301
|
Gertow K, Sennblad B, Strawbridge RJ, Ohrvik J, Zabaneh D, Shah S, Veglia F, Fava C, Kavousi M, McLachlan S, Kivimäki M, Bolton JL, Folkersen L, Gigante B, Leander K, Vikström M, Larsson M, Silveira A, Deanfield J, Voight BF, Fontanillas P, Sabater-Lleal M, Colombo GI, Kumari M, Langenberg C, Wareham NJ, Uitterlinden AG, Gabrielsen A, Hedin U, Franco-Cereceda A, Nyyssönen K, Rauramaa R, Tuomainen TP, Savonen K, Smit AJ, Giral P, Mannarino E, Robertson CM, Talmud PJ, Hedblad B, Hofman A, Erdmann J, Reilly MP, O'Donnell CJ, Farrall M, Clarke R, Franzosi MG, Seedorf U, Syvänen AC, Hansson GK, Eriksson P, Samani NJ, Watkins H, Price JF, Hingorani AD, Melander O, Witteman JCM, Baldassarre D, Tremoli E, de Faire U, Humphries SE, Hamsten A. Identification of the BCAR1-CFDP1-TMEM170A locus as a determinant of carotid intima-media thickness and coronary artery disease risk. CIRCULATION. CARDIOVASCULAR GENETICS 2012; 5:656-65. [PMID: 23152477 DOI: 10.1161/circgenetics.112.963660] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Carotid intima-media thickness (cIMT) is a widely accepted marker of subclinical atherosclerosis. To date, large-scale investigations of genetic determinants of cIMT are sparse. METHODS AND RESULTS To identify cIMT-associated genes and genetic variants, a discovery analysis using the Illumina 200K CardioMetabochip was conducted in 3430 subjects with detailed ultrasonographic determinations of cIMT from the IMPROVE (Carotid Intima Media Thickness [IMT] and IMT-Progression as Predictors of Vascular Events in a High Risk European Population) study. Segment-specific IMT measurements of common carotid, bifurcation, and internal carotid arteries, and composite IMT variables considering the whole carotid tree (IMT(mean), IMT(max), and IMT(mean-max)), were analyzed. A replication stage investigating 42 single-nucleotide polymorphisms for association with common carotid IMT was undertaken in 5 independent European cohorts (total n=11,590). A locus on chromosome 16 (lead single-nucleotide polymorphism rs4888378, intronic in CFDP1) was associated with cIMT at significance levels passing multiple testing correction at both stages (array-wide significant discovery P=6.75 × 10(-7) for IMT(max); replication P=7.24×10(-6) for common cIMT; adjustments for sex, age, and population substructure where applicable; minor allele frequency 0.43 and 0.41, respectively). The protective minor allele was associated with lower carotid plaque score in a replication cohort (P=0.04, n=2120) and lower coronary artery disease risk in 2 case-control studies of subjects with European ancestry (odds ratio [95% confidence interval] 0.83 [0.77-0.90], P=6.53 × 10(-6), n=13 591; and 0.95 [0.92-0.98], P=1.83 × 10(-4), n=82 297, respectively). Queries of human biobank data sets revealed associations of rs4888378 with nearby gene expression in vascular tissues (n=126-138). CONCLUSIONS This study identified rs4888378 in the BCAR1-CFDP1-TMEM170A locus as a novel genetic determinant of cIMT and coronary artery disease risk in individuals of European descent.
Collapse
Affiliation(s)
- Karl Gertow
- Atherosclerosis Research Unit, Karolinska University Hospital Solna, Center for Molecular Medicine, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Velez Edwards DR, Naj AC, Monda K, North KE, Neuhouser M, Magvanjav O, Kusimo I, Vitolins MZ, Manson JE, O'Sullivan MJ, Rampersaud E, Edwards TL. Gene-environment interactions and obesity traits among postmenopausal African-American and Hispanic women in the Women's Health Initiative SHARe Study. Hum Genet 2012. [PMID: 23192594 DOI: 10.1007/s00439-012-1246-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome-wide association studies (GWAS) of obesity measures have identified associations with single nucleotide polymorphisms (SNPs). However, no large-scale evaluation of gene-environment interactions has been performed. We conducted a search of gene-environment (G × E) interactions in post-menopausal African-American and Hispanic women from the Women's Health Initiative SNP Health Association Resource GWAS study. Single SNP linear regression on body mass index (BMI) and waist-to-hip circumference ratio (WHR) adjusted for multidimensional-scaling-derived axes of ancestry and age was run in race-stratified data with 871,512 SNPs available from African-Americans (N = 8,203) and 786,776 SNPs from Hispanics (N = 3,484). Tests of G × E interaction at all SNPs for recreational physical activity (m h/week), dietary energy intake (kcal/day), alcohol intake (categorical), cigarette smoking years, and cigarette smoking (ever vs. never) were run in African-Americans and Hispanics adjusted for ancestry and age at interview, followed by meta-analysis of G × E interaction terms. The strongest evidence for concordant G × E interactions in African-Americans and Hispanics was for smoking and marker rs10133840 (Q statistic P = 0.70, beta = -0.01, P = 3.81 × 10(-7)) with BMI as the outcome. The strongest evidence for G × E interaction within a cohort was in African-Americans with WHR as outcome for dietary energy intake and rs9557704 (SNP × kcal = -0.04, P = 2.17 × 10(-7)). No results exceeded the Bonferroni-corrected statistical significance threshold.
Collapse
Affiliation(s)
- Digna R Velez Edwards
- Center for Human Genetics Research, Vanderbilt Epidemiology Center Institute of Medicine and Public Health, Vanderbilt University, 2525 West End Avenue, Suite 600 6th fl, Nashville, TN 37203, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Custovic A, Marinho S, Simpson A. Gene-environment interactions in the development of asthma and atopy. Expert Rev Respir Med 2012; 6:301-8. [PMID: 22788944 DOI: 10.1586/ers.12.24] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asthma is a complex multifactorial disorder involving a variety of different mechanisms. Little has changed in asthma treatment over the past five decades. There is evidence for a strong genetic component of asthma, but genetic studies have produced heterogeneous results with little replication, with most of the heritability remaining unexplained. The rapid increase in asthma prevalence over a short time period suggests that environmental exposures play an important role, but there is a considerable heterogeneity in the results describing the effect of different environmental exposures. There are many reasons for the lack of replication in genetic association studies and those of environmental exposures. These include the failure to consider that asthma may arise as a consequence of environmental factors, modulating the risk in genetically susceptible individuals via gene-environment interactions. In addition, many studies rely on oversimplified phenotypes often derived through aggregation of several heterogeneous conditions (e.g., 'physician-diagnosed asthma').
Collapse
Affiliation(s)
- Adnan Custovic
- The University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester, M23 9LT, UK.
| | | | | |
Collapse
|
304
|
Wang X, Ward PA. Opportunities and challenges of disease biomarkers: a new section in the Journal of Translational Medicine. J Transl Med 2012; 10:220. [PMID: 23134706 PMCID: PMC3528640 DOI: 10.1186/1479-5876-10-220] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 11/05/2012] [Indexed: 11/10/2022] Open
|
305
|
Berndt A, Leme AS, Shapiro SD. Emerging genetics of COPD. EMBO Mol Med 2012; 4:1144-55. [PMID: 23090857 PMCID: PMC3494872 DOI: 10.1002/emmm.201100627] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 08/27/2012] [Accepted: 09/12/2012] [Indexed: 12/03/2022] Open
Abstract
Since the discovery of alpha-1 antitrypsin in the early 1960s, several new genes have been suggested to play a role in chronic obstructive pulmonary disease (COPD) pathogenesis. Yet, in spite of those advances, much about the genetic basis of COPD still remains to be discovered. Unbiased approaches, such as genome-wide association (GWA) studies, are critical to identify genes and pathways and to verify suggested genetic variants. Indeed, most of our current understanding about COPD candidate genes originates from GWA studies. Experiments in form of cross-study replications and advanced meta-analyses have propelled the field towards unravelling details about COPD's pathogenesis. Here, we review the discovery of genetic variants in association with COPD phenotypes by discussing the available approaches and current findings. Limitations of current studies are considered and future directions provided.
Collapse
Affiliation(s)
- Annerose Berndt
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, PA, USA.
| | | | | |
Collapse
|
306
|
Abstract
Lysine acetylation refers to transfer of the acetyl moiety from acetyl-CoA to the ε-amino group of a lysine residue on a protein. This has recently emerged as a major covalent modification and interplays with other modifications, such as phosphorylation, methylation, ubiquitination (addition of a small protein called ubiquitin) and SUMOylation [addition of a ubiquitin-like protein known as SUMO (small ubiquitin-related modifier)], to form multisite modification programmes for cellular regulation in diverse organisms. This modification is post-translational (i.e. after synthesis of a protein) and reversible, with its level being dynamically balanced by two groups of enzymes known as lysine acetyltransferases and deacetylases. The acetyltransferases belong to three major families, whereas deacetylases have been divided into the classical and sirtuin [Sir-tu-in, for Sir2 (silent information regulator 2)-like protein; named after the yeast protein Sir2] families. In addition to these enzymes, proteins containing the bromodomain, a protein module named after the fly protein Brahma (God of creation in Hindu), are relevant to lysine acetylation biology due to their ability to recognize acetyl-lysine-containing peptides. Importantly, recent studies have made intimate links between these three different groups of proteins to different pathological conditions. In this chapter, we provide a brief overview of these proteins and emphasize their direct links to related human diseases.
Collapse
|
307
|
Lange NE, Sordillo J, Tarantini L, Bollati V, Sparrow D, Vokonas P, Zanobetti A, Schwartz J, Baccarelli A, Litonjua AA, DeMeo DL. Alu and LINE-1 methylation and lung function in the normative ageing study. BMJ Open 2012; 2:e001231. [PMID: 23075571 PMCID: PMC3488751 DOI: 10.1136/bmjopen-2012-001231] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 09/06/2012] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES To investigate the association between methylation of transposable elements Alu and long-interspersed nuclear elements (LINE-1) and lung function. DESIGN Cohort study. SETTING Outpatient Veterans Administration facilities in greater Boston, Massachusetts, USA. PARTICIPANTS Individuals from the Veterans Administration Normative Aging Study, a longitudinal study of aging in men, evaluated between 1999 and 2007. The majority (97%) were white. PRIMARY AND SECONDARY OUTCOME MEASURES Primary predictor was methylation, assessed using PCR-pyrosequencing after bisulphite treatment. Primary outcome was lung function as assessed by spirometry, performed according to American Thoracic Society/European Respiratory Society guidelines at the same visit as the blood draws. RESULTS In multivariable models adjusted for age, height, body mass index (BMI), pack-years of smoking, current smoking and race, Alu hypomethylation was associated with lower forced expiratory volume in 1 s (FEV(1)) (β=28 ml per 1% change in Alu methylation, p=0.017) and showed a trend towards association with a lower forced vital capacity (FVC) (β=27 ml, p=0.06) and lower FEV(1)/FVC (β=0.3%, p=0.058). In multivariable models adjusted for age, height, BMI, pack-years of smoking, current smoking, per cent lymphocytes, race and baseline lung function, LINE-1 hypomethylation was associated with more rapid decline of FEV(1) (β=6.9 ml/year per 1% change in LINE-1 methylation, p=0.005) and of FVC (β=9.6 ml/year, p=0.002). CONCLUSIONS In multiple regression analysis, Alu hypomethylation was associated with lower lung function, and LINE-1 hypomethylation was associated with more rapid lung function decline in a cohort of older and primarily white men from North America. Future studies should aim to replicate these findings and determine if Alu or LINE-1 hypomethylation may be due to specific and modifiable environmental exposures.
Collapse
Affiliation(s)
- Nancy E Lange
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine Harvard Medical School, Boston, Massachusetts, USA
| | - Joanne Sordillo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine Harvard Medical School, Boston, Massachusetts, USA
| | - Letizia Tarantini
- Department of Environmental and Occupational Health, Center of Molecular and Genetic Epidemiology, Università degli Studi di Milano and IRCCS Maggiore Policlinico Hospital, Milan, Italy
| | - Valentina Bollati
- Department of Environmental and Occupational Health, Center of Molecular and Genetic Epidemiology, Università degli Studi di Milano and IRCCS Maggiore Policlinico Hospital, Milan, Italy
| | - David Sparrow
- Veterans Administration Boston Healthcare System and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Pantel Vokonas
- Veterans Administration Boston Healthcare System and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Andrea Baccarelli
- Department of Environmental and Occupational Health, Center of Molecular and Genetic Epidemiology, Università degli Studi di Milano and IRCCS Maggiore Policlinico Hospital, Milan, Italy
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Augusto A Litonjua
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine Harvard Medical School, Boston, Massachusetts, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
308
|
Wilk JB, Shrine NRG, Loehr LR, Zhao JH, Manichaikul A, Lopez LM, Smith AV, Heckbert SR, Smolonska J, Tang W, Loth DW, Curjuric I, Hui J, Cho MH, Latourelle JC, Henry AP, Aldrich M, Bakke P, Beaty TH, Bentley AR, Borecki IB, Brusselle GG, Burkart KM, Chen TH, Couper D, Crapo JD, Davies G, Dupuis J, Franceschini N, Gulsvik A, Hancock DB, Harris TB, Hofman A, Imboden M, James AL, Khaw KT, Lahousse L, Launer LJ, Litonjua A, Liu Y, Lohman KK, Lomas DA, Lumley T, Marciante KD, McArdle WL, Meibohm B, Morrison AC, Musk AW, Myers RH, North KE, Postma DS, Psaty BM, Rich SS, Rivadeneira F, Rochat T, Rotter JI, Soler Artigas M, Starr JM, Uitterlinden AG, Wareham NJ, Wijmenga C, Zanen P, Province MA, Silverman EK, Deary IJ, Palmer LJ, Cassano PA, Gudnason V, Barr RG, Loos RJF, Strachan DP, London SJ, Boezen HM, Probst-Hensch N, Gharib SA, Hall IP, O'Connor GT, Tobin MD, Stricker BH. Genome-wide association studies identify CHRNA5/3 and HTR4 in the development of airflow obstruction. Am J Respir Crit Care Med 2012; 186:622-32. [PMID: 22837378 PMCID: PMC3480517 DOI: 10.1164/rccm.201202-0366oc] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/04/2012] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Genome-wide association studies (GWAS) have identified loci influencing lung function, but fewer genes influencing chronic obstructive pulmonary disease (COPD) are known. OBJECTIVES Perform meta-analyses of GWAS for airflow obstruction, a key pathophysiologic characteristic of COPD assessed by spirometry, in population-based cohorts examining all participants, ever smokers, never smokers, asthma-free participants, and more severe cases. METHODS Fifteen cohorts were studied for discovery (3,368 affected; 29,507 unaffected), and a population-based family study and a meta-analysis of case-control studies were used for replication and regional follow-up (3,837 cases; 4,479 control subjects). Airflow obstruction was defined as FEV(1) and its ratio to FVC (FEV(1)/FVC) both less than their respective lower limits of normal as determined by published reference equations. MEASUREMENTS AND MAIN RESULTS The discovery meta-analyses identified one region on chromosome 15q25.1 meeting genome-wide significance in ever smokers that includes AGPHD1, IREB2, and CHRNA5/CHRNA3 genes. The region was also modestly associated among never smokers. Gene expression studies confirmed the presence of CHRNA5/3 in lung, airway smooth muscle, and bronchial epithelial cells. A single-nucleotide polymorphism in HTR4, a gene previously related to FEV(1)/FVC, achieved genome-wide statistical significance in combined meta-analysis. Top single-nucleotide polymorphisms in ADAM19, RARB, PPAP2B, and ADAMTS19 were nominally replicated in the COPD meta-analysis. CONCLUSIONS These results suggest an important role for the CHRNA5/3 region as a genetic risk factor for airflow obstruction that may be independent of smoking and implicate the HTR4 gene in the etiology of airflow obstruction.
Collapse
Affiliation(s)
- Jemma B Wilk
- Division of Aging, Brigham and Women's Hospital and Harvard Medical School, 1620 Tremont Street, Boston, MA 02120, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Abstract
A genetic contribution to develop chronic obstructive pulmonary disease (COPD) is well established. However, the specific genes responsible for enhanced risk or host differences in susceptibility to smoke exposure remain poorly understood. The goal of this review is to provide a comprehensive literature overview on the genetics of COPD, highlight the most promising findings during the last few years, and ultimately provide an updated COPD gene list. Candidate gene studies on COPD and related phenotypes indexed in PubMed before January 5, 2012 are tabulated. An exhaustive list of publications for any given gene was looked for. This well-documented COPD candidate-gene list is expected to serve many purposes for future replication studies and meta-analyses as well as for reanalyzing collected genomic data in the field. In addition, this review summarizes recent genetic loci identified by genome-wide association studies on COPD, lung function, and related complications. Assembling resources, integrative genomic approaches, and large sample sizes of well-phenotyped subjects is part of the path forward to elucidate the genetic basis of this debilitating disease.
Collapse
Affiliation(s)
- Yohan Bossé
- Centre de recherche Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.
| |
Collapse
|
310
|
Adrianto I, Lin CP, Hale JJ, Levin AM, Datta I, Parker R, Adler A, Kelly JA, Kaufman KM, Lessard CJ, Moser KL, Kimberly RP, Harley JB, Iannuzzi MC, Rybicki BA, Montgomery CG. Genome-wide association study of African and European Americans implicates multiple shared and ethnic specific loci in sarcoidosis susceptibility. PLoS One 2012; 7:e43907. [PMID: 22952805 PMCID: PMC3428296 DOI: 10.1371/journal.pone.0043907] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 07/27/2012] [Indexed: 12/21/2022] Open
Abstract
Sarcoidosis is a systemic inflammatory disease characterized by the formation of granulomas in affected organs. Genome-wide association studies (GWASs) of this disease have been conducted only in European population. We present the first sarcoidosis GWAS in African Americans (AAs, 818 cases and 1,088 related controls) followed by replication in independent sets of AAs (455 cases and 557 controls) and European Americans (EAs, 442 cases and 2,284 controls). We evaluated >6 million SNPs either genotyped using the Illumina Omni1-Quad array or imputed from the 1000 Genomes Project data. We identified a novel sarcoidosis-associated locus, NOTCH4, that reached genome-wide significance in the combined AA samples (rs715299, P(AA-meta) = 6.51 × 10(-10)) and demonstrated the independence of this locus from others in the MHC region in the same sample. We replicated previous European GWAS associations within HLA-DRA, HLA-DRB5, HLA-DRB1, BTNL2, and ANXA11 in both our AA and EA datasets. We also confirmed significant associations to the previously reported HLA-C and HLA-B regions in the EA but not AA samples. We further identified suggestive associations with several other genes previously reported in lung or inflammatory diseases.
Collapse
Affiliation(s)
- Indra Adrianto
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Chee Paul Lin
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Jessica J. Hale
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Albert M. Levin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Indrani Datta
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Ryan Parker
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Adam Adler
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Jennifer A. Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Kenneth M. Kaufman
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- The United States Department of Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
| | - Christopher J. Lessard
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Kathy L. Moser
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Robert P. Kimberly
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - John B. Harley
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- The United States Department of Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
| | - Michael C. Iannuzzi
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Benjamin A. Rybicki
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Courtney G. Montgomery
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
311
|
Abstract
Asthma is common, and some individuals are severely affected by it. Learned institutions have sought to provide a definition of 'severe asthma' to facilitate research and clinical care. This is a challenging undertaking given the difficulty in defining asthma and the lack of supportive evidence for a distinct severe asthma phenotype. In this review, we discuss the rationale for a definition of severe asthma and the relative merits of the sequential attempts that have been made to produce such a definition. The difficulty in disentangling control and severity is highlighted, as is the heterogeneity of phenotype in severe asthma, and potential for misclassification. We conclude that the search for a singular definition of severe asthma is problematic, though likely to continue. We suggest the alternative strategy of using classifiers with a specific aim related to symptoms, pathophysiology or service provision.
Collapse
Affiliation(s)
- J D Blakey
- Department of Respiratory Medicine, University of Nottingham, Nottingham, UK.
| | | |
Collapse
|
312
|
Hohenauer T, Moore AW. The Prdm family: expanding roles in stem cells and development. Development 2012; 139:2267-82. [PMID: 22669819 DOI: 10.1242/dev.070110] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Members of the Prdm family are characterized by an N-terminal PR domain that is related to the SET methyltransferase domain, and multiple zinc fingers that mediate sequence-specific DNA binding and protein-protein interactions. Prdm factors either act as direct histone methyltransferases or recruit a suite of histone-modifying enzymes to target promoters. In this way, they function in many developmental contexts to drive and maintain cell state transitions and to modify the activity of developmental signalling pathways. Here, we provide an overview of the structure and function of Prdm family members and discuss the roles played by these proteins in stem cells and throughout development.
Collapse
Affiliation(s)
- Tobias Hohenauer
- Disease Mechanism Research Core, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
313
|
Thun GA, Ferrarotti I, Imboden M, Rochat T, Gerbase M, Kronenberg F, Bridevaux PO, Zemp E, Zorzetto M, Ottaviani S, Russi EW, Luisetti M, Probst-Hensch NM. SERPINA1 PiZ and PiS heterozygotes and lung function decline in the SAPALDIA cohort. PLoS One 2012; 7:e42728. [PMID: 22912729 PMCID: PMC3418297 DOI: 10.1371/journal.pone.0042728] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/11/2012] [Indexed: 12/27/2022] Open
Abstract
Background Severe alpha1-antitrypsin (AAT) deficiency is a strong risk factor for COPD. But the impact of gene variants resulting in mild or intermediate AAT deficiency on the longitudinal course of respiratory health remains controversial. There is indication from experimental studies that pro-inflammatory agents like cigarette smoke can interact with these variants and thus increase the risk of adverse respiratory health effects. Therefore, we tested the effect of the presence of a protease inhibitor (Pi) S or Z allele (PiMS and PiMZ) on the change in lung function in different inflammation-exposed subgroups of a large, population-based cohort study. Methodology and Principal Findings The SAPALDIA population includes over 4600 subjects from whom SERPINA1 genotypes for S and Z alleles, spirometry and respiratory symptoms at baseline and after 11 years follow-up, as well as proxies for inflammatory conditions, such as detailed smoking history, obesity and high sensitivity C-reactive protein (hs-CRP), were available. All analyses were performed by applying multivariate regression models. There was no overall unfavourable effect of PiMS or PiMZ genotype on lung function change. We found indication that PiZ heterozygosity interacted with inflammatory stimuli leading to an accelerated decline in measures in use as indices for assessing mild airway obstruction. Obese individuals with genotype PiMM had an average annual decline in the forced mid expiratory flow (ΔFEF25-75%) of 58.4 ml whereas in obese individuals with PiMZ it amounted to 92.2 ml (p = 0.03). Corresponding numbers for persistent smokers differed even more strongly (66.8 ml (PiMM) vs. 108.2 ml (PiMZ), p = 0.005). Equivalent, but less strong associations were observed for the change in the FEV1/FVC ratio. Conclusions We suggest that, in addition to the well established impact of the rare PiZZ genotype, one Z allele may be sufficient to accelerate lung function decline in population subgroups characterized by elevated levels of low grade inflammation.
Collapse
Affiliation(s)
- Gian-Andri Thun
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ilaria Ferrarotti
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Institute for Respiratory Disease, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Thierry Rochat
- Division of Pulmonary Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Margaret Gerbase
- Division of Pulmonary Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | - Elisabeth Zemp
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Michele Zorzetto
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Institute for Respiratory Disease, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Stefania Ottaviani
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Institute for Respiratory Disease, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Erich W. Russi
- Pulmonary Division, University Hospital of Zurich, Zurich, Switzerland
| | - Maurizio Luisetti
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Institute for Respiratory Disease, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Nicole M. Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
314
|
Holloway JW, Savarimuthu Francis S, Fong KM, Yang IA. Genomics and the respiratory effects of air pollution exposure. Respirology 2012; 17:590-600. [PMID: 22404320 DOI: 10.1111/j.1440-1843.2012.02164.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adverse health effects from air pollutants remain important, despite improvement in air quality in the past few decades. The exact mechanisms of lung injury from exposure to air pollutants are not yet fully understood. Studying the genome (e.g. single-nucleotide polymorphisms (SNP) ), epigenome (e.g. methylation of genes), transcriptome (mRNA expression) and microRNAome (microRNA expression) has the potential to improve our understanding of the adverse effects of air pollutants. Genome-wide association studies of SNP have detected SNP associated with respiratory phenotypes; however, to date, only candidate gene studies of air pollution exposure have been performed. Changes in epigenetic processes, such DNA methylation that leads to gene silencing without altering the DNA sequence, occur with air pollutant exposure, especially global and gene-specific methylation changes. Respiratory cell line and animal models demonstrate distinct gene expression signatures in the transcriptome, arising from exposure to particulate matter or ozone. Particulate matter and other environmental toxins alter expression of microRNA, which are short non-coding RNA that regulate gene expression. While it is clearly important to contain rising levels of air pollution, strategies also need to be developed to minimize the damaging effects of air pollutant exposure on the lung, especially for patients with chronic lung disease and for people at risk of future lung disease. Careful study of genomic responses will improve our understanding of mechanisms of lung injury from air pollution and enable future clinical testing of interventions against the toxic effects of air pollutants.
Collapse
Affiliation(s)
- John W Holloway
- Human Development and Health, University of Southampton, Southampton, UK.
| | | | | | | |
Collapse
|
315
|
Yeganeh B, Mukherjee S, Moir LM, Kumawat K, Kashani HH, Bagchi RA, Baarsma HA, Gosens R, Ghavami S. Novel non-canonical TGF-β signaling networks: emerging roles in airway smooth muscle phenotype and function. Pulm Pharmacol Ther 2012; 26:50-63. [PMID: 22874922 DOI: 10.1016/j.pupt.2012.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 12/19/2022]
Abstract
The airway smooth muscle (ASM) plays an important role in the pathophysiology of asthma and chronic obstructive pulmonary disease (COPD). ASM cells express a wide range of receptors involved in contraction, growth, matrix protein production and the secretion of cytokines and chemokines. Transforming growth factor beta (TGF-β) is one of the major players in determining the structural and functional abnormalities of the ASM in asthma and COPD. It is increasingly evident that TGF-β functions as a master switch, controlling a network of intracellular and autocrine signaling loops that effect ASM phenotype and function. In this review, the various elements that participate in non-canonical TGF-β signaling, including MAPK, PI3K, WNT/β-catenin, and Ca(2+), are discussed, focusing on their effect on ASM phenotype and function. In addition, new aspects of ASM biology and their possible association with non-canonical TGF-β signaling will be discussed.
Collapse
Affiliation(s)
- Behzad Yeganeh
- Department of Physiology, Manitoba Institute of Child Health, University of Manitoba, 675 McDermot Ave, Winnipeg, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
316
|
Smith BH, Campbell A, Linksted P, Fitzpatrick B, Jackson C, Kerr SM, Deary IJ, MacIntyre DJ, Campbell H, McGilchrist M, Hocking LJ, Wisely L, Ford I, Lindsay RS, Morton R, Palmer CNA, Dominiczak AF, Porteous DJ, Morris AD. Cohort Profile: Generation Scotland: Scottish Family Health Study (GS:SFHS). The study, its participants and their potential for genetic research on health and illness. Int J Epidemiol 2012; 42:689-700. [DOI: 10.1093/ije/dys084] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
317
|
Slager RE, Hawkins GA, Li X, Postma DS, Meyers DA, Bleecker ER. Genetics of asthma susceptibility and severity. Clin Chest Med 2012; 33:431-43. [PMID: 22929093 DOI: 10.1016/j.ccm.2012.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This article summarizes major findings in genome-wide studies of asthma susceptibility and severity. Two large meta-analyses identified four chromosomal regions which were consistently associated with development of asthma. Genes that are associated with asthma subphenotypes such as lung function, biomarker levels, and asthma therapeutic responses can provide insight into mechanisms of asthma severity and disease progression. Future genetic studies will incorporate sequencing in comprehensively phenotyped asthmatics to lead to the development of personalized therapy.
Collapse
Affiliation(s)
- Rebecca E Slager
- Center for Genomics and Personalized Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
318
|
Curjuric I, Imboden M, Nadif R, Kumar A, Schindler C, Haun M, Kronenberg F, Künzli N, Phuleria H, Postma DS, Russi EW, Rochat T, Demenais F, Probst-Hensch NM. Different genes interact with particulate matter and tobacco smoke exposure in affecting lung function decline in the general population. PLoS One 2012; 7:e40175. [PMID: 22792237 PMCID: PMC3391223 DOI: 10.1371/journal.pone.0040175] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 06/06/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Oxidative stress related genes modify the effects of ambient air pollution or tobacco smoking on lung function decline. The impact of interactions might be substantial, but previous studies mostly focused on main effects of single genes. OBJECTIVES We studied the interaction of both exposures with a broad set of oxidative-stress related candidate genes and pathways on lung function decline and contrasted interactions between exposures. METHODS For 12679 single nucleotide polymorphisms (SNPs), change in forced expiratory volume in one second (FEV(1)), FEV(1) over forced vital capacity (FEV(1)/FVC), and mean forced expiratory flow between 25 and 75% of the FVC (FEF(25-75)) was regressed on interval exposure to particulate matter <10 µm in diameter (PM10) or packyears smoked (a), additive SNP effects (b), and interaction terms between (a) and (b) in 669 adults with GWAS data. Interaction p-values for 152 genes and 14 pathways were calculated by the adaptive rank truncation product (ARTP) method, and compared between exposures. Interaction effect sizes were contrasted for the strongest SNPs of nominally significant genes (p(interaction)<0.05). Replication was attempted for SNPs with MAF>10% in 3320 SAPALDIA participants without GWAS. RESULTS On the SNP-level, rs2035268 in gene SNCA accelerated FEV(1)/FVC decline by 3.8% (p(interaction) = 2.5×10(-6)), and rs12190800 in PARK2 attenuated FEV1 decline by 95.1 ml p(interaction) = 9.7×10(-8)) over 11 years, while interacting with PM10. Genes and pathways nominally interacting with PM10 and packyears exposure differed substantially. Gene CRISP2 presented a significant interaction with PM10 (p(interaction) = 3.0×10(-4)) on FEV(1)/FVC decline. Pathway interactions were weak. Replications for the strongest SNPs in PARK2 and CRISP2 were not successful. CONCLUSIONS Consistent with a stratified response to increasing oxidative stress, different genes and pathways potentially mediate PM10 and tobacco smoke effects on lung function decline. Ignoring environmental exposures would miss these patterns, but achieving sufficient sample size and comparability across study samples is challenging.
Collapse
Affiliation(s)
- Ivan Curjuric
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute SwissTPH, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Medea Imboden
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute SwissTPH, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Rachel Nadif
- INSERM, U1018, CESP Centre for research in Epidemiology and Population Health, Respiratory and Environmental Epidemiology Team, Villejuif, France
- Université Paris-Sud 11, UMRS 1018, Villejuif, France
| | - Ashish Kumar
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute SwissTPH, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Christian Schindler
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute SwissTPH, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Margot Haun
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Nino Künzli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute SwissTPH, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Harish Phuleria
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute SwissTPH, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Dirkje S. Postma
- Department of Pulmonary Medicine and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erich W. Russi
- Division of Pulmonary Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Thierry Rochat
- Division of Pulmonary Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Florence Demenais
- INSERM, U946, Genetic Variation and Human Diseases Unit, Paris, France
- Fondation Jean Dausset - Centre d’Etude du Polymorphisme Humain (CEPH), Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d’Hématologie, Paris, France
| | - Nicole M. Probst-Hensch
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute SwissTPH, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
319
|
Sandford AJ, Malhotra D, Boezen HM, Siedlinski M, Postma DS, Wong V, Akhabir L, He JQ, Connett JE, Anthonisen NR, Paré PD, Biswal S. NFE2L2 pathway polymorphisms and lung function decline in chronic obstructive pulmonary disease. Physiol Genomics 2012; 44:754-63. [PMID: 22693272 DOI: 10.1152/physiolgenomics.00027.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An oxidant-antioxidant imbalance in the lung contributes to the development of chronic obstructive pulmonary disease (COPD) that is caused by a complex interaction of genetic and environmental risk factors. Nuclear erythroid 2-related factor 2 (NFE2L2 or NRF2) is a critical molecule in the lung's defense mechanism against oxidants. We investigated whether polymorphisms in the NFE2L2 pathway affected the rate of decline of lung function in smokers from the Lung Health Study (LHS)(n = 547) and in a replication set, the Vlagtwedde-Vlaardingen cohort (n = 533). We selected polymorphisms in NFE2L2 in genes that positively or negatively regulate NFE2L2 transcriptional activity and in genes that are regulated by NFE2L2. Polymorphisms in 11 genes were significantly associated with rate of lung function decline in the LHS. One of these polymorphisms, rs11085735 in the KEAP1 gene, was previously shown to be associated with the level of lung function in the Vlagtwedde-Vlaardingen cohort but not with decline of lung function. Of the 23 associated polymorphisms in the LHS, only rs634534 in the FOSL1 gene showed a significant association in the Vlagtwedde-Vlaardingen cohort with rate of lung function decline, but the direction of the association was not consistent with that in the LHS. In summary, despite finding several nominally significant polymorphisms in the LHS, none of these associations were replicated in the Vlagtwedde-Vlaardingen cohort, indicating lack of effect of polymorphisms in the NFE2L2 pathway on the rate of decline of lung function.
Collapse
Affiliation(s)
- Andrew J Sandford
- UBC James Hogg Research Centre, Providence Heart + Lung Institute, St. Paul's Hospital, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Simpson A, Custovic A, Tepper R, Graves P, Stern DA, Jones M, Hankinson J, Curtin JA, Wu J, Blekic M, Bukvic BK, Aberle N, Marinho S, Belgrave D, Morgan WJ, Martinez FD. Genetic variation in vascular endothelial growth factor-a and lung function. Am J Respir Crit Care Med 2012; 185:1197-204. [PMID: 22461367 DOI: 10.1164/rccm.201112-2191oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RATIONALE Given the role of vascular endothelial growth factor (VEGF) in lung development, we hypothesized that polymorphisms in VEGF-A may be associated with lung function. OBJECTIVES The current study was designed to assess the role of genetic variants in VEGF-A as determinants of airway function from infancy through early adulthood. METHODS Association between five single-nucleotide polymorphisms (SNPs) in VEGF-A and lung function were assessed longitudinally in two unselected birth cohorts and cross-sectionally among infants. Replication with two SNPs was conducted in adults and children with asthma. We investigated the functionality of the SNP most consistently associated with lung function (rs3025028) using Western blotting to measure the ratio of plasma VEGF-A(165b)/panVEGF-A(165) among homozygotes. MEASUREMENTS AND MAIN RESULTS In two populations in infancy, C-allele homozygotes of rs3025028 had significantly higher VmaxFRC, forced expiratory flow(50), and forced expiratory flow(25-75) compared with other genotype groups. Among preschool children (age 3 yr), C allele of rs3025028 was associated with significantly higher specific airway conductance, with similar findings observed for lung function in school-age children. For FEV(1)/FVC ratio similar findings were observed among adolescents and young adults (birth cohort), and then replicated in adults and schoolchildren with asthma (cross-sectional studies). For rs3025038, plasma VEGF-A(165b)/panVEGF-A(165) was significantly higher among CC versus GG homozygotes (P ≤ 0.02) at birth, in school-age children, and in adults. CONCLUSIONS We report significant associations between VEGF-A SNP rs3025028 and parameters of airway function measured throughout childhood, with the effect persisting into adulthood. We propose that the mechanism may be mediated through the ratios of active and inhibitory isoforms of VEGF-A(165), which may be determined by alternative splicing.
Collapse
Affiliation(s)
- Angela Simpson
- University of Manchester, Wythenshawe Hospital, Manchester, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
321
|
Imboden M, Bouzigon E, Curjuric I, Ramasamy A, Kumar A, Hancock DB, Wilk JB, Vonk JM, Thun GA, Siroux V, Nadif R, Monier F, Gonzalez JR, Wjst M, Heinrich J, Loehr LR, Franceschini N, North KE, Altmüller J, Koppelman GH, Guerra S, Kronenberg F, Lathrop M, Moffatt MF, O'Connor GT, Strachan DP, Postma DS, London SJ, Schindler C, Kogevinas M, Kauffmann F, Jarvis DL, Demenais F, Probst-Hensch NM. Genome-wide association study of lung function decline in adults with and without asthma. J Allergy Clin Immunol 2012; 129:1218-28. [PMID: 22424883 DOI: 10.1016/j.jaci.2012.01.074] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 10/26/2011] [Accepted: 01/24/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Genome-wide association studies have identified determinants of chronic obstructive pulmonary disease, asthma, and lung function level; however, none have addressed decline in lung function. OBJECTIVE We conducted the first genome-wide association study on the age-related decrease in FEV(1) and its ratio to forced vital capacity (FVC) stratified a priori by asthma status. METHODS Discovery cohorts included adults of European ancestry (1,441 asthmatic and 2,677 nonasthmatic participants: the Epidemiological Study on the Genetics and Environment of Asthma, the Swiss Cohort Study on Air Pollution and Lung and Heart Disease in Adults, and the European Community Respiratory Health Survey). The associations of FEV(1) and FEV(1)/FVC ratio decrease with 2.5 million single nucleotide polymorphisms (SNPs) were estimated. Thirty loci were followed up by in silico replication (1,160 asthmatic and 10,858 nonasthmatic participants: Atherosclerosis Risk in Communities, the Framingham Heart Study, the British 1958 Birth Cohort, and the Dutch Asthma Study). RESULTS Main signals identified differed between asthmatic and nonasthmatic participants. None of the SNPs reached genome-wide significance. The association between the height-related gene DLEU7 and FEV(1) decrease suggested for nonasthmatic participants in the discovery phase was replicated (discovery, P = 4.8 × 10(-6); replication, P = .03), and additional sensitivity analyses point to a relation to growth. The top ranking signal, TUSC3, which is associated with FEV(1)/FVC ratio decrease in asthmatic participants (P = 5.3 × 10(-8)), did not replicate. SNPs previously associated with cross-sectional lung function were not prominently associated with decline. CONCLUSIONS Genetic heterogeneity of lung function might be extensive. Our results suggest that genetic determinants of longitudinal and cross-sectional lung function differ and vary by asthma status.
Collapse
Affiliation(s)
- Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Soler Artigas M, Wain LV, Tobin MD, Hall IP. Joint Effect of Single-Nucleotide Polymorphisms and Smoking Exposure in Chronic Obstructive Pulmonary Disease Risk. Am J Respir Crit Care Med 2012. [DOI: 10.1164/ajrccm.185.6.683a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - L. V. Wain
- University of LeicesterLeicester, United Kingdom
| | - M. D. Tobin
- University of LeicesterLeicester, United Kingdom
| | - I. P. Hall
- University of NottinghamNottingham, United Kingdom
| |
Collapse
|
323
|
Deary IJ, Gow AJ, Pattie A, Starr JM. Cohort profile: the Lothian Birth Cohorts of 1921 and 1936. Int J Epidemiol 2011; 41:1576-84. [PMID: 22253310 DOI: 10.1093/ije/dyr197] [Citation(s) in RCA: 276] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This cohort profile describes the origins, tracing, recruitment, testing and follow-up of the University of Edinburgh-based Lothian Birth Cohorts of 1921 (LBC1921; N = 550) and 1936 (LBC1936; N = 1091). The participants undertook a general intelligence test at age 11 years and were recruited for these cohorts at mean ages of 79 (LBC1921) and 70 (LBC1936). The LBC1921 have been examined at mean ages of 79, 83, 87 and 90 years. The LBC1936 have been examined at mean ages of 70 and 73 years, and are being seen at 76 years. Both samples have an emphasis on the ageing of cognitive functions as outcomes. As they have childhood intelligence test scores, the cohorts' data have been used to search for determinants of lifetime cognitive changes, and also cognitive change within old age. The cohorts' outcomes also include a range of physical and psycho-social aspects of well-being in old age. Both cohorts have a wide range of variables: genome-wide genotyping, demographics, psycho-social and lifestyle factors, cognitive functions, medical history and examination, and biomarkers (from blood and urine). The LBC1936 participants also have a detailed structural magnetic resonance imaging (MRI) brain scan. A range of scientific findings is described, to illustrate the possible uses of the cohorts.
Collapse
Affiliation(s)
- Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK.
| | | | | | | |
Collapse
|