a uropathogenic Pseudomonas aeruginosa isolate PA_HN002 with cyclic di-GMP-dependent hyper-biofilm production. Front Cell Infect Microbiol 2022; 12:956445. [PMID: 36004331 PMCID: PMC9394441 DOI: 10.3389/fcimb.2022.956445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa can cause various types of infections and is one of the most ubiquitous antibiotic-resistant pathogens found in healthcare settings. It is capable of adapting to adverse conditions by transforming its motile lifestyle to a sessile biofilm lifestyle, which induces a steady state of chronic infection. However, mechanisms triggering the lifestyle transition of P. aeruginosa strains with clinical significance are not very clear. In this study, we reported a recently isolated uropathogenic hyper-biofilm producer PA_HN002 and characterized its genome to explore genetic factors that may promote its transition into the biofilm lifestyle. We first showed that high intracellular c-di-GMP content in PA_HN002 gave rise to its attenuated motilities and extraordinary strong biofilm. Reducing the intracellular c-di-GMP content by overexpressing phosphodiesterases (PDEs) such as BifA or W909_14950 converted the biofilm and motility phenotypes. Whole genome sequencing and comprehensive analysis of all the c-di-GMP metabolizing enzymes led to the identification of multiple mutations within PDEs. Gene expression assays further indicated that the shifted expression profile of c-di-GMP metabolizing enzymes in PA_HN002 might mainly contribute to its elevated production of intracellular c-di-GMP and enhanced biofilm formation. Moreover, mobile genetic elements which might interfere the endogenous regulatory network of c-di-GMP metabolism in PA_HN002 were analyzed. This study showed a reprogrammed expression profile of c-di-GMP metabolizing enzymes which may promote the pathoadaption of clinical P. aeruginosa into biofilm producers.
Collapse
Affiliation(s)
- Siying Lin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Shuzhen Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Li Li
- Women and Children’s Health Institute, Guangdong Women and Children Hospital, Guangzhou, China
- *Correspondence: Li Li, ; Zeling Xu,
| | - Huiluo Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ting Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ming Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lisheng Liao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- *Correspondence: Li Li, ; Zeling Xu,
| |
Collapse
|
304
|
Crystallization, X-ray diffraction analysis and structure of ICMP from Pseudomonas aeruginosa. Biochem Biophys Res Commun 2022; 616:129-133. [DOI: 10.1016/j.bbrc.2022.05.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/15/2022]
|
305
|
Comparative Genomic Analysis of Antarctic Pseudomonas Isolates with 2,4,6-Trinitrotoluene Transformation Capabilities Reveals Their Unique Features for Xenobiotics Degradation. Genes (Basel) 2022; 13:genes13081354. [PMID: 36011267 PMCID: PMC9407559 DOI: 10.3390/genes13081354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
The nitroaromatic explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. Since physicochemical methods for remediation are poorly effective, the use of microorganisms has gained interest as an alternative to restore TNT-contaminated sites. We previously demonstrated the high TNT-transforming capability of three novel Pseudomonas spp. isolated from Deception Island, Antarctica, which exceeded that of the well-characterized TNT-degrading bacterium Pseudomonas putida KT2440. In this study, a comparative genomic analysis was performed to search for the metabolic functions encoded in the genomes of these isolates that might explain their TNT-transforming phenotype, and also to look for differences with 21 other selected pseudomonads, including xenobiotics-degrading species. Comparative analysis of xenobiotic degradation pathways revealed that our isolates have the highest abundance of key enzymes related to the degradation of fluorobenzoate, TNT, and bisphenol A. Further comparisons considering only TNT-transforming pseudomonads revealed the presence of unique genes in these isolates that would likely participate directly in TNT-transformation, and others involved in the β-ketoadipate pathway for aromatic compound degradation. Lastly, the phylogenomic analysis suggested that these Antarctic isolates likely represent novel species of the genus Pseudomonas, which emphasizes their relevance as potential agents for the bioremediation of TNT and other xenobiotics.
Collapse
|
306
|
Pinto SN, Mil-Homens D, Pires RF, Alves MM, Serafim G, Martinho N, Melo M, Fialho AM, Bonifácio VDB. Core-shell polycationic polyurea pharmadendrimers: new-generation of sustainable broad-spectrum antibiotics and antifungals. Biomater Sci 2022; 10:5197-5207. [PMID: 35880970 DOI: 10.1039/d2bm00679k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficacy of conventional antimicrobials is falling to critical levels and raising alarming concerns around the globe. In this scenery, engineered nanoparticles emerged as a solid strategy to fight growing deadly infections. Here, we show the in vitro and in vivo performance of pharmadendrimers, a novel class of engineered polyurea dendrimers that are synthetic mimics of antibacterial peptides, against a collection of both Gram-positive and Gram-negative bacteria and fungi. These nanobiomaterials are stable solids prepared by low-cost and green processes, display a dense positively charged core-shell, and are biocompatible and hemocompatible drugs. Mechanistic data, corroborated by coarse-grained molecular dynamics simulations, points towards a fast-killing mechanism via membrane disruption, triggered by electrostatic interactions. Altogether this study provides strong evidence and support for the future use of polyurea pharmadendrimers in antibacterial and antifungal nanotherapeutics.
Collapse
Affiliation(s)
- Sandra N Pinto
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Dalila Mil-Homens
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Rita F Pires
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Marta M Alves
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Gabriel Serafim
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Nuno Martinho
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Manuel Melo
- Instituto de Tecnologia Química Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Arsénio M Fialho
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. .,Bioengineering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Vasco D B Bonifácio
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. .,Bioengineering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
307
|
Cerón-Pisa N, Shafiek H, Martín-Medina A, Verdú J, Jordana-Lluch E, Escobar-Salom M, Barceló IM, López-Causapé C, Oliver A, Juan C, Iglesias A, Cosío BG. Effects of Inhaled Corticosteroids on the Innate Immunological Response to Pseudomonas aeruginosa Infection in Patients with COPD. Int J Mol Sci 2022; 23:ijms23158127. [PMID: 35897707 PMCID: PMC9332726 DOI: 10.3390/ijms23158127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Inhaled corticosteroids (ICS) use is associated with an increased risk of Pseudomonas aeruginosa (PA) infection in patients with COPD. We aimed to evaluate the effects of ICS on alveolar macrophages in response to PA in COPD patients with and without baseline ICS treatment (COPD and COPD + ICS, respectively) as well as smoker and nonsmoker controls. To do so, cells were infected with PA and cotreated with budesonide (BUD) or fluticasone propionate (FLU). The analysis of NF-κB and c-jun activity revealed a significant increase in both factors in response to PA cotreated with BUD/FLU in smokers but not in COPD or COPD + ICS patients when compared with PA infection alone. The expression of Toll-like receptor 2 (TLR2) and the transcription factor c-jun were induced upon PA infection in nonsmokers only. Moreover, in the smoker and COPD groups, there was a significant increase in TLR2 and a decrease in c-jun expression when treated with BUD/FLU after PA infection, which were not observed in COPD + ICS patients. Therefore, the chronic use of ICS seemingly makes the macrophages tolerant to BUD/FLU stimulation compared with those from patients not treated with ICS, promoting an impaired recognition of PA and activity of alveolar macrophages in terms of altered expression of TLR2 and cytokine production, which could explain the increased risk of PA infection in COPD patients under ICS treatment.
Collapse
Affiliation(s)
- Noemi Cerón-Pisa
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
| | - Hanaa Shafiek
- Chest Diseases Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt;
| | - Aina Martín-Medina
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
| | - Javier Verdú
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Department of Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Elena Jordana-Lluch
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
- Department of Microbiology, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Maria Escobar-Salom
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
- Department of Microbiology, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Isabel M. Barceló
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
- Department of Microbiology, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Carla López-Causapé
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
- Department of Microbiology, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Antonio Oliver
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
- Department of Microbiology, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Carlos Juan
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029 Madrid, Spain
- Department of Microbiology, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Amanda Iglesias
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III (CIBERES), 28029 Madrid, Spain
- Correspondence: (A.I.); (B.G.C.); Tel.: +34-871-205-050 (ext. 64521) (A.I. & B.G.C.)
| | - Borja G. Cosío
- Instituto de Investigación Sanitaria de Les Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain; (N.C.-P.); (A.M.-M.); (J.V.); (E.J.-L.); (M.E.-S.); (I.M.B.); (C.L.-C.); (A.O.); (C.J.)
- Department of Respiratory Medicine, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III (CIBERES), 28029 Madrid, Spain
- Correspondence: (A.I.); (B.G.C.); Tel.: +34-871-205-050 (ext. 64521) (A.I. & B.G.C.)
| |
Collapse
|
308
|
Eilers K, Kuok Hoong Yam J, Morton R, Mei Hui Yong A, Brizuela J, Hadjicharalambous C, Liu X, Givskov M, Rice SA, Filloux A. Phenotypic and integrated analysis of a comprehensive Pseudomonas aeruginosa PAO1 library of mutants lacking cyclic-di-GMP-related genes. Front Microbiol 2022; 13:949597. [PMID: 35935233 PMCID: PMC9355167 DOI: 10.3389/fmicb.2022.949597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that is able to survive and adapt in a multitude of niches as well as thrive within many different hosts. This versatility lies within its large genome of ca. 6 Mbp and a tight control in the expression of thousands of genes. Among the regulatory mechanisms widespread in bacteria, cyclic-di-GMP signaling is one which influences all levels of control. c-di-GMP is made by diguanylate cyclases and degraded by phosphodiesterases, while the intracellular level of this molecule drives phenotypic responses. Signaling involves the modification of enzymes' or proteins' function upon c-di-GMP binding, including modifying the activity of regulators which in turn will impact the transcriptome. In P. aeruginosa, there are ca. 40 genes encoding putative DGCs or PDEs. The combined activity of those enzymes should reflect the overall c-di-GMP concentration, while specific phenotypic outputs could be correlated to a given set of dgc/pde. This notion of specificity has been addressed in several studies and different strains of P. aeruginosa. Here, we engineered a mutant library for the 41 individual dgc/pde genes in P. aeruginosa PAO1. In most cases, we observed a significant to slight variation in the global c-di-GMP pool of cells grown planktonically, while several mutants display a phenotypic impact on biofilm including initial attachment and maturation. If this observation of minor changes in c-di-GMP level correlating with significant phenotypic impact appears to be true, it further supports the idea of a local vs global c-di-GMP pool. In contrast, there was little to no effect on motility, which differs from previous studies. Our RNA-seq analysis indicated that all PAO1 dgc/pde genes were expressed in both planktonic and biofilm growth conditions and our work suggests that c-di-GMP networks need to be reconstructed for each strain separately and cannot be extrapolated from one to another.
Collapse
Affiliation(s)
- Kira Eilers
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Joey Kuok Hoong Yam
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Richard Morton
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Adeline Mei Hui Yong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jaime Brizuela
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Medical Microbiology, Amsterdam UMC, Universitair Medische Centra, University of Amsterdam, Amsterdam, Netherlands
| | - Corina Hadjicharalambous
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Xianghui Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Michael Givskov
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Westmead and Microbiomes for One Systems Health, Melbourne, VIC, Australia
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
309
|
Concentration-Dependent Activity of Pazufloxacin against Pseudomonas aeruginosa: An In Vivo Pharmacokinetic/Pharmacodynamic Study. Antibiotics (Basel) 2022; 11:antibiotics11070982. [PMID: 35884236 PMCID: PMC9312304 DOI: 10.3390/antibiotics11070982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The bacterium Pseudomonas aeruginosa is known to be associated with nosocomial infections around the world. Pazufloxacin, a potent DNA gyrase inhibitor, is known to be an effective drug candidate. However, it has not been clarified whether the pharmacokinetic (PK)/pharmacodynamic (PD) of pazufloxacin was effective against P. aeruginosa. Herein, we demonstrated that the PK/PD index of pazufloxacin against P. aeruginosa infection is used to optimize the dosing regiments. We constructed an in vivo infection model by infecting P. aeruginosa into the thigh of a mouse to determine the PD, and we measured the serum concentration of pazufloxacin to construct the PK model using high-performance liquid chromatography. The therapeutic efficacy of pazufloxacin was correlated with the ratio of the area under the free concentration time curve at 24 h to the minimum inhibitory concentration (fAUC24/MIC), and the maximum free concentration to the MIC (fCmax/MIC). Each contribution rate (R2) was 0.72 and 0.65, respectively, whereas the time at which the free drug concentration remained above the MIC (R2 = 0.28). The target value of pazufloxacin fAUC24/MIC for stasis was 46.1, for 1 log10 it was 63.8, and for 2 log10 it was 100.8. Moreover, fCmax/MIC for stasis was 5.5, for 1 log10 it was 7.1, and for 2 log10 it was 10.8. We demonstrated that the in vivo concentration-dependent activity of pazufloxacin was effective against the P. aeruginosa infection, and successfully made the PK/PD model sufficiently bactericidal. The PK/PD model will be beneficial in preventing the spread of nosocomial infections.
Collapse
|
310
|
Liu P, Yue C, Liu L, Gao C, Lyu Y, Deng S, Tian H, Jia X. The function of small RNA in Pseudomonas aeruginosa. PeerJ 2022; 10:e13738. [PMID: 35891650 PMCID: PMC9308961 DOI: 10.7717/peerj.13738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/25/2022] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas aeruginosa, the main conditional pathogen causing nosocomial infection, is a gram-negative bacterium with the largest genome among the known bacteria. The main reasons why Pseudomonas aeruginosa is prone to drug-resistant strains in clinic are: the drug-resistant genes in its genome and the drug resistance easily induced by single antibiotic treatment. With the development of high-throughput sequencing technology and bioinformatics, the functions of various small RNAs (sRNA) in Pseudomonas aeruginosa are being revealed. Different sRNAs regulate gene expression by binding to protein or mRNA to play an important role in the complex regulatory network. In this article, first, the importance and biological functions of different sRNAs in Pseudomonas aeruginosa are explored, and then the evidence and possibilities that sRNAs served as drug therapeutic targets are discussed, which may introduce new directions to develop novel disease treatment strategies.
Collapse
Affiliation(s)
- Pei Liu
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Changwu Yue
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Lihua Liu
- Chengdu Medical College, Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Can Gao
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Yuhong Lyu
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Shanshan Deng
- Chengdu Medical College, Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Hongying Tian
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Xu Jia
- Chengdu Medical College, Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu, Sichuan, China,School of Basic Medical Science, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
311
|
Goyal M, Pelegrin AC, Jaillard M, Saharman YR, Klaassen CHW, Verbrugh HA, Severin JA, van Belkum A. Whole Genome Multi-Locus Sequence Typing and Genomic Single Nucleotide Polymorphism Analysis for Epidemiological Typing of Pseudomonas aeruginosa From Indonesian Intensive Care Units. Front Microbiol 2022; 13:861222. [PMID: 35910643 PMCID: PMC9329958 DOI: 10.3389/fmicb.2022.861222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
We have previously studied carbapenem non-susceptible Pseudomonas aeruginosa (CNPA) strains from intensive care units (ICUs) in a referral hospital in Jakarta, Indonesia (Pelegrin et al., 2019). We documented that CNPA transmissions and acquisitions among patients were variable over time and that these were not significantly reduced by a set of infection control measures. Three high risk international CNPA clones (sequence type (ST)235, ST823, ST357) dominated, and carbapenem resistance was due to carbapenemase-encoding genes and mutations in the porin OprD. Pelegrin et al. (2019) reported core genome analysis of these strains. We present a more refined and detailed whole genome-based analysis of major clones represented in the same dataset. As per our knowledge, this is the first study reporting Single Nucleotide Polymorphisms (wgSNP) analysis of Pseudomonas strains. With whole genome-based Multi Locus Sequence Typing (wgMLST) of the 3 CNPA clones (ST235, ST357 and ST823), three to eleven subgroups with up to 200 allelic variants were observed for each of the CNPA clones. Furthermore, we analyzed these CNPA clone clusters for the presence of wgSNP to redefine CNPA transmission events during hospitalization. A maximum number 35350 SNPs (including non-informative wgSNPs) and 398 SNPs (ST-specific_informative-wgSNPs) were found in ST235, 34,570 SNPs (including non-informative wgSNPs) and 111 SNPs (ST-specific_informative-wgSNPs) in ST357 and 26,443 SNPs (including non-informative SNPs) and 61 SNPs (ST-specific_informative-wgSNPs) in ST823. ST-specific_Informative-wgSNPs were commonly noticed in sensor-response regulator genes. However, the majority of non-informative wgSNPs was found in conserved hypothetical proteins or in uncharacterized proteins. Of note, antibiotic resistance and virulence genes segregated according to the wgSNP analyses. A total of 8 transmission chains for ST235 strains followed by 9 and 4 possible transmission chains for ST357 and ST823 were traceable on the basis of pairwise distances of informative-wgSNPs (0 to 4 SNPs) among the strains. The present study demonstrates the value of detailed whole genome sequence analysis for highly refined epidemiological analysis of P. aeruginosa.
Collapse
Affiliation(s)
- Manisha Goyal
- bioMérieux Open Innovation and Partnerships, Macry-LÉtoile, France
| | | | | | - Yulia Rosa Saharman
- Department of Clinical Microbiology, Faculty of Medicine, Dr. Cipto Mangunkusumo General Hospital, Universitas Indonesia, Jakarta, Indonesia
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Corné H. W. Klaassen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Henri A. Verbrugh
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Juliëtte A. Severin
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Alex van Belkum
- bioMérieux Open Innovation and Partnerships, Macry-LÉtoile, France
- *Correspondence: Alex van Belkum,
| |
Collapse
|
312
|
Streling AP, Cayô R, Nodari CS, Almeida LGP, Bronze F, Siqueira AV, Matos AP, Oliveira V, Vasconcelos ATR, Marcondes MFM, Gales AC. Kinetics Analysis of β-Lactams Hydrolysis by OXA-50 Variants of Pseudomonas aeruginosa. Microb Drug Resist 2022; 28:849-852. [PMID: 35833887 DOI: 10.1089/mdr.2021.0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunist pathogen usually associated with life threatening infections and exhibits a set of intrinsic and acquired antimicrobial mechanisms. Although resistance to penicillins-like compounds is commonly associated with the chromosomal Pseudomonas-derived cephalosporinases β-lactamase, the real contribution of OXA-50, a second chromosomally encoded β-lactamase, remains unclear. In this study, we characterized the biochemical properties of OXA-50, OXA-488, and OXA-494. Both oxacilinases differ from OXA-50 in two amino acids each. The blaOXA-50, blaOXA-488, and blaOXA-494 were cloned into pET26b+ that was transformed into Escherichia coli DH5α strain, expressed in E. coli BL21 strain, and then purified for obtaining the hydrolytic parameters. Benzylpenicillin was the preferential substrate instead of oxacillin. Besides, OXA-488 showed a threefold increase in catalytic efficiency for benzylpenicillin, and it was twofold more efficient in hydrolyzing imipenem, compared with OXA-50, although such carbapenemase activity was considered weak. In addition, OXA-488 and OXA-494 showed an increased affinity for penicillins, which contributed to the increased catalytic efficiency against ampicillin, especially OXA-488. Chromosomally encoded resistance mechanisms are usually overshadowed by acquired mechanisms. However, understanding their real contribution is essential to comprehend the versatile profiles verified in P. aeruginosa isolates. Such information can help to choose the best therapy in a scenario of limited options.
Collapse
Affiliation(s)
- Ana Paula Streling
- Laboratório ALERTA, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Rodrigo Cayô
- Laboratório ALERTA, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil.,Laboratório de Imunologia e Microbiologia (LIB), Setor de Biologia Molecular, Microbiologia e Imunologia, Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Universidade Federal de São Paulo (UNIFESP), Diadema, São Paulo, Brazil
| | - Carolina S Nodari
- Laboratório ALERTA, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Luiz G P Almeida
- National Laboratory for Scientific Computing (LNCC), Petrópolis, Rio de Janeiro, Brazil
| | - Felipe Bronze
- Laboratório de Enzimologia, Department of Biophysics, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - André Valêncio Siqueira
- Laboratório ALERTA, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Adriana P Matos
- Laboratório ALERTA, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Vitor Oliveira
- Laboratório de Enzimologia, Department of Biophysics, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | | | - Marcelo F M Marcondes
- Laboratório de Enzimologia, Department of Biophysics, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Ana Cristina Gales
- Laboratório ALERTA, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| |
Collapse
|
313
|
A previously uncharacterized gene, PA2146, contributes to biofilm formation and drug tolerance across the ɣ-Proteobacteria. NPJ Biofilms Microbiomes 2022; 8:54. [PMID: 35798749 PMCID: PMC9262955 DOI: 10.1038/s41522-022-00314-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 06/14/2022] [Indexed: 01/11/2023] Open
Abstract
Transcriptomic studies have revealed a large number of uncharacterized genes that are differentially expressed in biofilms, which may be important in regulating biofilm phenotypes such as resistance to antimicrobial agents. To identify biofilm genes of unknown function in P. aeruginosa, we made use of RNA-seq and selected 27 uncharacterized genes that were induced upon biofilm growth. Biofilms by respective mutants were subsequently analyzed for two biofilm characteristics, the biofilm architecture and drug susceptibility. The screen revealed 12 out of 27 genes to contribute to biofilm formation and 13 drug susceptibility, with 8 genes affecting both biofilm phenotypes. Amongst the genes affecting both biofilm phenotypes was PA2146, encoding a small hypothetical protein that exhibited some of the most substantial increases in transcript abundance during biofilm growth by P. aeruginosa PAO1 and clinical isolates. PA2146 is highly conserved in ɣ-proteobacteria. Inactivation of PA2146 affected both biofilm phenotypes in P. aeruginosa PAO1, with inactivation of homologs in Klebsiella pneumoniae and Escherichia coli having similar effects. Heterologous expression of PA2146 homologs complemented the P. aeruginosa ∆PA2146, suggesting that PA2146 homologs substitute for and play a similar role as PA2146 in P. aeruginosa.
Collapse
|
314
|
Badescu B, Buda V, Romanescu M, Lombrea A, Danciu C, Dalleur O, Dohou AM, Dumitrascu V, Cretu O, Licker M, Muntean D. Current State of Knowledge Regarding WHO Critical Priority Pathogens: Mechanisms of Resistance and Proposed Solutions through Candidates Such as Essential Oils. PLANTS (BASEL, SWITZERLAND) 2022; 11:1789. [PMID: 35890423 PMCID: PMC9319935 DOI: 10.3390/plants11141789] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 05/05/2023]
Abstract
The rise of multidrug-resistant (MDR) pathogens has become a global health threat and an economic burden in providing adequate and effective treatment for many infections. This large-scale concern has emerged mainly due to mishandling of antibiotics (ABs) and has resulted in the rapid expansion of antimicrobial resistance (AMR). Nowadays, there is an urgent need for more potent, non-toxic and effective antimicrobial agents against MDR strains. In this regard, clinicians, pharmacists, microbiologists and the entire scientific community are encouraged to find alternative solutions in treating infectious diseases cause by these strains. In its "10 global issues to track in 2021", the World Health Organization (WHO) has made fighting drug resistance a priority. It has also issued a list of bacteria that are in urgent need for new ABs. Despite all available resources, researchers are unable to keep the pace of finding novel ABs in the face of emerging MDR strains. Traditional methods are increasingly becoming ineffective, so new approaches need to be considered. In this regard, the general tendency of turning towards natural alternatives has reinforced the interest in essential oils (EOs) as potent antimicrobial agents. Our present article aims to first review the main pathogens classified by WHO as critical in terms of current AMR. The next objective is to summarize the most important and up-to-date aspects of resistance mechanisms to classical antibiotic therapy and to compare them with the latest findings regarding the efficacy of alternative essential oil therapy.
Collapse
Affiliation(s)
- Bianca Badescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania;
| | - Valentina Buda
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Phamacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Mirabela Romanescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania;
| | - Adelina Lombrea
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Phamacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Corina Danciu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Phamacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Olivia Dalleur
- Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium; (O.D.); (A.M.D.)
| | - Angele Modupe Dohou
- Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium; (O.D.); (A.M.D.)
- Faculté des Sciences de la Santé, Université d’Abomey Calavi, Cotonou 01 BP 188, Benin
| | - Victor Dumitrascu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (V.D.); (O.C.); (M.L.)
| | - Octavian Cretu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (V.D.); (O.C.); (M.L.)
| | - Monica Licker
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (V.D.); (O.C.); (M.L.)
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
| | - Delia Muntean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Phamacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (V.D.); (O.C.); (M.L.)
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
| |
Collapse
|
315
|
Thacharodi A, Lamont IL. Aminoglycoside-Modifying Enzymes Are Sufficient to Make Pseudomonas aeruginosa Clinically Resistant to Key Antibiotics. Antibiotics (Basel) 2022; 11:884. [PMID: 35884138 PMCID: PMC9312099 DOI: 10.3390/antibiotics11070884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Aminoglycosides are widely used to treat infections of Pseudomonas aeruginosa. Genes encoding aminoglycoside-modifying enzymes (AMEs), acquired by horizontal gene transfer, are commonly associated with aminoglycoside resistance, but their effects have not been quantified. The aim of this research was to determine the extent to which AMEs increase the antibiotic tolerance of P. aeruginosa. Bioinformatics analysis identified AME-encoding genes in 48 out of 619 clinical isolates of P. aeruginosa, with ant(2')-Ia and aac(6')-Ib3, which are associated with tobramcyin and gentamicin resistance, being the most common. These genes and aph(3')-VIa (amikacin resistance) were deleted from antibiotic-resistant strains. Antibiotic minimum inhibitory concentrations (MICs) were reduced by up to 64-fold, making the mutated bacteria antibiotic-sensitive in several cases. Introduction of the same genes into four antibiotic-susceptible P. aeruginosa strains increased the MIC by up to 128-fold, making the bacteria antibiotic-resistant in all cases. The cloned genes also increased the MIC in mutants lacking the MexXY-OprM efflux pump, which is an important contributor to aminoglycoside resistance, demonstrating that AMEs and this efflux pump act independently in determining levels of aminoglycoside tolerance. Quantification of the effects of AMEs on antibiotic susceptibility demonstrates the large effect that these enzymes have on antibiotic resistance.
Collapse
Affiliation(s)
| | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand;
| |
Collapse
|
316
|
Damale MG, Patil R, Ansari SA, Alkahtani HM, Ahmed S, Nur-e-Alam M, Arote R, Sangshetti J. Insilico structure based drug design approach to find potential hits in ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Comput Biol Med 2022; 146:105597. [DOI: 10.1016/j.compbiomed.2022.105597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022]
|
317
|
Diorio-Toth L, Irum S, Potter RF, Wallace MA, Arslan M, Munir T, Andleeb S, Burnham CAD, Dantas G. Genomic Surveillance of Clinical Pseudomonas aeruginosa Isolates Reveals an Additive Effect of Carbapenemase Production on Carbapenem Resistance. Microbiol Spectr 2022; 10:e0076622. [PMID: 35638817 PMCID: PMC9241860 DOI: 10.1128/spectrum.00766-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/01/2022] [Indexed: 01/15/2023] Open
Abstract
Carbapenem resistance in Pseudomonas aeruginosa is increasing globally, and surveillance to define the mechanisms of such resistance in low- and middle-income countries is limited. This study establishes the genotypic mechanisms of β-lactam resistance by whole-genome sequencing (WGS) in 142 P. aeruginosa clinical isolates recovered from three hospitals in Islamabad and Rawalpindi, Pakistan between 2016 and 2017. Isolates were subjected to antimicrobial susceptibility testing (AST) by Kirby-Bauer disk diffusion, and their genomes were assembled from Illumina sequencing data. β-lactam resistance was high, with 46% of isolates resistant to piperacillin-tazobactam, 42% to cefepime, 48% to ceftolozane-tazobactam, and 65% to at least one carbapenem. Twenty-two percent of isolates were resistant to all β-lactams tested. WGS revealed that carbapenem resistance was associated with the acquisition of metallo-β-lactamases (MBLs) or extended-spectrum β-lactamases (ESBLs) in the blaGES, blaVIM, and blaNDM families, and mutations in the porin gene oprD. These resistance determinants were found in globally distributed lineages, including ST235 and ST664, as well as multiple novel STs which have been described in a separate investigation. Analysis of AST results revealed that acquisition of MBLs/ESBLs on top of porin mutations had an additive effect on imipenem resistance, suggesting that there is a selective benefit for clinical isolates to encode multiple resistance determinants to the same drugs. The strong association of these resistance determinants with phylogenetic background displays the utility of WGS for monitoring carbapenem resistance in P. aeruginosa, while the presence of these determinants throughout the phylogenetic tree shows that knowledge of the local epidemiology is crucial for guiding potential treatment of multidrug-resistant P. aeruginosa infections. IMPORTANCE Pseudomonas aeruginosa is associated with serious infections, and treatment can be challenging. Because of this, carbapenems and β-lactam/β-lactamase inhibitor combinations have become critical tools in treating multidrug-resistant (MDR) P. aeruginosa infections, but increasing resistance threatens their efficacy. Here, we used WGS to study the genotypic and phylogenomic patterns of 142 P. aeruginosa isolates from the Potohar region of Pakistan. We sequenced both MDR and antimicrobial susceptible isolates and found that while genotypic and phenotypic patterns of antibiotic resistance correlated with phylogenomic background, populations of MDR P. aeruginosa were found in all major phylogroups. We also found that isolates possessing multiple resistance mechanisms had significantly higher levels of imipenem resistance compared to the isolates with a single resistance mechanism. This study demonstrates the utility of WGS for monitoring patterns of antibiotic resistance in P. aeruginosa and potentially guiding treatment choices based on the local spread of β-lactamase genes.
Collapse
Affiliation(s)
- Luke Diorio-Toth
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sidra Irum
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Robert F. Potter
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meghan A. Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Muhammad Arslan
- Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Tehmina Munir
- Department of Microbiology, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Saadia Andleeb
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Carey-Ann D. Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
318
|
Radkov A, Sapiro AL, Flores S, Henderson C, Saunders H, Kim R, Massa S, Thompson S, Mateusiak C, Biboy J, Zhao Z, Starita LM, Hatleberg WL, Vollmer W, Russell AB, Simorre JP, Anthony-Cahill S, Brzovic P, Hayes B, Chou S. Antibacterial potency of Type VI amidase effector toxins is dependent on substrate topology and cellular context. eLife 2022; 11:79796. [PMID: 35762582 PMCID: PMC9270033 DOI: 10.7554/elife.79796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
Members of the bacterial T6SS amidase effector (Tae) superfamily of toxins are delivered between competing bacteria to degrade cell wall peptidoglycan. Although Taes share a common substrate, they exhibit distinct antimicrobial potency across different competitor species. To investigate the molecular basis governing these differences, we quantitatively defined the functional determinants of Tae1 from Pseudomonas aeruginosa PAO1 using a combination of nuclear magnetic resonance and a high-throughput in vivo genetic approach called deep mutational scanning (DMS). As expected, combined analyses confirmed the role of critical residues near the Tae1 catalytic center. Unexpectedly, DMS revealed substantial contributions to enzymatic activity from a much larger, ring-like functional hot spot extending around the entire circumference of the enzyme. Comparative DMS across distinct growth conditions highlighted how functional contribution of different surfaces is highly context-dependent, varying alongside composition of targeted cell walls. These observations suggest that Tae1 engages with the intact cell wall network through a more distributed three-dimensional interaction interface than previously appreciated, providing an explanation for observed differences in antimicrobial potency across divergent Gram-negative competitors. Further binding studies of several Tae1 variants with their cognate immunity protein demonstrate that requirements to maintain protection from Tae activity may be a significant constraint on the mutational landscape of tae1 toxicity in the wild. In total, our work reveals that Tae diversification has likely been shaped by multiple independent pressures to maintain interactions with binding partners that vary across bacterial species and conditions.
Collapse
Affiliation(s)
- Atanas Radkov
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Anne L Sapiro
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | | | | | - Hayden Saunders
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Rachel Kim
- Pacific Northwest University of Health Sciences, Yakima, United States
| | - Steven Massa
- Department of Biology, Stanford University, Stanford, United States
| | - Samuel Thompson
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Chase Mateusiak
- Computer Science Department, Washington University in St. Louis, St. Louis, United States
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ziyi Zhao
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Lea M Starita
- Department of Genome Sciences, University of Washington, Seattle, United States
| | | | - Waldemar Vollmer
- Center for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alistair B Russell
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Jean-Pierre Simorre
- Institut de Biologie Structurale, Université Grenoble Alpes, Grenoble, France
| | | | - Peter Brzovic
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Beth Hayes
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Seemay Chou
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
319
|
Sacco MD, Defrees K, Zhang X, Lawless W, Nwanochie E, Balsizer A, Darch SE, Renslo AR, Chen Y. Structure-Based Ligand Design Targeting Pseudomonas aeruginosa LpxA in Lipid A Biosynthesis. ACS Infect Dis 2022; 8:1231-1240. [PMID: 35653508 DOI: 10.1021/acsinfecdis.1c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzymes involved in lipid A biosynthesis are promising antibacterial drug targets in Gram-negative bacteria. In this study, we use a structure-based design approach to develop a series of novel tetrazole ligands with low μM affinity for LpxA, the first enzyme in the lipid A pathway. Aided by previous structural data, X-ray crystallography, and surface plasmon resonance bioanalysis, we identify 17 hit compounds. Two of these hits were subsequently modified to optimize interactions with three regions of the LpxA active site. This strategy ultimately led to the discovery of ligand L13, which had a KD of 3.0 μM. The results reveal new chemical scaffolds as potential LpxA inhibitors, important binding features for ligand optimization, and protein conformational changes in response to ligand binding. Specifically, they show that a tetrazole ring is well-accommodated in a small cleft formed between Met169, the "hydrophobic-ruler" and His156, both of which demonstrate significant conformational flexibility. Furthermore, we find that the acyl-chain binding pocket is the most tractable region of the active site for realizing affinity gains and, along with a neighboring patch of hydrophobic residues, preferentially binds aliphatic and aromatic groups. The results presented herein provide valuable chemical and structural information for future inhibitor discovery against this important antibacterial drug target.
Collapse
Affiliation(s)
- Michael D. Sacco
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Kyle Defrees
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Xiujun Zhang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - William Lawless
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Emeka Nwanochie
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Amelia Balsizer
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Sophie E. Darch
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - Yu Chen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| |
Collapse
|
320
|
Ni M, Lin J, Gu J, Lin S, He M, Guo Y. Antitoxin CrlA of CrlTA Toxin-Antitoxin System in a Clinical Isolate Pseudomonas aeruginosa Inhibits Lytic Phage Infection. Front Microbiol 2022; 13:892021. [PMID: 35620101 PMCID: PMC9127804 DOI: 10.3389/fmicb.2022.892021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen in cystic fibrosis patients and immunocompromised individuals, and the toxin–antitoxin (TA) system is involved in bacterial virulence and phage resistance. However, the roles of TA systems in P. aeruginosa are relatively less studied and no phage Cro-like regulators were identified as TA components. Here, we identified and characterized a chromosome-encoded prophage Cro-like antitoxin (CrlA) in the clinical isolate P. aeruginosa WK172. CrlA neutralized the toxicity of the toxin CrlA (CrlT) which cleaves mRNA, and they formed a type II TA system. Specifically, crlA and crlT are co-transcribed and their protein products interact with each other directly. The autorepression of CrlA is abolished by CrlT through the formation of the CrlTA complex. Furthermore, crlTA is induced in the stationary phase, and crlA is expressed at higher levels than crlT. The excess CrlA inhibits the infection of lytic Pseudomonas phages. CrlA is widely distributed among Pseudomonas and in other bacterial strains and may provide antiphage activities.
Collapse
Affiliation(s)
- Muyang Ni
- Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, School of Resources and Environment, Yangtze University, Wuhan, China
| | - Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Gu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mei He
- Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, School of Resources and Environment, Yangtze University, Wuhan, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
321
|
Mishra D, Srinivasan R. Catching a Walker in the Act-DNA Partitioning by ParA Family of Proteins. Front Microbiol 2022; 13:856547. [PMID: 35694299 PMCID: PMC9178275 DOI: 10.3389/fmicb.2022.856547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Partitioning the replicated genetic material is a crucial process in the cell cycle program of any life form. In bacteria, many plasmids utilize cytoskeletal proteins that include ParM and TubZ, the ancestors of the eukaryotic actin and tubulin, respectively, to segregate the plasmids into the daughter cells. Another distinct class of cytoskeletal proteins, known as the Walker A type Cytoskeletal ATPases (WACA), is unique to Bacteria and Archaea. ParA, a WACA family protein, is involved in DNA partitioning and is more widespread. A centromere-like sequence parS, in the DNA is bound by ParB, an adaptor protein with CTPase activity to form the segregation complex. The ParA ATPase, interacts with the segregation complex and partitions the DNA into the daughter cells. Furthermore, the Walker A motif-containing ParA superfamily of proteins is associated with a diverse set of functions ranging from DNA segregation to cell division, cell polarity, chemotaxis cluster assembly, cellulose biosynthesis and carboxysome maintenance. Unifying principles underlying the varied range of cellular roles in which the ParA superfamily of proteins function are outlined. Here, we provide an overview of the recent findings on the structure and function of the ParB adaptor protein and review the current models and mechanisms by which the ParA family of proteins function in the partitioning of the replicated DNA into the newly born daughter cells.
Collapse
Affiliation(s)
- Dipika Mishra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| |
Collapse
|
322
|
Nitrate respiration occurs throughout the depth of mucoid and non-mucoid Pseudomonas aeruginosa submerged agar colony biofilms including the oxic zone. Sci Rep 2022; 12:8557. [PMID: 35595796 PMCID: PMC9123002 DOI: 10.1038/s41598-022-11957-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and well characterized biofilm former. P. aeruginosa forms strong oxygen gradients inside biofilms due to rapid oxygen respiration in the top layers and the poor solubility of oxygen coupled with diffusion limited transport. Transcriptomic evidence from in vitro and ex vivo sampling suggests that denitrification is occurring in biofilms in ostensibly oxic environments. It is hypothesized that in the presence of nitrate there is stratification with aerobic respiration occurring in the outer oxic layer and denitrification in the lower anoxic zone. We used submerged agar colony biofilms grown from mucoid (FRD1) and non-mucoid (PAO1) strains to simultaneously measure depth microprofiles of oxygen and nitrous oxide in the same colony with microelectrodes. Oxygen respiration occurred at the top of the colony as expected but denitrification occurred throughout the entire depth, even in the oxic region. Local denitrification rates were highly variable suggesting heterogenous metabolic activity within the colony. We also assessed the short-term influence of tobramycin on aerobic respiration within a PAO1 colony. Although there was an immediate reduction in respiration it was never completely arrested over a 2 h period. On tobramycin removal the oxygen gradient steadily reestablished, demonstrating immediate recovery of metabolic activity.
Collapse
|
323
|
Abdelraheem WM, Refaie MMM, Yousef RKM, Abd El Fatah AS, Mousa YM, Rashwan R. Assessment of Antibacterial and Anti-biofilm Effects of Vitamin C Against Pseudomonas aeruginosa Clinical Isolates. Front Microbiol 2022; 13:847449. [PMID: 35668756 PMCID: PMC9163820 DOI: 10.3389/fmicb.2022.847449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
There is a persistent need to look for alternative therapeutic modalities to help control the pandemic of antimicrobial resistance. Assessment of antibacterial and anti-biofilm effects of vitamin C (ascorbic acid) was the aim of the current study. The micro-dilution method determined the minimal inhibitory concentration (MIC) of ascorbic acid or antibiotics alone and in combinations against Pseudomonas aeruginosa (P. aeruginosa) clinical isolates. The micro-titer plate method monitored the effect of ascorbic acid on the biofilm-producing isolates of P. aeruginosa. The effect of ascorbic acid on the differential expression of different antibiotic-resistant genes and biofilm encoding genes of P. aeruginosa isolates were also tested using real-time polymerase chain reaction (PCR). For in vivo assessment of the antibacterial effects of ascorbic acid alone or combined with an antibiotic, rats were infected with P. aeruginosa clinical isolate followed by different treatment regimens. MICs of ascorbic acid among P. aeruginosa isolates were in the range of 156.2–1,250 μg/ml, while MIC50 and MIC90 were 312.5 and 625 μg/ml, respectively. At sub-inhibitory concentrations (19.5–312.5 μg/ml), ascorbic acid had 100% biofilm inhibitory effect. Furthermore, ascorbic acid-treated bacteria showed downregulation of genes underpinning biofilm formation and antibiotic resistance. In vivo assessment of vitamin C and ceftazidime in rats showed that administration of both at a lower dose for treatment of pseudomonas infection in rats had a synergistic and more powerful effect. Vitamin C shows excellent in vitro results as an antibacterial and anti-biofilm agent. Vitamin C should be routinely prescribed with antibiotics to treat bacterial infections in the clinical setting.
Collapse
Affiliation(s)
- Wedad M. Abdelraheem
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Minia University, Minya, Egypt
- *Correspondence: Wedad M. Abdelraheem, ,
| | - Marwa M. M. Refaie
- Department of Pharmacology, Faculty of Medicine, Minia University, Minya, Egypt
| | | | | | - Yosra M. Mousa
- Chest Department, Faculty of Medicine, Minia University, Minya, Egypt
| | - Rabab Rashwan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Minia University, Minya, Egypt
| |
Collapse
|
324
|
Abstract
A novel Gram-stain-negative, rod-shaped, aerobic and motile bacterium designated strain UL073T was isolated from a forest soil of an island, and subjected to taxonomic characterization. Strain UL073T grew at 10–37 °C (optimum, 30 °C), at pH 5.0–10.0 (optimum, pH 7.0) and in the presence of 0–3 % NaCl (optimum, 0 %), respectively. Strain UL073T showed the highest sequence similarity to
Pseudomonas lalkuanensis
PE08T based on 16S rRNA gene analysis with a sequence similarity of 98.08 %, which was well below the suggested cutoff for species distinction. The 16S rRNA gene tree as well as the multilocus sequence analysis and genome-based trees indicated the independent taxonomic position of strain UL073T, and the orthologous average nucleotide identity and in silico DNA–DNA hybridization values between strain UL073T and related species were no higher than 84.7 and 28.3% respectively, thus confirming the distinctive taxonomic position of the strain. The chemotaxonomic properties were consistent with those of the genus, as the major fatty acids of the strain were a summed feature consisting of C18 : 1 ω7c/C18 : 1 ω6c (31.4 %), another summed feature consisting of C16 : 1 ω7c/C16 : 1 ω6c (23.1 %), and C16 : 0 (22.0 %), the major respiratory quinone was ubiquinone 9, and the major polar lipids were phosphatidylethanolamine and diphosphatidylglycerol. The genome size and DNA G+C content of strain UL073T were 4.87 Mbp and 65.9 mol%. On the basis of phenotypic and phylogenetic evidence, strain UL073T should be classified as representing a novel species of
Pseudomonas
, for which the name Pseudomonas insulae sp. nov. (type strain=UL073T=KCTC 82407T=JCM 34511T) is proposed.
Collapse
|
325
|
Liu Y, Ahator SD, Wang H, Feng Q, Xu Y, Li C, Zhou X, Zhang LH. Microevolution of the mexT and lasR Reinforces the Bias of Quorum Sensing System in Laboratory Strains of Pseudomonas aeruginosa PAO1. Front Microbiol 2022; 13:821895. [PMID: 35495693 PMCID: PMC9041413 DOI: 10.3389/fmicb.2022.821895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/16/2022] [Indexed: 12/30/2022] Open
Abstract
The Pseudomonas aeruginosa strain PAO1 has routinely been used as a laboratory model for quorum sensing (QS). However, the microevolution of P. aeruginosa laboratory strains resulting in genetic and phenotypic variations have caused inconsistencies in QS research. To investigate the underlying causes of these variations, we analyzed 5 Pseudomonas aeruginosa PAO1 sublines from our laboratory using a combination of phenotypic characterization, high throughput genome sequencing, and bioinformatic analysis. The major phenotypic variations among the sublines spanned across the levels of QS signals and virulence factors such as pyocyanin and elastase. Furthermore, the sublines exhibited distinct variations in motility and biofilm formation. Most of the phenotypic variations were mapped to mutations in the lasR and mexT, which are key components of the QS circuit. By introducing these mutations in the subline PAO1-E, which is devoid of such mutations, we confirmed their influence on QS, virulence, motility, and biofilm formation. The findings further highlight a possible divergent regulatory mechanism between the LasR and MexT in the P. aeruginosa. The results of our study reveal the effects of microevolution on the reproducibility of most research data from QS studies and further highlight mexT as a key component of the QS circuit of P. aeruginosa.
Collapse
Affiliation(s)
- Yang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Stephen Dela Ahator
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Research group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Huishan Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Qishun Feng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yinuo Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chuhao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
326
|
Xu J, Arakaki R, Tachibana S, Yamashiro T. Fermentation products of the fungus Monascus spp. impairs the physiological activities of toxin-producing Vibrio cholerae. Microbiol Res 2022; 258:126995. [DOI: 10.1016/j.micres.2022.126995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 11/26/2022]
|
327
|
Genome-Wide Identification of Pseudomonas aeruginosa Genes Important for Desiccation Tolerance on Inanimate Surfaces. mSystems 2022; 7:e0011422. [PMID: 35469420 PMCID: PMC9239045 DOI: 10.1128/msystems.00114-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen prevalent in the environment and in health care settings. Transmission in the health care setting occurs through human-human interactions and/or contact with contaminated surfaces. Moist surfaces such as respirators, sink and tub drains, and even disinfectants can serve as reservoirs. Dry surfaces such as plastic and stainless steel could also serve as a reservoir but would necessitate some degree of tolerance to desiccation. Using an assay to measure P. aeruginosa tolerance to desiccation on plastic and stainless-steel surfaces, we found that only 0.05 to 0.1% of the desiccated cells could be recovered 24 h postdesiccation. We took advantage of the strong selection imposed by desiccation to identify genes important for tolerance using Tn-seq. A highly saturated Tn-seq library was desiccated on plastic and stainless-steel surfaces. NexGen sequencing of the recovered cells identified 97 genes important for survival. Comparing cells desiccated under low- and high-nutrient conditions allowed for differentiation of genes important for desiccation tolerance. The 53 genes identified in the latter analysis are involved in maintenance of cell envelope integrity, purine and pyrimidine biosynthesis, tricarboxylic acid (TCA) cycle, and the hydrolysis of misfolded proteins. The Tn-seq findings were validated by competition experiments with wild-type (WT) cells and select Tn insertion mutants. Mutants lacking carB and surA demonstrated the largest fitness defects, indicating that pyrimidine biosynthesis and outer membrane integrity are essential for desiccation tolerance. Increased understanding of desiccation tolerance could provide insight into approaches to control environmental reservoirs of P. aeruginosa. IMPORTANCE Health care-associated infections (HAIs) caused by Pseudomonas aeruginosa result in significant morbidity and mortality and are a significant economic burden. Moist environments that promote biofilm formation are an important reservoir for P. aeruginosa. Dry environments may also serve as a reservoir but would require some degree of desiccation tolerance. Here, we took a genome-wide approach to identify genes important for desiccation tolerance on plastic and stainless-steel surfaces. Genes involved in assembly of outer membrane proteins and pyrimidine biosynthesis were particularly important. Strains lacking these functions were unable to tolerate surface desiccation. These findings suggest that inhibitors of these pathways could be used to prevent P. aeruginosa survival on dry surfaces.
Collapse
|
328
|
Rikame T, Borde M. Whole Genome, Functional Annotation and Comparative Genomics of Plant Growth-Promoting Bacteria Pseudomonas aeruginosa (NG61) with Potential Application in Agro-Industry. Curr Microbiol 2022; 79:169. [PMID: 35460384 DOI: 10.1007/s00284-022-02845-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/16/2022] [Indexed: 11/28/2022]
Abstract
A plant growth-promoting Rhizobacteria (PGPR) Pseudomonas aeruginosa (NG61) isolated from rhizosphere of Sunflower plant. The isolate was identified by 16S rRNA gene sequencing (Accession no. MK455763). NG61 showed various plant growth promotion and biocontrol activities like, Phosphate solubilisation, Nitrogen fixation, Ammonia production, IAA production, siderophore production, HCN production. The whole genome sequence of Pseudomonas aeruginosa (NG61) was reported and analysed. The estimated genome size was 6537180 bp with 66.18% of G+C content. The genome encoded 6186 protein-coding genes, 6252 genes were predicted, 66RNA genes. Phylogenetic tree showed that the P. aeruginosa( NG61) was closely related to P.aeruginosa strain DSM 50071. The annotated draft genome has been deposited at the NCBI database under the accession number PRJNA707114 BioProject and BioSample: SAMN18174979. The analysis of genome sequence of P. aeruginosa (NG61) showed various genes encoding plant growth promotion and biocontrol activities.
Collapse
Affiliation(s)
- Tejal Rikame
- Department of Botany, Savitribai Phule Pune University, Pune, MH, 411007, India
| | - Mahesh Borde
- Department of Botany, Savitribai Phule Pune University, Pune, MH, 411007, India.
| |
Collapse
|
329
|
Stewart PS, Williamson KS, Boegli L, Hamerly T, White B, Scott L, Hu X, Mumey BM, Franklin MJ, Bothner B, Vital-Lopez FG, Wallqvist A, James GA. Search for a Shared Genetic or Biochemical Basis for Biofilm Tolerance to Antibiotics across Bacterial Species. Antimicrob Agents Chemother 2022; 66:e0002122. [PMID: 35266829 PMCID: PMC9017379 DOI: 10.1128/aac.00021-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/29/2022] [Indexed: 12/19/2022] Open
Abstract
Is there a universal genetically programmed defense providing tolerance to antibiotics when bacteria grow as biofilms? A comparison between biofilms of three different bacterial species by transcriptomic and metabolomic approaches uncovered no evidence of one. Single-species biofilms of three bacterial species (Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii) were grown in vitro for 3 days and then challenged with respective antibiotics (ciprofloxacin, daptomycin, and tigecycline) for an additional 24 h. All three microorganisms displayed reduced susceptibility in biofilms compared to planktonic cultures. Global transcriptomic profiling of gene expression comparing biofilm to planktonic and antibiotic-treated biofilm to untreated biofilm was performed. Extracellular metabolites were measured to characterize the utilization of carbon sources between biofilms, treated biofilms, and planktonic cells. While all three bacteria exhibited a species-specific signature of stationary phase, no conserved gene, gene set, or common functional pathway could be identified that changed consistently across the three microorganisms. Across the three species, glucose consumption was increased in biofilms compared to planktonic cells, and alanine and aspartic acid utilization were decreased in biofilms compared to planktonic cells. The reasons for these changes were not readily apparent in the transcriptomes. No common shift in the utilization pattern of carbon sources was discerned when comparing untreated to antibiotic-exposed biofilms. Overall, our measurements do not support the existence of a common genetic or biochemical basis for biofilm tolerance against antibiotics. Rather, there are likely myriad genes, proteins, and metabolic pathways that influence the physiological state of individual microorganisms in biofilms and contribute to antibiotic tolerance.
Collapse
Affiliation(s)
- Philip S. Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | - Kerry S. Williamson
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Laura Boegli
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
| | - Timothy Hamerly
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Ben White
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Liam Scott
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Xiao Hu
- Gianforte School of Computing, Montana State University, Bozeman, Montana, USA
| | - Brendan M. Mumey
- Gianforte School of Computing, Montana State University, Bozeman, Montana, USA
| | - Michael J. Franklin
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Brian Bothner
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Francisco G. Vital-Lopez
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland, USA
| | - Garth A. James
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
330
|
Abstract
Class C β-lactamases or cephalosporinases can be classified into two functional groups (1, 1e) with considerable molecular variability (≤20% sequence identity). These enzymes are mostly encoded by chromosomal and inducible genes and are widespread among bacteria, including Proteobacteria in particular. Molecular identification is based principally on three catalytic motifs (64SXSK, 150YXN, 315KTG), but more than 70 conserved amino-acid residues (≥90%) have been identified, many close to these catalytic motifs. Nevertheless, the identification of a tiny, phylogenetically distant cluster (including enzymes from the genera Legionella, Bradyrhizobium, and Parachlamydia) has raised questions about the possible existence of a C2 subclass of β-lactamases, previously identified as serine hydrolases. In a context of the clinical emergence of extended-spectrum AmpC β-lactamases (ESACs), the genetic modifications observed in vivo and in vitro (point mutations, insertions, or deletions) during the evolution of these enzymes have mostly involved the Ω- and H-10/R2-loops, which vary considerably between genera, and, in some cases, the conserved triplet 150YXN. Furthermore, the conserved deletion of several amino-acid residues in opportunistic pathogenic species of Acinetobacter, such as A. baumannii, A. calcoaceticus, A. pittii and A. nosocomialis (deletion of residues 304-306), and in Hafnia alvei and H. paralvei (deletion of residues 289-290), provides support for the notion of natural ESACs. The emergence of higher levels of resistance to β-lactams, including carbapenems, and to inhibitors such as avibactam is a reality, as the enzymes responsible are subject to complex regulation encompassing several other genes (ampR, ampD, ampG, etc.). Combinations of resistance mechanisms may therefore be at work, including overproduction or change in permeability, with the loss of porins and/or activation of efflux systems.
Collapse
|
331
|
Abstract
Pseudomonas aeruginosa is a vital opportunistic human bacterial pathogen that causes acute and chronic infections. In this study, we set to determine whether the endogenous spermidine biosynthesis plays a role in regulation of type III secretion system (T3SS). The results showed that deletion of speA and speC, which encode putrescine biosynthesis, did not seem to affect cellular spermidine level and the T3SS gene expression. In contrast, mutation of speD and speE encoding spermidine biosynthesis led to significantly decreased spermidine production and expression of T3SS genes. We also showed that endogenous spermidine could auto-induce the transcriptional expression of speE and its full functionality required the transporter SpuDEFGH. Cytotoxicity analysis showed that mutants ΔspeE and ΔspuE were substantially attenuated in virulence compared with their wild-type strain PAO1. Our data imply a possibility that spermidine biosynthesis in P. aeruginosa may not use putrescine as a substrate, and that spermidine signaling pathway may interact with other two T3SS regulatory mechanisms in certain degree, i.e., cAMP-Vfr and GacS/GacA signaling systems. Taken together, these results specify the role of endogenous spermidine in regulation of T3SS in P. aeruginosa and provide useful clues for design and development antimicrobial therapies. IMPORTANCE Type III secretion system (T3SS) is one of the pivotal virulence factors of Pseudomonas aeruginosa responsible for evading phagocytosis, and secreting and translocating effectors into host cells. Previous studies underline the complicated and elaborate regulatory mechanisms of T3SS for the accurate, fast, and malicious pathogenicity of P. aeruginosa. Among these regulatory mechanisms, our previous study indicated that the spermidine from the host was vital to the host-pathogen interaction. However, the role of endogenous spermidine synthesized by P. aeruginosa on the regulation of T3SS expression is largely unknown. Here we reveal the role and regulatory network of endogenous spermidine synthesis in regulation of T3SS and bacterial virulence, showing that the spermidine is an important interspecies signal for modulating the virulence of P. aeruginosa through regulating T3SS expression.
Collapse
|
332
|
Lin ES, Huang YH, Luo RH, Basharat Z, Huang CY. Crystal Structure of an SSB Protein from Salmonella enterica and Its Inhibition by Flavanonol Taxifolin. Int J Mol Sci 2022; 23:ijms23084399. [PMID: 35457218 PMCID: PMC9029707 DOI: 10.3390/ijms23084399] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
Single-stranded DNA (ssDNA)-binding proteins (SSBs) play a central role in cells by participating in DNA metabolism, including replication, repair, recombination, and replication fork restart. SSBs are essential for cell survival and thus an attractive target for potential anti-pathogen chemotherapy. In this study, we determined the crystal structure and examined the size of the ssDNA-binding site of an SSB from Salmonella enterica serovar Typhimurium LT2 (SeSSB), a ubiquitous opportunistic pathogen which is highly resistant to antibiotics. The crystal structure was solved at a resolution of 2.8 Å (PDB ID 7F25), indicating that the SeSSB monomer possesses an oligonucleotide/oligosaccharide-binding (OB) fold domain at its N-terminus and a flexible tail at its C-terminus. The core of the OB-fold in the SeSSB is made of a six-stranded β-barrel capped by an α-helix. The crystal structure of the SeSSB contained two monomers per asymmetric unit, which may indicate the formation of a dimer. However, the gel-filtration chromatography analysis showed that the SeSSB forms a tetramer in solution. Through an electrophoretic mobility shift analysis, we characterized the stoichiometry of the SeSSB complexed with a series of ssDNA dA homopolymers, and the size of the ssDNA-binding site was determined to be around 22 nt. We also found the flavanonol taxifolin, also known as dihydroquercetin, capable of inhibiting the ssDNA-binding activity of the SeSSB. Thus, this result extended the SSB interactome to include taxifolin, a natural product with a wide range of promising pharmacological activities.
Collapse
Affiliation(s)
- En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, No. 193, Sec.1, San min Rd., Taichung City 403, Taiwan;
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan; (Y.-H.H.); (R.-H.L.)
| | - Ren-Hong Luo
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan; (Y.-H.H.); (R.-H.L.)
| | - Zarrin Basharat
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan; (Y.-H.H.); (R.-H.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, No. 110, Sec.1, Chien-Kuo N. Rd., Taichung City 402, Taiwan
- Correspondence:
| |
Collapse
|
333
|
Sass G, Marsh JJ, Shrestha P, Sabino R, Stevens DA. Synergy Between Pseudomonas aeruginosa Filtrates And Voriconazole Against Aspergillus fumigatus Biofilm Is Less for Mucoid Isolates From Persons With Cystic Fibrosis. Front Cell Infect Microbiol 2022; 12:817315. [PMID: 35493738 PMCID: PMC9047052 DOI: 10.3389/fcimb.2022.817315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Persons with cystic fibrosis (CF) frequently suffer from Pseudomonas aeruginosa and Aspergillus fumigatus co-infections. There is evidence that co-infections with these interacting pathogens cause airway inflammation and aggravate deterioration of lung function. We recently showed that P. aeruginosa laboratory isolates synergistically interact with the anti-fungal azole voriconazole (VCZ), inhibiting biofilm metabolism of several A. fumigatus laboratory strains. Interaction was usually mediated via pyoverdine, but also via pyocyanin or pyochelin. Here we used planktonic filtrates of 7 mucoid and 9 non-mucoid P. aeruginosa isolates from CF patients, as well as 8 isolates without CF origin, and found that all of these isolates interacted with VCZ synergistically at their IC50 as well as higher dilutions. CF mucoid isolates showed the weakest interactive effects. Four non-mucoid P. aeruginosa CF isolates produced no or very low levels of pyoverdine and did not reach an IC50 against forming A. fumigatus biofilm; interaction with VCZ still was synergistic. A VCZ-resistant A. fumigatus strain showed the same level of susceptibility for P. aeruginosa anti-fungal activity as a VCZ-susceptible reference strain. Filtrates of most Pseudomonas isolates were able to increase anti-fungal activity of VCZ on a susceptible A. fumigatus strain. This was also possible for the VCZ-resistant strain. In summary these data show that clinical P. aeruginosa isolates, at varying degrees, synergistically interact with VCZ, and that pyoverdine is not the only molecule responsible. These data also strengthen the idea that during co-infections of A. fumigatus and P. aeruginosa lower concentrations of VCZ might be sufficient to control fungal growth.
Collapse
Affiliation(s)
- Gabriele Sass
- Infectious Disease Research Laboratory, California Institute for Medical Research, San Jose, CA, United States
- *Correspondence: Gabriele Sass,
| | - Julianne J. Marsh
- Infectious Disease Research Laboratory, California Institute for Medical Research, San Jose, CA, United States
| | - Pallabi Shrestha
- Infectious Disease Research Laboratory, California Institute for Medical Research, San Jose, CA, United States
| | - Raquel Sabino
- Department of Infectious Diseases, National Institute of Health, ‘Dr. Ricardo Jorge’, Lisbon, Portugal
- Institute of Environmental Health, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - David A. Stevens
- Infectious Disease Research Laboratory, California Institute for Medical Research, San Jose, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
334
|
Wang B, Zhou C, Wu Q, Lin P, Pu Q, Qin S, Gao P, Wang Z, Liu Y, Arel J, Chen Y, Chen T, Wu M. cGAS modulates cytokine secretion and bacterial burdens by altering the release of mitochondrial DNA in Pseudomonas pulmonary infection. Immunology 2022; 166:408-423. [PMID: 35420160 DOI: 10.1111/imm.13482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is essential for fighting against viruses and bacteria, but how cGAS is involved in host immune response remains largely elusive. Here, we uncover the crucial role of cGAS in host immunity based on a Pseudomonas aeruginosa pulmonary infection model. cGAS-/- mice showed more heavy bacterial burdens and serious lung injury accompanied with exorbitant proinflammatory cytokines than wild-type mice. cGAS deficiency caused an accumulation of mitochondrial DNA in cytoplasm, which in turn induced excessive secretion of proinflammatory factors by activating inflammasome and TLR9 signaling. Mechanistically, cGAS deficiency inhibited the recruitment of LC3 by reducing the binding capacity of TBK-1 to p62, leading to impaired mitophagy and augmented release of mitochondrial DNA. Importantly, cytoplasmic mitochondrial DNA also acted as a feedback signal that induced the activation of cGAS. Altogether, these findings identify protective and homeostasis functions of cGAS against Pseudomonas aeruginosa infection, adding significant insight into the pathogenesis of bacterial infectious diseases.
Collapse
Affiliation(s)
- Biao Wang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China.,Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Chuanmin Zhou
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Wuhan University School of Health Sciences, Wuhan, Hubei Province, P. R. China
| | - Qun Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Ping Lin
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Shugang Qin
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Pan Gao
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Zhihan Wang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Yingying Liu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Jacob Arel
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China
| | - Teng Chen
- Forensic Medicine College of Xi'an Jiaotong University, Key Laboratory of the Health Ministry for Forensic Medicine, Xi'an, P. R. China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
335
|
Orlandi VT, Martegani E, Bolognese F, Caruso E. Searching for antimicrobial photosensitizers among a panel of BODIPYs. Photochem Photobiol Sci 2022; 21:1233-1248. [PMID: 35377108 DOI: 10.1007/s43630-022-00212-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/14/2022] [Indexed: 11/26/2022]
Abstract
In recent years, antimicrobial Photodynamic Therapy (aPDT) gained increasing attention for its potential to inhibit the growth and spread of microorganisms, both as free-living cells and/or embedded in biofilm communities. In this scenario, compounds belonging to the family of boron-dipyrromethenes (BODIPYs) represent a very promising class of photosensitizers for applications in antimicrobial field. In this study, twelve non-ionic and three cationic BODIPYs were assayed for the inactivation of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. As expected, S. aureus showed to be very sensitive to BODIPYs and mild conditions were sufficient to reach good rates of photoinactivation with both neutral and monocationic ones. Surprisingly, one neutral compound (named B9 in this study) resulted the best BODIPY to photoinactivate P. aeruginosa PAO1. The photoinactivation of C. albicans was reached with both neutral and mono-cationic BODIPYs. Furthermore, biofilms of the three model microorganisms were challenged with BODIPYs in light-based antimicrobial technique. S. aureus biofilms were successfully inhibited with milder conditions than those applied to P. aeruginosa and C. albicans. Notably, it was possible to eradicate 24-h-old biofilms of both S. aureus and P. aeruginosa. In conclusion, this study supports the potential of neutral BODIPYs as pan-antimicrobial PSs.
Collapse
Affiliation(s)
- Viviana Teresa Orlandi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, 3, 21100, Varese, Italy.
| | - Eleonora Martegani
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, 3, 21100, Varese, Italy
| | - Fabrizio Bolognese
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, 3, 21100, Varese, Italy
| | - Enrico Caruso
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, 3, 21100, Varese, Italy
| |
Collapse
|
336
|
Dong J, He B, Wang R, Zuo X, Zhan R, Hu L, Li Y, He J. Characterization of the diastaphenazine/izumiphenazine C biosynthetic gene cluster from plant endophyte Streptomyces diastaticus W2. Microb Biotechnol 2022; 15:1168-1177. [PMID: 34487423 PMCID: PMC8966011 DOI: 10.1111/1751-7915.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022] Open
Abstract
Two phenazine compounds, diastaphenazine and izumiphenazine C, with complex structures and promising antitumour activity have been isolated from the plant endophytic actinomycete Streptomyces diastaticus W2. Their putative biosynthetic gene cluster (dap) was identified by heterologous expression and gene knockout. There are twenty genes in the dap cluster. dap14-19 related to shikimic pathway were potentially involved in the precursor chorismic acid biosynthesis, and dapBCDEFG were confirmed to be responsible for the biosynthesis of the dibenzopyrazine ring, the nuclear structure of phenazines. Two transcriptional regulatory genes dapR and dap4 played the positive regulatory roles on the phenazine biosynthetic pathway. Most notably, the dimerization of the dibenzopyrazine ring in diastaphenazine and the loading of the complex side chain in izumiphenazine C could be catalysed by the cyclase homologous gene dap5, suggesting an unusual modification strategy tailoring complex phenazine biosynthesis. Moreover, metabolite analysis of the gene deletion mutant strain S. albus::23C5Δdap2 and substrate assay of the methyltransferase Dap2 clearly revealed the biosynthetic route of the complex side chain in izumiphenazine C.
Collapse
Affiliation(s)
- Junli Dong
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Beibei He
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Ruinan Wang
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Xiuli Zuo
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Rui Zhan
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Linfang Hu
- Key Laboratory of Microbial Diversity in Southwest ChinaMinistry of EducationCollege of Life ScienceYunnan UniversityKunming650091China
| | - Yiqing Li
- Key Laboratory of Microbial Diversity in Southwest ChinaMinistry of EducationCollege of Life ScienceYunnan UniversityKunming650091China
| | - Jing He
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
337
|
Che S, Liang Y, Chen Y, Wu W, Liu R, Zhang Q, Bartlam M. Structure of Pseudomonas aeruginosa spermidine dehydrogenase: a polyamine oxidase with a novel heme-binding fold. FEBS J 2022; 289:1911-1928. [PMID: 34741591 DOI: 10.1111/febs.16264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa can utilize polyamines (including putrescine, cadaverine, 4-aminobutyrate, spermidine, and spermine) as its sole source of carbon and nitrogen. Spermidine dehydrogenase (SpdH) is a component of one of the two polyamine utilization pathways identified in P. aeruginosa, but little is known about its structure and function. Here, we report the first crystal structure of SpdH from P. aeruginosa to 1.85 Å resolution. The resulting core structure confirms that SpdH belongs to the polyamine oxidase (PAO) family with flavin-binding and substrate-binding domains. A unique N-terminal extension wraps around the flavin-binding domain of SpdH and is required for heme binding, placing a heme cofactor in close proximity to the FAD cofactor. Structural and mutational analysis reveals that residues in the putative active site at the re side of the FAD isoalloxazine ring form part of the catalytic machinery. PaSpdH features an unusual active site and lacks the conserved lysine that forms part of a lysine-water-flavin N5 atom interaction in other PAO enzymes characterized to date. Mutational analysis further confirms that heme is required for catalytic activity. This work provides an important starting point for understanding the role of SpdH, which occurs universally in P. aeruginosa strains, in polyamine metabolism.
Collapse
Affiliation(s)
- Shiyou Che
- State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, Nankai University, Tianjin, China
| | - Yakun Liang
- State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, Nankai University, Tianjin, China
| | - Yujing Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, Nankai University, Tianjin, China
| | - Wenyue Wu
- State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, Nankai University, Tianjin, China
| | - Ruihua Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, Nankai University, Tianjin, China
| | - Qionglin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, Nankai University, Tianjin, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
338
|
Rojas LJ, Yasmin M, Benjamino J, Marshall SM, DeRonde KJ, Krishnan NP, Perez F, Colin AA, Cardenas M, Martinez O, Pérez-Cardona A, Rhoads DD, Jacobs MR, LiPuma JJ, Konstan MW, Vila AJ, Smania A, Mack AR, Scott JG, Adams MD, Abbo LM, Bonomo RA. Genomic heterogeneity underlies multidrug resistance in Pseudomonas aeruginosa: A population-level analysis beyond susceptibility testing. PLoS One 2022; 17:e0265129. [PMID: 35358221 PMCID: PMC8970513 DOI: 10.1371/journal.pone.0265129] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a persistent and difficult-to-treat pathogen in many patients, especially those with Cystic Fibrosis (CF). Herein, we describe a longitudinal analysis of a series of multidrug resistant (MDR) P. aeruginosa isolates recovered in a 17-month period, from a young female CF patient who underwent double lung transplantation. Our goal was to understand the genetic basis of the observed resistance phenotypes, establish the genomic population diversity, and define the nature of sequence evolution over time. METHODS Twenty-two sequential P. aeruginosa isolates were obtained within a 17-month period, before and after a double-lung transplant. At the end of the study period, antimicrobial susceptibility testing, whole genome sequencing (WGS), phylogenetic analyses and RNAseq were performed in order to understand the genetic basis of the observed resistance phenotypes, establish the genomic population diversity, and define the nature of sequence changes over time. RESULTS The majority of isolates were resistant to almost all tested antibiotics. A phylogenetic reconstruction revealed 3 major clades representing a genotypically and phenotypically heterogeneous population. The pattern of mutation accumulation and variation of gene expression suggested that a group of closely related strains was present in the patient prior to transplantation and continued to change throughout the course of treatment. A trend toward accumulation of mutations over time was observed. Different mutations in the DNA mismatch repair gene mutL consistent with a hypermutator phenotype were observed in two clades. RNAseq performed on 12 representative isolates revealed substantial differences in the expression of genes associated with antibiotic resistance and virulence traits. CONCLUSIONS The overwhelming current practice in the clinical laboratories setting relies on obtaining a pure culture and reporting the antibiogram from a few isolated colonies to inform therapy decisions. Our analyses revealed significant underlying genomic heterogeneity and unpredictable evolutionary patterns that were independent of prior antibiotic treatment, highlighting the need for comprehensive sampling and population-level analysis when gathering microbiological data in the context of CF P. aeruginosa chronic infection. Our findings challenge the applicability of antimicrobial stewardship programs based on single-isolate resistance profiles for the selection of antibiotic regimens in chronic infections such as CF.
Collapse
Affiliation(s)
- Laura J. Rojas
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, United States of America
| | - Mohamad Yasmin
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Jacquelynn Benjamino
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, United States of America
| | - Steven M. Marshall
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Kailynn J. DeRonde
- Jackson Memorial Hospital, Jackson Health System, Miami, Florida, United States of America
| | - Nikhil P. Krishnan
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Departments of Translational Hematology and Oncology Research and Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Federico Perez
- Medical Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States of America
- CONICET, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- Division of Infectious Diseases and HIV Medicine, Cleveland, Ohio, United States of America
- GRECC Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Andrew A. Colin
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Monica Cardenas
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Octavio Martinez
- Jackson Memorial Hospital, Jackson Health System, Miami, Florida, United States of America
- Division of Pulmonology, Department of Pathology University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Armando Pérez-Cardona
- Jackson Memorial Hospital, Jackson Health System, Miami, Florida, United States of America
| | - Daniel D. Rhoads
- Department of Laboratory Medicine and Infection Biology Program, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Pathology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University Cleveland, Ohio, United States of America
| | - Michael R. Jacobs
- Department of Pathology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University Cleveland, Ohio, United States of America
| | - John J. LiPuma
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Michael W. Konstan
- Department of Pediatrics, Case Western Reserve University School of Medicine and Rainbow Babies and Children’s Hospital, Cleveland, Ohio, United States of America
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
| | - Andrea Smania
- CONICET, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica, Córdoba, Argentina
| | - Andrew R. Mack
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| | - Jacob G. Scott
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Departments of Translational Hematology and Oncology Research and Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Mark D. Adams
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, United States of America
| | - Lilian M. Abbo
- Jackson Memorial Hospital, Jackson Health System, Miami, Florida, United States of America
- Division of Infectious Diseases Department of Medicine University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, United States of America
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Medical Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States of America
- Division of Infectious Diseases and HIV Medicine, Cleveland, Ohio, United States of America
- GRECC Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- Department of Pharmacology, Cleveland, Ohio, United States of America
- Department of Biochemistry Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
339
|
Rajput A, Tsunemoto H, Sastry AV, Szubin R, Rychel K, Sugie J, Pogliano J, Palsson BO. Machine learning from Pseudomonas aeruginosa transcriptomes identifies independently modulated sets of genes associated with known transcriptional regulators. Nucleic Acids Res 2022; 50:3658-3672. [PMID: 35357493 PMCID: PMC9023270 DOI: 10.1093/nar/gkac187] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
The transcriptional regulatory network (TRN) of Pseudomonas aeruginosa coordinates cellular processes in response to stimuli. We used 364 transcriptomes (281 publicly available + 83 in-house generated) to reconstruct the TRN of P. aeruginosa using independent component analysis. We identified 104 independently modulated sets of genes (iModulons) among which 81 reflect the effects of known transcriptional regulators. We identified iModulons that (i) play an important role in defining the genomic boundaries of biosynthetic gene clusters (BGCs), (ii) show increased expression of the BGCs and associated secretion systems in nutrient conditions that are important in cystic fibrosis, (iii) show the presence of a novel ribosomally synthesized and post-translationally modified peptide (RiPP) BGC which might have a role in P. aeruginosa virulence, (iv) exhibit interplay of amino acid metabolism regulation and central metabolism across different carbon sources and (v) clustered according to their activity changes to define iron and sulfur stimulons. Finally, we compared the identified iModulons of P. aeruginosa with those previously described in Escherichia coli to observe conserved regulons across two Gram-negative species. This comprehensive TRN framework encompasses the majority of the transcriptional regulatory machinery in P. aeruginosa, and thus should prove foundational for future research into its physiological functions.
Collapse
Affiliation(s)
- Akanksha Rajput
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Hannah Tsunemoto
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Joseph Sugie
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, USA.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| |
Collapse
|
340
|
Hertel J, Fässler D, Heinken A, Weiß FU, Rühlemann M, Bang C, Franke A, Budde K, Henning AK, Petersmann A, Völker U, Völzke H, Thiele I, Grabe HJ, Lerch MM, Nauck M, Friedrich N, Frost F. NMR Metabolomics Reveal Urine Markers of Microbiome Diversity and Identify Benzoate Metabolism as a Mediator between High Microbial Alpha Diversity and Metabolic Health. Metabolites 2022; 12:metabo12040308. [PMID: 35448495 PMCID: PMC9025190 DOI: 10.3390/metabo12040308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Microbial metabolites measured using NMR may serve as markers for physiological or pathological host–microbe interactions and possibly mediate the beneficial effects of microbiome diversity. Yet, comprehensive analyses of gut microbiome data and the urine NMR metabolome from large general population cohorts are missing. Here, we report the associations between gut microbiota abundances or metrics of alpha diversity, quantified from stool samples using 16S rRNA gene sequencing, with targeted urine NMR metabolites measures from 951 participants of the Study of Health in Pomerania (SHIP). We detected significant genus–metabolite associations for hippurate, succinate, indoxyl sulfate, and formate. Moreover, while replicating the previously reported association between hippurate and measures of alpha diversity, we identified formate and 4-hydroxyphenylacetate as novel markers of gut microbiome alpha diversity. Next, we predicted the urinary concentrations of each metabolite using genus abundances via an elastic net regression methodology. We found profound associations of the microbiome-based hippurate prediction score with markers of liver injury, inflammation, and metabolic health. Moreover, the microbiome-based prediction score for hippurate completely mediated the clinical association pattern of microbial diversity, hinting at a role of benzoate metabolism underlying the positive associations between high alpha diversity and healthy states. In conclusion, large-scale NMR urine metabolomics delivered novel insights into metabolic host–microbiome interactions, identifying pathways of benzoate metabolism as relevant candidates mediating the beneficial health effects of high microbial alpha diversity.
Collapse
Affiliation(s)
- Johannes Hertel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, D-17475 Greifswald, Germany; (D.F.); (H.-J.G.)
- Correspondence:
| | - Daniel Fässler
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, D-17475 Greifswald, Germany; (D.F.); (H.-J.G.)
| | - Almut Heinken
- School of Medicine, National University of Ireland, H91 CF50 Galway, Ireland; (A.H.); (I.T.)
| | - Frank U. Weiß
- Department of Internal Medicine A, University Medicine Greifswald, D-17475 Greifswald, Germany; (F.U.W.); (M.M.L.); (F.F.)
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, D-24105 Kiel, Germany; (M.R.); (C.B.); (A.F.)
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, D-24105 Kiel, Germany; (M.R.); (C.B.); (A.F.)
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, D-24105 Kiel, Germany; (M.R.); (C.B.); (A.F.)
| | - Kathrin Budde
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany; (K.B.); (A.-K.H.); (A.P.); (M.N.); (N.F.)
| | - Ann-Kristin Henning
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany; (K.B.); (A.-K.H.); (A.P.); (M.N.); (N.F.)
| | - Astrid Petersmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany; (K.B.); (A.-K.H.); (A.P.); (M.N.); (N.F.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Oldenburg, D-26129 Oldenburg, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany;
| | - Henry Völzke
- Institute for Community Medicine, University of Greifswald, D-17475 Greifswald, Germany;
| | - Ines Thiele
- School of Medicine, National University of Ireland, H91 CF50 Galway, Ireland; (A.H.); (I.T.)
- Discipline of Microbiology, National University of Galway, H91 CF50 Galway, Ireland
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
- Ryan Institute, National University of Galway, H91 CF50 Galway, Ireland
| | - Hans-Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, D-17475 Greifswald, Germany; (D.F.); (H.-J.G.)
- German Center for Neurodegenerative Diseases (DZNE), Partner Site Rostock/Greifswald, D-17475 Greifswald, Germany
| | - Markus M. Lerch
- Department of Internal Medicine A, University Medicine Greifswald, D-17475 Greifswald, Germany; (F.U.W.); (M.M.L.); (F.F.)
- Faculty of Medicine, Ludwig-Maximilian University Munich, D-80539 Munich, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany; (K.B.); (A.-K.H.); (A.P.); (M.N.); (N.F.)
- German Centre for Cardiovascular Research (DZHK), Partner Site, D-17475 Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany; (K.B.); (A.-K.H.); (A.P.); (M.N.); (N.F.)
- German Centre for Cardiovascular Research (DZHK), Partner Site, D-17475 Greifswald, Germany
| | - Fabian Frost
- Department of Internal Medicine A, University Medicine Greifswald, D-17475 Greifswald, Germany; (F.U.W.); (M.M.L.); (F.F.)
| |
Collapse
|
341
|
Co-Operative Biofilm Interactions between Aspergillus fumigatus and Pseudomonas aeruginosa through Secreted Galactosaminogalactan Exopolysaccharide. J Fungi (Basel) 2022; 8:jof8040336. [PMID: 35448567 PMCID: PMC9030451 DOI: 10.3390/jof8040336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023] Open
Abstract
The mold Aspergillus fumigatus and bacterium Pseudomonas aeruginosa form biofilms in the airways of individuals with cystic fibrosis. Biofilm formation by A. fumigatus depends on the self-produced cationic exopolysaccharide galactosaminogalactan (GAG), while P. aeruginosa biofilms can contain the cationic exopolysaccharide Pel. GAG and Pel are rendered cationic by deacetylation mediated by either the secreted deacetylase Agd3 (A. fumigatus) or the periplasmic deacetylase PelA (P. aeruginosa). Given the similarities between these polymers, the potential for biofilm interactions between these organisms were investigated. P. aeruginosa were observed to adhere to A. fumigatus hyphae in a GAG-dependent manner and to GAG-coated coverslips of A. fumigatus biofilms. In biofilm adherence assays, incubation of P. aeruginosa with A. fumigatus culture supernatants containing de-N-acetylated GAG augmented the formation of adherent P. aeruginosa biofilms, increasing protection against killing by the antibiotic colistin. Fluorescence microscopy demonstrated incorporation of GAG within P. aeruginosa biofilms, suggesting that GAG can serve as an alternate biofilm exopolysaccharide for this bacterium. In contrast, Pel-containing bacterial culture supernatants only augmented the formation of adherent A. fumigatus biofilms when antifungal inhibitory molecules were removed. This study demonstrates biofilm interaction via exopolysaccharides as a potential mechanism of co-operation between these organisms in chronic lung disease.
Collapse
|
342
|
Wolfmeier H, Wardell SJT, Liu LT, Falsafi R, Draeger A, Babiychuk EB, Pletzer D, Hancock REW. Targeting the Pseudomonas aeruginosa Virulence Factor Phospholipase C With Engineered Liposomes. Front Microbiol 2022; 13:867449. [PMID: 35369481 PMCID: PMC8971843 DOI: 10.3389/fmicb.2022.867449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Engineered liposomes composed of the naturally occurring lipids sphingomyelin (Sm) and cholesterol (Ch) have been demonstrated to efficiently neutralize toxins secreted by Gram-positive bacteria such as Streptococcus pneumoniae and Staphylococcus aureus. Here, we hypothesized that liposomes are capable of neutralizing cytolytic virulence factors secreted by the Gram-negative pathogen Pseudomonas aeruginosa. We used the highly virulent cystic fibrosis P. aeruginosa Liverpool Epidemic Strain LESB58 and showed that sphingomyelin (Sm) and a combination of sphingomyelin with cholesterol (Ch:Sm; 66 mol/% Ch and 34 mol/% Sm) liposomes reduced lysis of human bronchial and red blood cells upon challenge with the Pseudomonas secretome. Mass spectrometry of liposome-sequestered Pseudomonas proteins identified the virulence-promoting hemolytic phospholipase C (PlcH) as having been neutralized. Pseudomonas aeruginosa supernatants incubated with liposomes demonstrated reduced PlcH activity as assessed by the p-nitrophenylphosphorylcholine (NPPC) assay. Testing the in vivo efficacy of the liposomes in a murine cutaneous abscess model revealed that Sm and Ch:Sm, as single dose treatments, attenuated abscesses by >30%, demonstrating a similar effect to that of a mutant lacking plcH in this infection model. Thus, sphingomyelin-containing liposome therapy offers an interesting approach to treat and reduce virulence of complex infections caused by P. aeruginosa and potentially other Gram-negative pathogens expressing PlcH.
Collapse
Affiliation(s)
- Heidi Wolfmeier
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria
| | - Samuel J. T. Wardell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Leo T. Liu
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Reza Falsafi
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Daniel Pletzer
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- *Correspondence: Daniel Pletzer,
| | - Robert E. W. Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- Robert E. W. Hancock,
| |
Collapse
|
343
|
Kiyaga S, Kyany'a C, Muraya AW, Smith HJ, Mills EG, Kibet C, Mboowa G, Musila L. Genetic Diversity, Distribution, and Genomic Characterization of Antibiotic Resistance and Virulence of Clinical Pseudomonas aeruginosa Strains in Kenya. Front Microbiol 2022; 13:835403. [PMID: 35369511 PMCID: PMC8964364 DOI: 10.3389/fmicb.2022.835403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of nosocomial infections worldwide. It can produce a range of debilitating infections, have a propensity for developing antimicrobial resistance, and present with a variety of potent virulence factors. This study investigated the sequence types (ST), phenotypic antimicrobial susceptibility profiles, and resistance and virulence genes among clinical isolates from urinary tract and skin and soft tissue infections. Fifty-six P. aeruginosa clinical isolates were obtained from six medical centers across five counties in Kenya between 2015 and 2020. Whole-genome sequencing (WGS) was performed to conduct genomic characterization, sequence typing, and phylogenetic analysis of the isolates. Results showed the presence of globally distributed high-risk clones (ST244 and ST357), local high-risk clones (ST2025, ST455, and ST233), and a novel multidrug-resistant (MDR) clone carrying virulence genes (ST3674). Furthermore, 31% of the study isolates were found to be MDR with phenotypic resistance to a variety of antibiotics, including piperacillin (79%), ticarcillin-clavulanic acid (57%), meropenem (34%), levofloxacin (70%), and cefepime (32%). Several resistance genes were identified, including carbapenemases VIM-6 (ST1203) and NDM-1 (ST357), fluoroquinolone genes, crpP, and qnrVCi, while 14 and 22 different chromosomal mutations were detected in the gyrA and parC genes, respectively. All isolates contained at least three virulence genes. Among the virulence genes identified, phzB1 was the most abundant (50/56, 89%). About 21% (12/56) of the isolates had the exoU+/exoS- genotype, while 73% (41/56) of the isolates had the exoS+/exoU- genotype. This study also discovered 12 novel lineages of P. aeruginosa, of which one (ST3674) demonstrated both extensive antimicrobial resistance and the highest number of virulence genes (236/242, 98%). Although most high-risk clones were detected in Nairobi County, high-risk and clones of interest were found throughout the country, indicating the local spread of global epidemic clones and the emergence of new strains. Thus, this study illustrates the urgent need for coordinated local, regional, and international antimicrobial resistance surveillance efforts.
Collapse
Affiliation(s)
- Shahiid Kiyaga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Cecilia Kyany'a
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
- Center for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Angela W. Muraya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Hunter J. Smith
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Emma G. Mills
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Caleb Kibet
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
| | - Gerald Mboowa
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
- The African Center of Excellence in Bioinformatics and Data-Intensive Sciences, Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Lillian Musila
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
- Center for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
344
|
Trouillon J, Han K, Attrée I, Lory S. The core and accessory Hfq interactomes across Pseudomonas aeruginosa lineages. Nat Commun 2022; 13:1258. [PMID: 35273147 PMCID: PMC8913705 DOI: 10.1038/s41467-022-28849-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 02/14/2022] [Indexed: 01/16/2023] Open
Abstract
The major RNA-binding protein Hfq interacts with mRNAs, either alone or together with regulatory small noncoding RNAs (sRNAs), affecting mRNA translation and degradation in bacteria. However, studies tend to focus on single reference strains and assume that the findings may apply to the entire species, despite the important intra-species genetic diversity known to exist. Here, we use RIP-seq to identify Hfq-interacting RNAs in three strains representing the major phylogenetic lineages of Pseudomonas aeruginosa. We find that most interactions are in fact not conserved among the different strains. We identify growth phase-specific and strain-specific Hfq targets, including previously undescribed sRNAs. Strain-specific interactions are due to different accessory gene sets, RNA abundances, or potential context- or sequence- dependent regulatory mechanisms. The accessory Hfq interactome includes most mRNAs encoding Type III Secretion System (T3SS) components and secreted toxins in two strains, as well as a cluster of CRISPR guide RNAs in one strain. Conserved Hfq targets include the global virulence regulator Vfr and metabolic pathways involved in the transition from fast to slow growth. Furthermore, we use rGRIL-seq to show that RhlS, a quorum sensing sRNA, activates Vfr translation, thus revealing a link between quorum sensing and virulence regulation. Overall, our work highlights the important intra-species diversity in post-transcriptional regulatory networks in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Julian Trouillon
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Kook Han
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Ina Attrée
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France
| | - Stephen Lory
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
345
|
Tooker BC, Kandel SE, Work HM, Lampe JN. Pseudomonas aeruginosa cytochrome P450 CYP168A1 is a fatty acid hydroxylase that metabolizes arachidonic acid to the vasodilator 19-HETE. J Biol Chem 2022; 298:101629. [PMID: 35085556 PMCID: PMC8913318 DOI: 10.1016/j.jbc.2022.101629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic human pathogen that is highly prevalent in individuals with cystic fibrosis (CF). A major problem in treating CF patients infected with P. aeruginosa is the development of antibiotic resistance. Therefore, the identification of novel P. aeruginosa antibiotic drug targets is of the utmost urgency. The genome of P. aeruginosa contains four putative cytochrome P450 enzymes (CYPs) of unknown function that have never before been characterized. Analogous to some of the CYPs from Mycobacterium tuberculosis, these P. aeruginosa CYPs may be important for growth and colonization of CF patients’ lungs. In this study, we cloned, expressed, and characterized CYP168A1 from P. aeruginosa and identified it as a subterminal fatty acid hydroxylase. Spectral binding data and computational modeling of substrates and inhibitors suggest that CYP168A1 has a large, expansive active site and preferentially binds long chain fatty acids and large hydrophobic inhibitors. Furthermore, metabolic experiments confirm that the enzyme is capable of hydroxylating arachidonic acid, an important inflammatory signaling molecule present in abundance in the CF lung, to 19-hydroxyeicosatetraenoic acid (19-HETE; Km = 41 μM, Vmax = 220 pmol/min/nmol P450), a potent vasodilator, which may play a role in the pathogen’s ability to colonize the lung. Additionally, we found that the in vitro metabolism of arachidonic acid is subject to substrate inhibition and is also inhibited by the presence of the antifungal agent ketoconazole. This study identifies a new metabolic pathway in this important human pathogen that may be of utility in treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Brian C Tooker
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Sylvie E Kandel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Hannah M Work
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|
346
|
Seo DW, Yum SJ, Lee HR, Kim SM, Jeong HG. Microbiota Analysis and Microbiological Hazard Assessment in Chinese Chive ( Allium tuberosum Rottler) Depending on Retail Types. J Microbiol Biotechnol 2022; 32:195-204. [PMID: 34949749 PMCID: PMC9628847 DOI: 10.4014/jmb.2112.12013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022]
Abstract
Chinese chive (Allium tuberosum Rottler) has potential risks associated with pathogenic bacterial contamination as it is usually consumed raw. In this study, we investigated the microbiota of Chinese chives purchased from traditional markets and grocery stores in March (Spring) and June (Summer) 2017. Differences in bacterial diversity were observed, and the microbial composition varied across sampling times and sites. In June, potential pathogenic genera, such as Escherichia, Enterobacter, and Pantoea, accounted for a high proportion of the microbiota in samples purchased from the traditional market. A large number of pathogenic bacteria (Acinetobacter lwoffii, Bacillus cereus, Klebsiella pneumoniae, and Serratia marcescens) were detected in the June samples at a relatively high rate. In addition, the influence of the washing treatment on Chinese chive microbiota was analyzed. After storage at 26°C, the washing treatment accelerated the growth of enterohemorrhagic Escherichia coli (EHEC) because it caused dynamic shifts in Chinese chive indigenous microbiota. These results expand our knowledge of the microbiota in Chinese chives and provide data for the prediction and prevention of food-borne illnesses.
Collapse
Affiliation(s)
- Dong Woo Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Su-jin Yum
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Heoun Reoul Lee
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Seung Min Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Hee Gon Jeong
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea,Corresponding author Phone: +82-42-821-6726 E-mail:
| |
Collapse
|
347
|
Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS. Pathogenesis of the Pseudomonas aeruginosa Biofilm: A Review. Pathogens 2022; 11:pathogens11030300. [PMID: 35335624 PMCID: PMC8950561 DOI: 10.3390/pathogens11030300] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa is associated with several human infections, mainly related to healthcare services. In the hospital, it is associated with resistance to several antibiotics, which poses a great challenge to therapy. However, one of the biggest challenges in treating P. aeruginosa infections is that related to biofilms. The complex structure of the P. aeruginosa biofilm contributes an additional factor to the pathogenicity of this microorganism, leading to therapeutic failure, in addition to escape from the immune system, and generating chronic infections that are difficult to eradicate. In this review, we address several molecular aspects of the pathogenicity of P. aeruginosa biofilms.
Collapse
|
348
|
Barceló IM, Torrens G, Escobar-Salom M, Jordana-Lluch E, Capó-Bauzá MM, Ramón-Pallín C, García-Cuaresma D, Fraile-Ribot PA, Mulet X, Oliver A, Juan C. Impact of Peptidoglycan Recycling Blockade and Expression of Horizontally Acquired β-Lactamases on Pseudomonas aeruginosa Virulence. Microbiol Spectr 2022; 10:e0201921. [PMID: 35171032 PMCID: PMC8849096 DOI: 10.1128/spectrum.02019-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 01/02/2023] Open
Abstract
In the current scenario of antibiotic resistance magnification, new weapons against top nosocomial pathogens like Pseudomonas aeruginosa are urgently needed. The interplay between β-lactam resistance and virulence is considered a promising source of targets to be attacked by antivirulence therapies, and in this regard, we previously showed that a peptidoglycan recycling blockade dramatically attenuated the pathogenic power of P. aeruginosa strains hyperproducing the chromosomal β-lactamase AmpC. Here, we sought to ascertain whether this observation could be applicable to other β-lactamases. To do so, P. aeruginosa wild-type or peptidoglycan recycling-defective strains (ΔampG and ΔnagZ) harboring different cloned β-lactamases (transferable GES, VIM, and OXA types) were used to assess their virulence in Galleria mellonella larvae by determining 50% lethal doses (LD50s). A mild yet significant LD50 increase was observed after peptidoglycan recycling disruption per se, whereas the expression of class A and B enzymes did not impact virulence. While the production of the narrow-spectrum class D OXA-2 entailed a slight attenuation, its extended-spectrum derivatives OXA-226 (W159R [bearing a change of W to R at position 159]), OXA-161 (N148D), and principally, OXA-539 (D149 duplication) were associated with outstanding virulence impairments, especially in recycling-defective backgrounds (with some LD50s being >1,000-fold that of the wild type). Although their exact molecular bases remain to be deciphered, these results suggest that mutations affecting the catalytic center and, therefore, the hydrolytic spectrum of OXA-2-derived enzymes also drastically impact the pathogenic power of P. aeruginosa. This work provides new and relevant knowledge to the complex topic of the interplay between the production of β-lactamases and virulence that could be useful to build future therapeutic strategies against P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa is one of the leading nosocomial pathogens whose growing resistance makes the development of therapeutic options extremely urgent. The resistance-virulence interplay has classically aroused researchers' interest as a source of therapeutic targets. In this regard, we describe a wide array of virulence attenuations associated with different transferable β-lactamases, among which the production of OXA-2-derived extended-spectrum β-lactamases stood out as a dramatic handicap for pathogenesis, likely as a side effect of mutations causing the expansion of their hydrolytic spectrums. Moreover, our results confirm the validity of disturbing peptidoglycan recycling as a weapon to attenuate P. aeruginosa virulence in class C and D β-lactamase production backgrounds. In the current scenario of dissemination of horizontally acquired β-lactamases, this work brings out new data on the complex interplay between the production of specific enzymes and virulence attenuation that, if complemented with the characterization of the underlying mechanisms, will likely be exploitable to develop future virulence-targeting antipseudomonal strategies.
Collapse
Affiliation(s)
- Isabel M. Barceló
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Gabriel Torrens
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - María Escobar-Salom
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Elena Jordana-Lluch
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - María Magdalena Capó-Bauzá
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Carlos Ramón-Pallín
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Daniel García-Cuaresma
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Pablo A. Fraile-Ribot
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Xavier Mulet
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Antonio Oliver
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Carlos Juan
- Microbiology Department and Research Unit, University Hospital Son Espases, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| |
Collapse
|
349
|
Abstract
In the opportunistic pathogenic bacterium Pseudomonas aeruginosa acyl-homoserine lactone quorum sensing (QS) can activate expression of dozens to hundreds of genes depending on the strain under investigation. Many QS-activated genes code for extracellular products. P. aeruginosa has become a model for studies of cell-cell communication and coordination of cooperative activities, which result from production of extracellular products. We hypothesized that strain variation in the size of the QS regulon might reflect the environmental history of an isolate. We tested the hypothesis by performing long-term growth experiments with the well-studied strain PAO1, which has a relatively large QS regulon, under conditions where only limited QS-controlled functions are required. We grew P. aeruginosa for about 1000 generations in a condition where expression of QS-activated genes was required, and emergence of QS mutants was constrained and compared the QS regulons of populations after 35 generations to those after about 1000 generations in two independent lineages by using quorum quenching and RNA-seq technology. In one lineage the number of QS-activated genes identified was reduced by over 60% and in the other by about 30% in 1000-generation populations compared to 35-generation populations. Our results provide insight about the variations in the number of QS-activated genes reported for different P. aeruginosa environmental and clinical isolates and, about how environmental conditions might influence social evolution. IMPORTANCE Pseudomonas aeruginosa uses quorum sensing (QS) to activate expression of dozens of genes (the QS regulon). Because there is strain-to-strain variation in the size and content of the QS regulon, we asked how the regulon might evolve during long-term P. aeruginosa growth when cells require some but not all the functions activated by QS. We demonstrate that the P. aeruginosa QS-regulon can undergo a reductive adaptation in response to continuous QS-dependent growth. Our results provide insights into why there is strain-to-strain variability in the size and content of the P. aeruginosa QS regulon.
Collapse
|
350
|
Hendrix H, Zimmermann-Kogadeeva M, Zimmermann M, Sauer U, De Smet J, Muchez L, Lissens M, Staes I, Voet M, Wagemans J, Ceyssens PJ, Noben JP, Aertsen A, Lavigne R. Metabolic reprogramming of Pseudomonas aeruginosa by phage-based quorum sensing modulation. Cell Rep 2022; 38:110372. [PMID: 35172131 DOI: 10.1016/j.celrep.2022.110372] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/29/2021] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
The Pseudomonas quinolone signal (PQS) is a multifunctional quorum sensing molecule of key importance to P. aeruginosa. Here, we report that the lytic Pseudomonas bacterial virus LUZ19 targets this population density-dependent signaling system by expressing quorum sensing targeting protein (Qst) early during infection. We demonstrate that Qst interacts with PqsD, a key host quinolone signal biosynthesis pathway enzyme, resulting in decreased levels of PQS and its precursor 2-heptyl-4(1H)-quinolone. The lack of a functional PqsD enzyme impairs LUZ19 infection but is restored by external supplementation of 2-heptyl-4(1H)-quinolone, suggesting that LUZ19 exploits the PQS system for successful infection. We establish a broad functional interaction network of Qst, which includes enzymes of cofactor biosynthesis pathways (CoaC/ThiD) and a non-ribosomal peptide synthetase pathway (PA1217). Qst therefore represents an exquisite example of intricate reprogramming of the bacterium by a phage, which may be further exploited as tool to combat antibiotic resistant bacterial pathogens.
Collapse
Affiliation(s)
- Hanne Hendrix
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | | | - Michael Zimmermann
- Institute of Molecular Systems Biology, ETH Zurich, 8092 Zürich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, 8092 Zürich, Switzerland
| | - Jeroen De Smet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Laurens Muchez
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Maries Lissens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Ines Staes
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Marleen Voet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Pieter-Jan Ceyssens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven, 3001 Heverlee, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Heverlee, Belgium.
| |
Collapse
|