301
|
Saung MT, Sharei A, Adalsteinsson VA, Cho N, Kamath T, Ruiz C, Kirkpatrick J, Patel N, Mino-Kenudson M, Thayer SP, Langer R, Jensen KF, Liss AS, Love JC. A Size-Selective Intracellular Delivery Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5873-5881. [PMID: 27594517 PMCID: PMC5337179 DOI: 10.1002/smll.201601155] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/15/2016] [Indexed: 05/20/2023]
Abstract
Identifying and separating a subpopulation of cells from a heterogeneous mixture are essential elements of biological research. Current approaches require detailed knowledge of unique cell surface properties of the target cell population. A method is described that exploits size differences of cells to facilitate selective intracellular delivery using a high throughput microfluidic device. Cells traversing a constriction within this device undergo a transient disruption of the cell membrane that allows for cytoplasmic delivery of cargo. Unique constriction widths allow for optimization of delivery to cells of different sizes. For example, a 4 μm wide constriction is effective for delivery of cargo to primary human T-cells that have an average diameter of 6.7 μm. In contrast, a 6 or 7 μm wide constriction is best for large pancreatic cancer cell lines BxPc3 (10.8 μm) and PANC-1 (12.3 μm). These small differences in cell diameter are sufficient to allow for selective delivery of cargo to pancreatic cancer cells within a heterogeneous mixture containing T-cells. The application of this approach is demonstrated by selectively delivering dextran-conjugated fluorophores to circulating tumor cells in patient blood allowing for their subsequent isolation and genomic characterization.
Collapse
Affiliation(s)
- May Tun Saung
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
- Hospital Medicine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Armon Sharei
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Viktor A Adalsteinsson
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Nahyun Cho
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Tushar Kamath
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Camilo Ruiz
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Jesse Kirkpatrick
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Nehal Patel
- Advanced Tissue Resources Core, Massachusetts General Hospital, Charlestown Navy Yard, Charlestown, MA, 02129, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Sarah P Thayer
- Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Robert Langer
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Klavs F Jensen
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
| | - Andrew S Liss
- Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - J Christopher Love
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| |
Collapse
|
302
|
Paproski RJ, Jovel J, Wong GKS, Lewis JD, Zemp RJ. Enhanced Detection of Cancer Biomarkers in Blood-Borne Extracellular Vesicles Using Nanodroplets and Focused Ultrasound. Cancer Res 2016; 77:3-13. [PMID: 27793845 DOI: 10.1158/0008-5472.can-15-3231] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 09/28/2016] [Accepted: 10/17/2016] [Indexed: 11/16/2022]
Abstract
The feasibility of personalized medicine approaches will be greatly improved by the development of noninvasive methods to interrogate tumor biology. Extracellular vesicles shed by solid tumors into the bloodstream have been under recent investigation as a source of tumor-derived biomarkers such as proteins and nucleic acids. We report here an approach using submicrometer perfluorobutane nanodroplets and focused ultrasound to enhance the release of extracellular vesicles from specific locations in tumors into the blood. The released extracellular vesicles were enumerated and characterized using micro flow cytometry. Only in the presence of nanodroplets could ultrasound release appreciable levels of tumor-derived vesicles into the blood. Sonication of HT1080-GFP tumors did not increase the number of circulating tumor cells or the metastatic burden in the tumor-bearing embryos. A variety of biological molecules were successfully detected in tumor-derived extracellular vesicles, including cancer-associated proteins, mRNAs, and miRNAs. Sonication of xenograft HT1080 fibrosarcoma tumors released extracellular vesicles that contained detectable RAC1 mRNA with the highly tumorigenic N92I mutation known to exist in HT1080 cells. Deep sequencing serum samples of embryos with sonicated tumors allowed the identification of an additional 13 known heterozygous mutations in HT1080 cells. Applying ultrasound to HT1080 tumors increased tumor-derived DNA in the serum by two orders of magnitude. This work is the first demonstration of enhanced extracellular vesicle release by ultrasound stimulation and suggests that nanodroplets/ultrasound offers promise for genetic profiling of tumor phenotype and aggressiveness by stimulating the release of extracellular vesicles. Cancer Res; 77(1); 3-13. ©2016 AACR.
Collapse
Affiliation(s)
- Robert J Paproski
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada.,Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Juan Jovel
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.
| | - Roger J Zemp
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
303
|
Lennon NJ, Adalsteinsson VA, Gabriel SB. Technological considerations for genome-guided diagnosis and management of cancer. Genome Med 2016; 8:112. [PMID: 27784341 PMCID: PMC5080740 DOI: 10.1186/s13073-016-0370-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Technological, methodological, and analytical advances continue to improve the resolution of our view into the cancer genome, even as we discover ways to carry out analyses at greater distances from the primary tumor sites. These advances are finally making the integration of cancer genomic profiling into clinical practice feasible. Formalin fixation and paraffin embedding, which has long been the default pathological biopsy medium, is now being supplemented with liquid biopsy as a means to profile the cancer genomes of patients. At each stage of the genomic data generation process-sample collection, preservation, storage, extraction, library construction, sequencing, and variant calling-there are variables that impact the sensitivity and specificity of the analytical result and the clinical utility of the test. These variables include sample degradation, low yields of nucleic acid, and low variant allele fractions (proportions of assayed molecules carrying variant allele(s)). We review here the most common pre-analytical and analytical factors relating to routine cancer patient genome profiling, some solutions to common challenges, and the major sample preparation and sequencing technology choices available today.
Collapse
Affiliation(s)
- Niall J Lennon
- Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA.
| | | | | |
Collapse
|
304
|
Bulfoni M, Turetta M, Del Ben F, Di Loreto C, Beltrami AP, Cesselli D. Dissecting the Heterogeneity of Circulating Tumor Cells in Metastatic Breast Cancer: Going Far Beyond the Needle in the Haystack. Int J Mol Sci 2016; 17:ijms17101775. [PMID: 27783057 PMCID: PMC5085799 DOI: 10.3390/ijms17101775] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/08/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Although the enumeration of circulating tumor cells (CTC) defined as expressing both epithelial cell adhesion molecule and cytokeratins (EpCAM+/CK+) can predict prognosis and response to therapy in metastatic breast, colon and prostate cancer, its clinical utility (i.e., the ability to improve patient outcome by guiding therapy) has not yet been proven in clinical trials. Therefore, scientists are now focusing on the molecular characterization of CTC as a way to explore its possible use as a “surrogate” of tumor tissues to non-invasively assess the genomic landscape of the cancer and its evolution during treatment. Additionally, evidences confirm the existence of CTC in epithelial-to-mesenchymal transition (EMT) characterized by a variable loss of epithelial markers. Since the EMT process can originate cells with enhanced invasiveness, stemness and drug-resistance, the enumeration and characterization of this population, perhaps the one truly responsible of tumor recurrence and progression, could be more clinically useful. For these reasons, several devices able to capture CTC independently from the expression of epithelial markers have been developed. In this review, we will describe the types of heterogeneity so far identified and the key role played by the epithelial-to-mesenchymal transition in driving CTC heterogeneity. The clinical relevance of detecting CTC-heterogeneity will be discussed as well.
Collapse
Affiliation(s)
- Michela Bulfoni
- Department of Medical and Biological Sciences, University of Udine, Piazzale M. Kolbe 4, 33100 Udine, Italy.
| | - Matteo Turetta
- Department of Medical and Biological Sciences, University of Udine, Piazzale M. Kolbe 4, 33100 Udine, Italy.
| | - Fabio Del Ben
- Department of Clinical Pathology, CRO Aviano National Cancer Institute, via F. Gallini 2, 33081 Aviano, Italy.
| | - Carla Di Loreto
- Department of Medical and Biological Sciences, University of Udine, Piazzale M. Kolbe 4, 33100 Udine, Italy.
- Institute of Pathology, University Hospital of Udine-ASUIUD, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy.
| | - Antonio Paolo Beltrami
- Department of Medical and Biological Sciences, University of Udine, Piazzale M. Kolbe 4, 33100 Udine, Italy.
| | - Daniela Cesselli
- Department of Medical and Biological Sciences, University of Udine, Piazzale M. Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|
305
|
Shi Y, Su XB, He KY, Wu BH, Zhang BY, Han ZG. Chromatin accessibility contributes to simultaneous mutations of cancer genes. Sci Rep 2016; 6:35270. [PMID: 27762310 PMCID: PMC5071887 DOI: 10.1038/srep35270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022] Open
Abstract
Somatic mutations of many cancer genes tend to co-occur (termed co-mutations) in certain patterns during tumor initiation and progression. However, the genetic and epigenetic mechanisms that contribute to the co-mutations of these cancer genes have yet to be explored. Here, we systematically investigated the association between the somatic co-mutations of cancer genes and high-order chromatin conformation. Significantly, somatic point co-mutations in protein-coding genes were closely associated with high-order spatial chromatin folding. We propose that these regions be termed Spatial Co-mutation Hotspots (SCHs) and report their occurrence in different cancer types. The conserved mutational signatures and DNA sequences flanking these point co-mutations, as well as CTCF-binding sites, are also enriched within the SCH regions. The genetic alterations that are harboured in the same SCHs tend to disrupt cancer driver genes involved in multiple signalling pathways. The present work demonstrates that high-order spatial chromatin organisation may contribute to the somatic co-mutations of certain cancer genes during tumor development.
Collapse
Affiliation(s)
- Yi Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Xian-Bin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Kun-Yan He
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Bing-Hao Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Bo-Yu Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| |
Collapse
|
306
|
Miyamoto DT, Lee RJ. Cell-free and circulating tumor cell-based biomarkers in men with metastatic prostate cancer: Tools for real-time precision medicine? Urol Oncol 2016; 34:490-501. [PMID: 27771279 DOI: 10.1016/j.urolonc.2016.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/03/2016] [Accepted: 09/07/2016] [Indexed: 12/28/2022]
Abstract
The recent expansion of therapeutic options for the treatment of metastatic prostate cancer highlights the need for precision medicine approaches to enable the rational selection of appropriate therapies for individual patients. In this context, circulating biomarkers in the peripheral blood are attractive as readily accessible tools for predicting and monitoring therapeutic response. In the case of circulating tumor cells and circulating tumor DNA, they may also serve as a noninvasive means of assessing molecular aberrations in tumors at multiple time points before and during therapy. These so-called "liquid biopsies" can provide a snapshot view of tumor molecular architecture and may enable clinicians to monitor the molecular status of tumors as they evolve during treatment, thus allowing for individualized precision therapeutic decisions for patients over time. In this review, we outline recent progress in the field of circulating biomarkers in metastatic prostate cancer and evaluate their potential for enabling this vision of real-time precision medicine.
Collapse
Affiliation(s)
- David T Miyamoto
- Massachusetts General Hospital Cancer Center, Boston, MA; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| | - Richard J Lee
- Massachusetts General Hospital Cancer Center, Boston, MA; Department of Medicine, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| |
Collapse
|
307
|
Beije N, Onstenk W, Kraan J, Sieuwerts AM, Hamberg P, Dirix LY, Brouwer A, de Jongh FE, Jager A, Seynaeve CM, Van NM, Foekens JA, Martens JWM, Sleijfer S. Prognostic Impact of HER2 and ER Status of Circulating Tumor Cells in Metastatic Breast Cancer Patients with a HER2-Negative Primary Tumor. Neoplasia 2016; 18:647-653. [PMID: 27764697 PMCID: PMC5071539 DOI: 10.1016/j.neo.2016.08.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Preclinical and clinical studies have reported that human epidermal growth factor receptor 2 (HER2) overexpression yields resistance to endocrine therapies. Here the prevalence and prognostic impact of HER2-positive circulating tumor cells (CTCs) were investigated retrospectively in metastatic breast cancer (MBC) patients with a HER2-negative primary tumor receiving endocrine therapy. Additionally, the prevalence and prognostic significance of HER2-positive CTCs were explored in a chemotherapy cohort, as well as the prognostic impact of the estrogen receptor (ER) CTC status in both cohorts. METHODS Included were MBC patients with a HER2-negative primary tumor, with ≥1 detectable CTC, starting a new line of treatment. CTCs were enumerated using the CellSearch system, characterized for HER2 with the CellSearch anti-HER2 phenotyping reagent, and characterized for ER mRNA expression. Primary end point was progression-free rate after 6 months (PFR6months) of endocrine treatment in HER2-positive versus HER2-negative CTC patients. RESULTS HER2-positive CTCs were present in 29% of all patients. In the endocrine cohort (n=72), the PFR6months was 53% for HER2-positive versus 68% for HER2-negative CTC patients (P=.23). In the chemotherapy cohort (n=82), no prognostic value of HER2-positive CTCs on PFR6months was observed either. Discordances in ER status between the primary tumor and CTCs occurred in 25% of all patients but had no prognostic value in exploratory survival analyses. CONCLUSION Discordances regarding HER2 status and ER status between CTCs and the primary tumor occurred frequently but had no prognostic impact in our MBC patient cohorts.
Collapse
Affiliation(s)
- Nick Beije
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| | - Wendy Onstenk
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Jaco Kraan
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Anieta M Sieuwerts
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Paul Hamberg
- Franciscus Gasthuis, Department of Internal Medicine, Kleiweg 500, 3045 PM, Rotterdam, The Netherlands
| | - Luc Y Dirix
- Oncology Center GZA Hospitals Sint Augustinus, Translational Cancer Research Unit, Department of Medical Oncology, Oosterveldlaan 26, 2610, Antwerp, Belgium
| | - Anja Brouwer
- Oncology Center GZA Hospitals Sint Augustinus, Translational Cancer Research Unit, Department of Medical Oncology, Oosterveldlaan 26, 2610, Antwerp, Belgium
| | - Felix E de Jongh
- Ikazia Hospital, Department of Internal Medicine, Montessoriweg 1, 3083 AN, Rotterdam, The Netherlands
| | - Agnes Jager
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Caroline M Seynaeve
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Ngoc M Van
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - John A Foekens
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - John W M Martens
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Stefan Sleijfer
- Erasmus MC Cancer Institute, Erasmus University Medical Center, Department of Medical Oncology and Cancer Genomics Netherlands, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
308
|
Cheng S, Chen JF, Lu YT, Chung LWK, Tseng HR, Posadas EM. Applications of circulating tumor cells for prostate cancer. Asian J Urol 2016; 3:254-259. [PMID: 29264193 PMCID: PMC5730870 DOI: 10.1016/j.ajur.2016.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 01/25/2023] Open
Abstract
One of the major challenges that clinicians face is in the difficulties of accurately monitoring disease progression. Prostate cancer is among these diseases and greatly affects the health of men globally. Circulating tumor cells (CTCs) are a rare population of cancer cells that have shed from the primary tumor and entered the peripheral circulation. Not until recently, clinical applications of CTCs have been limited to using enumeration as a prognostic tool in Oncology. However, advances in emerging CTC technologies point toward new applications that could revolutionize the field of prostate cancer. It is now possible to study CTCs as components of a liquid biopsy based on morphological phenotypes, biochemical analyses, and genomic profiling. These advances allow us to gain insight into the heterogeneity and dynamics of cancer biology and to further study the mechanisms behind the evolution of therapeutic resistance. These recent developments utilizing CTCs for clinical applications will greatly impact the future of prostate cancer research and pave the way towards personalized care for men.
Collapse
Affiliation(s)
- Shirley Cheng
- Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jie-Fu Chen
- Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Division of Hematology/Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yi-Tsung Lu
- Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Internal Medicine, John H Stroger Hospital, Chicago, IL, USA
| | - Leland W K Chung
- Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Division of Hematology/Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Cancer Biology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hsian-Rong Tseng
- California Nanosystems Institute, University of California, Los Angeles, CA, USA.,Department of Molecular Pharmacology, University of California, Los Angeles, CA, USA
| | - Edwin M Posadas
- Urologic Oncology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Division of Hematology/Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Translational Oncology Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
309
|
Rhee H, Thomas P, Shepherd B, Gustafson S, Vela I, Russell P, Nelson C, Chung E, Wood G, Malone G, Wood S, Heathcote P. Prostate Specific Membrane Antigen Positron Emission Tomography May Improve the Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging in Localized Prostate Cancer. J Urol 2016; 196:1261-7. [DOI: 10.1016/j.juro.2016.02.3000] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2016] [Indexed: 12/12/2022]
Affiliation(s)
- H. Rhee
- Department of Urology, Princess Alexandra Hospital, Queensland, Australia
- Australian Prostate Cancer Research Centre–Queensland, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Queensland, Australia
| | - P. Thomas
- Department of Nuclear Medicine, Royal Brisbane and Women’s Hospital, Queensland, Australia
| | - B. Shepherd
- Pathology Queensland, Princess Alexandra Hospital, Queensland, Australia
| | - S. Gustafson
- Department of Radiology, Princess Alexandra Hospital, Queensland, Australia
| | - I. Vela
- Department of Urology, Princess Alexandra Hospital, Queensland, Australia
- Australian Prostate Cancer Research Centre–Queensland, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Queensland, Australia
| | - P.J. Russell
- Australian Prostate Cancer Research Centre–Queensland, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Queensland, Australia
| | - C. Nelson
- Australian Prostate Cancer Research Centre–Queensland, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Queensland, Australia
| | - E. Chung
- Department of Urology, Princess Alexandra Hospital, Queensland, Australia
| | - G. Wood
- Department of Urology, Greenslopes Private Hospital, Queensland, Australia
| | - G. Malone
- Department of Urology, Princess Alexandra Hospital, Queensland, Australia
- Department of Urology, Greenslopes Private Hospital, Queensland, Australia
| | - S. Wood
- Department of Urology, Princess Alexandra Hospital, Queensland, Australia
- Department of Urology, Greenslopes Private Hospital, Queensland, Australia
| | - P. Heathcote
- Department of Urology, Princess Alexandra Hospital, Queensland, Australia
- Department of Urology, Greenslopes Private Hospital, Queensland, Australia
- Australian Prostate Cancer Research Centre–Queensland, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Queensland, Australia
| |
Collapse
|
310
|
Wang S, Wang J. Are Liquid Biopsies Ready for Prime Time of Clinical Applications? J Thorac Oncol 2016; 11:1606-1608. [PMID: 27663396 DOI: 10.1016/j.jtho.2016.08.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 11/24/2022]
Affiliation(s)
- Shuhang Wang
- Beijing Cancer Hospital, Beijing, People's Republic of China
| | - Jie Wang
- Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
311
|
Feller SM, Lewitzky M. Hunting for the ultimate liquid cancer biopsy - let the TEP dance begin. Cell Commun Signal 2016; 14:24. [PMID: 27677261 PMCID: PMC5039897 DOI: 10.1186/s12964-016-0147-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022] Open
Abstract
Non-protein coding RNAs in different flavors (miRNAs, piRNAs, snoRNAs, lncRNAs, SHOT-RNAs), exosomes, large oncosomes, exoDNA and now tumor-educated platelets (TEPs) have emerged as crucial signal transmitting, transporting and regulating devices of cells in the last two decades. They are also establishing themselves increasingly in the realm of tumor research. We are currently witnessing a mushrooming of candidate entities for diagnostic and prognostic cancer detection and characterization tests that could have a major impact on how this diverse group of diseases is initially spotted and subsequently treated in the near future. But how do the new kids on the block stand up to the more established circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA)? Without question, much earlier disease detection would be expected to save numerous lives. With all these new players around, will we finally win a major battle in the never-ending war against cancer?
Collapse
Affiliation(s)
- Stephan M Feller
- Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| | - Marc Lewitzky
- Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
312
|
Poirion OB, Zhu X, Ching T, Garmire L. Single-Cell Transcriptomics Bioinformatics and Computational Challenges. Front Genet 2016; 7:163. [PMID: 27708664 PMCID: PMC5030210 DOI: 10.3389/fgene.2016.00163] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 09/02/2016] [Indexed: 12/21/2022] Open
Abstract
The emerging single-cell RNA-Seq (scRNA-Seq) technology holds the promise to revolutionize our understanding of diseases and associated biological processes at an unprecedented resolution. It opens the door to reveal intercellular heterogeneity and has been employed to a variety of applications, ranging from characterizing cancer cells subpopulations to elucidating tumor resistance mechanisms. Parallel to improving experimental protocols to deal with technological issues, deriving new analytical methods to interpret the complexity in scRNA-Seq data is just as challenging. Here, we review current state-of-the-art bioinformatics tools and methods for scRNA-Seq analysis, as well as addressing some critical analytical challenges that the field faces.
Collapse
Affiliation(s)
- Olivier B Poirion
- Epidemiology Program, University of Hawaii Cancer Center Honolulu, HI, USA
| | - Xun Zhu
- Epidemiology Program, University of Hawaii Cancer CenterHonolulu, HI, USA; Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at ManoaHonolulu, HI, USA
| | - Travers Ching
- Epidemiology Program, University of Hawaii Cancer CenterHonolulu, HI, USA; Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at ManoaHonolulu, HI, USA
| | - Lana Garmire
- Epidemiology Program, University of Hawaii Cancer Center Honolulu, HI, USA
| |
Collapse
|
313
|
Gupta S, Li J, Kemeny G, Bitting RL, Beaver J, Somarelli JA, Ware KE, Gregory S, Armstrong AJ. Whole Genomic Copy Number Alterations in Circulating Tumor Cells from Men with Abiraterone or Enzalutamide-Resistant Metastatic Castration-Resistant Prostate Cancer. Clin Cancer Res 2016; 23:1346-1357. [DOI: 10.1158/1078-0432.ccr-16-1211] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/22/2016] [Accepted: 08/25/2016] [Indexed: 11/16/2022]
|
314
|
Hiley CT, Le Quesne J, Santis G, Sharpe R, de Castro DG, Middleton G, Swanton C. Challenges in molecular testing in non-small-cell lung cancer patients with advanced disease. Lancet 2016; 388:1002-11. [PMID: 27598680 DOI: 10.1016/s0140-6736(16)31340-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 12/18/2022]
Abstract
Lung cancer diagnostics have progressed greatly in the previous decade. Development of molecular testing to identify an increasing number of potentially clinically actionable genetic variants, using smaller samples obtained via minimally invasive techniques, is a huge challenge. Tumour heterogeneity and cancer evolution in response to therapy means that repeat biopsies or circulating biomarkers are likely to be increasingly useful to adapt treatment as resistance develops. We highlight some of the current challenges faced in clinical practice for molecular testing of EGFR, ALK, and new biomarkers such as PDL1. Implementation of next generation sequencing platforms for molecular diagnostics in non-small-cell lung cancer is increasingly common, allowing testing of multiple genetic variants from a single sample. The use of next generation sequencing to recruit for molecularly stratified clinical trials is discussed in the context of the UK Stratified Medicine Programme and The UK National Lung Matrix Trial.
Collapse
Affiliation(s)
- Crispin T Hiley
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, London, UK; Division of Cancer Studies, King's College London, London, UK
| | - John Le Quesne
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - George Santis
- Department of Respiratory Medicine and Allergy, King's College London, UK
| | | | - David Gonzalez de Castro
- Centre for Molecular Pathology, Royal Marsden Hospital, Sutton, UK; School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Gary Middleton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; University Hospital Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, London, UK; CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK.
| |
Collapse
|
315
|
Lee JH, Zhao XM, Yoon I, Lee JY, Kwon NH, Wang YY, Lee KM, Lee MJ, Kim J, Moon HG, In Y, Hao JK, Park KM, Noh DY, Han W, Kim S. Integrative analysis of mutational and transcriptional profiles reveals driver mutations of metastatic breast cancers. Cell Discov 2016; 2:16025. [PMID: 27625789 PMCID: PMC5004232 DOI: 10.1038/celldisc.2016.25] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022] Open
Abstract
Despite the explosion in the numbers of cancer genomic studies, metastasis is still the major cause of cancer mortality. In breast cancer, approximately one-fifth of metastatic patients survive 5 years. Therefore, detecting the patients at a high risk of developing distant metastasis at first diagnosis is critical for effective treatment strategy. We hereby present a novel systems biology approach to identify driver mutations escalating the risk of metastasis based on both exome and RNA sequencing of our collected 78 normal-paired breast cancers. Unlike driver mutations occurring commonly in cancers as reported in the literature, the mutations detected here are relatively rare mutations occurring in less than half metastatic samples. By supposing that the driver mutations should affect the metastasis gene signatures, we develop a novel computational pipeline to identify the driver mutations that affect transcription factors regulating metastasis gene signatures. We identify driver mutations in ADPGK, NUP93, PCGF6, PKP2 and SLC22A5, which are verified to enhance cancer cell migration and prompt metastasis with in vitro experiments. The discovered somatic mutations may be helpful for identifying patients who are likely to develop distant metastasis.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Xing-Ming Zhao
- Department of Computer Science and Technology, Tongji University , Shanghai, China
| | - Ina Yoon
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Jin Young Lee
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Nam Hoon Kwon
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Yin-Ying Wang
- Department of Computer Science and Technology, Tongji University , Shanghai, China
| | - Kyung-Min Lee
- Department of Surgery, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Min-Joo Lee
- Department of Surgery, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Jisun Kim
- Department of Surgery, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Hyeong-Gon Moon
- Department of Surgery, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Yongho In
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Jin-Kao Hao
- LERIA, University of Angers , Angers, France
| | - Kyung-Mii Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Dong-Young Noh
- Department of Surgery, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
316
|
Krönig M, Nanko N, Drendel V, Werner M, Schultze-Seemann W, Grosu AL, Jilg AC. Single punch, double biopsy. SPRINGERPLUS 2016; 5:1456. [PMID: 27652032 PMCID: PMC5005218 DOI: 10.1186/s40064-016-3141-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE In lethal primary metastatic prostate cancer, biopsy material is often the only accessible cancer tissue. Lack of tissue quantity limited the use of biopsy cores for analyzing higher numbers of molecular markers and standard histopathologic evaluation for clinical diagnosis simultaneously. Recent advances in single cell analytics have paved the way to characterize a tumor in more depth from minute input material such as biopsies. We therefore aimed to develop a biopsy needle, which generates two cores side by side from the same punch: one for standard histopathologic analysis to allow for routine diagnostics and the second one for single cell analytics. METHODS On the basis of a conventional punch biopsy needle we have milled two parallel longitudinal rifts into the needles shat which are separated by a 100 µm thick metal sheet. Each rift can harbor a single tissue core. RESULTS Two cores from the same punch were generated reproducibly from a radical prostatectomy specimen and showed congruent results in histopathologic analysis. Both cores yielded equally sufficient material for standard H&E staining and histopathological evaluation. CONCLUSION Our modified biopsy system will allow for simultaneous acquisition of tissue cores for diagnostic and scientific analysis from solid tumors or metastatic sites.
Collapse
Affiliation(s)
- Malte Krönig
- Department of Urology, University of Freiburg Medical Centre, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Norbert Nanko
- Department of Radiation Oncology, University of Freiburg Medical Centre, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Vanessa Drendel
- Department of Clinical Pathology, University of Freiburg Medical Centre, Breisacher Strasse 155a, 79106 Freiburg, Germany
| | - Martin Werner
- Department of Clinical Pathology, University of Freiburg Medical Centre, Breisacher Strasse 155a, 79106 Freiburg, Germany
| | - Wolfgang Schultze-Seemann
- Department of Urology, University of Freiburg Medical Centre, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Anca L. Grosu
- Department of Radiation Oncology, University of Freiburg Medical Centre, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - A. Cordula Jilg
- Department of Urology, University of Freiburg Medical Centre, Hugstetter Strasse 55, 79106 Freiburg, Germany
| |
Collapse
|
317
|
|
318
|
Biezuner T, Spiro A, Raz O, Amir S, Milo L, Adar R, Chapal-Ilani N, Berman V, Fried Y, Ainbinder E, Cohen G, Barr HM, Halaban R, Shapiro E. A generic, cost-effective, and scalable cell lineage analysis platform. Genome Res 2016; 26:1588-1599. [PMID: 27558250 PMCID: PMC5088600 DOI: 10.1101/gr.202903.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 08/11/2016] [Indexed: 02/05/2023]
Abstract
Advances in single-cell genomics enable commensurate improvements in methods for uncovering lineage relations among individual cells. Current sequencing-based methods for cell lineage analysis depend on low-resolution bulk analysis or rely on extensive single-cell sequencing, which is not scalable and could be biased by functional dependencies. Here we show an integrated biochemical-computational platform for generic single-cell lineage analysis that is retrospective, cost-effective, and scalable. It consists of a biochemical-computational pipeline that inputs individual cells, produces targeted single-cell sequencing data, and uses it to generate a lineage tree of the input cells. We validated the platform by applying it to cells sampled from an ex vivo grown tree and analyzed its feasibility landscape by computer simulations. We conclude that the platform may serve as a generic tool for lineage analysis and thus pave the way toward large-scale human cell lineage discovery.
Collapse
Affiliation(s)
- Tamir Biezuner
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel.,Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Adam Spiro
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel.,Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Ofir Raz
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel.,Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Shiran Amir
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel.,Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Lilach Milo
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel.,Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Rivka Adar
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel.,Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Noa Chapal-Ilani
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel.,Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Veronika Berman
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel.,Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Yael Fried
- Department of Biological Services, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Elena Ainbinder
- Department of Biological Services, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Galit Cohen
- Maurice and Vivienne Wohl Institute for Drug Discovery, G-INCPM, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Haim M Barr
- Maurice and Vivienne Wohl Institute for Drug Discovery, G-INCPM, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut 06520-8059, USA
| | - Ehud Shapiro
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel.,Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 761001, Israel
| |
Collapse
|
319
|
Ignatiadis M, Lee M, Jeffrey SS. Circulating Tumor Cells and Circulating Tumor DNA: Challenges and Opportunities on the Path to Clinical Utility. Clin Cancer Res 2016; 21:4786-800. [PMID: 26527805 DOI: 10.1158/1078-0432.ccr-14-1190] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent technological advances have enabled the detection and detailed characterization of circulating tumor cells (CTC) and circulating tumor DNA (ctDNA) in blood samples from patients with cancer. Often referred to as a "liquid biopsy," CTCs and ctDNA are expected to provide real-time monitoring of tumor evolution and therapeutic efficacy, with the potential for improved cancer diagnosis and treatment. In this review, we focus on these opportunities as well as the challenges that should be addressed so that these tools may eventually be implemented into routine clinical care.
Collapse
Affiliation(s)
- Michail Ignatiadis
- Department of Medical Oncology and Breast Cancer Translational Research Laboratory J. C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mark Lee
- Google[x] Life Sciences, Google, Inc, Mountain View, California
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
320
|
Paolillo C, Londin E, Fortina P. Next generation sequencing in cancer: opportunities and challenges for precision cancer medicine. Scand J Clin Lab Invest Suppl 2016; 245:S84-91. [PMID: 27542004 DOI: 10.1080/00365513.2016.1210331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the past decade, testing the genes of patients and their specific cancer types has become standardized practice in medical oncology since somatic mutations, changes in gene expression and epigenetic modifications are all hallmarks of cancer. However, while cancer genetic assessment has been limited to single biomarkers to guide the use of therapies, improvements in nucleic acid sequencing technologies and implementation of different genome analysis tools have enabled clinicians to detect these genomic alterations and identify functional and disease-associated genomic variants. Next-generation sequencing (NGS) technologies have provided clues about therapeutic targets and genomic markers for novel clinical applications when standard therapy has failed. While Sanger sequencing, an accurate and sensitive approach, allows for the identification of potential novel variants, it is however limited by the single amplicon being interrogated. Similarly, quantitative and qualitative profiling of gene expression changes also represents a challenge for the cancer field. Both RT-PCR and microarrays are efficient approaches, but are limited to the genes present on the array or being assayed. This leaves vast swaths of the transcriptome, including non-coding RNAs and other features, unexplored. With the advent of the ability to collect and analyze genomic sequence data in a timely fashion and at an ever-decreasing cost, many of these limitations have been overcome and are being incorporated into cancer research and diagnostics giving patients and clinicians new hope for targeted and personalized treatment. Below we highlight the various applications of next-generation sequencing in precision cancer medicine.
Collapse
Affiliation(s)
- Carmela Paolillo
- a Department of Cancer Biology , Sidney Kimmel Medical College , Philadelphia , PA , USA
| | - Eric Londin
- b Computational Medicine Center , Thomas Jefferson University , Philadelphia , PA , USA
| | - Paolo Fortina
- a Department of Cancer Biology , Sidney Kimmel Medical College , Philadelphia , PA , USA
| |
Collapse
|
321
|
New Progress of Epigenetic Biomarkers in Urological Cancer. DISEASE MARKERS 2016; 2016:9864047. [PMID: 27594736 PMCID: PMC4993951 DOI: 10.1155/2016/9864047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/30/2016] [Indexed: 11/17/2022]
Abstract
Urological cancers consist of bladder, kidney, prostate, and testis cancers and they are generally silenced at their early stage, which leads to the loss of the best opportunity for early diagnosis and treatment. Desired biomarkers are scarce for urological cancers and current biomarkers are lack of specificity and sensitivity. Epigenetic alterations are characteristic of nearly all kinds of human malignances including DNA methylation, histone modification, and miRNA regulation. Besides, the detection of these epigenetic conditions is easily accessible especially for urine, best target for monitoring the diseases of urinary system. Here, we summarize some new progress about epigenetic biomarkers in urological cancers, hoping to provide new thoughts for the diagnosis, treatment, and prognosis of urological cancers.
Collapse
|
322
|
Gkountela S, Szczerba B, Donato C, Aceto N. Recent advances in the biology of human circulating tumour cells and metastasis. ESMO Open 2016; 1:e000078. [PMID: 27843628 PMCID: PMC5070257 DOI: 10.1136/esmoopen-2016-000078] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/22/2023] Open
Abstract
The development of a metastatic disease is recognised as the cause of death of over 90% of patients diagnosed with cancer. Understanding the biological features of metastasis has been hampered for a long time by the difficulties to study widespread cancerous lesions in patients, and by the absence of reliable methods to isolate viable metastatic cells during disease progression. These difficulties negatively impact on our ability to develop new agents that are tailored to block the spread of cancer. Yet, recent advances in specialised devices for the isolation of circulating tumour cells (CTCs), hand-in-hand with technologies that enable single cell resolution interrogation of their genome and transcriptome, are now paving the way to understanding those molecular mechanisms that drive the formation of metastasis. In this review, we aim to summarise some of the latest discoveries in CTC biology in the context of several types of cancer, and to highlight those findings that have a potential to improve the clinical management of patients with metastatic cancer.
Collapse
Affiliation(s)
- Sofia Gkountela
- Cancer Metastasis, Department of Biomedicine , University of Basel , Basel , Switzerland
| | - Barbara Szczerba
- Cancer Metastasis, Department of Biomedicine , University of Basel , Basel , Switzerland
| | - Cinzia Donato
- Cancer Metastasis, Department of Biomedicine , University of Basel , Basel , Switzerland
| | - Nicola Aceto
- Cancer Metastasis, Department of Biomedicine , University of Basel , Basel , Switzerland
| |
Collapse
|
323
|
Ko J, Yelleswarapu V, Singh A, Shah N, Issadore D. Magnetic Nickel iron Electroformed Trap (MagNET): a master/replica fabrication strategy for ultra-high throughput (>100 mL h(-1)) immunomagnetic sorting. LAB ON A CHIP 2016; 16:3049-57. [PMID: 27170379 PMCID: PMC4970905 DOI: 10.1039/c6lc00487c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Microfluidic devices can sort immunomagnetically labeled cells with sensitivity and specificity much greater than that of conventional methods, primarily because the size of microfluidic channels and micro-scale magnets can be matched to that of individual cells. However, these small feature sizes come at the expense of limited throughput (ϕ < 5 mL h(-1)) and susceptibility to clogging, which have hindered current microfluidic technology from processing relevant volumes of clinical samples, e.g. V > 10 mL whole blood. Here, we report a new approach to micromagnetic sorting that can achieve highly specific cell separation in unprocessed complex samples at a throughput (ϕ > 100 mL h(-1)) 100× greater than that of conventional microfluidics. To achieve this goal, we have devised a new approach to micromagnetic sorting, the magnetic nickel iron electroformed trap (MagNET), which enables high flow rates by having millions of micromagnetic traps operate in parallel. Our design rotates the conventional microfluidic approach by 90° to form magnetic traps at the edges of pores instead of in channels, enabling millions of the magnetic traps to be incorporated into a centimeter sized device. Unlike previous work, where magnetic structures were defined using conventional microfabrication, we take inspiration from soft lithography and create a master from which many replica electroformed magnetic micropore devices can be economically manufactured. These free-standing 12 μm thick permalloy (Ni80Fe20) films contain micropores of arbitrary shape and position, allowing the device to be tailored for maximal capture efficiency and throughput. We demonstrate MagNET's capabilities by fabricating devices with both circular and rectangular pores and use these devices to rapidly (ϕ = 180 mL h(-1)) and specifically sort rare tumor cells from white blood cells.
Collapse
Affiliation(s)
- Jina Ko
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Venkata Yelleswarapu
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Anup Singh
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Nishal Shah
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - David Issadore
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA. and Department of Electrical and Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
324
|
Brouwer A, De Laere B, Peeters D, Peeters M, Salgado R, Dirix L, Van Laere S. Evaluation and consequences of heterogeneity in the circulating tumor cell compartment. Oncotarget 2016; 7:48625-48643. [PMID: 26980749 PMCID: PMC5217044 DOI: 10.18632/oncotarget.8015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/18/2016] [Indexed: 02/06/2023] Open
Abstract
A growing understanding of the molecular biology of cancer and the identification of specific aberrations driving cancer evolution have led to the development of various targeted agents. Therapeutic decisions concerning these drugs are often guided by single biopsies of the primary tumor. Yet, it is well known that tumors can exhibit significant heterogeneity and change over time as a result of selective pressure. Circulating tumor cells (CTCs) are shed from various tumor sites and are thought to represent the molecular landscape of a patient's overall tumor burden. Moreover, a minimal-invasive liquid biopsy facilitates monitoring of clonal evolution during therapy pressure and disease progression in real-time. While more information becomes available regarding heterogeneity among CTCs, comparison between these studies is needed. In this review, we focus on the genomic and transcriptional heterogeneity found in the CTC compartment, and its significance for clinical decision making.
Collapse
Affiliation(s)
- Anja Brouwer
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
- Department of Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Bram De Laere
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Dieter Peeters
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
- Department of Pathology, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
- Department of Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Roberto Salgado
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
- Department of Pathology, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
- Breast Cancer Translational Research Laboratory, Jules Bordet Institute, Brussels, Belgium
| | - Luc Dirix
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
- Department of Oncology, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
| | - Steven Van Laere
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
325
|
Abstract
This review provides updated information published in 2014 regarding advances and major achievements in genitourinary cancer. Sections include the best in prostate cancer, renal cancer, bladder cancer, and germ cell tumors. In the field of prostate cancer, data related to treatment approach of hormone-sensitive disease, castrate-resistant prostate cancer, mechanisms of resistance, new drugs, and molecular research are presented. In relation to renal cancer, relevant aspects in the treatment of advanced renal cell carcinoma, immunotherapy, and molecular research, including angiogenesis and von Hippel-Lindau gene, molecular biology of non-clear cell histologies, and epigenetics of clear renal cell cancer are described. New strategies in the management of muscle-invasive localized bladder cancer and metastatic disease are reported as well as salient findings of biomolecular research in urothelial cancer. Some approaches intended to improve outcomes in poor prognosis patients with metastatic germ cell cancer are also reported. Results of clinical trials in these areas are discussed.
Collapse
|
326
|
Robust high-performance nanoliter-volume single-cell multiple displacement amplification on planar substrates. Proc Natl Acad Sci U S A 2016; 113:8484-9. [PMID: 27412862 DOI: 10.1073/pnas.1520964113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genomes of large numbers of single cells must be sequenced to further understanding of the biological significance of genomic heterogeneity in complex systems. Whole genome amplification (WGA) of single cells is generally the first step in such studies, but is prone to nonuniformity that can compromise genomic measurement accuracy. Despite recent advances, robust performance in high-throughput single-cell WGA remains elusive. Here, we introduce droplet multiple displacement amplification (MDA), a method that uses commercially available liquid dispensing to perform high-throughput single-cell MDA in nanoliter volumes. The performance of droplet MDA is characterized using a large dataset of 129 normal diploid cells, and is shown to exceed previously reported single-cell WGA methods in amplification uniformity, genome coverage, and/or robustness. We achieve up to 80% coverage of a single-cell genome at 5× sequencing depth, and demonstrate excellent single-nucleotide variant (SNV) detection using targeted sequencing of droplet MDA product to achieve a median allelic dropout of 15%, and using whole genome sequencing to achieve false and true positive rates of 9.66 × 10(-6) and 68.8%, respectively, in a G1-phase cell. We further show that droplet MDA allows for the detection of copy number variants (CNVs) as small as 30 kb in single cells of an ovarian cancer cell line and as small as 9 Mb in two high-grade serous ovarian cancer samples using only 0.02× depth. Droplet MDA provides an accessible and scalable method for performing robust and accurate CNV and SNV measurements on large numbers of single cells.
Collapse
|
327
|
Abstract
Single-cell sequencing (SCS) is a powerful new tool for investigating evolution and diversity in cancer and understanding the role of rare cells in tumor progression. These methods have begun to unravel key questions in cancer biology that have been difficult to address with bulk tumor measurements. Over the past five years, there has been extraordinary progress in technological developments and research applications, but these efforts represent only the tip of the iceberg. In the coming years, SCS will greatly improve our understanding of invasion, metastasis, and therapy resistance during cancer progression. These tools will also have direct translational applications in the clinic, in areas such as early detection, noninvasive monitoring, and guiding targeted therapy. In this perspective, I discuss the progress that has been made and the myriad of unexplored applications that still lie ahead in cancer research and medicine.
Collapse
Affiliation(s)
- Nicholas E Navin
- Department of Genetics, University of Texas, MD Anderson Cancer Center, Houston, Texas 77030, USA; Department of Bioinformatics and Computational Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas 77030, USA; Graduate Program in Genes and Development, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
328
|
Liquid biopsy: will it be the 'magic tool' for monitoring response of solid tumors to anticancer therapies? Curr Opin Oncol 2016; 27:560-7. [PMID: 26335664 DOI: 10.1097/cco.0000000000000223] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to highlight the recent advances (in the past 12 months) concerning circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) in oncology. RECENT FINDINGS The value of CTCs as a prognostic biomarker is now well validated in breast, colon, and prostate cancer, but no trial has yet demonstrated that modifying treatment according to CTCs is superior to standard of care. Ongoing trials are addressing the clinical utility of CTCs. Moreover, there is emerging evidence about the potential of CTCs as a tumor tissue source to analyze protein and RNA expression, DNA mutations and drug sensitivity. ctDNA is a specific biomarker associated with tumor burden, and small studies have shown an association with worse outcome; prospective clinical studies on the prognostic and predictive value of ctDNA are needed. ctDNA can be used for tumor molecular profiling, with the potential advantage to encompass the spectrum of mutations present in the tumor. SUMMARY CTCs and ctDNA are promising new biomarkers in oncology, with potential clinical applications for monitoring and for comprehensive molecular profiling of cancer. For each assay, demonstration of analytical and clinical validity, as well as clinical utility in prospective clinical trials is needed before implementation in clinical practice.
Collapse
|
329
|
Court CM, Ankeny JS, Sho S, Hou S, Li Q, Hsieh C, Song M, Liao X, Rochefort MM, Wainberg ZA, Graeber TG, Tseng HR, Tomlinson JS. Reality of Single Circulating Tumor Cell Sequencing for Molecular Diagnostics in Pancreatic Cancer. J Mol Diagn 2016; 18:688-696. [PMID: 27375074 DOI: 10.1016/j.jmoldx.2016.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/08/2016] [Accepted: 03/29/2016] [Indexed: 12/21/2022] Open
Abstract
To understand the potential and limitations of circulating tumor cell (CTC) sequencing for molecular diagnostics, we investigated the feasibility of identifying the ubiquitous KRAS mutation in single CTCs from pancreatic cancer (PC) patients. We used the NanoVelcro/laser capture microdissection CTC platform, combined with whole genome amplification and KRAS Sanger sequencing. We assessed both KRAS codon-12 coverage and the degree that allele dropout during whole genome amplification affected the detection of KRAS mutations from single CTCs. We isolated 385 single cells, 163 from PC cell lines and 222 from the blood of 12 PC patients, and obtained KRAS sequence coverage in 218 of 385 single cells (56.6%). For PC cell lines with known KRAS mutations, single mutations were detected in 67% of homozygous cells but only 37.4% of heterozygous single cells, demonstrating that both coverage and allele dropout are important causes of mutation detection failure from single cells. We could detect KRAS mutations in CTCs from 11 of 12 patients (92%) and 33 of 119 single CTCs sequenced, resulting in a KRAS mutation detection rate of 27.7%. Importantly, KRAS mutations were never found in the 103 white blood cells sequenced. Sequencing of groups of cells containing between 1 and 100 cells determined that at least 10 CTCs are likely required to reliably assess KRAS mutation status from CTCs.
Collapse
Affiliation(s)
- Colin M Court
- Department of Surgery, University of California Los Angeles, Los Angeles, California; Department of Surgery, Greater Los Angeles Veterans Affairs Administration, Los Angeles, California; Department of Molecular, Cellular, and Integrative Physiology, University of California Los Angeles, Los Angeles, California
| | - Jacob S Ankeny
- Department of Surgery, University of California Los Angeles, Los Angeles, California; Department of Surgery, Greater Los Angeles Veterans Affairs Administration, Los Angeles, California
| | - Shonan Sho
- Department of Surgery, University of California Los Angeles, Los Angeles, California; Department of Surgery, Greater Los Angeles Veterans Affairs Administration, Los Angeles, California
| | - Shuang Hou
- Department of Surgery, University of California Los Angeles, Los Angeles, California; Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California
| | - Qingyu Li
- Department of Surgery, University of California Los Angeles, Los Angeles, California
| | - Carolyn Hsieh
- Department of Surgery, University of California Los Angeles, Los Angeles, California
| | - Min Song
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California
| | - Xinfang Liao
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California
| | - Matthew M Rochefort
- Department of Surgery, University of California Los Angeles, Los Angeles, California; Department of Surgery, Greater Los Angeles Veterans Affairs Administration, Los Angeles, California
| | - Zev A Wainberg
- Center for Pancreatic Disease, University of California Los Angeles, Los Angeles, California
| | - Thomas G Graeber
- Department of Molecular, Cellular, and Integrative Physiology, University of California Los Angeles, Los Angeles, California; Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California
| | - James S Tomlinson
- Department of Surgery, University of California Los Angeles, Los Angeles, California; Department of Surgery, Greater Los Angeles Veterans Affairs Administration, Los Angeles, California; Center for Pancreatic Disease, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
330
|
Yee SS, Lieberman DB, Blanchard T, Rader J, Zhao J, Troxel AB, DeSloover D, Fox AJ, Daber RD, Kakrecha B, Sukhadia S, Belka GK, DeMichele AM, Chodosh LA, Morrissette JJD, Carpenter EL. A novel approach for next-generation sequencing of circulating tumor cells. Mol Genet Genomic Med 2016; 4:395-406. [PMID: 27468416 PMCID: PMC4947859 DOI: 10.1002/mgg3.210] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/16/2016] [Accepted: 02/01/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) of surgically resected solid tumor samples has become integral to personalized medicine approaches for cancer treatment and monitoring. Liquid biopsies, or the enrichment and characterization of circulating tumor cells (CTCs) from blood, can provide noninvasive detection of evolving tumor mutations to improve cancer patient care. However, the application of solid tumor NGS approaches to circulating tumor samples has been hampered by the low-input DNA available from rare CTCs. Moreover, whole genome amplification (WGA) approaches used to generate sufficient input DNA are often incompatible with blood collection tube preservatives used to facilitate clinical sample batching. METHODS To address this, we have developed a novel approach combining tumor cell isolation from preserved blood with Repli-G WGA and Illumina TruSeq Amplicon Cancer Panel-based NGS. We purified cell pools ranging from 10 to 1000 cells from three different cell lines, and quantitatively demonstrate comparable quality of DNA extracted from preserved versus unpreserved samples. RESULTS Preservation and WGA were compatible with the generation of high-quality libraries. Known point mutations and gene amplification were detected for libraries that had been prepared from amplified DNA from preserved blood. CONCLUSION These spiking experiments provide proof of concept of a clinically applicable workflow for real-time monitoring of patient tumor using noninvasive liquid biopsies.
Collapse
Affiliation(s)
- Stephanie S. Yee
- Department of MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
| | - David B. Lieberman
- Department of Pathology and Laboratory MedicineHospital of the University of PennsylvaniaPhiladelphiaPennsylvania
| | - Tatiana Blanchard
- Department of Cancer BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
- Abramson Family Cancer Research InstituteUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
| | - JulieAnn Rader
- Division of OncologyCenter for Childhood Cancer ResearchChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Jianhua Zhao
- Department of Pathology and Laboratory MedicineHospital of the University of PennsylvaniaPhiladelphiaPennsylvania
| | - Andrea B. Troxel
- Center for Clinical Epidemiology and BiostatisticsUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Abramson Cancer CenterUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
| | - Daniel DeSloover
- Department of Pathology and Laboratory MedicineHospital of the University of PennsylvaniaPhiladelphiaPennsylvania
| | - Alan J. Fox
- Department of Pathology and Laboratory MedicineHospital of the University of PennsylvaniaPhiladelphiaPennsylvania
| | - Robert D. Daber
- Department of Pathology and Laboratory MedicineHospital of the University of PennsylvaniaPhiladelphiaPennsylvania
| | - Bijal Kakrecha
- Department of MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
| | - Shrey Sukhadia
- Department of Pathology and Laboratory MedicineHospital of the University of PennsylvaniaPhiladelphiaPennsylvania
| | - George K. Belka
- Department of Cancer BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
- Abramson Family Cancer Research InstituteUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
| | - Angela M. DeMichele
- Department of MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
- Abramson Cancer CenterUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
| | - Lewis A. Chodosh
- Department of MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
- Department of Cancer BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
- Abramson Family Cancer Research InstituteUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
| | - Jennifer J. D. Morrissette
- Department of Pathology and Laboratory MedicineHospital of the University of PennsylvaniaPhiladelphiaPennsylvania
| | - Erica L. Carpenter
- Department of MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
- Abramson Cancer CenterUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania
| |
Collapse
|
331
|
Yoshino T, Tanaka T, Nakamura S, Negishi R, Hosokawa M, Matsunaga T. Manipulation of a Single Circulating Tumor Cell Using Visualization of Hydrogel Encapsulation toward Single-Cell Whole-Genome Amplification. Anal Chem 2016; 88:7230-7. [DOI: 10.1021/acs.analchem.6b01475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tomoko Yoshino
- Division of Biotechnology
and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology
and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Seita Nakamura
- Division of Biotechnology
and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ryo Negishi
- Division of Biotechnology
and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Masahito Hosokawa
- Division of Biotechnology
and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tadashi Matsunaga
- Division of Biotechnology
and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
332
|
Pramanik A, Vangara A, Viraka Nellore BP, Sinha SS, Chavva SR, Jones S, Ray PC. Development of Multifunctional Fluorescent-Magnetic Nanoprobes for Selective Capturing and Multicolor Imaging of Heterogeneous Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15076-85. [PMID: 27255574 PMCID: PMC4957586 DOI: 10.1021/acsami.6b03262] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/03/2016] [Indexed: 05/23/2023]
Abstract
Circulating tumor cells (CTC) are highly heterogeneous in nature due to epithelial-mesenchymal transition (EMT), which is the major obstacle for CTC analysis via "liquid biopsy". This article reports the development of a new class of multifunctional fluorescent-magnetic multicolor nanoprobes for targeted capturing and accurate identification of heterogeneous CTC. A facile design approach for the synthesis and characterization of bioconjugated multifunctonal nanoprobes that exhibit excellent magnetic properties and emit very bright and photostable multicolor fluorescence at red, green, and blue under 380 nm excitation is reported. Experimental data presented show that the multifunctional multicolor nanoprobes can be used for targeted capture and multicolor fluorescence mapping of heterogeneous CTC and can distinguish targeted CTC from nontargeted cells.
Collapse
|
333
|
Sample Preparation Methods Following CellSearch Approach Compatible of Single-Cell Whole-Genome Amplification: An Overview. Methods Mol Biol 2016; 1347:57-67. [PMID: 26374309 DOI: 10.1007/978-1-4939-2990-0_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Single cells are increasingly used to determine the heterogeneity of therapy targets in the genome during the course of a disease. The first challenge using single cells is to isolate these cells from the surrounding cells, especially when the targeted cells are rare. A number of techniques have been developed for this goal, each having specific limitations and possibilities. In this chapter, five of these techniques are discussed in the light of the isolation of circulating tumor cells (CTC) present at extremely low frequency in the blood of patients with metastatic cancer from the perspective of pre-enriched samples by means of CellSearch. The techniques described are micromanipulation, FACS, laser capture microdissection, DEPArray, and microfluidic solutions. All platforms are hampered with a low efficiency and differences in hands-on time and costs are the most important drivers for selection of the optimal platform.
Collapse
|
334
|
Chen JF, Zhu Y, Lu YT, Hodara E, Hou S, Agopian VG, Tomlinson JS, Posadas EM, Tseng HR. Clinical Applications of NanoVelcro Rare-Cell Assays for Detection and Characterization of Circulating Tumor Cells. Theranostics 2016; 6:1425-39. [PMID: 27375790 PMCID: PMC4924510 DOI: 10.7150/thno.15359] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/06/2016] [Indexed: 12/22/2022] Open
Abstract
Liquid biopsy of tumor through isolation of circulating tumor cells (CTCs) allows non-invasive, repetitive, and systemic sampling of disease. Although detecting and enumerating CTCs is of prognostic significance in metastatic cancer, it is conceivable that performing molecular and functional characterization on CTCs will reveal unprecedented insight into the pathogenic mechanisms driving lethal disease. Nanomaterial-embedded cancer diagnostic platforms, i.e., NanoVelcro CTC Assays represent a unique rare-cell sorting method that enables detection isolation, and characterization of CTCs in peripheral blood, providing an opportunity to noninvasively monitor disease progression in individual cancer patients. Over the past decade, a series of NanoVelcro CTC Assays has been demonstrated for exploring the full potential of CTCs as a clinical biomarker, including CTC enumeration, phenotyping, genotyping and expression profiling. In this review article, the authors will briefly introduce the development of three generations of NanoVelcro CTC Assays, and highlight the clinical applications of each generation for various types of solid cancers, including prostate cancer, pancreatic cancer, lung cancer, and melanoma.
Collapse
Affiliation(s)
- Jie-Fu Chen
- 1. Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yazhen Zhu
- 2. Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, California, USA;; 3. Department of Pathology, Guangdong Provincial Hospital of TCM, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Tsung Lu
- 1. Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Elisabeth Hodara
- 1. Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shuang Hou
- 3. Department of Pathology, Guangdong Provincial Hospital of TCM, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Vatche G Agopian
- 4. Department of Surgery, University of California, Los Angeles, Los Angeles, California, USA;; 5. Liver Transplantation and Hepatobiliary Surgery, University of California, Los Angeles, Los Angeles, California, USA
| | - James S Tomlinson
- 4. Department of Surgery, University of California, Los Angeles, Los Angeles, California, USA;; 6. Center for Pancreatic Disease, University of California, Los Angeles, Los Angeles, California, USA;; 7. Department of Surgery Greater Los Angeles Veteran's Affairs Administration, Los Angeles, California, USA
| | - Edwin M Posadas
- 1. Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hsian-Rong Tseng
- 2. Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
335
|
Wu J, Wei X, Gan J, Huang L, Shen T, Lou J, Liu B, Zhang JX, Qian K. Multifunctional Magnetic Particles for Combined Circulating Tumor Cells Isolation and Cellular Metabolism Detection. ADVANCED FUNCTIONAL MATERIALS 2016; 26:4016-4025. [PMID: 27524958 PMCID: PMC4978350 DOI: 10.1002/adfm.201504184] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We for the first time demonstrate multi-functional magnetic particles based rare cell isolation combined with the downstream laser desorption/ionization mass spectrometry (LDI-MS) to measure the metabolism of enriched circulating tumor cells (CTCs). The characterization of CTCs metabolism plays a significant role in understanding the tumor microenvironment, through exploring the diverse cellular process. However, characterizing cell metabolism is still challenging due to the low detection sensitivity, high sample complexity, and tedious preparation procedures, particularly for rare cells analysis in clinical study. Here we conjugate ferric oxide magnetic particles with anti-EpCAM on the surface for specific, efficient enrichment of CTCs from PBS and whole blood with cells concentration of 6-100 cells per mL. Moreover, these hydrophilic particles as matrix enable sensitive and selective LDI-MS detection of small metabolites (MW<500 Da) in complex bio-mixtures and can be further coupled with isotopic quantification to monitor selected molecules metabolism of ~50 CTCs. Our unique approach couples the immunomagnetic separation of CTCs and LDI-MS based metabolic analysis, which represents a key step forward for downstream metabolites analysis of rare cells to investigate the biological features of CTCs and their cellular responses in both pathological and physiological phenomena.
Collapse
Affiliation(s)
- Jiao Wu
- Center for Bio-Nano-Chips and Diagnostics in Translational Medicine (CBD), School of Biomedical Engineering, Med-X Research Institute and Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiang Wei
- Center for Bio-Nano-Chips and Diagnostics in Translational Medicine (CBD), School of Biomedical Engineering, Med-X Research Institute and Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jinrui Gan
- Department of Chemistry, Institute of Biomedical Sciences and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Lin Huang
- Center for Bio-Nano-Chips and Diagnostics in Translational Medicine (CBD), School of Biomedical Engineering, Med-X Research Institute and Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ting Shen
- NanoLite Systems, Austin, TX 78795, USA
| | - Jiatao Lou
- Center for Bio-Nano-Chips and Diagnostics in Translational Medicine (CBD), School of Biomedical Engineering, Med-X Research Institute and Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Baohong Liu
- Department of Chemistry, Institute of Biomedical Sciences and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - John X.J. Zhang
- Thayer School of Engineering, Dartmouth College, NH 03755, USA
| | - Kun Qian
- Center for Bio-Nano-Chips and Diagnostics in Translational Medicine (CBD), School of Biomedical Engineering, Med-X Research Institute and Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
336
|
Accuracy of Answers to Cell Lineage Questions Depends on Single-Cell Genomics Data Quality and Quantity. PLoS Comput Biol 2016; 12:e1004983. [PMID: 27295404 PMCID: PMC4905655 DOI: 10.1371/journal.pcbi.1004983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/13/2016] [Indexed: 11/26/2022] Open
Abstract
Advances in single-cell (SC) genomics enable commensurate improvements in methods for uncovering lineage relations among individual cells, as determined by phylogenetic analysis of the somatic mutations harbored by each cell. Theoretically, complete and accurate knowledge of the genome of each cell of an individual can produce an extremely accurate cell lineage tree of that individual. However, the reality of SC genomics is that such complete and accurate knowledge would be wanting, in quality and in quantity, for the foreseeable future. In this paper we offer a framework for systematically exploring the feasibility of answering cell lineage questions based on SC somatic mutational analysis, as a function of SC genomics data quality and quantity. We take into consideration the current limitations of SC genomics in terms of mutation data quality, most notably amplification bias and allele dropouts (ADO), as well as cost, which puts practical limits on mutation data quantity obtained from each cell as well as on cell sample density. We do so by generating in silico cell lineage trees using a dedicated formal language, eSTG, and show how the ability to answer correctly a cell lineage question depends on the quality and quantity of the SC mutation data. The presented framework can serve as a baseline for the potential of current SC genomics to unravel cell lineage dynamics, as well as the potential contributions of future advancement, both biochemical and computational, for the task. A human cell lineage tree describes the entire developmental dynamics of a person starting from the zygote and ending with each and every extant cell. Fundamental open problems in biology and medicine are in fact questions about the human cell lineage tree: its structure and its dynamics in development, growth, renewal, aging, and disease. Consequently, a method to know the human cell lineage tree would allow resolving these problems and enable a leapfrog advance in human knowledge and health. Recent advancements in single-cell genomics have the potential to uncover various properties of the human cell lineage tree and thus promote our understanding of various biological phenomena. In this paper we present a computational framework along with specific results, which enable to understand what can be achieved using the limitations of current technologies and predict future capabilities based on future improvements. This approach can serve as a valuable tool for researchers who plan to perform lineage experiments both in designing and optimizing the actual experimental needs and predicting the costs and limitations of the plan. This work can also help researchers focus on developing what is needed for future advancements.
Collapse
|
337
|
Single-Cell Sequencing Technology in Oncology: Applications for Clinical Therapies and Research. Anal Cell Pathol (Amst) 2016; 2016:9369240. [PMID: 27313981 PMCID: PMC4897661 DOI: 10.1155/2016/9369240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/12/2016] [Indexed: 12/30/2022] Open
Abstract
Cellular heterogeneity is a fundamental characteristic of many cancers. A lack of cellular homogeneity contributes to difficulty in designing targeted oncological therapies. Therefore, the development of novel methods to determine and characterize oncologic cellular heterogeneity is a critical next step in the development of novel cancer therapies. Single-cell sequencing (SCS) technology has been recently employed for analyzing the genetic polymorphisms of individual cells at the genome-wide level. SCS requires (1) precise isolation of the single cell of interest; (2) isolation and amplification of genetic material; and (3) descriptive analysis of genomic, transcriptomic, and epigenomic data. In addition to targeted analysis of single cells isolated from tumor biopsies, SCS technology may be applied to circulating tumor cells, which may aid in predicting tumor progression and metastasis. In this paper, we provide an overview of SCS technology and review the current literature on the potential application of SCS to clinical oncology and research.
Collapse
|
338
|
Hibsh D, Buetow KH, Yaari G, Efroni S. Quantification of read species behavior within whole genome sequencing of cancer genomes for the stratification and visualization of genomic variation. Nucleic Acids Res 2016; 44:e81. [PMID: 26809676 PMCID: PMC4872078 DOI: 10.1093/nar/gkw031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/11/2016] [Indexed: 11/13/2022] Open
Abstract
The cancer genome is abnormal genome, and the ability to monitor its sequence had undergone a technological revolution. Yet prognosis and diagnosis remain an expert-based decision, with only limited abilities to provide machine-based decisions. We introduce a heterogeneity-based method for stratifying and visualizing whole-genome sequencing (WGS) reads. This method uses the heterogeneity within WGS reads to markedly reduce the dimensionality of next-generation sequencing data; it is available through the tool HiBS (Heterogeneity-Based Subclassification) that allows cancer sample classification. We validated HiBS using >200 WGS samples from nine different cancer types from The Cancer Genome Atlas (TCGA). With HiBS, we show progress with two WGS related issues: (i) differentiation between normal (NB) and tumor (TP) samples based solely on the information structure of their WGS data, and (ii) identification of specific regions of chromosomal amplification/deletion and their association with tumor stage. By comparing results to those obtained through available WGS analyses tools, we demonstrate some of the novelties obtained by the approach implemented in HiBS and also show nearly perfect normal/tumor classification, used to identify known and unknown chromosomal aberrations. Finally, the HiBS index has been associated with breast cancer tumor stage.
Collapse
Affiliation(s)
- Dror Hibsh
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Kenneth H Buetow
- Computational Sciences and Informatics Program, Complex Adaptive Systems Initiative, Arizona State University, Tempe AZ 85281, USA
| | - Gur Yaari
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Sol Efroni
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
339
|
Forte VA, Barrak DK, Elhodaky M, Tung L, Snow A, Lang JE. The potential for liquid biopsies in the precision medical treatment of breast cancer. Cancer Biol Med 2016; 13:19-40. [PMID: 27144060 PMCID: PMC4850125 DOI: 10.28092/j.issn.2095-3941.2016.0007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Currently the clinical management of breast cancer relies on relatively few prognostic/predictive clinical markers (estrogen receptor, progesterone receptor, HER2), based on primary tumor biology. Circulating biomarkers, such as circulating tumor DNA (ctDNA) or circulating tumor cells (CTCs) may enhance our treatment options by focusing on the very cells that are the direct precursors of distant metastatic disease, and probably inherently different than the primary tumor's biology. To shift the current clinical paradigm, assessing tumor biology in real time by molecularly profiling CTCs or ctDNA may serve to discover therapeutic targets, detect minimal residual disease and predict response to treatment. This review serves to elucidate the detection, characterization, and clinical application of CTCs and ctDNA with the goal of precision treatment of breast cancer.
Collapse
Affiliation(s)
- Victoria A Forte
- Department of Medicine, Division of Medical Oncology, University of Southern California (USC), Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Dany K Barrak
- USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; Department of Surgery, Division of Breast, Endocrine and Soft Tissue Surgery, USC, Los Angeles, CA 90033, USA
| | - Mostafa Elhodaky
- USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; Department of Stem Cell and Regenerative Medicine, USC, Los Angeles, CA 90033, USA
| | - Lily Tung
- USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; Department of Surgery, Division of Breast, Endocrine and Soft Tissue Surgery, USC, Los Angeles, CA 90033, USA
| | - Anson Snow
- Department of Medicine, Division of Medical Oncology, University of Southern California (USC), Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Julie E Lang
- USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; Department of Surgery, Division of Breast, Endocrine and Soft Tissue Surgery, USC, Los Angeles, CA 90033, USA
| |
Collapse
|
340
|
Adams DL, Adams DK, Stefansson S, Haudenschild C, Martin SS, Charpentier M, Chumsri S, Cristofanilli M, Tang CM, Alpaugh RK. Mitosis in circulating tumor cells stratifies highly aggressive breast carcinomas. Breast Cancer Res 2016; 18:44. [PMID: 27142282 PMCID: PMC4855427 DOI: 10.1186/s13058-016-0706-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/19/2016] [Indexed: 12/14/2022] Open
Abstract
Background Enumeration of circulating tumor cells (CTCs) isolated from the peripheral blood of breast cancer patients holds promise as a clinically relevant, minimally invasive diagnostic test. However, CTC utility has been limited as a prognostic indicator of survival by the inability to stratify patients beyond general enumeration. In comparison, histological biopsy examinations remain the standard method for confirming malignancy and grading malignant cells, allowing for cancer identification and then assessing patient cohorts for prognostic and predictive value. Typically, CTC identification relies on immunofluorescent staining assessed as absent/present, which is somewhat subjective and limited in its ability to characterize these cells. In contrast, the physical features used in histological cytology comprise the gold standard method used to identify and preliminarily characterize the cancer cells. Here, we superimpose the methods, cytologically subtyping CTCs labeled with immunohistochemical fluorescence stains to improve their prognostic value in relation to survival. Methods In this single-blind prospective pilot study, we tracked 36 patients with late-stage breast cancer over 24 months to compare overall survival between simple CTC enumeration and subtyping mitotic CTCs. A power analysis (1-β = 0. 9, α = 0.05) determined that a pilot size of 30 patients was sufficient to stratify this patient cohort; 36 in total were enrolled. Results Our results confirmed that CTC number is a prognostic indicator of patient survival, with a hazard ratio 5.2, p = 0.005 (95 % CI 1.6–16.5). However, by simply subtyping the same population based on CTCs in cytological mitosis, the hazard ratio increased dramatically to 11.1, p < 0.001 (95 % CI 3.1–39.7). Conclusions Our data suggest that (1) mitotic CTCs are relativity common in aggressive late-stage breast cancer, (2) mitotic CTCs may significantly correlate with shortened overall survival, and (3) larger and more defined patient cohort studies are clearly called for based on this initial pilot study. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0706-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel L Adams
- Creatv MicroTech, Inc., 11 Deer Park Dr., Monmouth Junction, NJ, 08852, USA.
| | - Diane K Adams
- Rutgers, the State University of New Jersey, 71 Dudley Rd, New Brunswick, NJ, 08901, USA
| | | | - Christian Haudenschild
- George Washington University Medical Center, 2121 Eye Street, NW, Washington, DC, 20052, USA
| | - Stuart S Martin
- University of Maryland Baltimore Greenebaum Cancer Center, 655 W. Baltimore St., Baltimore, MD, 21136, USA
| | - Monica Charpentier
- University of Maryland Baltimore Greenebaum Cancer Center, 655 W. Baltimore St., Baltimore, MD, 21136, USA
| | - Saranya Chumsri
- University of Maryland Baltimore Greenebaum Cancer Center, 655 W. Baltimore St., Baltimore, MD, 21136, USA.,Mayo Clinic Cancer Center, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA
| | - Massimo Cristofanilli
- Robert H Lurie Comprehensive Cancer Center, Northwestern University, 645 N Michigan Avenue, Chicago, IL, 60611, USA
| | - Cha-Mei Tang
- Creatv MicroTech, Inc., 11609 Lake Potomac Drive, Potomac, MD, 20854, USA
| | - R Katherine Alpaugh
- Fox Chase Cancer Center, Protocol Support Laboratory, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| |
Collapse
|
341
|
Jeong HH, Lee B, Jin SH, Jeong SG, Lee CS. A highly addressable static droplet array enabling digital control of a single droplet at pico-volume resolution. LAB ON A CHIP 2016; 16:1698-707. [PMID: 27075732 DOI: 10.1039/c6lc00212a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Droplet-based microfluidics enabling exquisite liquid-handling has been developed for diagnosis, drug discovery and quantitative biology. Compartmentalization of samples into a large number of tiny droplets is a great approach to perform multiplex assays and to improve reliability and accuracy using a limited volume of samples. Despite significant advances in microfluidic technology, individual droplet handling in pico-volume resolution is still a challenge in obtaining more efficient and varying multiplex assays. We present a highly addressable static droplet array (SDA) enabling individual digital manipulation of a single droplet using a microvalve system. In a conventional single-layer microvalve system, the number of microvalves required is dictated by the number of operation objects; thus, individual trap-and-release on a large-scale 2D array format is highly challenging. By integrating double-layer microvalves, we achieve a "balloon" valve that preserves the pressure-on state under released pressure; this valve can allow the selective releasing and trapping of 7200 multiplexed pico-droplets using only 1 μL of sample without volume loss. This selectivity and addressability completely arranged only single-cell encapsulated droplets from a mixture of droplet compositions via repetitive selective trapping and releasing. Thus, it will be useful for efficient handling of miniscule volumes of rare or clinical samples in multiplex or combinatory assays, and the selective collection of samples.
Collapse
Affiliation(s)
- Heon-Ho Jeong
- Department of Chemical Engineering, Chungnam National University, Daejeon, Republic of Korea.
| | - Byungjin Lee
- Department of Chemical Engineering, Chungnam National University, Daejeon, Republic of Korea.
| | - Si Hyung Jin
- Department of Chemical Engineering, Chungnam National University, Daejeon, Republic of Korea.
| | - Seong-Geun Jeong
- Department of Chemical Engineering, Chungnam National University, Daejeon, Republic of Korea.
| | - Chang-Soo Lee
- Department of Chemical Engineering, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
342
|
Lowe AC, Pignon JC, Carvo I, Drage MG, Constantine NM, Jones N, Kroll Y, Frank DA, Signoretti S, Cibas ES. Young investigator challenge: Application of cytologic techniques to circulating tumor cell specimens: Detecting activation of the oncogenic transcription factor STAT3. Cancer Cytopathol 2016; 123:696-706. [PMID: 26671736 DOI: 10.1002/cncy.21640] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/17/2015] [Accepted: 10/06/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND The circulating tumor cell (CTC) field is rapidly advancing with the advent of continuously improving technologies for enriching these rare neoplastic cells from blood. CTC enumeration provides prognostic information, and CTC characterization has the potential to provide more useful information for the clinical decision-making process in this era of personalized medicine and targeted therapeutics. Proof-of-principle studies have shown that CTC samples can be characterized with a variety of techniques in the research laboratory environment. The goal of the current study was to validate routine cytologic techniques and immunohistochemical markers in CTC samples in a clinical cytology laboratory, using inducible phosphorylated signal transducer and activator of transcription 3 (pSTAT3) as a clinically important example and Ki-67 as a positive control. METHODS Whole blood from noncancer patients was spiked with breast cancer cell lines with constitutive or inducible pSTAT3 expression and underwent CTC processing in the CellSearch system. The resulting CTC samples were subjected to various cytologic/immunocytochemical techniques and were compared with non-CTC-processed cultured cell controls. RESULTS CTC-processed samples showed a morphology comparable to that of controls in cytospin, ThinPrep, and cell block preparations. Immunocytochemistry for Ki-67 and pSTAT3 provided biological information from CTC samples, showing uniform Ki-67 staining across all samples, pSTAT3 positivity in the constitutive and induced cells, and an absence of pSTAT3 expression in the noninduced cells, as expected. CONCLUSIONS CTC samples can be processed in the cytology laboratory with routine methods. CTC morphologic and immunophenotypic analysis can be easily integrated into the existing clinical workflow, moving the field closer to a true peripheral blood liquid biopsy for cancer patients.
Collapse
Affiliation(s)
- Alarice C Lowe
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | | | - Ingrid Carvo
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michael G Drage
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | | | - Nichole Jones
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yasmin Kroll
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David A Frank
- Harvard Medical School, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Edmund S Cibas
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
343
|
Ross EM, Markowetz F. OncoNEM: inferring tumor evolution from single-cell sequencing data. Genome Biol 2016; 17:69. [PMID: 27083415 PMCID: PMC4832472 DOI: 10.1186/s13059-016-0929-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 11/17/2022] Open
Abstract
Single-cell sequencing promises a high-resolution view of genetic heterogeneity and clonal evolution in cancer. However, methods to infer tumor evolution from single-cell sequencing data lag behind methods developed for bulk-sequencing data. Here, we present OncoNEM, a probabilistic method for inferring intra-tumor evolutionary lineage trees from somatic single nucleotide variants of single cells. OncoNEM identifies homogeneous cellular subpopulations and infers their genotypes as well as a tree describing their evolutionary relationships. In simulation studies, we assess OncoNEM's robustness and benchmark its performance against competing methods. Finally, we show its applicability in case studies of muscle-invasive bladder cancer and essential thrombocythemia.
Collapse
Affiliation(s)
- Edith M Ross
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, UK
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, UK.
| |
Collapse
|
344
|
Saadatpour A, Lai S, Guo G, Yuan GC. Single-Cell Analysis in Cancer Genomics. Trends Genet 2016; 31:576-586. [PMID: 26450340 DOI: 10.1016/j.tig.2015.07.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/26/2015] [Accepted: 07/20/2015] [Indexed: 02/04/2023]
Abstract
Genetic changes and environmental differences result in cellular heterogeneity among cancer cells within the same tumor, thereby complicating treatment outcomes. Recent advances in single-cell technologies have opened new avenues to characterize the intra-tumor cellular heterogeneity, identify rare cell types, measure mutation rates, and, ultimately, guide diagnosis and treatment. In this paper we review the recent single-cell technological and computational advances at the genomic, transcriptomic, and proteomic levels, and discuss their applications in cancer research.
Collapse
Affiliation(s)
- Assieh Saadatpour
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shujing Lai
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
345
|
Cai X, Janku F, Zhan Q, Fan JB. Accessing Genetic Information with Liquid Biopsies. Trends Genet 2016; 31:564-575. [PMID: 26450339 DOI: 10.1016/j.tig.2015.06.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 12/18/2022]
Abstract
Recent scientific advances in understanding circulating tumor cells, cell-free DNA/RNA, and exosomes in blood have laid a solid foundation for the development of routine molecular 'liquid biopsies'. This approach provides non-invasive access to genetic information--somatic mutations, epigenetic changes, and differential expression--about the physiological conditions of our body and diseases. It opens a valuable avenue for future genetic studies and human disease diagnosis, including prenatal and neurodegenerative disease diagnosis, as well as for cancer screening and monitoring. With the rapid development of highly sensitive and accurate technologies such as next-generation sequencing, molecular 'liquid biopsies' will quickly become a central piece in the future of precision medicine.
Collapse
Affiliation(s)
- Xuyu Cai
- Oncology, Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Filip Janku
- The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Jian-Bing Fan
- Oncology, Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA.
| |
Collapse
|
346
|
|
347
|
Onstenk W, de Klaver W, de Wit R, Lolkema M, Foekens J, Sleijfer S. The use of circulating tumor cells in guiding treatment decisions for patients with metastatic castration-resistant prostate cancer. Cancer Treat Rev 2016; 46:42-50. [PMID: 27107266 DOI: 10.1016/j.ctrv.2016.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 02/01/2023]
Abstract
The therapeutic landscape of metastatic castration-resistant prostate cancer (mCRPC) has drastically changed over the past decade with the advent of several new anti-tumor agents. Oncologists increasingly face dilemmas concerning the best treatment sequence for individual patients since most of the novel compounds have been investigated and subsequently positioned either pre- or post-docetaxel. A currently unmet need exists for biomarkers able to guide treatment decisions and to capture treatment resistance at an early stage thereby allowing for an early change to an alternative strategy. Circulating tumor cells (CTCs) have in this context intensively been investigated over the last years. The CTC count, as determined by the CellSearch System (Janssen Diagnostics LLC, Raritan, NJ), is a strong, independent prognostic factor for overall survival in patients with mCRPC at various time points during treatment and, as an early response marker, outperforms traditional response evaluations using serum prostate specific antigen (PSA) levels, scintigraphy as well as radiography. The focus of research is now shifting toward the predictive value of CTCs and the use of the characterization of CTCs to guide the selection of treatments with the highest chance of success for individual patients. Recently, the presence of the androgen receptor splice variant 7 (AR-V7) has been shown to be a promising predictive factor. In this review, we have explored the clinical value of the enumeration and characterization of CTCs for the treatment of mCRPC and have put the results obtained from recent studies investigating the prognostic and predictive value of CTCs into clinical perspective.
Collapse
Affiliation(s)
- Wendy Onstenk
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Willemijn de Klaver
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ronald de Wit
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martijn Lolkema
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John Foekens
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stefan Sleijfer
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
348
|
Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, Prickett TD, Gartner JJ, Crystal JS, Roberts IM, Trebska-McGowan K, Wunderlich JR, Yang JC, Rosenberg SA. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med 2016; 22:433-8. [PMID: 26901407 PMCID: PMC7446107 DOI: 10.1038/nm.4051] [Citation(s) in RCA: 664] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/26/2016] [Indexed: 01/10/2023]
Abstract
Detection of lymphocytes that target tumor-specific mutant neoantigens--derived from products encoded by mutated genes in the tumor--is mostly limited to tumor-resident lymphocytes, but whether these lymphocytes often occur in the circulation is unclear. We recently reported that intratumoral expression of the programmed cell death 1 (PD-1) receptor can guide the identification of the patient-specific repertoire of tumor-reactive CD8(+) lymphocytes that reside in the tumor. In view of these findings, we investigated whether PD-1 expression on peripheral blood lymphocytes could be used as a biomarker to detect T cells that target neoantigens. By using a high-throughput personalized screening approach, we identified neoantigen-specific lymphocytes in the peripheral blood of three of four melanoma patients. Despite their low frequency in the circulation, we found that CD8(+)PD-1(+), but not CD8(+)PD-1(-), cell populations had lymphocytes that targeted 3, 3 and 1 unique, patient-specific neoantigens, respectively. We show that neoantigen-specific T cells and gene-engineered lymphocytes expressing neoantigen-specific T cell receptors (TCRs) isolated from peripheral blood recognized autologous tumors. Notably, the tumor-antigen specificities and TCR repertoires of the circulating and tumor-infiltrating CD8(+)PD-1(+) cells appeared similar, implying that the circulating CD8(+)PD-1(+) lymphocytes could provide a window into the tumor-resident antitumor lymphocytes. Thus, expression of PD-1 identifies a diverse and patient-specific antitumor T cell response in peripheral blood, providing a novel noninvasive strategy to develop personalized therapies using neoantigen-reactive lymphocytes or TCRs to treat cancer.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, Neoplasm/blood
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cell Line, Tumor
- Female
- Humans
- Immunotherapy
- Lymphocytes/immunology
- Lymphocytes/pathology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Male
- Melanoma/blood
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/therapy
- Middle Aged
- Programmed Cell Death 1 Receptor/blood
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Prospective Studies
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Alena Gros
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Maria R Parkhurst
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Eric Tran
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Anna Pasetto
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Paul F Robbins
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Sadia Ilyas
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Todd D Prickett
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Jared J Gartner
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Jessica S Crystal
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Ilana M Roberts
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Kasia Trebska-McGowan
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - John R Wunderlich
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - James C Yang
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute (NCI), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
349
|
Van Etten JL, Dehm SM. Clonal origin and spread of metastatic prostate cancer. Endocr Relat Cancer 2016; 23:R207-17. [PMID: 27000662 PMCID: PMC4895916 DOI: 10.1530/erc-16-0049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/17/2016] [Indexed: 12/24/2022]
Abstract
Metastatic disease is responsible for the majority of prostate cancer deaths. The standard treatment for metastatic disease is surgical or chemical castration in the form of androgen deprivation therapy. Despite initial success and disease regression, resistance to therapy ultimately develops and the disease transitions to castration-resistant prostate cancer, which is uniformly fatal. Thus, developing an understanding of genetic evolution in metastasis and in response to therapy has been a focus of recent studies. Large-scale sequencing studies have provided an expansive catalog of the mutation events that occur in the prostate cancer genome at various stages of disease progression. Small-scale studies have interrogated the genomic composition of multiple metastatic sites within individual patients or have tracked clonal evolution longitudinally in tissues, circulating tumor cells, or circulating tumor DNA. Collectively, these efforts have provided a new conceptual framework for understanding the origin of prostate cancer, as well as the origin and evolution of metastatic disease. In this review, we highlight these recent insights into the spatiotemporal landscape of genetic evolution of prostate cancer.
Collapse
Affiliation(s)
| | - Scott M Dehm
- Masonic Cancer CenterUniversity of Minnesota, Minneapolis, MN, USA Department of Laboratory Medicine and PathologyUniversity of Minnesota, Minneapolis, MN, USA Department of UrologyUniversity of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
350
|
Cho WJ, Oliveira DSM, Najy AJ, Mainetti LE, Aoun HD, Cher ML, Heath E, Kim HRC, Bonfil RD. Gene expression analysis of bone metastasis and circulating tumor cells from metastatic castrate-resistant prostate cancer patients. J Transl Med 2016; 14:72. [PMID: 26975354 PMCID: PMC4791970 DOI: 10.1186/s12967-016-0829-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/05/2016] [Indexed: 01/15/2023] Open
Abstract
Background Characterization of genes linked to bone metastasis is critical for identification of novel prognostic or predictive biomarkers and potential therapeutic targets in metastatic castrate-resistant prostate cancer (mCRPC). Although bone marrow core biopsies (BMBx) can be obtained for gene profiling, the procedure itself is invasive and uncommon practice in mCRPC patients. Conversely, circulating tumor cells (CTCs), which are likely to stem from bone metastases, can be isolated from blood. The goals of this exploratory study were to establish a sensitive methodology to analyze gene expression in BMBx and CTCs, and to determine whether the presence or absence of detectable gene expression is concordant in matching samples from mCRPC patients. Methods The CellSearch® platform was used to enrich and enumerate CTCs. Low numbers of PC3 prostate cancer (PCa) cells were spiked into normal blood to assess cell recovery rate. RNA extracted from recovered PC3 cells was amplified using an Eberwine-based procedure to obtain antisense mRNA (aRNA), and assess the linearity of the RNA amplification method. In this pilot study, RNAs extracted from CTCs and PCa cells microdissected from formalin-fixed paraffin-embedded BMBx, were amplified to obtain aRNA and assess the expression of eight genes functionally relevant to PCa bone metastasis using RT-PCR. Results RNAs were successfully extracted from as few as 1–5 PCa cells in blood samples. The relative expression levels of reference genes were maintained after RNA amplification. The integrity of the amplified RNA was also demonstrated by RT-PCR analysis using primer sets that target the 5′-end, middle, and 3′-end of reference mRNA. We found that in 21 out of 28 comparisons, the presence or absence of detectable gene expression in CTCs and PCa cells microdissected from single bone lesions of the same patients was concordant. Conclusions This exploratory analysis suggests that aRNA amplification through in vitro transcription may be useful as a method to detect gene expression in small numbers of CTCs and tumor cells microdissected from bone metastatic lesions. In some cases, gene expression in CTCs and BMBxs was not concordant, raising questions about using CTC gene expression to make clinical decisions. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0829-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Won Jin Cho
- Department of Urology, Wayne State University School of Medicine and Karmanos Cancer Institute, 540 E. Canfield, Scott Hall # 9105, Detroit, MI, 4820, USA
| | - Daniel S M Oliveira
- Department of Urology, Wayne State University School of Medicine and Karmanos Cancer Institute, 540 E. Canfield, Scott Hall # 9105, Detroit, MI, 4820, USA
| | - Abdo J Najy
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA
| | - Leandro E Mainetti
- Department of Urology, Wayne State University School of Medicine and Karmanos Cancer Institute, 540 E. Canfield, Scott Hall # 9105, Detroit, MI, 4820, USA
| | - Hussein D Aoun
- Department of Radiology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA
| | - Michael L Cher
- Department of Urology, Wayne State University School of Medicine and Karmanos Cancer Institute, 540 E. Canfield, Scott Hall # 9105, Detroit, MI, 4820, USA.,Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA
| | - Elisabeth Heath
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA
| | - Hyeong-Reh C Kim
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA
| | - R Daniel Bonfil
- Department of Urology, Wayne State University School of Medicine and Karmanos Cancer Institute, 540 E. Canfield, Scott Hall # 9105, Detroit, MI, 4820, USA. .,Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA. .,Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|