301
|
Wang X, Shen S, Rasam SS, Qu J. MS1 ion current-based quantitative proteomics: A promising solution for reliable analysis of large biological cohorts. MASS SPECTROMETRY REVIEWS 2019; 38:461-482. [PMID: 30920002 PMCID: PMC6849792 DOI: 10.1002/mas.21595] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/28/2019] [Indexed: 05/04/2023]
Abstract
The rapidly-advancing field of pharmaceutical and clinical research calls for systematic, molecular-level characterization of complex biological systems. To this end, quantitative proteomics represents a powerful tool but an optimal solution for reliable large-cohort proteomics analysis, as frequently involved in pharmaceutical/clinical investigations, is urgently needed. Large-cohort analysis remains challenging owing to the deteriorating quantitative quality and snowballing missing data and false-positive discovery of altered proteins when sample size increases. MS1 ion current-based methods, which have become an important class of label-free quantification techniques during the past decade, show considerable potential to achieve reproducible protein measurements in large cohorts with high quantitative accuracy/precision. Nonetheless, in order to fully unleash this potential, several critical prerequisites should be met. Here we provide an overview of the rationale of MS1-based strategies and then important considerations for experimental and data processing techniques, with the emphasis on (i) efficient and reproducible sample preparation and LC separation; (ii) sensitive, selective and high-resolution MS detection; iii)accurate chromatographic alignment; (iv) sensitive and selective generation of quantitative features; and (v) optimal post-feature-generation data quality control. Prominent technical developments in these aspects are discussed. Finally, we reviewed applications of MS1-based strategy in disease mechanism studies, biomarker discovery, and pharmaceutical investigations.
Collapse
Affiliation(s)
- Xue Wang
- Department of Cell Stress BiologyRoswell Park Cancer InstituteBuffaloNew York
| | - Shichen Shen
- Department of Pharmaceutical SciencesUniversity at BuffaloState University of New YorkNew YorkNew York
| | - Sailee Suryakant Rasam
- Department of Biochemistry, University at BuffaloState University of New YorkNew YorkNew York
| | - Jun Qu
- Department of Cell Stress BiologyRoswell Park Cancer InstituteBuffaloNew York
- Department of Pharmaceutical SciencesUniversity at BuffaloState University of New YorkNew YorkNew York
- Department of Biochemistry, University at BuffaloState University of New YorkNew YorkNew York
| |
Collapse
|
302
|
|
303
|
Izumi Y, Matsuda F, Hirayama A, Ikeda K, Kita Y, Horie K, Saigusa D, Saito K, Sawada Y, Nakanishi H, Okahashi N, Takahashi M, Nakao M, Hata K, Hoshi Y, Morihara M, Tanabe K, Bamba T, Oda Y. Inter-Laboratory Comparison of Metabolite Measurements for Metabolomics Data Integration. Metabolites 2019; 9:E257. [PMID: 31683650 PMCID: PMC6918145 DOI: 10.3390/metabo9110257] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND One of the current problems in the field of metabolomics is the difficulty in integrating data collected using different equipment at different facilities, because many metabolomic methods have been developed independently and are unique to each laboratory. METHODS In this study, we examined whether different analytical methods among 12 different laboratories provided comparable relative quantification data for certain metabolites. Identical samples extracted from two cell lines (HT-29 and AsPc-1) were distributed to each facility, and hydrophilic and hydrophobic metabolite analyses were performed using the daily routine protocols of each laboratory. RESULTS The results indicate that there was no difference in the relative quantitative data (HT-29/AsPc-1) for about half of the measured metabolites among the laboratories and assay methods. Data review also revealed that errors in relative quantification were derived from issues such as erroneous peak identification, insufficient peak separation, a difference in detection sensitivity, derivatization reactions, and extraction solvent interference. CONCLUSION The results indicated that relative quantification data obtained at different facilities and at different times would be integrated and compared by using a reference materials shared for data normalization.
Collapse
Affiliation(s)
- Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-Ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Yoshihiro Kita
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kanta Horie
- Translational Science, Neurology Business Group, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
| | - Daisuke Saigusa
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan.
| | - Kosuke Saito
- Division of Medical Safety Science, National Institute of Health Science, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan.
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Hiroki Nakanishi
- Research Center for Biosignal, Akita University, 1-1-1 Hondo, Akita-city, Akita 010-8543, Japan.
| | - Nobuyuki Okahashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Motonao Nakao
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Kosuke Hata
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yutaro Hoshi
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., 17-2 Wadai, Tsukuba, Ibaraki 300-4247, Japan.
| | - Motohiko Morihara
- Translational Research Laboratories, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan.
| | - Kazuhiro Tanabe
- Medical Solution Promotion Department, Medical Solution Segment, LSI Medience Corporation, 3-30-1, Shimura, Itabashi-ku, Tokyo 174-8555, Japan.
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yoshiya Oda
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
304
|
Zhong CQ, Wu R, Chen X, Wu S, Shuai J, Han J. Systematic Assessment of the Effect of Internal Library in Targeted Analysis of SWATH-MS. J Proteome Res 2019; 19:477-492. [DOI: 10.1021/acs.jproteome.9b00669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chuan-Qi Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Rui Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xi Chen
- Medical Research Institute, Wuhan University, Wuhan 430072, China
- SpecAlly Life Technology Co., Ltd., Wuhan 430072, China
| | - Suqin Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jianwei Shuai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Department of Physics, Xiamen University, Xiamen 361005, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
305
|
Meyer JG, Garcia TY, Schilling B, Gibson BW, Lamba DA. Proteome and Secretome Dynamics of Human Retinal Pigment Epithelium in Response to Reactive Oxygen Species. Sci Rep 2019; 9:15440. [PMID: 31659173 PMCID: PMC6817852 DOI: 10.1038/s41598-019-51777-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries, and is characterized by slow retinal degeneration linked to chronic reactive oxygen species (ROS) in the retinal pigmented epithelium (RPE). The molecular mechanisms leading to RPE dysfunction in response to ROS are unclear. Here, human stem cell-derived RPE samples were stressed with ROS for 1 or 3 weeks, and both intracellular and secreted proteomes were quantified by mass spectrometry. ROS increased glycolytic proteins but decreased mitochondrial complex I subunits, as well as membrane proteins required for endocytosis. RPE secreted over 1,000 proteins, many of which changed significantly due to ROS. Notably, secreted APOE is decreased 4-fold, and urotensin-II, the strongest known vasoconstrictor, doubled. Furthermore, secreted TGF-beta is increased, and its cognate signaler BMP1 decreased in the secretome. Together, our results paint a detailed molecular picture of the retinal stress response in space and time.
Collapse
Affiliation(s)
- Jesse G Meyer
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Department of Chemistry, Department of Biomolecular Chemistry, National Center for Quantitative Biology of Complex Systems, University of Wisconsin - Madison, Madison, WI, 53706, USA.
| | - Thelma Y Garcia
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Bradford W Gibson
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Discovery Attribute Sciences, Research, Amgen, South San Francisco, CA, 94080, USA
| | - Deepak A Lamba
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Department of Ophthalmology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California - San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
306
|
Ignjatovic V, Geyer PE, Palaniappan KK, Chaaban JE, Omenn GS, Baker MS, Deutsch EW, Schwenk JM. Mass Spectrometry-Based Plasma Proteomics: Considerations from Sample Collection to Achieving Translational Data. J Proteome Res 2019; 18:4085-4097. [PMID: 31573204 DOI: 10.1021/acs.jproteome.9b00503] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The proteomic analysis of human blood and blood-derived products (e.g., plasma) offers an attractive avenue to translate research progress from the laboratory into the clinic. However, due to its unique protein composition, performing proteomics assays with plasma is challenging. Plasma proteomics has regained interest due to recent technological advances, but challenges imposed by both complications inherent to studying human biology (e.g., interindividual variability) and analysis of biospecimens (e.g., sample variability), as well as technological limitations remain. As part of the Human Proteome Project (HPP), the Human Plasma Proteome Project (HPPP) brings together key aspects of the plasma proteomics pipeline. Here, we provide considerations and recommendations concerning study design, plasma collection, quality metrics, plasma processing workflows, mass spectrometry (MS) data acquisition, data processing, and bioinformatic analysis. With exciting opportunities in studying human health and disease though this plasma proteomics pipeline, a more informed analysis of human plasma will accelerate interest while enhancing possibilities for the incorporation of proteomics-scaled assays into clinical practice.
Collapse
Affiliation(s)
- Vera Ignjatovic
- Haematology Research , Murdoch Children's Research Institute , Parkville , VIC 3052 , Australia.,Department of Paediatrics , The University of Melbourne , Parkville , VIC 3052 , Australia
| | - Philipp E Geyer
- NNF Center for Protein Research, Faculty of Health Sciences , University of Copenhagen , 2200 Copenhagen , Denmark.,Department of Proteomics and Signal Transduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
| | - Krishnan K Palaniappan
- Freenome , 259 East Grand Avenue , South San Francisco , California 94080 , United States
| | - Jessica E Chaaban
- Haematology Research , Murdoch Children's Research Institute , Parkville , VIC 3052 , Australia
| | - Gilbert S Omenn
- Departments of Computational Medicine & Bioinformatics, Human Genetics, and Internal Medicine and School of Public Health , University of Michigan , 100 Washtenaw Avenue , Ann Arbor , Michigan 48109-2218 , United States
| | - Mark S Baker
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences , Macquarie University , 75 Talavera Road , North Ryde , NSW 2109 , Australia
| | - Eric W Deutsch
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109 , United States
| | - Jochen M Schwenk
- Affinity Proteomics, SciLifeLab , KTH Royal Institute of Technology , 171 65 Stockholm , Sweden
| |
Collapse
|
307
|
Noor Z, Ranganathan S. Bioinformatics approaches for improving seminal plasma proteome analysis. Theriogenology 2019; 137:43-49. [PMID: 31186128 DOI: 10.1016/j.theriogenology.2019.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Reproduction efficiency of male animals is one of the key factors influencing the sustainability of livestock. Mass spectrometry (MS) based proteomics has become an important tool for studying seminal plasma proteomes. In this review, we summarize bioinformatics analysis strategies for current proteomics approaches, for identifying novel biomarkers of reproductive robustness.
Collapse
Affiliation(s)
- Zainab Noor
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Shoba Ranganathan
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
308
|
Sutliff AK, Shi J, Watson CJW, Hunt MS, Chen G, Zhu HJ, Lazarus P. Potential Regulation of UGT2B10 and UGT2B7 by miR-485-5p in Human Liver. Mol Pharmacol 2019; 96:674-682. [PMID: 31554697 PMCID: PMC6820218 DOI: 10.1124/mol.119.115881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/19/2019] [Indexed: 11/22/2022] Open
Abstract
The UDP-glucuronosyltransferase (UGT) family of enzymes is important in the metabolic elimination of a variety of endogenous compounds such as bile acids, steroids, and fat-soluble vitamins, as well as exogenous compounds including many pharmaceuticals. The UGT2B subfamily is a major family of UGT enzymes expressed in human liver. The identification of novel mechanisms including post-transcriptional regulation by microRNA (miRNA) contributes to interindividual variability in UGT2B expression and is a crucial component in predicting patient drug response. In the present study, a high-resolution liquid chromatography-tandem mass spectrometry method was employed to measure UGT2B protein levels in a panel of human liver microsomal samples (n = 62). Concurrent in silico analysis identified eight candidate miRNAs as potential regulators of UGT2B enzymes. Comparison of UGT2B protein expression and candidate miRNA levels from human liver samples demonstrated a significant inverse correlation between UGT2B10 and UGT2B15 and one of these candidate miRNAs, miR-485-5p. A near-significant correlation was also observed between UGT2B7 and miR-485-5p expression. In vitro analysis using luciferase-containing vectors suggested an interaction of miR-485-5p within the UGT2B10 3'-untranslated region (UTR), and significant reduction in luciferase activity was also observed for a luciferase vector containing the UGT2B7 3'-UTR; however, none was observed for the UBT2B15 3'-UTR. UGT2B10 and UGT2B7 activities were probed using nicotine and 3'-azido-3'-deoxythymidine, respectively, and significant decreases in glucuronidation activity were observed for both substrates in HuH-7 and Hep3B cells upon overexpression of miR-485-5p mimic. This is the first study demonstrating a regulatory role of miR-485-5p for multiple UGT2B enzymes. SIGNIFICANCE STATEMENT: The purpose of this study was to identify novel epigenetic miRNA regulators of the UGT2B drug-metabolizing enzymes in healthy human liver samples. Our results indicate that miRNA 485-5p is a novel regulator of UGT2B7 and UGT2B10, which play an important role in the metabolism of many commonly prescribed medications, carcinogens, and endogenous compounds. This study identified potential miRNA-UGT2B mRNA interactions using a novel proteomic approach, with in vitro experiments undertaken to validate these interactions.
Collapse
Affiliation(s)
- Aimee K Sutliff
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, Washington (A.K.S., C.J.W.W., M.H., G.C., P.L.); and Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Jian Shi
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, Washington (A.K.S., C.J.W.W., M.H., G.C., P.L.); and Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Christy J W Watson
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, Washington (A.K.S., C.J.W.W., M.H., G.C., P.L.); and Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Martina S Hunt
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, Washington (A.K.S., C.J.W.W., M.H., G.C., P.L.); and Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Gang Chen
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, Washington (A.K.S., C.J.W.W., M.H., G.C., P.L.); and Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Hao-Jie Zhu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, Washington (A.K.S., C.J.W.W., M.H., G.C., P.L.); and Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan (J.S., H.-J.Z.)
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, Washington (A.K.S., C.J.W.W., M.H., G.C., P.L.); and Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan (J.S., H.-J.Z.)
| |
Collapse
|
309
|
Erdmann J, Thöming JG, Pohl S, Pich A, Lenz C, Häussler S. The Core Proteome of Biofilm-Grown Clinical Pseudomonas aeruginosa Isolates. Cells 2019; 8:E1129. [PMID: 31547513 PMCID: PMC6829490 DOI: 10.3390/cells8101129] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
Comparative genomics has greatly facilitated the identification of shared as well as unique features among individual cells or tissues, and thus offers the potential to find disease markers. While proteomics is recognized for its potential to generate quantitative maps of protein expression, comparative proteomics in bacteria has been largely restricted to the comparison of single cell lines or mutant strains. In this study, we used a data independent acquisition (DIA) technique, which enables global protein quantification of large sample cohorts, to record the proteome profiles of overall 27 whole genome sequenced and transcriptionally profiled clinical isolates of the opportunistic pathogen Pseudomonas aeruginosa. Analysis of the proteome profiles across the 27 clinical isolates grown under planktonic and biofilm growth conditions led to the identification of a core biofilm-associated protein profile. Furthermore, we found that protein-to-mRNA ratios between different P. aeruginosa strains are well correlated, indicating conserved patterns of post-transcriptional regulation. Uncovering core regulatory pathways, which drive biofilm formation and associated antibiotic tolerance in bacterial pathogens, promise to give clues to interactions between bacterial species and their environment and could provide useful targets for new clinical interventions to combat biofilm-associated infections.
Collapse
Affiliation(s)
- Jelena Erdmann
- Institute for Molecular Bacteriology, TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover 30625, Germany.
- Research Core Unit Proteomics and Institute of Toxicology, Hannover Medical School, Hannover 30625, Germany.
| | - Janne G Thöming
- Institute for Molecular Bacteriology, TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover 30625, Germany.
| | - Sarah Pohl
- Institute for Molecular Bacteriology, TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover 30625, Germany.
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig 38124, Germany.
| | - Andreas Pich
- Research Core Unit Proteomics and Institute of Toxicology, Hannover Medical School, Hannover 30625, Germany.
| | - Christof Lenz
- Institute of Clinical Chemistry, Bioanalytics, University Medical Center Göttingen, Göttingen 37075, Germany.
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, Göttingen 37077, Germany.
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover 30625, Germany.
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig 38124, Germany.
| |
Collapse
|
310
|
Nielson CM, Jacobs JM, Orwoll ES. Proteomic studies of bone and skeletal health outcomes. Bone 2019; 126:18-26. [PMID: 30954730 PMCID: PMC7302501 DOI: 10.1016/j.bone.2019.03.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
Proteins are an essential part of essentially all biological processes, and there is enormous variation in protein forms and concentrations that is not reflected in DNA or RNA. Recently there have been rapid advances in the ability to measure protein sequence, modification and concentration, particularly with methods based in mass spectrometry. Global measures of proteins in tissues or in the circulation provide a broad assessment of the proteome that can be extremely useful for discovery, and targeted proteomic measures can yield specific and sensitive assessments of specific peptides and proteins. While most proteomic measures are directed at the detection of consensus peptide sequences, mass spectrometry based proteomic methods also allow a detailed examination of the peptide sequence differences that result from genetic variants and that may have important effects on protein function. In evaluating proteomic data, a number of analytical considerations are important, including an understanding of missing data, the challenge of multiple testing and replication, and the use of rapidly evolving methods in systems biology. While proteomics has not yet had a major impact in skeletal research, interesting recent research has used these approaches in the study of bone cell biology and the discovery of biomarkers of skeletal disorders. Proteomics can be expected to have an increasing influence in the study of bone biology and pathophysiology.
Collapse
Affiliation(s)
| | - Jon M Jacobs
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | |
Collapse
|
311
|
Abstract
Introduction: High-density lipoprotein (HDL) particles are heterogeneous and their proteome is complex and distinct from HDL cholesterol. However, it is largely unknown whether HDL proteins are associated with cardiovascular protection. Areas covered: HDL isolation techniques and proteomic analyses are reviewed. A list of HDL proteins reported in 37 different studies was compiled and the effects of different isolation techniques on proteins attributed to HDL are discussed. Mass spectrometric techniques used for HDL analysis and the need for precise and robust methods for quantification of HDL proteins are discussed. Expert opinion: Proteins associated with HDL have the potential to be used as biomarkers and/or help to understand HDL functionality. To achieve this, large cohorts must be studied using precise quantification methods. Key factors in HDL proteome quantification are the isolation methodology and the mass spectrometry technique employed. Isolation methodology affects what proteins are identified in HDL and the specificity of association with HDL particles needs to be addressed. Shotgun proteomics yields imprecise quantification, but the majority of HDL studies relied on this approach. Few recent studies used targeted tandem mass spectrometry to quantify HDL proteins, and it is imperative that future studies focus on the application of these precise techniques.
Collapse
Affiliation(s)
- Graziella Eliza Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo , São Paulo , Brazil
| | - Tomáš Vaisar
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington , Seattle , WA , USA
| |
Collapse
|
312
|
Li W, Chi H, Salovska B, Wu C, Sun L, Rosenberger G, Liu Y. Assessing the Relationship Between Mass Window Width and Retention Time Scheduling on Protein Coverage for Data-Independent Acquisition. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1396-1405. [PMID: 31147889 DOI: 10.1007/s13361-019-02243-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
Due to the technical advances of mass spectrometers, particularly increased scanning speed and higher MS/MS resolution, the use of data-independent acquisition mass spectrometry (DIA-MS) became more popular, which enables high reproducibility in both proteomic identification and quantification. The current DIA-MS methods normally cover a wide mass range, with the aim to target and identify as many peptides and proteins as possible and therefore frequently generate MS/MS spectra of high complexity. In this report, we assessed the performance and benefits of using small windows with, e.g., 5-m/z width across the peptide elution time. We further devised a new DIA method named RTwinDIA that schedules the small isolation windows in different retention time blocks, taking advantage of the fact that larger peptides are normally eluting later in reversed phase chromatography. We assessed the direct proteomic identification by using shotgun database searching tools such as MaxQuant and pFind, and also Spectronaut with an external comprehensive spectral library of human proteins. We conclude that algorithms like pFind have potential in directly analyzing DIA data acquired with small windows, and that the instrumental time and DIA cycle time, if prioritized to be spent on small windows rather than on covering a broad mass range by large windows, will improve the direct proteome coverage for new biological samples and increase the quantitative precision. These results further provide perspectives for the future convergence between DDA and DIA on faster MS analyzers.
Collapse
Affiliation(s)
- Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Hao Chi
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China
| | - Barbora Salovska
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Chongde Wu
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
313
|
Erozenci LA, Böttger F, Bijnsdorp IV, Jimenez CR. Urinary exosomal proteins as (pan‐)cancer biomarkers: insights from the proteome. FEBS Lett 2019; 593:1580-1597. [DOI: 10.1002/1873-3468.13487] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Leyla Ayse Erozenci
- Department of Medical Oncology Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
- OncoProteomics Laboratory Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
| | - Franziska Böttger
- Department of Medical Oncology Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
- OncoProteomics Laboratory Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
| | - Irene V. Bijnsdorp
- OncoProteomics Laboratory Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
- Department of Urology Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
| | - Connie R. Jimenez
- Department of Medical Oncology Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
- OncoProteomics Laboratory Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
| |
Collapse
|
314
|
Nguyen EV, Pereira BA, Lawrence MG, Ma X, Rebello RJ, Chan H, Niranjan B, Wu Y, Ellem S, Guan X, Wu J, Skhinas JN, Cox TR, Risbridger GP, Taylor RA, Lister NL, Daly RJ. Proteomic Profiling of Human Prostate Cancer-associated Fibroblasts (CAF) Reveals LOXL2-dependent Regulation of the Tumor Microenvironment. Mol Cell Proteomics 2019; 18:1410-1427. [PMID: 31061140 PMCID: PMC6601211 DOI: 10.1074/mcp.ra119.001496] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/30/2019] [Indexed: 12/31/2022] Open
Abstract
In prostate cancer, cancer-associated fibroblasts (CAF) exhibit contrasting biological properties to non-malignant prostate fibroblasts (NPF) and promote tumorigenesis. Resolving intercellular signaling pathways between CAF and prostate tumor epithelium may offer novel opportunities for research translation. To this end, the proteome and phosphoproteome of four pairs of patient-matched CAF and NPF were characterized to identify discriminating proteomic signatures. Samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with a hyper reaction monitoring data-independent acquisition (HRM-DIA) workflow. Proteins that exhibited a significant increase in CAF versus NPF were enriched for the functional categories "cell adhesion" and the "extracellular matrix." The CAF phosphoproteome exhibited enhanced phosphorylation of proteins associated with the "spliceosome" and "actin binding." STRING analysis of the CAF proteome revealed a prominent interaction hub associated with collagen synthesis, modification, and signaling. It contained multiple collagens, including the fibrillar types COL1A1/2 and COL5A1; the receptor tyrosine kinase discoidin domain-containing receptor 2 (DDR2), a receptor for fibrillar collagens; and lysyl oxidase-like 2 (LOXL2), an enzyme that promotes collagen crosslinking. Increased activity and/or expression of LOXL2 and DDR2 in CAF were confirmed by enzymatic assays and Western blotting analyses. Pharmacological inhibition of CAF-derived LOXL2 perturbed extracellular matrix (ECM) organization and decreased CAF migration in a wound healing assay. Further, it significantly impaired the motility of co-cultured RWPE-2 prostate tumor epithelial cells. These results indicate that CAF-derived LOXL2 is an important mediator of intercellular communication within the prostate tumor microenvironment and is a potential therapeutic target.
Collapse
Affiliation(s)
- Elizabeth V Nguyen
- From the ‡Cancer Program, Biomedicine Discovery Institute,; Departments of §Biochemistry and Molecular Biology
| | - Brooke A Pereira
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and
| | - Mitchell G Lawrence
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and; ‖Cancer Research Division, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Parkville, Australia
| | - Xiuquan Ma
- From the ‡Cancer Program, Biomedicine Discovery Institute,; Departments of §Biochemistry and Molecular Biology
| | - Richard J Rebello
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and; ‖Cancer Research Division, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Parkville, Australia
| | - Howard Chan
- From the ‡Cancer Program, Biomedicine Discovery Institute,; Departments of §Biochemistry and Molecular Biology
| | - Birunthi Niranjan
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and
| | - Yunjian Wu
- From the ‡Cancer Program, Biomedicine Discovery Institute,; Departments of §Biochemistry and Molecular Biology
| | - Stuart Ellem
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and; **School of Health and Wellbeing, University of Southern Queensland, Ipswich, Queensland, Australia
| | - Xiaoqing Guan
- ‡‡Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jianmin Wu
- ‡‡Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Joanna N Skhinas
- §§The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, Australia
| | - Thomas R Cox
- §§The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, Australia;; ¶¶St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Gail P Risbridger
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and; ‖Cancer Research Division, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Parkville, Australia;; ‖‖Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Renea A Taylor
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ‖Cancer Research Division, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Parkville, Australia;; ‡‡‡Physiology, Monash University, Clayton, Australia
| | - Natalie L Lister
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and
| | - Roger J Daly
- From the ‡Cancer Program, Biomedicine Discovery Institute,; Departments of §Biochemistry and Molecular Biology,.
| |
Collapse
|
315
|
|
316
|
Mehnert M, Li W, Wu C, Salovska B, Liu Y. Combining Rapid Data Independent Acquisition and CRISPR Gene Deletion for Studying Potential Protein Functions: A Case of HMGN1. Proteomics 2019; 19:e1800438. [PMID: 30901150 DOI: 10.1002/pmic.201800438] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/24/2019] [Indexed: 12/21/2022]
Abstract
CRISPR-Cas gene editing holds substantial promise in many biomedical disciplines and basic research. Due to the important functional implications of non-histone chromosomal protein HMG-14 (HMGN1) in regulating chromatin structure and tumor immunity, gene knockout of HMGN1 is performed by CRISPR in cancer cells and the following proteomic regulation events are studied. In particular, DIA mass spectrometry (DIA-MS) is utilized, and more than 6200 proteins (protein- FDR 1%) and more than 82 000 peptide precursors are reproducibly measured in the single MS shots of 2 h. HMGN1 protein deletion is confidently verified by DIA-MS in all of the clone- and dish- replicates following CRISPR. Statistical analysis reveals 147 proteins change their expressions significantly after HMGN1 knockout. Functional annotation and enrichment analysis indicate the deletion of HMGN1 induces histone inactivation, various stress pathways, remodeling of extracellular proteomes, cell proliferation, as well as immune regulation processes such as complement and coagulation cascade and interferon alpha/ gamma response in cancer cells. These results shed new lights on the cellular functions of HMGN1. It is suggested that DIA-MS can be reliably used as a rapid, robust, and cost-effective proteomic-screening tool to assess the outcome of the CRISPR experiments.
Collapse
Affiliation(s)
- Martin Mehnert
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Chongde Wu
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Barbora Salovska
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA.,Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 14220, Czech Republic
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
317
|
Sun Z, Chang HM, Wang A, Song J, Zhang X, Guo J, Leung PCK, Lian F. Identification of potential metabolic biomarkers of polycystic ovary syndrome in follicular fluid by SWATH mass spectrometry. Reprod Biol Endocrinol 2019; 17:45. [PMID: 31186025 PMCID: PMC6560878 DOI: 10.1186/s12958-019-0490-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/04/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex disorder associated with multiple metabolic disturbance, including defective glucose metabolism and insulin resistance. The altered metabolites caused by the related metabolic disturbance may affect ovarian follicles, which can be reflected in follicular fluid composition. The aim of this study is to investigate follicular fluid metabolic profiles in women with PCOS using an advanced sequential window acquisition of all theoretical fragment-ion spectra (SWATH) mass spectrometry. MATERIALS AND METHODS Nineteen women with PCOS and twenty-one healthy controls undergoing IVF/ET were recruited, and their follicular fluid samples were collected for metabolomic study. Follicular fluid metabolic profiles, including steroid hormones, free fatty acids, bioactive lipids, and amino acids were analyzed using the principal component analysis (PCA) and partial least squares to latent structure-discriminant analysis (PLS-DA) model. RESULTS Levels of free fatty acids, 3-hydroxynonanoyl carnitine and eicosapentaenoic acid were significantly increased (P < 0.05), whereas those of bioactive lipids, lysophosphatidylcholines (LysoPC) (16:0), phytosphingosine, LysoPC (14:0) and LysoPC (18:0) were significantly decreased in women with PCOS (P < 0.05). Additionally, levels of steroid hormone deoxycorticosterone and two amino acids, phenylalanine and leucine were higher in the PCOS patients (P < 0.05). CONCLUSION Women with PCOS display unique metabolic profiles in their follicular fluid, and this data may provide us with important biochemical information and metabolic signatures that enable a better understanding of the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Zhengao Sun
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
- 0000 0001 2288 9830grid.17091.3eDepartment of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5 Canada
| | - Hsun-Ming Chang
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
- 0000 0001 2288 9830grid.17091.3eDepartment of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5 Canada
| | - Aijuan Wang
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
| | - Jingyan Song
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
| | - Xingxing Zhang
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
| | - Jiayin Guo
- 0000 0000 8877 7471grid.284723.8Guandong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Peter C. K. Leung
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
- 0000 0001 2288 9830grid.17091.3eDepartment of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5 Canada
- 0000 0001 2288 9830grid.17091.3eDepartment of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Room 317, 950 West 28th Avenue, Vancouver, British Columbia V5Z 4H4 Canada
| | - Fang Lian
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
| |
Collapse
|
318
|
Kadokami K, Ueno D. Comprehensive Target Analysis for 484 Organic Micropollutants in Environmental Waters by the Combination of Tandem Solid-Phase Extraction and Quadrupole Time-of-Flight Mass Spectrometry with Sequential Window Acquisition of All Theoretical Fragment-Ion Spectra Acquisition. Anal Chem 2019; 91:7749-7755. [PMID: 31132244 DOI: 10.1021/acs.analchem.9b01141] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There are many thousands of chemicals in use for a wide range of purposes, and highly efficient analytical methods are required to monitor them for protection of the environment. In order to cope with this difficult task we developed a novel, comprehensive method for 484 substances in water samples. In this method target chemicals were extracted by tandem SPE and then determined by LC-QTOF-MS-SWATH. Targets were unambiguously identified using retention times, accurate masses of a precursor and two product ions, their ion ratios, and accurate MS/MS spectrum. Quantitation was achieved by the internal standard method using a precursor ion. Results of recovery tests at two concentrations (50 and 500 ng L-1) showed average recoveries of 87.5% and 87.0% (RSD, 9.1% and 9.4%), respectively. Limits of detection of one-half of the targets were below 1.0 ng L-1. The method was applied to the influent and effluent of a sewage treatment plant, and around 100 chemicals were detected. Results of examination on matrix effects using their extracts spiked with 209 pesticides showed that the ratios of detected amounts between the extracts and the standard solution were 89.8% (influent) and 91.7% (effluent), respectively. In addition, investigation on the stability of calibration curves by injecting the same standards for 1 year showed that their quantitative results did not change; average accuracy was 103.3% (RSD, 10.0%), indicating that the calibration curves can be used for an extended period of time without calibration, and quantitative retrospective analysis can be done after creating calibration curves for new targets.
Collapse
Affiliation(s)
- Kiwao Kadokami
- Institute of Environmental Science and Technology , The University of Kitakyushu , 1-1 Hibikino, Wakamatsu , Kitakyushu , Japan
| | - Daisuke Ueno
- Graduate School of Agriculture , Saga University , 1 Honjyo, Honjyo-machi , Saga , Japan
| |
Collapse
|
319
|
Comparative analysis of mRNA and protein degradation in prostate tissues indicates high stability of proteins. Nat Commun 2019; 10:2524. [PMID: 31175306 PMCID: PMC6555818 DOI: 10.1038/s41467-019-10513-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/16/2019] [Indexed: 01/18/2023] Open
Abstract
Deterioration of biomolecules in clinical tissues is an inevitable pre-analytical process, which affects molecular measurements and thus potentially confounds conclusions from cohort analyses. Here, we investigate the degradation of mRNA and protein in 68 pairs of adjacent prostate tissue samples using RNA-Seq and SWATH mass spectrometry, respectively. To objectively quantify the extent of protein degradation, we develop a numerical score, the Proteome Integrity Number (PIN), that faithfully measures the degree of protein degradation. Our results indicate that protein degradation only affects 5.9% of the samples tested and shows negligible correlation with mRNA degradation in the adjacent samples. These findings are confirmed by independent analyses on additional clinical sample cohorts and across different mass spectrometric methods. Overall, the data show that the majority of samples tested are not compromised by protein degradation, and establish the PIN score as a generic and accurate indicator of sample quality for proteomic analyses. Protein degradation in clinical samples is largely unexplored. Here, the authors analyze the transcriptome and proteome of clinical tissue samples and develop an algorithm to assess protein degradation, showing that protein degradation is negligible in most tissue samples and does not correlate with transcript degradation.
Collapse
|
320
|
He Y, Mohamedali A, Huang C, Baker MS, Nice EC. Oncoproteomics: Current status and future opportunities. Clin Chim Acta 2019; 495:611-624. [PMID: 31176645 DOI: 10.1016/j.cca.2019.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Oncoproteomics is the systematic study of cancer samples using omics technologies to detect changes implicated in tumorigenesis. Recent progress in oncoproteomics is already opening new avenues for the identification of novel biomarkers for early clinical stage cancer detection, targeted molecular therapies, disease monitoring, and drug development. Such information will lead to new understandings of cancer biology and impact dramatically on the future care of cancer patients. In this review, we will summarize the advantages and limitations of the key technologies used in (onco)proteogenomics, (the Omics Pipeline), explain how they can assist us in understanding the biology behind the overarching "Hallmarks of Cancer", discuss how they can advance the development of precision/personalised medicine and the future directions in the field.
Collapse
Affiliation(s)
- Yujia He
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, PR China
| | - Abidali Mohamedali
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, New South Wales 2109, Australia
| | - Canhua Huang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, PR China
| | - Mark S Baker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales 2109, Australia.
| | - Edouard C Nice
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, PR China; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales 2109, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.
| |
Collapse
|
321
|
Iacobucci C, Piotrowski C, Aebersold R, Amaral BC, Andrews P, Bernfur K, Borchers C, Brodie NI, Bruce JE, Cao Y, Chaignepain S, Chavez JD, Claverol S, Cox J, Davis T, Degliesposti G, Dong MQ, Edinger N, Emanuelsson C, Gay M, Götze M, Gomes-Neto F, Gozzo FC, Gutierrez C, Haupt C, Heck AJR, Herzog F, Huang L, Hoopmann MR, Kalisman N, Klykov O, Kukačka Z, Liu F, MacCoss MJ, Mechtler K, Mesika R, Moritz RL, Nagaraj N, Nesati V, Neves-Ferreira AGC, Ninnis R, Novák P, O’Reilly FJ, Pelzing M, Petrotchenko E, Piersimoni L, Plasencia M, Pukala T, Rand KD, Rappsilber J, Reichmann D, Sailer C, Sarnowski CP, Scheltema RA, Schmidt C, Schriemer DC, Shi Y, Skehel JM, Slavin M, Sobott F, Solis-Mezarino V, Stephanowitz H, Stengel F, Stieger CE, Trabjerg E, Trnka M, Vilaseca M, Viner R, Xiang Y, Yilmaz S, Zelter A, Ziemianowicz D, Leitner A, Sinz A. First Community-Wide, Comparative Cross-Linking Mass Spectrometry Study. Anal Chem 2019; 91:6953-6961. [PMID: 31045356 PMCID: PMC6625963 DOI: 10.1021/acs.analchem.9b00658] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The number of publications in the field of chemical cross-linking combined with mass spectrometry (XL-MS) to derive constraints for protein three-dimensional structure modeling and to probe protein-protein interactions has increased during the last years. As the technique is now becoming routine for in vitro and in vivo applications in proteomics and structural biology there is a pressing need to define protocols as well as data analysis and reporting formats. Such consensus formats should become accepted in the field and be shown to lead to reproducible results. This first, community-based harmonization study on XL-MS is based on the results of 32 groups participating worldwide. The aim of this paper is to summarize the status quo of XL-MS and to compare and evaluate existing cross-linking strategies. Our study therefore builds the framework for establishing best practice guidelines to conduct cross-linking experiments, perform data analysis, and define reporting formats with the ultimate goal of assisting scientists to generate accurate and reproducible XL-MS results.
Collapse
Affiliation(s)
- Claudio Iacobucci
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute
of Pharmacy, Charles Tanford Protein Center, Martin Luther University
Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle/Saale, Germany
| | - Christine Piotrowski
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute
of Pharmacy, Charles Tanford Protein Center, Martin Luther University
Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle/Saale, Germany
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH
Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
- Faculty of Science, University of Zurich, 8006 Zurich,
Switzerland
| | - Bruno C. Amaral
- Institute of Chemistry, University of Campinas, Campinas São
Paulo 13083-970, Brazil
| | - Philip Andrews
- Departments of Biological Chemistry, Bioinformatics, and Chemistry,
University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katja Bernfur
- Department of Biochemistry and Structural Biology, Center for
Molecular Protein Science, Lund University, 221 00 Lund, Sweden
| | - Christoph Borchers
- University of Victoria–Genome British Columbia Proteomics
Centre, Vancouver Island Technology Park, Victoria, British Columbia V8Z 7X8,
Canada
- Department of Biochemistry and Microbiology, University of Victoria,
Petch Building, Room 270d, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2,
Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital,
McGill University, 3755 Côte Ste-Catherine Road, Montréal, Quebec H3T
1E2, Canada
- Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish
General Hospital, McGill University, 3755 Côte Ste-Catherine Road,
Montréal, Quebec H3T 1E2, Canada
| | - Nicolas I. Brodie
- University of Victoria–Genome British Columbia Proteomics
Centre, Vancouver Island Technology Park, Victoria, British Columbia V8Z 7X8,
Canada
| | - James E. Bruce
- Department of Genome Sciences, University of Washington, Seattle,
Washington 98195, United States
| | - Yong Cao
- National Institute of Biological Sciences, Beijing 7 Science Park
Road, ZGC Life Science Park, 102206 Beijing, China
| | - Stéphane Chaignepain
- CBMN, UMR 5248, CNRS, Université de Bordeaux, INP Bordeaux,
Pessac 33607, France
| | - Juan D. Chavez
- Department of Genome Sciences, University of Washington, Seattle,
Washington 98195, United States
| | - Stéphane Claverol
- Centre de Génomique Fonctionnelle, Plateforme
Protéome, Université de Bordeaux, Bordeaux33000, France
| | - Jürgen Cox
- Computational Systems Biochemistry Research Group,
Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried,
Germany
| | - Trisha Davis
- Department of Biochemistry, University of Washington, Seattle,
Washington 98195, United States
| | - Gianluca Degliesposti
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus,
Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 7 Science Park
Road, ZGC Life Science Park, 102206 Beijing, China
| | - Nufar Edinger
- Department of Biological Chemistry, The Alexander Silberman
Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Cecilia Emanuelsson
- Department of Biochemistry and Structural Biology, Center for
Molecular Protein Science, Lund University, 221 00 Lund, Sweden
| | - Marina Gay
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona
Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona,
Spain
| | - Michael Götze
- Institute for Biochemistry and Biotechnology, Charles Tanford
Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a,
06120 Halle/Saale, Germany
| | - Francisco Gomes-Neto
- Laboratory of Toxinology, Oswaldo Cruz Institute, Fiocruz, Avenida
Brasil 4365 (Moorish Castle), Manguinhos, Rio de Janeiro, Rio de Janeiro 21040-900,
Brazil
| | - Fabio C. Gozzo
- Institute of Chemistry, University of Campinas, Campinas São
Paulo 13083-970, Brazil
| | - Craig Gutierrez
- Department of Physiology & Biophysics, University of
California, Irvine, California 92697, United States
| | - Caroline Haupt
- Interdisciplinary Research Center HALOmem, Institute for
Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther
University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle/Saale,
Germany
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University
of Utrecht and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The
Netherlands
| | - Franz Herzog
- Gene Center Munich, Department of Biochemistry, Faculty of Chemistry
and Pharmacy, Ludwig Maximilians University of Munich, Feodor-Lynen-Strasse 25,
81377 Munich, Germany
| | - Lan Huang
- Department of Physiology & Biophysics, University of
California, Irvine, California 92697, United States
| | - Michael R. Hoopmann
- Institute for Systems Biology, 401 Terry Avenue North, Seattle,
Washington 98109, United States
| | - Nir Kalisman
- Department of Biological Chemistry, The Alexander Silberman
Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Oleg Klykov
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University
of Utrecht and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The
Netherlands
| | - Zdeněk Kukačka
- Institute of Microbiology, BIOCEV, Prumyslova 595, 252 50 Vestec,
Czech Republic
| | - Fan Liu
- Leibniz Institute of Molecular Pharmacology (FMP),
Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle,
Washington 98195, United States
| | - Karl Mechtler
- Protein Chemistry Facility, Research Institute of Molecular
Pathology (IMP) and Institute of Molecular Biotechnology (IMBA), Vienna Biocenter
(VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Ravit Mesika
- Department of Biological Chemistry, The Alexander Silberman
Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Robert L. Moritz
- Institute for Systems Biology, 401 Terry Avenue North, Seattle,
Washington 98109, United States
| | - Nagarjuna Nagaraj
- Biochemistry Core Facility, Max-Planck-Institute of Biochemistry,
Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Victor Nesati
- Analytical Biochemistry, CSL Limited, Bio21 Institute, 30
Flemington Road, 3010 Parkville, Melbourne, Australia
| | - Ana G. C. Neves-Ferreira
- Laboratory of Toxinology, Oswaldo Cruz Institute, Fiocruz, Avenida
Brasil 4365 (Moorish Castle), Manguinhos, Rio de Janeiro, Rio de Janeiro 21040-900,
Brazil
| | - Robert Ninnis
- Analytical Biochemistry, CSL Limited, Bio21 Institute, 30
Flemington Road, 3010 Parkville, Melbourne, Australia
| | - Petr Novák
- Institute of Microbiology, BIOCEV, Prumyslova 595, 252 50 Vestec,
Czech Republic
| | - Francis J. O’Reilly
- Chair of Bioanalytics, Institute of Biotechnology Technische
Universität Berlin, 13355 Berlin, Germany
| | - Matthias Pelzing
- Analytical Biochemistry, CSL Limited, Bio21 Institute, 30
Flemington Road, 3010 Parkville, Melbourne, Australia
| | - Evgeniy Petrotchenko
- University of Victoria–Genome British Columbia Proteomics
Centre, Vancouver Island Technology Park, Victoria, British Columbia V8Z 7X8,
Canada
| | - Lolita Piersimoni
- Departments of Biological Chemistry, Bioinformatics, and Chemistry,
University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Manolo Plasencia
- Departments of Biological Chemistry, Bioinformatics, and Chemistry,
University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tara Pukala
- Discipline of Chemistry, Faculty of Sciences, University of
Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - Kasper D. Rand
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen,
Denmark
| | - Juri Rappsilber
- Chair of Bioanalytics, Institute of Biotechnology Technische
Universität Berlin, 13355 Berlin, Germany
- Wellcome Trust Centre for Cell Biology, School of Biological
Sciences, University of Edinburgh, EH9 3BF Edinburgh, U.K
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman
Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Carolin Sailer
- University of Konstanz, Department of Biology,
Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Chris P. Sarnowski
- Department of Biology, Institute of Molecular Systems Biology, ETH
Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
- PhD Program in Systems Biology, University of Zurich and ETH
Zurich, 8092 Zurich, Switzerland
| | - Richard A. Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University
of Utrecht and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The
Netherlands
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Institute for
Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther
University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle/Saale,
Germany
| | - David C. Schriemer
- Department of Biochemistry & Molecular Biology, Robson DNA
Science Centre, University of Calgary, 3330 Hospital Drive North West, Calgary,
Alberta T2N 4N1, Canada
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, School of
Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - J. Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus,
Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Moriya Slavin
- Department of Biological Chemistry, The Alexander Silberman
Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Frank Sobott
- Department of Chemistry, University of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- The Astbury Centre for Structural Molecular Biology and School of
Molecular and Cellular Biology, University of Leeds, LS2 9JT Leeds, U.K
| | - Victor Solis-Mezarino
- Gene Center Munich, Department of Biochemistry, Faculty of Chemistry
and Pharmacy, Ludwig Maximilians University of Munich, Feodor-Lynen-Strasse 25,
81377 Munich, Germany
| | - Heike Stephanowitz
- Leibniz Institute of Molecular Pharmacology (FMP),
Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Florian Stengel
- University of Konstanz, Department of Biology,
Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Christian E. Stieger
- Protein Chemistry Facility, Research Institute of Molecular
Pathology (IMP) and Institute of Molecular Biotechnology (IMBA), Vienna Biocenter
(VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Esben Trabjerg
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen,
Denmark
| | - Michael Trnka
- UCSF Mass Spectrometry Facility, Genentech Hall, 600 16th Street,
San Francisco, California 94158, United States
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona
Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona,
Spain
| | - Rosa Viner
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose,
California 95134, United States
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, School of
Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Sule Yilmaz
- Computational Systems Biochemistry Research Group,
Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried,
Germany
| | - Alex Zelter
- Department of Biochemistry, University of Washington, Seattle,
Washington 98195, United States
| | - Daniel Ziemianowicz
- Department of Biochemistry & Molecular Biology, Robson DNA
Science Centre, University of Calgary, 3330 Hospital Drive North West, Calgary,
Alberta T2N 4N1, Canada
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH
Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute
of Pharmacy, Charles Tanford Protein Center, Martin Luther University
Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle/Saale, Germany
| |
Collapse
|
322
|
Carne NA, Bell S, Brown AP, Määttä A, Flagler MJ, Benham AM. Reductive Stress Selectively Disrupts Collagen Homeostasis and Modifies Growth Factor-independent Signaling Through the MAPK/Akt Pathway in Human Dermal Fibroblasts. Mol Cell Proteomics 2019; 18:1123-1137. [PMID: 30890563 PMCID: PMC6553930 DOI: 10.1074/mcp.ra118.001140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/15/2019] [Indexed: 01/03/2023] Open
Abstract
Redox stress is a well-known contributor to aging and diseases in skin. Reductants such as dithiothreitol (DTT) can trigger a stress response by disrupting disulfide bonds. However, the quantitative response of the cellular proteome to reductants has not been explored, particularly in cells such as fibroblasts that produce extracellular matrix proteins. Here, we have used a robust, unbiased, label-free SWATH-MS proteomic approach to quantitate the response of skin fibroblast cells to DTT in the presence or absence of the growth factor PDGF. Of the 4487 proteins identified, only 42 proteins showed a statistically significant change of 2-fold or more with reductive stress. Our proteomics data show that reductive stress results in the loss of a small subset of reductant-sensitive proteins (including the collagens COL1A1/2 and COL3A1, and the myopathy-associated collagens COL6A1/2/3), and the down-regulation of targets downstream of the MAPK pathway. We show that a reducing environment alters signaling through the PDGF-associated MAPK/Akt pathways, inducing chronic dephosphorylation of ERK1/2 at Thr202/Tyr204 and phosphorylation of Akt at Ser473 in a growth factor-independent manner. Our data highlights collagens as sentinel molecules for redox stress downstream of MAPK/Akt, and identifies intervention points to modulate the redox environment to target skin diseases and conditions associated with erroneous matrix deposition.
Collapse
Affiliation(s)
- Naomi A Carne
- From the ‡The Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Steven Bell
- From the ‡The Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Adrian P Brown
- From the ‡The Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Arto Määttä
- From the ‡The Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Michael J Flagler
- §The Procter & Gamble Company, 8700 Mason Montgomery Road, Mason, OH 45040
| | - Adam M Benham
- From the ‡The Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK;
| |
Collapse
|
323
|
Giudice G, Petsalaki E. Proteomics and phosphoproteomics in precision medicine: applications and challenges. Brief Bioinform 2019; 20:767-777. [PMID: 29077858 PMCID: PMC6585152 DOI: 10.1093/bib/bbx141] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Recent advances in proteomics allow the accurate measurement of abundances for thousands of proteins and phosphoproteins from multiple samples in parallel. Therefore, for the first time, we have the opportunity to measure the proteomic profiles of thousands of patient samples or disease model cell lines in a systematic way, to identify the precise underlying molecular mechanism and discover personalized biomarkers, networks and treatments. Here, we review examples of successful use of proteomics and phosphoproteomics data sets in as well as their integration other omics data sets with the aim of precision medicine. We will discuss the bioinformatics challenges posed by the generation, analysis and integration of such large data sets and present potential reasons why proteomics profiling and biomarkers are not currently widely used in the clinical setting. We will finally discuss ways to contribute to the better use of proteomics data in precision medicine and the clinical setting.
Collapse
Affiliation(s)
- Girolamo Giudice
- European Molecular Biology Laboratory European Bioinformatics Institute
| | | |
Collapse
|
324
|
Wang G, Meyer JG, Cai W, Softic S, Li ME, Verdin E, Newgard C, Schilling B, Kahn CR. Regulation of UCP1 and Mitochondrial Metabolism in Brown Adipose Tissue by Reversible Succinylation. Mol Cell 2019; 74:844-857.e7. [PMID: 31000437 PMCID: PMC6525068 DOI: 10.1016/j.molcel.2019.03.021] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/06/2019] [Accepted: 03/20/2019] [Indexed: 11/23/2022]
Abstract
Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy, and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis.
Collapse
Affiliation(s)
- GuoXiao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jesse G Meyer
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Weikang Cai
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Samir Softic
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mengyao Ella Li
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Christopher Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27708, USA
| | | | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
325
|
A new class of protein biomarkers based on subcellular distribution: application to a mouse liver cancer model. Sci Rep 2019; 9:6913. [PMID: 31061415 PMCID: PMC6502816 DOI: 10.1038/s41598-019-43091-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
To-date, most proteomic studies aimed at discovering tissue-based cancer biomarkers have compared the quantity of selected proteins between case and control groups. However, proteins generally function in association with other proteins to form modules localized in particular subcellular compartments in specialized cell types and tissues. Sub-cellular mislocalization of proteins has in fact been detected as a key feature in a variety of cancer cells. Here, we describe a strategy for tissue-biomarker detection based on a mitochondrial fold enrichment (mtFE) score, which is sensitive to protein abundance changes as well as changes in subcellular distribution between mitochondria and cytosol. The mtFE score integrates protein abundance data from total cellular lysates and mitochondria-enriched fractions, and provides novel information for the classification of cancer samples that is not necessarily apparent from conventional abundance measurements alone. We apply this new strategy to a panel of wild-type and mutant mice with a liver-specific gene deletion of Liver receptor homolog 1 (Lrh-1hep−/−), with both lines containing control individuals as well as individuals with liver cancer induced by diethylnitrosamine (DEN). Lrh-1 gene deletion attenuates cancer cell metabolism in hepatocytes through mitochondrial glutamine processing. We show that proteome changes based on mtFE scores outperform protein abundance measurements in discriminating DEN-induced liver cancer from healthy liver tissue, and are uniquely robust against genetic perturbation. We validate the capacity of selected proteins with informative mtFE scores to indicate hepatic malignant changes in two independent mouse models of hepatocellular carcinoma (HCC), thus demonstrating the robustness of this new approach to biomarker research. Overall, the method provides a novel, sensitive approach to cancer biomarker discovery that considers contextual information of tested proteins.
Collapse
|
326
|
Vincent RM, Wright BW, Jaschke PR. Measuring Amber Initiator tRNA Orthogonality in a Genomically Recoded Organism. ACS Synth Biol 2019; 8:675-685. [PMID: 30856316 DOI: 10.1021/acssynbio.9b00021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Using engineered initiator tRNA for precise control of protein translation within cells has great promise within future orthogonal translation systems to decouple housekeeping protein metabolism from that of engineered genetic systems. Previously, E. coli strain C321.ΔA. exp lacking all UAG stop codons was created, freeing this "amber" stop codon for other purposes. An engineered "amber initiator" tRNACUAfMet that activates translation at UAG codons is available, but little is known about this tRNA's orthogonality. Here, we combine for the first time the amber initiator tRNACUAfMet in C321.ΔA. exp and measure its cellular effects. We found that the tRNACUAfMet expression resulted in a nearly 200-fold increase in fluorescent reporter expression with a unimodal population distribution and no apparent cellular fitness defects. Proteomic analysis revealed upregulated ribosome-associated, tRNA degradation, and amino acid biosynthetic proteins, with no evidence for off-target translation initiation. In contrast to previous work, we show that UAG-initiated proteins carry N-terminal methionine, but have no evidence for glutamine. Together, our results identify beneficial features of using the amber initiator tRNACUAfMet to control gene expression while also revealing fundamental challenges to using engineered initiator tRNAs as the basis for orthogonal translation initiation systems.
Collapse
Affiliation(s)
- Russel M. Vincent
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Bradley W. Wright
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Paul R. Jaschke
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
327
|
DeLaney K, Li L. Data Independent Acquisition Mass Spectrometry Method for Improved Neuropeptidomic Coverage in Crustacean Neural Tissue Extracts. Anal Chem 2019; 91:5150-5158. [PMID: 30888792 PMCID: PMC6481171 DOI: 10.1021/acs.analchem.8b05734] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neuropeptides are an important class of signaling molecules in the nervous and neuroendocrine system, but they are challenging to study due to their low concentration in vivo in the presence of numerous interfering artifacts. Often the limitation of mass spectrometry analyses of neuropeptides in complex tissue extracts is not due to neuropeptides being below the detection limit but due to ions not being selected for tandem mass spectrometry during the liquid chromatography elution time and therefore not being identified. In this study, a data independent acquisition (DIA) method was developed to improve the coverage of neuropeptides in neural tissue from the model organism C. borealis. The optimal mass-to-charge ratio range and isolation window were determined and subsequently used to detect more neuropeptides in extracts from the brain and pericardial organs than the conventional data dependent acquisition method. The DIA method led to the detection of almost twice as many neuropeptides in the brain and approximately 1.5-fold more neuropeptides in the pericardial organs. The technical and biological reproducibility were also explored and found to be improved over the original method, with 56% of neuropeptides detected in 3 out of 3 replicate injections and 62% in 3 out of 3 biological replicates. Furthermore, 68 putative novel neuropeptides were detected and identified with de novo sequencing. The quantitative accuracy of the method was also explored. The developed method is anticipated to be useful for gaining a deeper profiling of neuropeptides, especially those in low abundance, in a variety of sample types.
Collapse
Affiliation(s)
- Kellen DeLaney
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
- School of Pharmacy, University of Wisconsin–Madison, 5125 Rennebohm Hall, 777 Highland Avenue, Madison, Wisconsin 53705-2222, United States
| |
Collapse
|
328
|
Masuda T, Hoshiyama T, Uemura T, Hirayama-Kurogi M, Ogata S, Furukawa A, Couraud PO, Furihata T, Ito S, Ohtsuki S. Large-Scale Quantitative Comparison of Plasma Transmembrane Proteins between Two Human Blood–Brain Barrier Model Cell Lines, hCMEC/D3 and HBMEC/ciβ. Mol Pharm 2019; 16:2162-2171. [DOI: 10.1021/acs.molpharmaceut.9b00114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Takeshi Masuda
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda, Tokyo 100-0004, Japan
| | | | | | | | | | | | - Pierre-Olivier Couraud
- Institut Cochin, Paris Descartes University, Inserm U1016, CNRS UMR8104, Paris 75014, France
| | - Tomomi Furihata
- Department of Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670 Japan
| | - Shingo Ito
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda, Tokyo 100-0004, Japan
| | - Sumio Ohtsuki
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda, Tokyo 100-0004, Japan
| |
Collapse
|
329
|
Global Lysine Acetylation in Escherichia coli Results from Growth Conditions That Favor Acetate Fermentation. J Bacteriol 2019; 201:JB.00768-18. [PMID: 30782634 DOI: 10.1128/jb.00768-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 01/17/2023] Open
Abstract
Lysine acetylation is thought to provide a mechanism for regulating metabolism in diverse bacteria. Indeed, many studies have shown that the majority of enzymes involved in central metabolism are acetylated and that acetylation can alter enzyme activity. However, the details regarding this regulatory mechanism are still unclear, specifically with regard to the signals that induce lysine acetylation. To better understand this global regulatory mechanism, we profiled changes in lysine acetylation during growth of Escherichia coli on the hexose glucose or the pentose xylose at both high and low sugar concentrations using label-free mass spectrometry. The goal was to see whether lysine acetylation differed during growth on these two different sugars. No significant differences, however, were observed. Rather, the initial sugar concentration was the principal factor governing changes in lysine acetylation, with higher sugar concentrations causing more acetylation. These results suggest that acetylation does not target specific metabolic pathways but rather simply targets accessible lysines, which may or may not alter enzyme activity. They further suggest that lysine acetylation principally results from conditions that favor accumulation of acetyl phosphate, the principal acetate donor in E. coli IMPORTANCE Bacteria alter their metabolism in response to nutrient availability, growth conditions, and environmental stresses using a number of different mechanisms. One is lysine acetylation, a posttranslational modification known to target many metabolic enzymes. However, little is known about this regulatory mode. We investigated the factors inducing changes in lysine acetylation by comparing growth on glucose and xylose. We found that the specific sugar used for growth did not alter the pattern of acetylation; rather, the amount of sugar did, with more sugar causing more acetylation. These results imply that lysine acetylation is a global regulatory mechanism that is responsive not to the specific carbon source per se but rather to the accumulation of downstream metabolites.
Collapse
|
330
|
Grabowski P, Hesse S, Hollizeck S, Rohlfs M, Behrends U, Sherkat R, Tamary H, Ünal E, Somech R, Patıroğlu T, Canzar S, van der Werff Ten Bosch J, Klein C, Rappsilber J. Proteome Analysis of Human Neutrophil Granulocytes From Patients With Monogenic Disease Using Data-independent Acquisition. Mol Cell Proteomics 2019; 18:760-772. [PMID: 30630937 PMCID: PMC6442368 DOI: 10.1074/mcp.ra118.001141] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/14/2018] [Indexed: 11/06/2022] Open
Abstract
Neutrophil granulocytes are critical mediators of innate immunity and tissue regeneration. Rare diseases of neutrophil granulocytes may affect their differentiation and/or functions. However, there are very few validated diagnostic tests assessing the functions of neutrophil granulocytes in these diseases. Here, we set out to probe omics analysis as a novel diagnostic platform for patients with defective differentiation and function of neutrophil granulocytes. We analyzed highly purified neutrophil granulocytes from 68 healthy individuals and 16 patients with rare monogenic diseases. Cells were isolated from fresh venous blood (purity >99%) and used to create a spectral library covering almost 8000 proteins using strong cation exchange fractionation. Patient neutrophil samples were then analyzed by data-independent acquisition proteomics, quantifying 4154 proteins in each sample. Neutrophils with mutations in the neutrophil elastase gene ELANE showed large proteome changes that suggest these mutations may affect maturation of neutrophil granulocytes and initiate misfolded protein response and cellular stress mechanisms. In contrast, only few proteins changed in patients with leukocyte adhesion deficiency (LAD) and chronic granulomatous disease (CGD). Strikingly, neutrophil transcriptome analysis showed no correlation with its proteome. In case of two patients with undetermined genetic causes, proteome analysis guided the targeted genetic diagnostics and uncovered the underlying genomic mutations. Data-independent acquisition proteomics may help to define novel pathomechanisms in neutrophil diseases and provide a clinically useful diagnostic dimension.
Collapse
Affiliation(s)
- Piotr Grabowski
- From the ‡Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Sebastian Hesse
- §Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Sebastian Hollizeck
- §Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Meino Rohlfs
- §Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Uta Behrends
- ‖Children's Hospital, Hematology-Oncology, Technical University Munich, 80804 Munich, Germany
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hannah Tamary
- Schneider Children's Medical Center of Israel, Petah Tikva, Sackler School of Medicine, Tel Aviv University, Israel
| | - Ekrem Ünal
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey
| | - Raz Somech
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Türkan Patıroğlu
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey
| | - Stefan Canzar
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Christoph Klein
- §Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, 80337 Munich, Germany;.
| | - Juri Rappsilber
- From the ‡Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany;; ¶Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK;.
| |
Collapse
|
331
|
Label-free absolute protein quantification with data-independent acquisition. J Proteomics 2019; 200:51-59. [PMID: 30880166 DOI: 10.1016/j.jprot.2019.03.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/19/2019] [Accepted: 03/06/2019] [Indexed: 02/05/2023]
Abstract
Despite data-independent acquisition (DIA) has been increasingly used for relative protein quantification, DIA-based label-free absolute quantification method has not been fully established. Here we present a novel DIA method using the TPA algorithm (DIA-TPA) for the absolute quantification of protein expressions in human liver microsomal and S9 samples. To validate this method, both data-dependent acquisition (DDA) and DIA experiments were conducted on 36 individual human liver microsome and S9 samples. The MS2-based DIA-TPA was able to quantify approximately twice as many proteins as the MS1-based DDA-TPA method, whereas protein concentrations determined by the two approaches were comparable. To evaluate the accuracy of the DIA-TPA method, we absolutely quantified carboxylesterase 1 concentrations in human liver S9 fractions using an established SILAC internal standard-based proteomic assay; the SILAC results were consistent with those obtained from DIA-TPA analysis. Finally, we employed a unique algorithm in DIA-TPA to distribute the MS signals from shared peptides to individual proteins or isoforms and successfully applied the method to the absolute quantification of several drug-metabolizing enzymes in human liver microsomes. In sum, the DIA-TPA method not only can absolutely quantify entire proteomes and specific proteins, but also has the capability quantifying proteins with shared peptides. SIGNIFICANCE: Data independent acquisition (DIA) has emerged as a powerful approach for relative protein quantification at the whole proteome level. However, DIA-based label-free absolute protein quantification (APQ) method has not been fully established. In the present study, we present a novel DIA-based label-free APQ approach, named DIA-TPA, with the capability absolutely quantifying proteins with shared peptides. The method was validated by comparing the quantification results of DIA-TPA with that obtained from stable isotope-labeled internal standard-based proteomic assays.
Collapse
|
332
|
Tong Y, Ku X, Wu C, Liu J, Yang C, Tang W, Yan W, Tang J. Data-independent acquisition-based quantitative proteomic analysis reveals differences in host immune response of peripheral blood mononuclear cells to sepsis. Scand J Immunol 2019; 89:e12748. [PMID: 30667541 DOI: 10.1111/sji.12748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/24/2018] [Accepted: 01/08/2019] [Indexed: 01/19/2023]
Abstract
This study was aimed to uncover proteins that are differentially expressed in sepsis. Data-independent acquisition (DIA) was used for analysis to identify differentially expressed proteins in peripheral blood mononuclear cells (PBMCs) of patients. A total of 24 non-septic intensive care unit (ICU) patients, 11 septic shock patients and 27 patients diagnosed with sepsis were recruited for the mass spectrometry (MS) discovery. PBMCs were isolated from routine blood samples and digested into peptides. A DIA workflow was developed using a quadrupole-Orbitrap liquid chromatography LC-MS system, and mass spectra peaks were extracted by Skyline software. Orthogonal partial least-squares discriminant analysis (OPLS-DA) and partial least-squares discriminant analysis (PLS-DA) were applied to distinguish the patient groups at the level of fragment ion and peptide. Differentially expressed proteins in the patient groups were verified by enzyme-linked immunosorbent assay (ELISA). Receiver-operating characteristic (ROC) curves were used to evaluate the protein expression. A total of 1062 fragment ions and 122 proteins were identified in the MS-DIA analysis conducted by Skyline software. Using gene ontology clustering analysis, we discovered that 51 of the 122 identified proteins were associated with biological processes, including carbon metabolism, biosynthesis of antibiotics, platelet activation, bacterial invasion of epithelial cells and complement, and coagulation cascades. Among them, five proteins (high-mobility group box1 [HMGB1], matrix metalloproteinase 8 [MMP8], neutrophil gelatinase-associated lipocalin [NGAL], lactotransferrin [LTF] and grancalcin [GCA]) were identified by ELISA as closely related to the development of sepsis. The ROC curves displayed good sensitivity and specificity.
Collapse
Affiliation(s)
- Yiqing Tong
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xin Ku
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunrong Wu
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianjun Liu
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chunhui Yang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | | | - Wei Yan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
333
|
Chen Y, Vu J, Thompson MG, Sharpless WA, Chan LJG, Gin JW, Keasling JD, Adams PD, Petzold CJ. A rapid methods development workflow for high-throughput quantitative proteomic applications. PLoS One 2019; 14:e0211582. [PMID: 30763335 PMCID: PMC6375547 DOI: 10.1371/journal.pone.0211582] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Recent improvements in the speed and sensitivity of liquid chromatography-mass spectrometry systems have driven significant progress toward system-wide characterization of the proteome of many species. These efforts create large proteomic datasets that provide insight into biological processes and identify diagnostic proteins whose abundance changes significantly under different experimental conditions. Yet, these system-wide experiments are typically the starting point for hypothesis-driven, follow-up experiments to elucidate the extent of the phenomenon or the utility of the diagnostic marker, wherein many samples must be analyzed. Transitioning from a few discovery experiments to quantitative analyses on hundreds of samples requires significant resources both to develop sensitive and specific methods as well as analyze them in a high-throughput manner. To aid these efforts, we developed a workflow using data acquired from discovery proteomic experiments, retention time prediction, and standard-flow chromatography to rapidly develop targeted proteomic assays. We demonstrated this workflow by developing MRM assays to quantify proteins of multiple metabolic pathways from multiple microbes under different experimental conditions. With this workflow, one can also target peptides in scheduled/dynamic acquisition methods from a shotgun proteomic dataset downloaded from online repositories, validate with appropriate control samples or standard peptides, and begin analyzing hundreds of samples in only a few minutes.
Collapse
Affiliation(s)
- Yan Chen
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States of America
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Jonathan Vu
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States of America
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Mitchell G. Thompson
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States of America
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States of America
| | - William A. Sharpless
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States of America
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Leanne Jade G. Chan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States of America
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Jennifer W. Gin
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States of America
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Jay D. Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States of America
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, United States of America
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Paul D. Adams
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
- Molecular Biophysics and Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Christopher J. Petzold
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, United States of America
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
- * E-mail:
| |
Collapse
|
334
|
Generation of a zebrafish SWATH-MS spectral library to quantify 10,000 proteins. Sci Data 2019; 6:190011. [PMID: 30747917 PMCID: PMC6371892 DOI: 10.1038/sdata.2019.11] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
Sequential window acquisition of all theoretical mass spectra (SWATH-MS) requires a spectral library to extract quantitative measurements from the mass spectrometry data acquired in data-independent acquisition mode (DIA). Large combined spectral libraries containing SWATH assays have been generated for humans and several other organisms, but so far no publicly available library exists for measuring the proteome of zebrafish, a rapidly emerging model system in biomedical research. Here, we present a large zebrafish SWATH spectral library to measure the abundance of 104,185 proteotypic peptides from 10,405 proteins. The library includes proteins expressed in 9 different zebrafish tissues (brain, eye, heart, intestine, liver, muscle, ovary, spleen, and testis) and provides an important new resource to quantify 40% of the protein-coding zebrafish genes. We employ this resource to quantify the proteome across brain, muscle, and liver and characterize divergent expression levels of paralogous proteins in different tissues. Data are available via ProteomeXchange (PXD010876, PXD010869) and SWATHAtlas (PASS01237).
Collapse
|
335
|
Murphy S, Dowling P, Zweyer M, Swandulla D, Ohlendieck K. Proteomic profiling of giant skeletal muscle proteins. Expert Rev Proteomics 2019; 16:241-256. [DOI: 10.1080/14789450.2019.1575205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, Bonn, Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| |
Collapse
|
336
|
Wu W, Dai RT, Bendixen E. Comparing SRM and SWATH Methods for Quantitation of Bovine Muscle Proteomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1608-1618. [PMID: 30624930 DOI: 10.1021/acs.jafc.8b05459] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mass spectrometry (MS) has become essential for efficient and accurate quantification of proteins and proteomes and, thus, a key technology throughout all biosciences. However, validated MS methods are still scarce for meat quality research applications. The objective of this work was to develop and compare two targeted proteomic methods, namely, selected reaction monitoring (SRM) and sequential window acquisition of all theoretical spectra (SWATH), for the quantification of 11 bovine muscle proteins that may be indicators of meat color. Both methods require evaluation of spectra from proteotypic and quantotypic peptides, and we here report our evaluation of which peptides and MS parameters are best suited for robust quantification of these 11 proteins. We observed that the SRM approach provides better reproducibility, linearity, and sensitivity than SWATH and is therefore ideal for targeted quantification of low-abundance proteins, while the SWATH approach provides a more time-efficient method for targeted protein quantification of high-abundance proteins and, additionally, supports the search for novel biomarkers.
Collapse
Affiliation(s)
- Wei Wu
- College of Food Science and Nutritional Engineering , China Agricultural University , No. 17 Qinghua East Road , Haidian District, Beijing 100083 , P. R. China
- Department of Molecular Biology and Genetics, Faculty of Science and Technology , Aarhus University , Gustav Wieds Vej 10 , 8000 Aarhus , Denmark
| | - Rui-Tong Dai
- College of Food Science and Nutritional Engineering , China Agricultural University , No. 17 Qinghua East Road , Haidian District, Beijing 100083 , P. R. China
| | - Emøke Bendixen
- Department of Molecular Biology and Genetics, Faculty of Science and Technology , Aarhus University , Gustav Wieds Vej 10 , 8000 Aarhus , Denmark
| |
Collapse
|
337
|
Rice SJ, Liu X, Zhang J, Belani CP. Absolute Quantification of All Identified Plasma Proteins from SWATH Data for Biomarker Discovery. Proteomics 2019; 19:e1800135. [DOI: 10.1002/pmic.201800135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/27/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Shawn J. Rice
- Penn State Cancer InstitutePenn State College of Medicine Hershey PA 17033 USA
| | - Xin Liu
- Penn State Cancer InstitutePenn State College of Medicine Hershey PA 17033 USA
| | - Jianhong Zhang
- Penn State Cancer InstitutePenn State College of Medicine Hershey PA 17033 USA
| | - Chandra P. Belani
- Penn State Cancer InstitutePenn State College of Medicine Hershey PA 17033 USA
- Department of MedicinePenn State College of Medicine Hershey PA 17033 USA
| |
Collapse
|
338
|
Heusel M, Bludau I, Rosenberger G, Hafen R, Frank M, Banaei-Esfahani A, van Drogen A, Collins BC, Gstaiger M, Aebersold R. Complex-centric proteome profiling by SEC-SWATH-MS. Mol Syst Biol 2019; 15:e8438. [PMID: 30642884 PMCID: PMC6346213 DOI: 10.15252/msb.20188438] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Proteins are major effectors and regulators of biological processes that can elicit multiple functions depending on their interaction with other proteins. The organization of proteins into macromolecular complexes and their quantitative distribution across these complexes is, therefore, of great biological and clinical significance. In this paper, we describe an integrated experimental and computational technique to quantify hundreds of protein complexes in a single operation. The method consists of size exclusion chromatography (SEC) to fractionate native protein complexes, SWATH/DIA mass spectrometry to precisely quantify the proteins in each SEC fraction, and the computational framework CCprofiler to detect and quantify protein complexes by error‐controlled, complex‐centric analysis using prior information from generic protein interaction maps. Our analysis of the HEK293 cell line proteome delineates 462 complexes composed of 2,127 protein subunits. The technique identifies novel sub‐complexes and assembly intermediates of central regulatory complexes while assessing the quantitative subunit distribution across them. We make the toolset CCprofiler freely accessible and provide a web platform, SECexplorer, for custom exploration of the HEK293 proteome modularity.
Collapse
Affiliation(s)
- Moritz Heusel
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,PhD Program in Molecular and Translational Biomedicine of the Competence Center Personalized Medicine UZH/ETH, Zurich, Switzerland
| | - Isabell Bludau
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,PhD Program in Systems Biology, Life Science Zurich Graduate School, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - George Rosenberger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Robin Hafen
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Max Frank
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Amir Banaei-Esfahani
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,PhD Program in Systems Biology, Life Science Zurich Graduate School, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Audrey van Drogen
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Ben C Collins
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland .,Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
339
|
Anania VG, Yu K, Pingitore F, Li Q, Rose CM, Liu P, Sandoval W, Herman AE, Lill JR, Mathews WR. Discovery and Qualification of Candidate Urinary Biomarkers of Disease Activity in Lupus Nephritis. J Proteome Res 2019; 18:1264-1277. [PMID: 30525646 DOI: 10.1021/acs.jproteome.8b00874] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lupus nephritis (LN) is a severe clinical manifestation of systemic lupus erythematosus (SLE) associated with significant morbidity and mortality. Assessment of severity and activity of renal involvement in SLE requires a kidney biopsy, an invasive procedure with limited prognostic value. Noninvasive biomarkers are needed to inform treatment decisions and to monitor disease activity. Proteinuria is associated with disease progression in LN; however, the composition of the LN urinary proteome remains incompletely characterized. To address this, we profiled LN urine samples using complementary mass spectrometry-based methods: protein gel fractionation, chemical labeling using tandem mass tags, and data-independent acquisition. Combining results from these approaches yielded quantitative information on 2573 unique proteins in urine from LN patients. A multiple-reaction monitoring (MRM) method was established to confirm eight proteins in an independent cohort of LN patients, and seven proteins (transferrin, α-2-macroglobulin, haptoglobin, afamin, α-1-antitrypsin, vimentin, and ceruloplasmin) were confirmed to be elevated in LN urine compared to healthy controls. In this study, we demonstrate that deep mass spectrometry profiling of a small number of patient samples can identify high-quality biomarkers that replicate in an independent LN disease cohort. These biomarkers are being used to inform clinical biomarker strategies to support longitudinal and interventional studies focused on evaluating disease progression and treatment efficacy of novel LN therapeutics.
Collapse
|
340
|
Orlando E, Aebersold R. On the contribution of mass spectrometry-based platforms to the field of personalized oncology. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
341
|
Abstract
The mechanism underlying many biological phenotypes remains unknown despite the increasing availability of whole genome and transcriptome sequencing. Direct measurement of changes in protein expression is an attractive alternative and has the potential to reveal novel processes. Mass spectrometry has become the standard method for proteomics, allowing both the confident identification and quantification of thousands of proteins from biological samples. In this review, mass spectrometry-based proteomic methods and their applications are described.
Collapse
Affiliation(s)
- J Robert O'Neill
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK. Robert.o'.,Department of Clinical Surgery, Royal Infirmary of Edinburgh, Edinburgh, UK. Robert.o'
| |
Collapse
|
342
|
Abstract
The varied landscape of the adaptive immune response is determined by the peptides presented by immune cells, derived from viral or microbial pathogens or cancerous cells. The study of immune biomarkers or antigens is not new, and classical methods such as agglutination, enzyme-linked immunosorbent assay, or Western blotting have been used for many years to study the immune response to vaccination or disease. However, in many of these traditional techniques, protein or peptide identification has often been the bottleneck. Recent progress in genomics and mass spectrometry have led to many of the rapid advances in proteomics approaches. Immunoproteomics describes a rapidly growing collection of approaches that have the common goal of identifying and measuring antigenic peptides or proteins. This includes gel-based, array-based, mass spectrometry-based, DNA-based, or in silico approaches. Immunoproteomics is yielding an understanding of disease and disease progression, vaccine candidates, and biomarkers. This review gives an overview of immunoproteomics and closely related technologies that are used to define the full set of protein antigens targeted by the immune system during disease.
Collapse
Affiliation(s)
- Kelly M Fulton
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Isabel Baltat
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Susan M Twine
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada.
| |
Collapse
|
343
|
Muntel J, Gandhi T, Verbeke L, Bernhardt OM, Treiber T, Bruderer R, Reiter L. Surpassing 10 000 identified and quantified proteins in a single run by optimizing current LC-MS instrumentation and data analysis strategy. Mol Omics 2019; 15:348-360. [DOI: 10.1039/c9mo00082h] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optimization of chromatography and data analysis resulted in more than 10 000 proteins in a single shot at a validated FDR of 1% (two-species test) and revealed deep insights into the testis cancer physiology.
Collapse
|
344
|
Yang Y, Zeng B, Sun Z, Esfahani AM, Hou J, Jiao ND, Liu L, Chen L, Basson MD, Dong L, Yang R, Xi N. Optimization of Protein-Protein Interaction Measurements for Drug Discovery Using AFM Force Spectroscopy. IEEE TRANSACTIONS ON NANOTECHNOLOGY 2019; 18:509-517. [PMID: 32051682 PMCID: PMC7015265 DOI: 10.1109/tnano.2019.2915507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Increasingly targeted in drug discovery, protein-protein interactions challenge current high throughput screening technologies in the pharmaceutical industry. Developing an effective and efficient method for screening small molecules or compounds is critical to accelerate the discovery of ligands for enzymes, receptors and other pharmaceutical targets. Here, we report developments of methods to increase the signal-to-noise ratio (SNR) for screening protein-protein interactions using atomic force microscopy (AFM) force spectroscopy. We have demonstrated the effectiveness of these developments on detecting the binding process between focal adhesion kinases (FAK) with protein kinase B (Akt1), which is a target for potential cancer drugs. These developments include optimized probe and substrate functionalization processes and redesigned probe-substrate contact regimes. Furthermore, a statistical-based data processing method was developed to enhance the contrast of the experimental data. Collectively, these results demonstrate the potential of the AFM force spectroscopy in automating drug screening with high throughput.
Collapse
Affiliation(s)
- Yongliang Yang
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Bixi Zeng
- Departments of Surgery and Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Zhiyong Sun
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Amir Monemian Esfahani
- Department of Mechanical and Materials Engineering, University of Nebraska Lincoln, NE 68588 USA
| | - Jing Hou
- School of Information and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Nian-Dong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110006, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110006, China
| | - Liangliang Chen
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Marc D Basson
- Departments of Surgery and Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Lixin Dong
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska Lincoln, NE 68588 USA
| | - Ning Xi
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48823, USA
| |
Collapse
|
345
|
Temporal dynamics of liver mitochondrial protein acetylation and succinylation and metabolites due to high fat diet and/or excess glucose or fructose. PLoS One 2018; 13:e0208973. [PMID: 30586434 PMCID: PMC6306174 DOI: 10.1371/journal.pone.0208973] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022] Open
Abstract
Dietary macronutrient composition alters metabolism through several mechanisms, including post-translational modification (PTM) of proteins. To connect diet and molecular changes, here we performed short- and long-term feeding of mice with standard chow diet (SCD) and high-fat diet (HFD), with or without glucose or fructose supplementation, and quantified liver metabolites, 861 proteins, and 1,815 protein level-corrected mitochondrial acetylation and succinylation sites. Nearly half the acylation sites were altered by at least one diet; nutrient-specific changes in protein acylation sometimes encompass entire pathways. Although acetyl-CoA is an intermediate in both sugar and fat metabolism, acetyl-CoA had a dichotomous fate depending on its source; chronic feeding of dietary sugars induced protein hyperacetylation, whereas the same duration of HFD did not. Instead, HFD resulted in citrate accumulation, anaplerotic metabolism of amino acids, and protein hypo-succinylation. Together, our results demonstrate novel connections between dietary macronutrients, protein post-translational modifications, and regulation of fuel selection in liver.
Collapse
|
346
|
Reubsaet L, Sweredoski MJ, Moradian A. Data-Independent Acquisition for the Orbitrap Q Exactive HF: A Tutorial. J Proteome Res 2018; 18:803-813. [DOI: 10.1021/acs.jproteome.8b00845] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Léon Reubsaet
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Sem Sælands vei 3, N-0316 Oslo, Norway
| | - Michael J. Sweredoski
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Annie Moradian
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
347
|
Kim YJ, Sweet SMM, Egertson JD, Sedgewick AJ, Woo S, Liao WL, Merrihew GE, Searle BC, Vaske C, Heaton R, MacCoss MJ, Hembrough T. Data-Independent Acquisition Mass Spectrometry To Quantify Protein Levels in FFPE Tumor Biopsies for Molecular Diagnostics. J Proteome Res 2018; 18:426-435. [PMID: 30481034 DOI: 10.1021/acs.jproteome.8b00699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry-based protein quantitation is currently used to measure therapeutically relevant protein biomarkers in CAP/CLIA setting to predict likely responses of known therapies. Selected reaction monitoring (SRM) is the method of choice due to its outstanding analytical performance. However, data-independent acquisition (DIA) is now emerging as a proteome-scale clinical assay. We evaluated the ability of DIA to profile the patient-specific proteomes of sample-limited tumor biopsies and to quantify proteins of interest in a targeted fashion using formalin-fixed, paraffin-embedded (FFPE) tumor biopsies ( n = 12) selected from our clinical laboratory. DIA analysis on the tumor biopsies provided 3713 quantifiable proteins including actionable biomarkers currently in clinical use, successfully separated two gastric cancers from colorectal cancer specimen solely on the basis of global proteomic profiles, and identified subtype-specific proteins with prognostic or diagnostic value. We demonstrate the potential use of DIA-based quantitation to inform therapeutic decision-making using TUBB3, for which clinical cutoff expression levels have been established by SRM. Comparative analysis of DIA-based proteomic profiles and mRNA expression levels found positively and negatively correlated protein-gene pairs, a finding consistent with previously reported results from fresh-frozen tumor tissues.
Collapse
Affiliation(s)
- Yeoun Jin Kim
- NantOmics , 9600 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Steve M M Sweet
- NantOmics , 9600 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Jarrett D Egertson
- Department of Genome Sciences , University of Washington , 3720 15th Avenue NE , Seattle , Washington 98195 , United States
| | - Andrew J Sedgewick
- NantOmics , 2919 Mission Street , Santa Cruz , California 95060 , United States
| | - Sunghee Woo
- NantOmics , 9600 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Wei-Li Liao
- NantOmics , 9600 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Gennifer E Merrihew
- Department of Genome Sciences , University of Washington , 3720 15th Avenue NE , Seattle , Washington 98195 , United States
| | - Brian C Searle
- Department of Genome Sciences , University of Washington , 3720 15th Avenue NE , Seattle , Washington 98195 , United States
| | - Charlie Vaske
- NantOmics , 2919 Mission Street , Santa Cruz , California 95060 , United States
| | - Robert Heaton
- NantOmics , 9600 Medical Center Drive , Rockville , Maryland 20850 , United States
| | - Michael J MacCoss
- Department of Genome Sciences , University of Washington , 3720 15th Avenue NE , Seattle , Washington 98195 , United States
| | - Todd Hembrough
- NantOmics , 9600 Medical Center Drive , Rockville , Maryland 20850 , United States
| |
Collapse
|
348
|
Lucas N, Robinson AB, Marcker Espersen M, Mahboob S, Xavier D, Xue J, Balleine RL, deFazio A, Hains PG, Robinson PJ. Accelerated Barocycler Lysis and Extraction Sample Preparation for Clinical Proteomics by Mass Spectrometry. J Proteome Res 2018; 18:399-405. [DOI: 10.1021/acs.jproteome.8b00684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Natasha Lucas
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Andrew B. Robinson
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Maiken Marcker Espersen
- Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Sadia Mahboob
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Dylan Xavier
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Jing Xue
- Cell Signalling Unit, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Rosemary L. Balleine
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Anna deFazio
- Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Peter G. Hains
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
- Cell Signalling Unit, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Phillip J. Robinson
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
- Cell Signalling Unit, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
349
|
Cominetti O, Núñez Galindo A, Corthésy J, Valsesia A, Irincheeva I, Kussmann M, Saris WHM, Astrup A, McPherson R, Harper ME, Dent R, Hager J, Dayon L. Obesity shows preserved plasma proteome in large independent clinical cohorts. Sci Rep 2018; 8:16981. [PMID: 30451909 PMCID: PMC6242904 DOI: 10.1038/s41598-018-35321-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/02/2018] [Indexed: 12/21/2022] Open
Abstract
Holistic human proteome maps are expected to complement comprehensive profile assessment of health and disease phenotypes. However, methodologies to analyze proteomes in human tissue or body fluid samples at relevant scale and performance are still limited in clinical research. Their deployment and demonstration in large enough human populations are even sparser. In the present study, we have characterized and compared the plasma proteomes of two large independent cohorts of obese and overweight individuals using shotgun mass spectrometry (MS)-based proteomics. Herein, we showed, in both populations from different continents of about 500 individuals each, the concordance of plasma protein MS measurements in terms of variability, gender-specificity, and age-relationship. Additionally, we replicated several known and new associations between proteins, clinical and molecular variables, such as insulin and glucose concentrations. In conclusion, our MS-based analyses of plasma samples from independent human cohorts proved the practical feasibility and efficiency of a large and unified discovery/replication approach in proteomics, which was also recently coined “rectangular” design.
Collapse
Affiliation(s)
- Ornella Cominetti
- Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | | | - John Corthésy
- Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland.,Nutrition Analytics, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Armand Valsesia
- Nutrition and Metabolic Health, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Irina Irincheeva
- Nutrition and Metabolic Health, Nestlé Institute of Health Sciences, Lausanne, Switzerland.,Clinical Trial Unit, University of Bern, Bern, Switzerland
| | - Martin Kussmann
- Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland.,The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Wim H M Saris
- NUTRIM, School for Nutrition, Toxicology and Metabolism, Department of Human Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ruth McPherson
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Robert Dent
- Ottawa Hospital Weight Management Clinic, The Ottawa Hospital, Ottawa, Canada
| | - Jörg Hager
- Nutrition and Metabolic Health, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Loïc Dayon
- Proteomics, Nestlé Institute of Health Sciences, Lausanne, Switzerland.
| |
Collapse
|
350
|
Mandad S, Rahman RU, Centeno TP, Vidal RO, Wildhagen H, Rammner B, Keihani S, Opazo F, Urban I, Ischebeck T, Kirli K, Benito E, Fischer A, Yousefi RY, Dennerlein S, Rehling P, Feussner I, Urlaub H, Bonn S, Rizzoli SO, Fornasiero EF. The codon sequences predict protein lifetimes and other parameters of the protein life cycle in the mouse brain. Sci Rep 2018; 8:16913. [PMID: 30443017 PMCID: PMC6237891 DOI: 10.1038/s41598-018-35277-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
The homeostasis of the proteome depends on the tight regulation of the mRNA and protein abundances, of the translation rates, and of the protein lifetimes. Results from several studies on prokaryotes or eukaryotic cell cultures have suggested that protein homeostasis is connected to, and perhaps regulated by, the protein and the codon sequences. However, this has been little investigated for mammals in vivo. Moreover, the link between the coding sequences and one critical parameter, the protein lifetime, has remained largely unexplored, both in vivo and in vitro. We tested this in the mouse brain, and found that the percentages of amino acids and codons in the sequences could predict all of the homeostasis parameters with a precision approaching experimental measurements. A key predictive element was the wobble nucleotide. G-/C-ending codons correlated with higher protein lifetimes, protein abundances, mRNA abundances and translation rates than A-/U-ending codons. Modifying the proportions of G-/C-ending codons could tune these parameters in cell cultures, in a proof-of-principle experiment. We suggest that the coding sequences are strongly linked to protein homeostasis in vivo, albeit it still remains to be determined whether this relation is causal in nature.
Collapse
Affiliation(s)
- Sunit Mandad
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute of Biophysical Chemistry, 37077, Göttingen, Germany
| | - Raza-Ur Rahman
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Institute of Medical Systems Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Tonatiuh Pena Centeno
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
| | - Ramon O Vidal
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
| | - Hanna Wildhagen
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
| | - Burkhard Rammner
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
| | - Sarva Keihani
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
| | - Felipe Opazo
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
| | - Inga Urban
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, 37073, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, Georg-August-University, 37073, Göttingen, Germany
| | - Koray Kirli
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, 37073, Göttingen, Germany
| | - Eva Benito
- Laboratory of Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
| | - André Fischer
- Laboratory of Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Roya Y Yousefi
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, 37073, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, 37073, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, 37073, Germany
- Max Planck Institute for Biophysical Chemistry, 37073, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, Georg-August-University, 37073, Göttingen, Germany
| | - Henning Urlaub
- Department of Clinical Chemistry, University Medical Center Göttingen, 37077, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute of Biophysical Chemistry, 37077, Göttingen, Germany
| | - Stefan Bonn
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany.
- Institute of Medical Systems Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany.
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), 37075, Göttingen, Germany.
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany.
| |
Collapse
|