301
|
Mundinger TO, Cooper E, Coleman MP, Taborsky GJ. Short-term diabetic hyperglycemia suppresses celiac ganglia neurotransmission, thereby impairing sympathetically mediated glucagon responses. Am J Physiol Endocrinol Metab 2015; 309:E246-55. [PMID: 26037249 PMCID: PMC4525110 DOI: 10.1152/ajpendo.00140.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/25/2015] [Indexed: 01/09/2023]
Abstract
Short-term hyperglycemia suppresses superior cervical ganglia neurotransmission. If this ganglionic dysfunction also occurs in the islet sympathetic pathway, sympathetically mediated glucagon responses could be impaired. Our objectives were 1) to test for a suppressive effect of 7 days of streptozotocin (STZ) diabetes on celiac ganglia (CG) activation and on neurotransmitter and glucagon responses to preganglionic nerve stimulation, 2) to isolate the defect in the islet sympathetic pathway to the CG itself, and 3) to test for a protective effect of the WLD(S) mutation. We injected saline or nicotine in nondiabetic and STZ-diabetic rats and measured fos mRNA levels in whole CG. We electrically stimulated the preganglionic or postganglionic nerve trunk of the CG in nondiabetic and STZ-diabetic rats and measured portal venous norepinephrine and glucagon responses. We repeated the nicotine and preganglionic nerve stimulation studies in nondiabetic and STZ-diabetic WLD(S) rats. In STZ-diabetic rats, the CG fos response to nicotine was suppressed, and the norepinephrine and glucagon responses to preganglionic nerve stimulation were impaired. In contrast, the norepinephrine and glucagon responses to postganglionic nerve stimulation were normal. The CG fos response to nicotine, and the norepinephrine and glucagon responses to preganglionic nerve stimulation, were normal in STZ-diabetic WLD(S) rats. In conclusion, short-term hyperglycemia's suppressive effect on nicotinic acetylcholine receptors of the CG impairs sympathetically mediated glucagon responses. WLD(S) rats are protected from this dysfunction. The implication is that this CG dysfunction may contribute to the impaired glucagon response to insulin-induced hypoglycemia seen early in type 1 diabetes.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Down-Regulation/drug effects
- Electric Stimulation
- Ganglia, Sympathetic/drug effects
- Ganglia, Sympathetic/metabolism
- Ganglia, Sympathetic/physiopathology
- Ganglionic Stimulants/pharmacology
- Glucagon/blood
- Glucagon/metabolism
- Hyperglycemia/etiology
- Islets of Langerhans/drug effects
- Islets of Langerhans/innervation
- Islets of Langerhans/metabolism
- Male
- Mutant Proteins/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Nicotinic Agonists/pharmacology
- Norepinephrine/blood
- Norepinephrine/metabolism
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- Rats, Sprague-Dawley
- Rats, Transgenic
- Rats, Wistar
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/metabolism
- Synaptic Transmission/drug effects
- Wallerian Degeneration/complications
Collapse
Affiliation(s)
| | - Ellis Cooper
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Michael P Coleman
- The Babraham Institute, Babraham Research Campus, Babraham, Cambridge, United Kingdom; and
| | - Gerald J Taborsky
- Department of Medicine, University of Washington, Seattle, Washington; Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| |
Collapse
|
302
|
Spaans SK, Weusthuis RA, van der Oost J, Kengen SWM. NADPH-generating systems in bacteria and archaea. Front Microbiol 2015; 6:742. [PMID: 26284036 PMCID: PMC4518329 DOI: 10.3389/fmicb.2015.00742] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms. It provides the reducing power that drives numerous anabolic reactions, including those responsible for the biosynthesis of all major cell components and many products in biotechnology. The efficient synthesis of many of these products, however, is limited by the rate of NADPH regeneration. Hence, a thorough understanding of the reactions involved in the generation of NADPH is required to increase its turnover through rational strain improvement. Traditionally, the main engineering targets for increasing NADPH availability have included the dehydrogenase reactions of the oxidative pentose phosphate pathway and the isocitrate dehydrogenase step of the tricarboxylic acid (TCA) cycle. However, the importance of alternative NADPH-generating reactions has recently become evident. In the current review, the major canonical and non-canonical reactions involved in the production and regeneration of NADPH in prokaryotes are described, and their key enzymes are discussed. In addition, an overview of how different enzymes have been applied to increase NADPH availability and thereby enhance productivity is provided.
Collapse
Affiliation(s)
| | - Ruud A. Weusthuis
- Bioprocess Engineering, Wageningen UniversityWageningen, Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
303
|
Tedeschi PM, Lin H, Gounder M, Kerrigan JE, Abali EE, Scotto K, Bertino JR. Suppression of Cytosolic NADPH Pool by Thionicotinamide Increases Oxidative Stress and Synergizes with Chemotherapy. Mol Pharmacol 2015. [PMID: 26219913 DOI: 10.1124/mol.114.096727] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
NAD(+) kinase (NADK) is the only known cytosolic enzyme that converts NAD(+) to NADP(+), which is subsequently reduced to NADPH. The demand for NADPH in cancer cells is elevated as reducing equivalents are required for the high levels of nucleotide, protein, and fatty acid synthesis found in proliferating cells as well as for neutralizing high levels of reactive oxygen species (ROS). We determined whether inhibition of NADK activity is a valid anticancer strategy alone and in combination with chemotherapeutic drugs known to induce ROS. In vitro and in vivo inhibition of NADK with either small-hairpin RNA or thionicotinamide inhibited proliferation. Thionicotinamide enhanced the ROS produced by several chemotherapeutic drugs and produced synergistic cell kill. NADK inhibitors alone or in combination with drugs that increase ROS-mediated stress may represent an efficacious antitumor combination and should be explored further.
Collapse
Affiliation(s)
- Philip M Tedeschi
- Departments of Pharmacology and Medicine, Rutgers Cancer Institute of New Jersey (P.M.T., H.L., M.G., J.E.K., K.S., J.R.B.), and Department of Biochemistry (E.E.A.), Rutgers University, New Brunswick, New Jersey
| | - HongXia Lin
- Departments of Pharmacology and Medicine, Rutgers Cancer Institute of New Jersey (P.M.T., H.L., M.G., J.E.K., K.S., J.R.B.), and Department of Biochemistry (E.E.A.), Rutgers University, New Brunswick, New Jersey
| | - Murugesan Gounder
- Departments of Pharmacology and Medicine, Rutgers Cancer Institute of New Jersey (P.M.T., H.L., M.G., J.E.K., K.S., J.R.B.), and Department of Biochemistry (E.E.A.), Rutgers University, New Brunswick, New Jersey
| | - John E Kerrigan
- Departments of Pharmacology and Medicine, Rutgers Cancer Institute of New Jersey (P.M.T., H.L., M.G., J.E.K., K.S., J.R.B.), and Department of Biochemistry (E.E.A.), Rutgers University, New Brunswick, New Jersey
| | - Emine Ercikan Abali
- Departments of Pharmacology and Medicine, Rutgers Cancer Institute of New Jersey (P.M.T., H.L., M.G., J.E.K., K.S., J.R.B.), and Department of Biochemistry (E.E.A.), Rutgers University, New Brunswick, New Jersey
| | - Kathleen Scotto
- Departments of Pharmacology and Medicine, Rutgers Cancer Institute of New Jersey (P.M.T., H.L., M.G., J.E.K., K.S., J.R.B.), and Department of Biochemistry (E.E.A.), Rutgers University, New Brunswick, New Jersey
| | - Joseph R Bertino
- Departments of Pharmacology and Medicine, Rutgers Cancer Institute of New Jersey (P.M.T., H.L., M.G., J.E.K., K.S., J.R.B.), and Department of Biochemistry (E.E.A.), Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
304
|
Tang LL, Gunderson WA, Weitz AC, Hendrich MP, Ryabov AD, Collins TJ. Activation of Dioxygen by a TAML Activator in Reverse Micelles: Characterization of an Fe(III)Fe(IV) Dimer and Associated Catalytic Chemistry. J Am Chem Soc 2015; 137:9704-15. [PMID: 26161504 DOI: 10.1021/jacs.5b05229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Iron TAML activators of peroxides are functional catalase-peroxidase mimics. Switching from hydrogen peroxide (H2O2) to dioxygen (O2) as the primary oxidant was achieved by using a system of reverse micelles of Aerosol OT (AOT) in n-octane. Hydrophilic TAML activators are localized in the aqueous microreactors of reverse micelles where water is present in much lower abundance than in bulk water. n-Octane serves as a proximate reservoir supplying O2 to result in partial oxidation of Fe(III) to Fe(IV)-containing species, mostly the Fe(III)Fe(IV) (major) and Fe(IV)Fe(IV) (minor) dimers which coexist with the Fe(III) TAML monomeric species. The speciation depends on the pH and the degree of hydration w0, viz., the amount of water in the reverse micelles. The previously unknown Fe(III)Fe(IV) dimer has been characterized by UV-vis, EPR, and Mössbauer spectroscopies. Reactive electron donors such as NADH, pinacyanol chloride, and hydroquinone undergo the TAML-catalyzed oxidation by O2. The oxidation of NADH, studied in most detail, is much faster at the lowest degree of hydration w0 (in "drier micelles") and is accelerated by light through NADH photochemistry. Dyes that are more resistant to oxidation than pinacyanol chloride (Orange II, Safranine O) are not oxidized in the reverse micellar media. Despite the limitation of low reactivity, the new systems highlight an encouraging step in replacing TAML peroxidase-like chemistry with more attractive dioxygen-activation chemistry.
Collapse
Affiliation(s)
- Liang L Tang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - William A Gunderson
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Andrew C Weitz
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander D Ryabov
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Terrence J Collins
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
305
|
Zhang R. MNADK, a Long-Awaited Human Mitochondrion-Localized NAD Kinase. J Cell Physiol 2015; 230:1697-701. [PMID: 25641397 DOI: 10.1002/jcp.24926] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/06/2015] [Indexed: 01/08/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form, NADP, play essential roles in numerous cellular processes in all organisms. NADP maintains a pool of its reducing equivalent, NADPH, which regenerates cellular oxidative defense systems to counteract oxidative damages. Mitochondria represent a major source of oxidative stress, because the majority of superoxide, a reactive oxygen species, is generated from the mitochondrial respiratory chain. Therefore, as universal electron carriers in cellular electron transfer reactions, the pyridine nucleotides are required by mitochondria for both antioxidant protection and biosynthetic pathways. The NAD kinase (NADK) is the sole NADP biosynthetic enzyme. Because NADP is membrane-impermeable, eukaryotes need compartment-specific NADKs for different organelles. Consistently, in both yeast and plants, three compartment-specific NADKs have been identified. In contrast, even though the first human NADK, a cytosolic one, was identified in 2001, the identity of a hypothesized mitochondrial NADK remained elusive, until a recent discovery that the uncharacterized human gene C5ORF33 encodes a mitochondrion-localized NADK, referred to as MNADK. Three groups have characterized MNADK functions based on distinct systems involving yeast, mouse, and human studies, from aspects of both in vitro and in vivo evidence. MNADK is a mitochondrial NADK that is enriched and nutritionally-regulated in mouse liver, and a MNADK-deficient patient exhibits symptoms characteristic of mitochondrial disease. The identification of MNADK provides a key clue to the mechanism involved in mitochondrial NADPH production and the maintenance of redox balance in mammalian cells. The roles of MNADK in physiological and pathological processes have yet to be discovered.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, and the Cardiovascular Research Institute, School of Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
306
|
Deamination of Betti bases: a facile route to 1-alkyl-2-naphthols and phenols via a metal-free transfer hydrogenation under microwave irradiation. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.05.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
307
|
Ternes CM, Schönknecht G. Gene transfers shaped the evolution of de novo NAD+ biosynthesis in eukaryotes. Genome Biol Evol 2015; 6:2335-49. [PMID: 25169983 PMCID: PMC4217691 DOI: 10.1093/gbe/evu185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
NAD+ is an essential molecule for life, present in each living cell. It can function as an electron carrier or cofactor in redox biochemistry and energetics, and serves as substrate to generate the secondary messenger cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate. Although de novo NAD+ biosynthesis is essential, different metabolic pathways exist in different eukaryotic clades. The kynurenine pathway starting with tryptophan was most likely present in the last common ancestor of all eukaryotes, and is active in fungi and animals. The aspartate pathway, detected in most photosynthetic eukaryotes, was probably acquired from the cyanobacterial endosymbiont that gave rise to chloroplasts. An evolutionary analysis of enzymes catalyzing de novo NAD+ biosynthesis resulted in evolutionary trees incongruent with established organismal phylogeny, indicating numerous gene transfers. Endosymbiotic gene transfers probably introduced the aspartate pathway into eukaryotes and may have distributed it among different photosynthetic clades. In addition, several horizontal gene transfers substituted eukaryotic genes with bacterial orthologs. Although horizontal gene transfer is accepted as a key mechanism in prokaryotic evolution, it is supposed to be rare in eukaryotic evolution. The essential metabolic pathway of de novo NAD+ biosynthesis in eukaryotes was shaped by numerous gene transfers.
Collapse
|
308
|
Abstract
ABSTRACT
Environmental (acute and chronic temperature, osmotic, hypoxic and pH) stress challenges the cellular redox balance and can lead to the increased production of reactive oxygen species (ROS). This review provides an overview of the reactions producing and scavenging ROS in the mitochondria, endoplasmic reticulum (ER) and peroxisome. It then compares these reactions with the findings of a number of studies investigating the proteomic responses of marine organisms to environmentally induced oxidative stress. These responses indicate that the thioredoxin–peroxiredoxin system is possibly more frequently recruited to scavenge H2O2 than the glutathione system. Isoforms of superoxide dismutase (SOD) are not ubiquitously induced in parallel, suggesting that SOD scavenging activity is sometimes sufficient. The glutathione system plays an important role in some organisms and probably also contributes to protecting protein thiols during environmental stress. Synthesis pathways of cysteine and selenocysteine, building blocks for glutathione and glutathione peroxidase, also play an important role in scavenging ROS during stress. The increased abundance of glutaredoxin and DyP-type peroxidase suggests a need for regulating the deglutathionylation of proteins and scavenging of peroxynitrite. Reducing equivalents for these scavenging reactions are generated by proteins of the pentose phosphate pathway and by NADP-dependent isocitrate dehydrogenase. Furthermore, proteins representing reactions of the tricarboxylic acid cycle and the electron transport system generating NADH and ROS, including those of complex I, II and III, are frequently reduced in abundance with stress. Protein maturation in the ER likely represents another source of ROS during environmental stress, as indicated by simultaneous changes in ER chaperones and antioxidant proteins. Although there are still too few proteomic analyses of non-model organisms exposed to environmental stress for a general pattern to emerge, hyposaline and low pH stress show different responses from temperature and hypoxic stress. Furthermore, comparisons of closely related congeners differing in stress tolerance start to provide insights into biochemical processes contributing to adaptive differences, but more of these comparisons are needed to draw general conclusions. To fully take advantage of a systems approach, studies with longer time courses, including several tissues and more species comparisons are needed.
Collapse
|
309
|
Margittai É, Enyedi B, Csala M, Geiszt M, Bánhegyi G. Composition of the redox environment of the endoplasmic reticulum and sources of hydrogen peroxide. Free Radic Biol Med 2015; 83:331-40. [PMID: 25678412 DOI: 10.1016/j.freeradbiomed.2015.01.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 12/22/2022]
Abstract
The endoplasmic reticulum (ER) is a metabolically active organelle, which has a central role in proteostasis by translating, modifying, folding, and occasionally degrading secretory and membrane proteins. The lumen of the ER represents a separate compartment of the eukaryotic cell, with a characteristic proteome and metabolome. Although the redox metabolome and proteome of the compartment have not been holistically explored, it is evident that proper redox conditions are necessary for the functioning of many luminal pathways. These redox conditions are defined by local oxidoreductases and the membrane transport of electron donors and acceptors. The main electron carriers of the compartment are identical with those of the other organelles: glutathione, pyridine and flavin nucleotides, ascorbate, and others. However, their composition, concentration, and redox state in the ER lumen can be different from those observed in other compartments. The terminal oxidases of oxidative protein folding generate and maintain an "oxidative environment" by oxidizing protein thiols and producing hydrogen peroxide. ER-specific mechanisms reutilize hydrogen peroxide as an electron acceptor of oxidative folding. These mechanisms, together with membrane and kinetic barriers, guarantee that redox systems in the reduced or oxidized state can be present simultaneously in the lumen. The present knowledge on the in vivo conditions of ER redox is rather limited; development of new genetically encoded targetable sensors for the measurement of the luminal state of redox systems other than thiol/disulfide will contribute to a better understanding of ER redox homeostasis.
Collapse
Affiliation(s)
- Éva Margittai
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest 1444, Hungary
| | - Balázs Enyedi
- Department of Physiology, Semmelweis University, Budapest 1444, Hungary
| | - Miklós Csala
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest 1444, Hungary
| | - Miklós Geiszt
- Department of Physiology, Semmelweis University, Budapest 1444, Hungary; "Lendület" Peroxidase Enzyme Research Group of Semmelweis University and the Hungarian Academy of Sciences, Semmelweis University, Budapest 1444, Hungary
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest 1444, Hungary.
| |
Collapse
|
310
|
Nam ST, Hwang JH, Kim DH, Park MJ, Lee IH, Nam HJ, Kang JK, Kim SK, Hwang JS, Chung HK, Shong M, Lee CH, Kim H. Role of NADH: quinone oxidoreductase-1 in the tight junctions of colonic epithelial cells. BMB Rep 2015; 47:494-9. [PMID: 24393524 PMCID: PMC4206724 DOI: 10.5483/bmbrep.2014.47.9.196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Indexed: 11/20/2022] Open
Abstract
NADH:quinone oxidoreductase 1 (NQO1) is known to be involved in the regulation of energy synthesis and metabolism, and the functional studies of NQO1 have largely focused on metabolic disorders. Here, we show for the first time that compared to NQO1-WT mice, NQO1-KO mice exhibited a marked increase of permeability and spontaneous inflammation in the gut. In the DSS-induced colitis model, NQO1-KO mice showed more severe inflammatory responses than NQO1-WT mice. Interestingly, the transcript levels of claudin and occludin, the major tight junction molecules of gut epithelial cells, were significantly decreased in NQO1-KO mice. The colons of NQO1-KO mice also showed high levels of reactive oxygen species (ROS) and histone deacetylase (HDAC) activity, which are known to affect transcriptional regulation. Taken together, these novel findings indicate that NQO1 contributes to the barrier function of gut epithelial cells by regulating the transcription of tight junction molecules.
Collapse
Affiliation(s)
- Seung Taek Nam
- Department of Life Science, College of Natural Science, Daejin University, Pocheon 487-711, Korea
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea
| | - Dae Hong Kim
- Department of Life Science, College of Natural Science, Daejin University, Pocheon 487-711, Korea
| | - Mi Jung Park
- Department of Life Science, College of Natural Science, Daejin University, Pocheon 487-711, Korea
| | - Ik Hwan Lee
- Department of Life Science, College of Natural Science, Daejin University, Pocheon 487-711, Korea
| | - Hyo Jung Nam
- Department of Life Science, College of Natural Science, Daejin University, Pocheon 487-711, Korea
| | - Jin Ku Kang
- Department of Life Science, College of Natural Science, Daejin University, Pocheon 487-711, Korea
| | - Sung Kuk Kim
- Department of Life Science, College of Natural Science, Daejin University, Pocheon 487-711, Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon 441-707, Korea
| | - Hyo Kyun Chung
- Department of Internal Medicine, Chungnam National University, Daejon 301-721, Korea
| | - Minho Shong
- Department of Internal Medicine, Chungnam National University, Daejon 301-721, Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea
| | - Ho Kim
- Department of Internal Medicine, Chungnam National University, Daejon 301-721, Korea
| |
Collapse
|
311
|
Parker SJ, Metallo CM. Metabolic consequences of oncogenic IDH mutations. Pharmacol Ther 2015; 152:54-62. [PMID: 25956465 DOI: 10.1016/j.pharmthera.2015.05.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/28/2015] [Indexed: 01/06/2023]
Abstract
Specific point mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) occur in a variety of cancers, including acute myeloid leukemia (AML), low-grade gliomas, and chondrosarcomas. These mutations inactivate wild-type enzymatic activity and convey neomorphic function to produce d-2-hydroxyglutarate (d-2HG), which accumulates at millimolar levels within tumors. d-2HG can impact α-ketoglutarate-dependent dioxygenase activity and subsequently affect various cellular functions in these cancers. Inhibitors of the neomorphic activity of mutant IDH1 and IDH2 are currently in Phase I/II clinical trials for both solid and blood tumors. As IDH1 and IDH2 represent key enzymes within the tricarboxylic acid (TCA) cycle, mutations have significant impact on intermediary metabolism. The loss of some wild-type metabolic activity is an important, potentially deleterious and therapeutically exploitable consequence of oncogenic IDH mutations and requires continued investigation in the future. Here we review how IDH1 and IDH2 mutations influence cellular metabolism, epigenetics, and other biochemical functions, discussing these changes in the context of current efforts to therapeutically target cancers bearing these mutations.
Collapse
Affiliation(s)
- Seth J Parker
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States; Moores Cancer Center, University of California, San Diego, La Jolla, California, United States.
| |
Collapse
|
312
|
Cueno ME, Tamura M, Ochiai K. Middle-aged rats orally supplemented with gel-encapsulated catechin favorably increases blood cytosolic NADPH levels. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:425-430. [PMID: 25925963 DOI: 10.1016/j.phymed.2015.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/23/2015] [Accepted: 01/30/2015] [Indexed: 06/04/2023]
Abstract
Green tea catechins are primarily known to function as free radical scavengers and have several beneficial uses. Orally supplemented catechin (OSC) was previously shown to increase mitochondrial heme and catalase levels in rat heart blood, however, its effect in the cytosol has not been elucidated. Here, we determined the effects of OSC in the rat heart blood cytosol. We used middle-aged (40 week-old) and young (4 week-old) rats throughout the study. We isolated blood cytosol, verified its purity, and determined heme, hydrogen peroxide (H2O2) levels, catalase (CAT) activities, gp91(phox) amounts, NADP and NAD pools, sirtuin 1 (SIRT1) and glutathione reductase (GR) activities, and free fatty acids (FFA). We established that OSC is associated with decreased heme-dependent H2O2 amounts while increasing heme-independent CAT activity. Moreover, we found that OSC-related decrease in NAD(+) amounts among middle-aged rats is associated to increased NADPH levels and SIRT1 activity. In contrast, we associated OSC-related decrease in NAD(+) amounts among young rats to decreased NADPH levels and increased SIRT1 activity. This highlights a major difference between catechin-treated middle-aged and young rats. Furthermore, we observed that cytosolic FFA and GR levels were significantly increased only among OSC-treated middle-aged rats which we hypothesize are related to increased NADPH levels. This insinuates that OSC treatment allows higher catechin amounts to enter the bloodstream of middle-aged rats. We propose that this would favorably increase NADPH amounts and lead to the simultaneous decrease in NADPH-related pro-oxidant activity and increase in NADPH-related biomolecules and anti-oxidant activities.
Collapse
Affiliation(s)
- Marni E Cueno
- Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Muneaki Tamura
- Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Kuniyasu Ochiai
- Department of Microbiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| |
Collapse
|
313
|
Nagy C, Haschemi A. Time and Demand are Two Critical Dimensions of Immunometabolism: The Process of Macrophage Activation and the Pentose Phosphate Pathway. Front Immunol 2015; 6:164. [PMID: 25904920 PMCID: PMC4389563 DOI: 10.3389/fimmu.2015.00164] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/26/2015] [Indexed: 01/08/2023] Open
Abstract
A process is a function of time; in immunometabolism, this is reflected by the stepwise adaptation of metabolism to sustain the bio-energetic demand of an immune-response in its various states and shades. This perspective article starts by presenting an early attempt to investigate the physiology of inflammation, in order to illustrate one of the basic concepts of immunometabolism, wherein an adapted metabolism of infiltrating immune cells affects tissue function and inflammation. We then focus on the process of macrophage activation and aim to delineate the factor time within the current molecular context of metabolic-rewiring important for adapting primary carbohydrate metabolism. In the last section, we will provide information on how the pentose phosphate pathway may be of importance to provide both nucleotide precursors and redox-equivalents, and speculate how carbon-scrambling events in the non-oxidative pentose phosphate pathway might be regulated within cells by demand. We conclude that the adapted metabolism of inflammation is specific in respect to the effector-function and appears as a well-orchestrated event, dynamic by nature, and based on a functional interplay of signaling- and metabolic-pathways.
Collapse
Affiliation(s)
- Csörsz Nagy
- Department of Laboratory Medicine (KILM), Medical University of Vienna , Vienna , Austria
| | - Arvand Haschemi
- Department of Laboratory Medicine (KILM), Medical University of Vienna , Vienna , Austria
| |
Collapse
|
314
|
Ghosh AK, Sardar AH, Mandal A, Saini S, Abhishek K, Kumar A, Purkait B, Singh R, Das S, Mukhopadhyay R, Roy S, Das P. Metabolic reconfiguration of the central glucose metabolism: a crucial strategy of Leishmania donovani for its survival during oxidative stress. FASEB J 2015; 29:2081-98. [PMID: 25690656 DOI: 10.1096/fj.14-258624] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/09/2015] [Indexed: 12/15/2022]
Abstract
Understanding the mechanism that allows the intracellular protozoan parasite Leishmania donovani (Ld) to respond to reactive oxygen species (ROS) is of increasing therapeutic importance because of the continuing resistance toward antileishmanial drugs and for determining the illusive survival strategy of these parasites. A shift in primary carbon metabolism is the fastest response to oxidative stress. A (14)CO2 evolution study, expression of glucose transporters together with consumption assays, indicated a shift in metabolic flux of the parasites from glycolysis toward pentose phosphate pathway (PPP) when exposed to different oxidants in vitro/ex vivo. Changes in gene expression, protein levels, and enzyme activities all pointed to a metabolic reconfiguration of the central glucose metabolism in response to oxidants. Generation of glucose-6-phosphate dehydrogenase (G6PDH) (∼5-fold) and transaldolase (TAL) (∼4.2-fold) overexpressing Ld cells reaffirmed that lethal doses of ROS were counterbalanced by effective manipulation of NADPH:NADP(+) ratio and stringent maintenance of reduced thiol content. The extent of protein carbonylation and accumulation of lipid peroxidized products were also found to be less in overexpressed cell lines. Interestingly, the LD50 of sodium antimony gluconate (SAG), amphotericin-B (AmB), and miltefosine were significantly high toward overexpressing parasites. Consequently, this study illustrates that Ld strategizes a metabolic reconfiguration for replenishment of NADPH pool to encounter oxidative challenges.
Collapse
Affiliation(s)
- Ayan K Ghosh
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Abul H Sardar
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Abhishek Mandal
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Savita Saini
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Kumar Abhishek
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Ashish Kumar
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Bidyut Purkait
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Ruby Singh
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Sushmita Das
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Rupkatha Mukhopadhyay
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Syamal Roy
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Pradeep Das
- *Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| |
Collapse
|
315
|
Hochmal AK, Schulze S, Trompelt K, Hippler M. Calcium-dependent regulation of photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:993-1003. [PMID: 25687895 DOI: 10.1016/j.bbabio.2015.02.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 01/03/2023]
Abstract
The understanding of calcium as a second messenger in plants has been growing intensively over the last decades. Recently, attention has been drawn to the organelles, especially the chloroplast but focused on the stromal Ca2+ transients in response to environmental stresses. Herein we will expand this view and discuss the role of Ca2+ in photosynthesis. Moreover we address of how Ca2+ is delivered to chloroplast stroma and thylakoids. Thereby, new light is shed on the regulation of photosynthetic electron flow and light-dependent metabolism by the interplay of Ca2+, thylakoid acidification and redox status. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
Affiliation(s)
- Ana Karina Hochmal
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Stefan Schulze
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Kerstin Trompelt
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany.
| |
Collapse
|
316
|
Keller MA, Piedrafita G, Ralser M. The widespread role of non-enzymatic reactions in cellular metabolism. Curr Opin Biotechnol 2015; 34:153-61. [PMID: 25617827 PMCID: PMC4728180 DOI: 10.1016/j.copbio.2014.12.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 12/21/2022]
Abstract
Non-enzymatic reactions are widespread and integral part of metabolism. Non-enzymatic metabolic reactions occur either spontaneously or small molecule catalyzed. They subdivide between broad/unspecific, and specific reactions that contribute to metabolism. Specific reactions occur both, exclusively non-enzymatically or parallel to enzymes. Non-enzymatic reactions affect drug design and network reconstruction.
Enzymes shape cellular metabolism, are regulated, fast, and for most cases specific. Enzymes do not however prevent the parallel occurrence of non-enzymatic reactions. Non-enzymatic reactions were important for the evolution of metabolic pathways, but are retained as part of the modern metabolic network. They divide into unspecific chemical reactivity and specific reactions that occur either exclusively non-enzymatically as part of the metabolic network, or in parallel to existing enzyme functions. Non-enzymatic reactions resemble catalytic mechanisms as found in all major enzyme classes and occur spontaneously, small molecule (e.g. metal-) catalyzed or light-induced. The frequent occurrence of non-enzymatic reactions impacts on stability and metabolic network structure, and has thus to be considered in the context of metabolic disease, network modeling, biotechnology and drug design.
Collapse
Affiliation(s)
- Markus A Keller
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK
| | - Gabriel Piedrafita
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK; MRC National Institute for Medical Research, The Ridgeway, Mill Hill, NW7 1AA, London, UK.
| |
Collapse
|
317
|
Elucidating butanol tolerance mediated by a response regulator Sll0039 in Synechocystis sp. PCC 6803 using a metabolomic approach. Appl Microbiol Biotechnol 2015; 99:1845-57. [DOI: 10.1007/s00253-015-6374-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/27/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
|
318
|
NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms. Proc Natl Acad Sci U S A 2015; 112:1386-91. [PMID: 25605906 DOI: 10.1073/pnas.1417290112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADP) is a critical cofactor during metabolism, calcium signaling, and oxidative defense, yet how animals regulate their NADP pools in vivo and how NADP-synthesizing enzymes are regulated have long remained unknown. Here we show that expression of Nadk, an NAD(+) kinase-encoding gene, governs NADP biosynthesis in vivo and is essential for development in Xenopus frog embryos. Unexpectedly, we found that embryonic Nadk expression is dynamic, showing cell type-specific up-regulation during both frog and sea urchin embryogenesis. We analyzed the NAD kinases (NADKs) of a variety of deuterostome animals, finding two conserved internal domains forming a catalytic core but a highly divergent N terminus. One type of N terminus (found in basal species such as the sea urchin) mediates direct catalytic activation of NADK by Ca(2+)/calmodulin (CaM), whereas the other (typical for vertebrates) is phosphorylated by a CaM kinase-dependent mechanism. This work indicates that animal NADKs govern NADP biosynthesis in vivo and are regulated by evolutionarily divergent and conserved CaM-dependent mechanisms.
Collapse
|
319
|
Zhao Y, Davis RE, Wei W, Lee IM. Should 'Candidatus Phytoplasma' be retained within the order Acholeplasmatales? Int J Syst Evol Microbiol 2015; 65:1075-1082. [PMID: 25574038 DOI: 10.1099/ijs.0.000050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytoplasmas are a diverse but phylogenetically coherent group of cell-wall-less bacteria affiliated with the class Mollicutes. Due to difficulties in establishing axenic culture, phytoplasmas were assigned to a provisional genus, 'Candidatus Phytoplasma', and the genus was embraced within the order Acholeplasmatales. However, phytoplasmas differ significantly from species of the genus Acholeplasma in their habitat specificities, modes of life, metabolic capabilities, genomic architectures, and phylogenetic positions. This communication describes the unique ecological, nutritional, biochemical, genomic and phylogenetic properties that distinguish phytoplasmas from species of the genus Acholeplasma and all other taxa in the class Mollicutes. Since such distinguishing properties of the phytoplasmas are not referable to the descriptions of the order Acholeplasmatales and of all other existing orders, namely Mycoplasmatales, Entomoplasmatales and Anaeroplasmatales, this communication raises the question of whether 'Candidatus Phytoplasma' should be retained in the order Acholeplasmatales or whether a novel provisional order and family should be created to accommodate the genus 'Ca. Phytoplasma'.
Collapse
Affiliation(s)
- Yan Zhao
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Robert E Davis
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Wei Wei
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Ing-Ming Lee
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
320
|
Kauscher U, Bartels K, Schrader I, Azov VA, Ravoo BJ. Metastable oxidation states of tetrathiafulvalenes on the surface of liposomes. J Mater Chem B 2015; 3:475-480. [DOI: 10.1039/c4tb01627k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Redox-active liposomes are prepared by the incorporation of tetrathiafulvalene–cholesterol conjugate 1 in phospholipid vesicles.
Collapse
Affiliation(s)
- U. Kauscher
- Organisch Chemisches Institut
- Westfälische Wilhelms-Universität Münster
- 48143 Münster
- Germany
| | - K. Bartels
- Organisch Chemisches Institut
- Westfälische Wilhelms-Universität Münster
- 48143 Münster
- Germany
- Institut für Organische Chemie
| | - I. Schrader
- Institut für Organische Chemie
- Universität Bremen
- 28359 Bremen
- Germany
| | - V. A. Azov
- Institut für Organische Chemie
- Universität Bremen
- 28359 Bremen
- Germany
| | - B. J. Ravoo
- Organisch Chemisches Institut
- Westfälische Wilhelms-Universität Münster
- 48143 Münster
- Germany
| |
Collapse
|
321
|
Guse AH. Calcium mobilizing second messengers derived from NAD. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:1132-7. [PMID: 25534250 DOI: 10.1016/j.bbapap.2014.12.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/05/2014] [Accepted: 12/12/2014] [Indexed: 11/18/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) has been known since a long period of time as co-factor of oxidoreductases. However, in the past couple of decades further roles have been assigned to NAD. Here, metabolism of NAD to the Ca²⁺ mobilizing second messengers cyclic adenosine diphosphoribose, nicotinic acid adenine dinucleotide phosphate and adenosine diphosphoribose is reviewed. Moreover, the mechanisms of Ca²⁺ mobilization by these adenine nucleotides and their putative target Ca²⁺ channels, ryanodine receptors and transient receptor potential channels are discussed. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
Affiliation(s)
- Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
322
|
Abstract
We report the development of a stimulated emission depletion (STED) selective plane illumination (SPIM) microscope based on a single diode-pumped solid state (DPSS) laser that simultaneously delivers nanosecond-pulses at two wavelengths. The two wavelengths, 355 nm and 532 nm, are generated by harmonic conversion and they are used to induce respectively excitation and stimulated emission depletion. This source should allow a low-cost, compact, very efficient and simplified STED scheme since the two beams are intrinsically aligned and synchronized. Using a chromatic beam shaping device which leaves the excitation beam unaffected and produces a donut-shaped STED beam, we demonstrate a 300% reduction of the light sheet thickness, together with an enhancement of the sheet uniformity over larger field of view, at low STED power, in Coumarin dye solution.
Collapse
|
323
|
McSkimming A, Chan B, Bhadbhade MM, Ball GE, Colbran SB. Bio-Inspired Transition Metal-Organic Hydride Conjugates for Catalysis of Transfer Hydrogenation: Experiment and Theory. Chemistry 2014; 21:2821-34. [DOI: 10.1002/chem.201405129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Indexed: 11/07/2022]
|
324
|
Croce AC, Bottiroli G. Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis. Eur J Histochem 2014; 58:2461. [PMID: 25578980 PMCID: PMC4289852 DOI: 10.4081/ejh.2014.2461] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 12/18/2022] Open
Abstract
Native fluorescence, or autofluorescence (AF), consists in the emission of light in the UV-visible, near-IR spectral range when biological substrates are excited with light at suitable wavelength. This is a well-known phenomenon, and the strict relationship of many endogenous fluorophores with morphofunctional properties of the living systems, influencing their AF emission features, offers an extremely powerful resource for directly monitoring the biological substrate condition. Starting from the last century, the technological progresses in microscopy and spectrofluorometry were convoying attention of the scientific community to this phenomenon. In the future, the interest in the autofluorescence will certainly continue. Current instrumentation and analytical procedures will likely be overcome by the unceasing progress in new devices for AF detection and data interpretation, while a progress is expected in the search and characterization of endogenous fluorophores and their roles as intrinsic biomarkers.
Collapse
Affiliation(s)
- A C Croce
- Institute of Molecular Genetics of the National Research Council, University of Pavia.
| | | |
Collapse
|
325
|
Zhu Y, Pei G, Niu X, Shi M, Zhang M, Chen L, Zhang W. Metabolomic analysis reveals functional overlapping of three signal transduction proteins in regulating ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803. MOLECULAR BIOSYSTEMS 2014; 11:770-82. [PMID: 25502571 DOI: 10.1039/c4mb00651h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low ethanol tolerance is a crucial factor that restricts the feasibility of bioethanol production in renewable cyanobacterial systems. Our previous studies showed that several transcriptional regulators were differentially regulated by exogenous ethanol in Synechocystis. In this study, by constructing knockout mutants of 34 Synechocystis putative transcriptional regulator-encoding genes and analyzing their phenotypes under ethanol stress, we found that three mutants of regulatory gene sll1392, sll1712 and slr1860 grew poorly in the BG11 medium supplemented with ethanol when compared with the wild type in the same medium, suggesting that the genes may be involved in the regulation of ethanol tolerance. To decipher the regulatory mechanism, targeted LC-MS and untargeted GC-MS approaches were employed to determine metabolic profiles of the three mutants and the wild type under both normal and ethanol stress conditions. The results were then subjected to PCA and WGCNA analyses to determine the responsive metabolites and metabolic modules related to ethanol tolerance. Interestingly, the results showed that there was a significant overlapping of the responsive metabolites and metabolic modules between three regulatory proteins, suggesting that a possible crosstalk between various regulatory proteins may be involved in combating against ethanol toxicity in Synechocystis. The study provided new insights into ethanol-tolerance regulation and knowledge important to rational tolerance engineering in Synechocystis.
Collapse
Affiliation(s)
- Ye Zhu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
326
|
Moroz N, Carmona JJ, Anderson E, Hart AC, Sinclair DA, Blackwell TK. Dietary restriction involves NAD⁺ -dependent mechanisms and a shift toward oxidative metabolism. Aging Cell 2014; 13:1075-85. [PMID: 25257342 PMCID: PMC4244309 DOI: 10.1111/acel.12273] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2014] [Indexed: 12/27/2022] Open
Abstract
Interventions that slow aging and prevent chronic disease may come from an understanding of how dietary restriction (DR) increases lifespan. Mechanisms proposed to mediate DR longevity include reduced mTOR signaling, activation of the NAD+-dependent deacylases known as sirtuins, and increases in NAD+ that derive from higher levels of respiration. Here, we explored these hypotheses in Caenorhabditis elegans using a new liquid feeding protocol. DR lifespan extension depended upon a group of regulators that are involved in stress responses and mTOR signaling, and have been implicated in DR by some other regimens [DAF-16 (FOXO), SKN-1 (Nrf1/2/3), PHA-4 (FOXA), AAK-2 (AMPK)]. Complete DR lifespan extension required the sirtuin SIR-2.1 (SIRT1), the involvement of which in DR has been debated. The nicotinamidase PNC-1, a key NAD+ salvage pathway component, was largely required for DR to increase lifespan but not two healthspan indicators: movement and stress resistance. Independently of pnc-1, DR increased the proportion of respiration that is coupled to ATP production but, surprisingly, reduced overall oxygen consumption. We conclude that stress response and NAD+-dependent mechanisms are each critical for DR lifespan extension, although some healthspan benefits do not require NAD+ salvage. Under DR conditions, NAD+-dependent processes may be supported by a DR-induced shift toward oxidative metabolism rather than an increase in total respiration.
Collapse
Affiliation(s)
- Natalie Moroz
- Department of Genetics and Complex Diseases Division of Biological Sciences Harvard School of Public Health Boston MA USA
- Section on Islet Cell and Regenerative Biology Joslin Diabetes Center Department of Genetics Harvard Medical School Harvard Stem Cell Institute Boston MA USA
| | - Juan J. Carmona
- Laboratory of Environmental Epigenetics and Program in Quantitative Genomics Department of Environmental Health Harvard School of Public Health Boston MA USA
- Department of Genetics and Paul F. Glenn Labs for the Biological Mechanism of Aging Harvard Medical School Boston MA USA
| | - Edward Anderson
- Department of Neuroscience Brown University Providence RI USA
| | - Anne C. Hart
- Department of Neuroscience Brown University Providence RI USA
| | - David A. Sinclair
- Department of Genetics and Paul F. Glenn Labs for the Biological Mechanism of Aging Harvard Medical School Boston MA USA
- Department of Pharmacology School of Medical Sciences The University of New South Wales Sydney NSW Australia
| | - T. Keith Blackwell
- Section on Islet Cell and Regenerative Biology Joslin Diabetes Center Department of Genetics Harvard Medical School Harvard Stem Cell Institute Boston MA USA
| |
Collapse
|
327
|
Solis BH, Maher AG, Honda T, Powers DC, Nocera DG, Hammes-Schiffer S. Theoretical Analysis of Cobalt Hangman Porphyrins: Ligand Dearomatization and Mechanistic Implications for Hydrogen Evolution. ACS Catal 2014. [DOI: 10.1021/cs501454y] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Brian H. Solis
- Department
of Chemistry, University of Illinois at Urbana-Champaign, 600
South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Andrew G. Maher
- Department
of Chemistry and Chemical Biology, Harvard University, 12 Oxford
Street, Cambridge, Massachusetts 02138-2902, United States
| | - Tatsuhiko Honda
- Department
of Chemistry and Chemical Biology, Harvard University, 12 Oxford
Street, Cambridge, Massachusetts 02138-2902, United States
| | - David C. Powers
- Department
of Chemistry and Chemical Biology, Harvard University, 12 Oxford
Street, Cambridge, Massachusetts 02138-2902, United States
| | - Daniel G. Nocera
- Department
of Chemistry and Chemical Biology, Harvard University, 12 Oxford
Street, Cambridge, Massachusetts 02138-2902, United States
| | - Sharon Hammes-Schiffer
- Department
of Chemistry, University of Illinois at Urbana-Champaign, 600
South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
328
|
Pandey A, Pain J, Ghosh AK, Dancis A, Pain D. Fe-S cluster biogenesis in isolated mammalian mitochondria: coordinated use of persulfide sulfur and iron and requirements for GTP, NADH, and ATP. J Biol Chem 2014; 290:640-57. [PMID: 25398879 DOI: 10.1074/jbc.m114.610402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are essential cofactors, and mitochondria contain several Fe-S proteins, including the [4Fe-4S] protein aconitase and the [2Fe-2S] protein ferredoxin. Fe-S cluster assembly of these proteins occurs within mitochondria. Although considerable data exist for yeast mitochondria, this biosynthetic process has never been directly demonstrated in mammalian mitochondria. Using [(35)S]cysteine as the source of sulfur, here we show that mitochondria isolated from Cath.A-derived cells, a murine neuronal cell line, can synthesize and insert new Fe-(35)S clusters into aconitase and ferredoxins. The process requires GTP, NADH, ATP, and iron, and hydrolysis of both GTP and ATP is necessary. Importantly, we have identified the (35)S-labeled persulfide on the NFS1 cysteine desulfurase as a genuine intermediate en route to Fe-S cluster synthesis. In physiological settings, the persulfide sulfur is released from NFS1 and transferred to a scaffold protein, where it combines with iron to form an Fe-S cluster intermediate. We found that the release of persulfide sulfur from NFS1 requires iron, showing that the use of iron and sulfur for the synthesis of Fe-S cluster intermediates is a highly coordinated process. The release of persulfide sulfur also requires GTP and NADH, probably mediated by a GTPase and a reductase, respectively. ATP, a cofactor for a multifunctional Hsp70 chaperone, is not required at this step. The experimental system described here may help to define the biochemical basis of diseases that are associated with impaired Fe-S cluster biogenesis in mitochondria, such as Friedreich ataxia.
Collapse
Affiliation(s)
- Alok Pandey
- From the Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey 07101 and
| | - Jayashree Pain
- From the Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey 07101 and
| | - Arnab K Ghosh
- From the Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey 07101 and
| | - Andrew Dancis
- the Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Debkumar Pain
- From the Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey 07101 and
| |
Collapse
|
329
|
Mobegi FM, van Hijum SAFT, Burghout P, Bootsma HJ, de Vries SPW, van der Gaast-de Jongh CE, Simonetti E, Langereis JD, Hermans PWM, de Jonge MI, Zomer A. From microbial gene essentiality to novel antimicrobial drug targets. BMC Genomics 2014; 15:958. [PMID: 25373505 PMCID: PMC4233050 DOI: 10.1186/1471-2164-15-958] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/23/2014] [Indexed: 01/12/2023] Open
Abstract
Background Bacterial respiratory tract infections, mainly caused by Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis are among the leading causes of global mortality and morbidity. Increased resistance of these pathogens to existing antibiotics necessitates the search for novel targets to develop potent antimicrobials. Result Here, we report a proof of concept study for the reliable identification of potential drug targets in these human respiratory pathogens by combining high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics. Approximately 20% of all genes in these three species were essential for growth and viability, including 128 essential and conserved genes, part of 47 metabolic pathways. By comparing these essential genes to the human genome, and a database of genes from commensal human gut microbiota, we identified and excluded potential drug targets in respiratory tract pathogens that will have off-target effects in the host, or disrupt the natural host microbiota. We propose 249 potential drug targets, 67 of which are targets for 75 FDA-approved antimicrobials and 35 other researched small molecule inhibitors. Two out of four selected novel targets were experimentally validated, proofing the concept. Conclusion Here we have pioneered an attempt in systematically combining the power of high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics to discover potential drug targets at genome-scale. By circumventing the time-consuming and expensive laboratory screens traditionally used to select potential drug targets, our approach provides an attractive alternative that could accelerate the much needed discovery of novel antimicrobials. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-958) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Sacha A F T van Hijum
- Radboud Institute for Molecular Life Sciences, Laboratory of Paediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen 6500 HB, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
330
|
Wang Y, Shi M, Niu X, Zhang X, Gao L, Chen L, Wang J, Zhang W. Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803. Microb Cell Fact 2014; 13:151. [PMID: 25366096 PMCID: PMC4234862 DOI: 10.1186/s12934-014-0151-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent efforts demonstrated the potential application of cyanobacteria as a "microbial cell factory" to produce butanol directly from CO2. However, cyanobacteria have very low tolerance to the toxic butanol, which limits the economic viability of this renewable system. RESULTS Through a long-term experimental evolution process, we achieved a 150% increase of the butanol tolerance in a model cyanobacterium Synechocystis sp. PCC 6803 after a continuous 94 passages for 395 days in BG11 media amended with gradually increased butanol concentration from 0.2% to 0.5% (v/v). To decipher the molecular mechanism responsible for the tolerance increase, we employed an integrated GC-MS and LC-MS approach to determine metabolomic profiles of the butanol-tolerant Synechocystis strains isolated from several stages of the evolution, and then applied PCA and WGCNA network analyses to identify the key metabolites and metabolic modules related to the increased tolerance. The results showed that unstable metabolites of 3-phosphoglyceric acid (3PG), D-fructose 6-phosphate (F6P), D-glucose 6-phosphate (G6P), NADPH, phosphoenolpyruvic acid (PEP), D-ribose 5-phosphate (R5P), and stable metabolites of glycerol, L-serine and stearic acid were differentially regulated during the evolution process, which could be related to tolerance increase to butanol in Synechocystis. CONCLUSIONS The study provided the first time-series description of the metabolomic changes related to the gradual increase of butanol tolerance, and revealed a metabolomic basis important for rational tolerance engineering in Synechocystis.
Collapse
Affiliation(s)
- Yaxing Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Xiangfeng Niu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Xiaoqing Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Lianju Gao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Jiangxin Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P.R. China. .,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China.
| |
Collapse
|
331
|
Permeability transition pore-dependent and PARP-mediated depletion of neuronal pyridine nucleotides during anoxia and glucose deprivation. J Bioenerg Biomembr 2014; 47:53-61. [PMID: 25341378 DOI: 10.1007/s10863-014-9588-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
Abstract
Exposure of rat cortical neurons to combined oxygen and glucose deprivation results in loss of NAD(P)H autofluorescence that is only partially reversible following restoration of oxygen and glucose, suggesting catabolism of pyridine nucleotides. This study tested the hypothesis that metabolic inhibition caused by cyanide-induced chemical anoxia plus glucose deprivation promotes both release of mitochondrial NAD(H) in response to opening of the permeability transition pore (PTP) and NAD(P)(H) degradation through activation of poly (ADP-ribose) polymerase (PARP). The NAD(P)H autofluorescence of rat neonatal cortical neurons was monitored during and following acute (10-30 min) exposure to the respiratory inhibitor, cyanide, in the absence and presence of glucose. Because nitric oxide-derived peroxynitrite is a known activator of PARP, we additionally assessed the effect of a nitric oxide generating agent on the NAD(P)H autofluorescence response to chemical anoxia plus glucose deprivation. Cyanide induced a rapid increase in autofluorescence, followed by a steady decline promoted by the presence of nitric oxide. This decline was primarily due to NAD(H) catabolism, as verified by measurements of total NAD(H) present in cellular extracts. Catabolism was partially blocked by an inhibitor of PARP, by a PTP inhibitor, and by either glucose or pyruvate as a source of reducing power. Overall, data suggest that metabolic, oxidative, and nitrosative stress during in vitro neuronal anoxia and glucose deprivation result in release of mitochondrial pyridine nucleotides in response to PTP opening and rapid, extensive NAD(H) degradation mediated by PARP activation. These events may contribute to the metabolic dysfunction that occurs in vivo during cerebral ischemia and reperfusion and therefore represent prime targets for neuroprotection.
Collapse
|
332
|
Fouquerel E, Sobol RW. ARTD1 (PARP1) activation and NAD(+) in DNA repair and cell death. DNA Repair (Amst) 2014; 23:27-32. [PMID: 25283336 DOI: 10.1016/j.dnarep.2014.09.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 09/08/2014] [Indexed: 11/18/2022]
Abstract
Nicotinamide adenine dinucleotide, NAD(+), is a small metabolite coenzyme that is essential for the progress of crucial cellular pathways including glycolysis, the tricarboxylic acid cycle (TCA) and mitochondrial respiration. These processes consume and produce both oxidative and reduced forms of NAD (NAD(+) and NADH). NAD(+) is also important for ADP(ribosyl)ation reactions mediated by the ADP-ribosyltransferase enzymes (ARTDs) or deacetylation reactions catalyzed by the sirtuins (SIRTs) which use NAD(+) as a substrate. In this review, we highlight the significance of NAD(+) catabolism in DNA repair and cell death through its utilization by ARTDs and SIRTs. We summarize the current findings on the involvement of ARTD1 activity in DNA repair and most specifically its involvement in the trigger of cell death mediated by ARTD1 activation and energy depletion. By sharing the same substrate, the activities of ARTDs and SIRTs are tightly linked, are dependent on each other and are thereby involved in the same cellular processes that play an important role in cancer biology, inflammatory diseases and ischaemia/reperfusion.
Collapse
Affiliation(s)
- Elise Fouquerel
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Robert W Sobol
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15213, USA.
| |
Collapse
|
333
|
Busu C, Atanasiu V, Caldito G, Aw TY. Influence of GSH synthesis inhibition on temporal distribution of NAD+/NADH during vascular endothelial cells proliferation. J Med Life 2014; 7:611-8. [PMID: 25713632 PMCID: PMC4316149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/25/2014] [Indexed: 11/30/2022] Open
Abstract
Pathological conditions states such as stroke, diabetes mellitus, hypertension, dyslipidemia are associated with increased levels of free radicals that alter normal function of the vascular endothelium and perturb vascular homeostasis. The redox couples reduced glutathione (GSH)/oxidized glutathione (GSSG), NADH/NAD+, and NADPH/NADP+ play major functions in the intracellular redox balance. Any decrease in tissue or systemic GSH levels under the aforementioned pathologies would enhance oxidative damage to the vascular endothelium. Beside their role as coenzyme that participate in cellular metabolism, pyridine nucleotides serve also as substrate for enzymes involved in DNA repair and longevity. There is scant data on NAD+/NADH kinetics and distribution during human cells proliferation. Here, we determined the influence of cellular GSH status on the early dynamics of nuclear-to-cytosol (N-to-C) NAD+ and nuclear NADH kinetics (6 h interval) over 72 h of endothelial cell proliferation. The IHEC cell line was used as a surrogate for human brain micro vascular endothelial cells. Inhibition of GSH synthesis by buthionine sulfoximine (BSO) and sustained low cellular GSH significantly increased nuclear NADH levels (p<0.01), which correlated with lower nuclear GSH and prolonged cell cycle S-phase. When BSO was removed the pattern of nuclear NAD+ resembled that of control group, but nuclear NADH concentrations remained elevated, as in GSH deficient cells (p<0.01). The coincidence of high nuclear NADH and lower nuclear NAD+ with S-phase prolongation are suggestive of CtBP and NAD+-dependent DNA repair enzyme activation under conditions of decreased cellular GSH. These results provide important insights into GSH control of vascular endothelial growth and restitution, key processes in the restoration of the endothelium adjacent to the post-injury lesion site.
Collapse
Affiliation(s)
- C Busu
- "Carol Davila" University of Medicine and Pharmacy, Medical School, Biochemistry Department, Bucharest, Romania ; Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - V Atanasiu
- "Carol Davila" University of Medicine and Pharmacy, Medical School, Biochemistry Department, Bucharest, Romania
| | - G Caldito
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - T Y Aw
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
334
|
Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A, Tauqeer Alam M, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc 2014; 90:927-63. [PMID: 25243985 PMCID: PMC4470864 DOI: 10.1111/brv.12140] [Citation(s) in RCA: 833] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/07/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares reactions with the Entner–Doudoroff pathway and Calvin cycle and divides into an oxidative and non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts glucose 6-phosphate into carbon dioxide, ribulose 5-phosphate and NADPH. The latter function is critical to maintain redox balance under stress situations, when cells proliferate rapidly, in ageing, and for the ‘Warburg effect’ of cancer cells. The non-oxidative branch instead is virtually ubiquitous, and metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids. Whereas the oxidative PPP is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. These functions require dynamic regulation of the PPP pathway that is achieved through hierarchical interactions between transcriptome, proteome and metabolome. Consequently, the biochemistry and regulation of this pathway, while still unresolved in many cases, are archetypal for the dynamics of the metabolic network of the cell. In this comprehensive article we review seminal work that led to the discovery and description of the pathway that date back now for 80 years, and address recent results about genetic and metabolic mechanisms that regulate its activity. These biochemical principles are discussed in the context of PPP deficiencies causing metabolic disease and the role of this pathway in biotechnology, bacterial and parasite infections, neurons, stem cell potency and cancer metabolism.
Collapse
Affiliation(s)
- Anna Stincone
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Alessandro Prigione
- Max Delbrueck Centre for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Thorsten Cramer
- Department of Gastroenterology and Hepatology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mirjam M C Wamelink
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Centre Amsterdam, De Boelelaaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Kate Campbell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Eric Cheung
- Cancer Research UK, Beatson Institute, Switchback Road, Glasgow G61 1BD, U.K
| | - Viridiana Olin-Sandoval
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Nana-Maria Grüning
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Antje Krüger
- Max Planck Institute for Molecular Genetics, Ihnestr 73, 14195 Berlin, Germany
| | - Mohammad Tauqeer Alam
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Markus A Keller
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Michael Breitenbach
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cancer Research UK Cambridge Research Institute (CRI), Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, U.K
| | - Joshua D Rabinowitz
- Department of Chemistry, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, 08544 NJ, U.S.A
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Division of Physiology and Metabolism, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7, U.K
| |
Collapse
|
335
|
Vanzo E, Ghirardo A, Merl-Pham J, Lindermayr C, Heller W, Hauck SM, Durner J, Schnitzler JP. S-nitroso-proteome in poplar leaves in response to acute ozone stress. PLoS One 2014; 9:e106886. [PMID: 25192423 PMCID: PMC4156402 DOI: 10.1371/journal.pone.0106886] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/01/2014] [Indexed: 11/26/2022] Open
Abstract
Protein S-nitrosylation, the covalent binding of nitric oxide (NO) to protein cysteine residues, is one of the main mechanisms of NO signaling in plant and animal cells. Using a combination of the biotin switch assay and label-free LC-MS/MS analysis, we revealed the S-nitroso-proteome of the woody model plant Populus x canescens. Under normal conditions, constitutively S-nitrosylated proteins in poplar leaves and calli comprise all aspects of primary and secondary metabolism. Acute ozone fumigation was applied to elicit ROS-mediated changes of the S-nitroso-proteome. This treatment changed the total nitrite and nitrosothiol contents of poplar leaves and affected the homeostasis of 32 S-nitrosylated proteins. Multivariate data analysis revealed that ozone exposure negatively affected the S-nitrosylation status of leaf proteins: 23 proteins were de-nitrosylated and 9 proteins had increased S-nitrosylation content compared to the control. Phenylalanine ammonia-lyase 2 (log2[ozone/control] = −3.6) and caffeic acid O-methyltransferase (−3.4), key enzymes catalyzing important steps in the phenylpropanoid and subsequent lignin biosynthetic pathways, respectively, were de-nitrosylated upon ozone stress. Measuring the in vivo and in vitro phenylalanine ammonia-lyase activity indicated that the increase of the phenylalanine ammonia-lyase activity in response to acute ozone is partly regulated by de-nitrosylation, which might favor a higher metabolic flux through the phenylpropanoid pathway within minutes after ozone exposure.
Collapse
Affiliation(s)
- Elisa Vanzo
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Lindermayr
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Werner Heller
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg Durner
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
336
|
Evidence for a transketolase-mediated metabolic checkpoint governing biotrophic growth in rice cells by the blast fungus Magnaporthe oryzae. PLoS Pathog 2014; 10:e1004354. [PMID: 25188286 PMCID: PMC4154871 DOI: 10.1371/journal.ppat.1004354] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/24/2014] [Indexed: 02/01/2023] Open
Abstract
The blast fungus Magnaporthe oryzae threatens global food security through the widespread destruction of cultivated rice. Foliar infection requires a specialized cell called an appressorium that generates turgor to force a thin penetration hypha through the rice cuticle and into the underlying epidermal cells, where the fungus grows for the first days of infection as a symptomless biotroph. Understanding what controls biotrophic growth could open new avenues for developing sustainable blast intervention programs. Here, using molecular genetics and live-cell imaging, we dismantled M. oryzae glucose-metabolizing pathways to reveal that the transketolase enzyme, encoded by TKL1, plays an essential role in facilitating host colonization during rice blast disease. In the absence of transketolase, Δtkl1 mutant strains formed functional appressoria that penetrated rice cuticles successfully and developed invasive hyphae (IH) in rice cells from primary hyphae. However, Δtkl1 could not undertake sustained biotrophic growth or cell-to-cell movement. Transcript data and observations using fluorescently labeled histone H1:RFP fusion proteins indicated Δtkl1 mutant strains were alive in host cells but were delayed in mitosis. Mitotic delay could be reversed and IH growth restored by the addition of exogenous ATP, a metabolite depleted in Δtkl1 mutant strains. We show that ATP might act via the TOR signaling pathway, and TOR is likely a downstream target of activation for TKL1. TKL1 is also involved in controlling the migration of appressorial nuclei into primary hyphae in host cells. When taken together, our results indicate transketolase has a novel role in mediating - via ATP and TOR signaling - an in planta-specific metabolic checkpoint that controls nuclear migration from appressoria into primary hyphae, prevents mitotic delay in early IH and promotes biotrophic growth. This work thus provides new information about the metabolic strategies employed by M. oryzae to enable rice cell colonization. The blast fungus Magnaporthe oryzae destroys rice and wheat harvests and could compromise global food security. Following penetration into the rice cell, M. oryzae elaborates bulbous invasive hyphae that grow in living rice cells for most of the infection cycle without causing disease symptoms. Little is known about the physiological processes governing this important biotrophic stage of fungal growth. Here, we used gene functional analysis to show how the primary metabolic enzyme transketolase is essential for hyphal growth in rice cells. Loss of transketolase did not affect the ability of the fungus to gain entry into rice cells, but invasive hyphal growth was curtailed in transketolase null mutants. Biotrophic growth was restored in transketolase mutants by the addition of exogenous ATP. We conclude that M. oryzae metabolism is dedicated to metabolizing glucose through transketolase in planta in order to provide ATP as a trigger for biotrophic growth and infection. This work is significant because it reveals important—but previously unknown—metabolic strategies employed by M. oryzae to facilitate rice infection. These strategies might be open to abrogation by chemical or biological means and are likely relevant to other rapidly proliferating intracellular pathogens.
Collapse
|
337
|
Barbi de Moura M, Uppala R, Zhang Y, Van Houten B, Goetzman ES. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells. PLoS One 2014; 9:e106028. [PMID: 25165814 PMCID: PMC4148395 DOI: 10.1371/journal.pone.0106028] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/30/2014] [Indexed: 01/15/2023] Open
Abstract
SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose) all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.
Collapse
Affiliation(s)
- Michelle Barbi de Moura
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Radha Uppala
- Division of Medical Genetics, Department of Pediatrics, Children’s Hospital of Pittsburgh of The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Yuxun Zhang
- Division of Medical Genetics, Department of Pediatrics, Children’s Hospital of Pittsburgh of The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Eric S. Goetzman
- Division of Medical Genetics, Department of Pediatrics, Children’s Hospital of Pittsburgh of The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
338
|
Dedkova EN, Blatter LA. Role of β-hydroxybutyrate, its polymer poly-β-hydroxybutyrate and inorganic polyphosphate in mammalian health and disease. Front Physiol 2014; 5:260. [PMID: 25101001 PMCID: PMC4102118 DOI: 10.3389/fphys.2014.00260] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/19/2014] [Indexed: 12/14/2022] Open
Abstract
We provide a comprehensive review of the role of β-hydroxybutyrate (β-OHB), its linear polymer poly-β-hydroxybutyrate (PHB), and inorganic polyphosphate (polyP) in mammalian health and disease. β-OHB is a metabolic intermediate that constitutes 70% of ketone bodies produced during ketosis. Although ketosis has been generally considered as an unfavorable pathological state (e.g., diabetic ketoacidosis in type-1 diabetes mellitus), it has been suggested that induction of mild hyperketonemia may have certain therapeutic benefits. β-OHB is synthesized in the liver from acetyl-CoA by β-OHB dehydrogenase and can be used as alternative energy source. Elevated levels of PHB are associated with pathological states. In humans, short-chain, complexed PHB (cPHB) is found in a wide variety of tissues and in atherosclerotic plaques. Plasma cPHB concentrations correlate strongly with atherogenic lipid profiles, and PHB tissue levels are elevated in type-1 diabetic animals. However, little is known about mechanisms of PHB action especially in the heart. In contrast to β-OHB, PHB is a water-insoluble, amphiphilic polymer that has high intrinsic viscosity and salt-solvating properties. cPHB can form non-specific ion channels in planar lipid bilayers and liposomes. PHB can form complexes with polyP and Ca(2+) which increases membrane permeability. The biological roles played by polyP, a ubiquitous phosphate polymer with ATP-like bonds, have been most extensively studied in prokaryotes, however polyP has recently been linked to a variety of functions in mammalian cells, including blood coagulation, regulation of enzyme activity in cancer cells, cell proliferation, apoptosis and mitochondrial ion transport and energy metabolism. Recent evidence suggests that polyP is a potent activator of the mitochondrial permeability transition pore in cardiomyocytes and may represent a hitherto unrecognized key structural and functional component of the mitochondrial membrane system.
Collapse
Affiliation(s)
- Elena N Dedkova
- Department of Molecular Biophysics and Physiology, Rush University Medical Center Chicago, IL, USA
| | - Lothar A Blatter
- Department of Molecular Biophysics and Physiology, Rush University Medical Center Chicago, IL, USA
| |
Collapse
|
339
|
Manai J, Gouia H, Corpas FJ. Redox and nitric oxide homeostasis are affected in tomato (Solanum lycopersicum) roots under salinity-induced oxidative stress. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1028-35. [PMID: 24974329 DOI: 10.1016/j.jplph.2014.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 05/04/2023]
Abstract
The nicotinamide adenine dinucleotide phosphate (NADPH) and reduced glutathione (GSH) molecules play important roles in the redox homeostasis of plant cells. Using tomato (Solanum lycopersicum) plants grown with 120mM NaCl, we studied the redox state of NADPH and GSH as well as ascorbate, nitric oxide (NO) and S-nitrosoglutathione (GSNO) content and the activity of the principal enzymes involved in the metabolism of these molecules in roots. Salinity caused a significant reduction in growth parameters and an increase in oxidative parameters such as lipid peroxidation and protein oxidation. Salinity also led to an overall decrease in the content of these redox molecules and in the enzymatic activities of the main NADPH-generating dehydrogenases, S-nitrosoglutathione reductase and catalase. However, NO content as well as gluthahione reductase and glutathione peroxidase activity increased under salinity stress. These findings indicate that salinity drastically affects redox and NO homeostasis in tomato roots. In our view, these molecules, which show the interaction between ROS and RNS metabolisms, could be excellent parameters for evaluating the physiological conditions of plants under adverse stress conditions.
Collapse
Affiliation(s)
- Jamel Manai
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain; Faculty of Sciences of Tunisia, University Tunis El Manar, Tunis, Tunisia
| | - Houda Gouia
- Faculty of Sciences of Tunisia, University Tunis El Manar, Tunis, Tunisia
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain.
| |
Collapse
|
340
|
Onda Y, Miyagi A, Takahara K, Uchimiya H, Kawai-Yamada M. Effects of NAD kinase 2 overexpression on primary metabolite profiles in rice leaves under elevated carbon dioxide. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:819-24. [PMID: 24397549 DOI: 10.1111/plb.12131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/16/2013] [Indexed: 05/20/2023]
Abstract
The concentration of carbon dioxide (CO2) in the atmosphere is projected to double by the end of the 21st century. In C3 plants, elevated CO2 concentrations promote photosynthesis but inhibit the assimilation of nitrate into organic nitrogen compounds. Several steps of nitrate assimilation depend on the availability of ATP and sources of reducing power, such as nicotinamide adenine dinucleotide phosphate (NADPH). Plastid-localised NAD kinase 2 (NADK2) plays key roles in increasing the ATP/ADP and NADP(H)/NAD(H) ratios. Here we examined the effects of NADK2 overexpression on primary metabolism in rice (Oryza sativa) leaves in response to elevated CO2. By using capillary electrophoresis mass spectrometry, we showed that the primary metabolite profile of NADK2-overexpressing plants clearly differed from that of wild-type plants under ambient and elevated CO2. In NADK2-overexpressing leaves, expression of the genes encoding glutamine synthetase and glutamate synthase was up-regulated, and the levels of Asn, Gln, Arg, and Lys increased in response to elevated CO2. The present study suggests that overexpression of NADK2 promotes the biosynthesis of nitrogen-rich amino acids under elevated CO2.
Collapse
Affiliation(s)
- Y Onda
- Institute for Environmental Science and Technology, Saitama University, Sakura-ku, Saitama, Japan; Department of Food and Applied Life Sciences, Yamagata University, Tsuruoka, Yamagata, Japan
| | | | | | | | | |
Collapse
|
341
|
Ortmayr K, Nocon J, Gasser B, Mattanovich D, Hann S, Koellensperger G. Sample preparation workflow for the liquid chromatography tandem mass spectrometry based analysis of nicotinamide adenine dinucleotide phosphate cofactors in yeast. J Sep Sci 2014; 37:2185-91. [PMID: 24841212 DOI: 10.1002/jssc.201400290] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/05/2014] [Accepted: 05/09/2014] [Indexed: 12/12/2022]
Abstract
The accurate quantification of the highly unstable intracellular cofactor nicotinamide adenine dinucleotide phosphate in its oxidized and reduced forms demands a thorough evaluation of the analytical workflow and dedicated methods reflecting their solution chemistry as well as the biological importance of their ratio. In this work, we present a workflow for the analysis of intracellular levels of oxidized and reduced nicotinamide adenine dinucleotide phosphate in the yeast Pichia pastoris, including hot aqueous extraction, chromatographic separation in reversed-phase conditions employing a 100% wettable stationary phase, and subsequent tandem mass spectrometric analysis. A thorough evaluation and optimization of the sample preparation procedure resulted in excellent biological repeatabilities (on average <10%, N = 3) without employing an internal standardization approach. As a consequence, the methodology proved to be appropriate for the relative assessment of intracellular levels of oxidized and reduced nicotinamide adenine dinucleotide phosphate in different P. pastoris strains. The ratio of reduced versus oxidized nicotinamide adenine dinucleotide phosphate was significantly higher in an engineered strain overexpressing glucose-6-phosphate dehydrogenase than in the corresponding wildtype strain. Interestingly, a difference was also observed in the nicotinamide adenine dinucleotide phosphate pool size, which was significantly higher in the wildtype than in the modified strain.
Collapse
Affiliation(s)
- Karin Ortmayr
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
342
|
Integrated autofluorescence characterization of a modified-diet liver model with accumulation of lipids and oxidative stress. BIOMED RESEARCH INTERNATIONAL 2014; 2014:803491. [PMID: 25006587 PMCID: PMC4070497 DOI: 10.1155/2014/803491] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 01/16/2023]
Abstract
Oxidative stress in fatty livers is mainly generated by impaired mitochondrial β-oxidation, inducing tissue damages and disease progression. Under suitable excitation, light liver endogenous fluorophores can give rise to autofluorescence (AF) emission, the properties of which depend on the organ morphofunctional state. In this work, we characterized the AF properties of a rat liver model of lipid accumulation and oxidative stress, induced by a 1–9-week hypercaloric methionine-choline deficient (MCD) diet administration. The AF analysis (excitation at 366 nm) was performed in vivo, via fiber optic probe, or ex vivo. The contribution of endogenous fluorophores involved in redox reactions and in tissue organization was estimated through spectral curve fitting analysis, and AF results were validated by means of different histochemical and biochemical assays (lipids, collagen, vitamin A, ROS, peroxidised proteins, and lipid peroxidation -TBARS-, GSH, and ATP). In comparison with the control, AF spectra changes found already at 1 week of MCD diet reflect alterations both in tissue composition and organization (proteins, lipopigments, and vitamin A) and in oxidoreductive pathway engagement (NAD(P)H, flavins), with a subsequent attempt to recover redox homeostasis. These data confirm the AF analysis potential to provide a comprehensive diagnostic information on negative effects of oxidative metabolism alteration.
Collapse
|
343
|
Yang YQ, Lu Z. A Convenient Heterogeneous Reduction of Knoevenagel Product by Hantzsch Ester and Its Development into Reductive Alkylation of Malononitrile. CHINESE J CHEM 2014. [DOI: 10.1002/cjoc.201400144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
344
|
Direct electrochemical regeneration of the cofactor NADH on bare Ti, Ni, Co and Cd electrodes: The influence of electrode potential and electrode material. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcata.2014.02.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
345
|
Rajbanshi SL, Pandanaboina CS. Alcohol stress on cardiac tissue – Ameliorative effects of Thespesia populnea leaf extract. J Cardiol 2014; 63:449-59. [DOI: 10.1016/j.jjcc.2013.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/25/2013] [Accepted: 10/09/2013] [Indexed: 12/20/2022]
|
346
|
Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY, Green CR, Vokes NI, Feist AM, Vander Heiden MG, Metallo CM. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell 2014; 55:253-63. [PMID: 24882210 DOI: 10.1016/j.molcel.2014.05.008] [Citation(s) in RCA: 440] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 04/30/2014] [Accepted: 05/06/2014] [Indexed: 01/09/2023]
Abstract
Eukaryotic cells compartmentalize biochemical processes in different organelles, often relying on metabolic cycles to shuttle reducing equivalents across intracellular membranes. NADPH serves as the electron carrier for the maintenance of redox homeostasis and reductive biosynthesis, with separate cytosolic and mitochondrial pools providing reducing power in each respective location. This cellular organization is critical for numerous functions but complicates analysis of metabolic pathways using available methods. Here we develop an approach to resolve NADP(H)-dependent pathways present within both the cytosol and the mitochondria. By tracing hydrogen in compartmentalized reactions that use NADPH as a cofactor, including the production of 2-hydroxyglutarate by mutant isocitrate dehydrogenase enzymes, we can observe metabolic pathway activity in these distinct cellular compartments. Using this system we determine the direction of serine/glycine interconversion within the mitochondria and cytosol, highlighting the ability of this approach to resolve compartmentalized reactions in intact cells.
Collapse
Affiliation(s)
- Caroline A Lewis
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seth J Parker
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brian P Fiske
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas McCloskey
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dan Y Gui
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Courtney R Green
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Natalie I Vokes
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew G Vander Heiden
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering and Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
347
|
Venter G, Oerlemans FTJJ, Willemse M, Wijers M, Fransen JAM, Wieringa B. NAMPT-mediated salvage synthesis of NAD+ controls morphofunctional changes of macrophages. PLoS One 2014; 9:e97378. [PMID: 24824795 PMCID: PMC4019579 DOI: 10.1371/journal.pone.0097378] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/18/2014] [Indexed: 12/31/2022] Open
Abstract
Functional morphodynamic behavior of differentiated macrophages is strongly controlled by actin cytoskeleton rearrangements, a process in which also metabolic cofactors ATP and NAD(H) (i.e. NAD+ and NADH) and NADP(H) (i.e. NADP+ and NADPH) play an essential role. Whereas the link to intracellular ATP availability has been studied extensively, much less is known about the relationship between actin cytoskeleton dynamics and intracellular redox state and NAD+-supply. Here, we focus on the role of nicotinamide phosphoribosyltransferase (NAMPT), found in extracellular form as a cytokine and growth factor, and in intracellular form as one of the key enzymes for the production of NAD+ in macrophages. Inhibition of NAD+ salvage synthesis by the NAMPT-specific drug FK866 caused a decrease in cytosolic NAD+ levels in RAW 264.7 and Maf-DKO macrophages and led to significant downregulation of the glycolytic flux without directly affecting cell viability, proliferation, ATP production capacity or mitochondrial respiratory activity. Concomitant with these differential metabolic changes, the capacity for phagocytic ingestion of particles and also substrate adhesion of macrophages were altered. Depletion of cytoplasmic NAD+ induced cell-morphological changes and impaired early adhesion in phagocytosis of zymosan particles as well as spreading performance. Restoration of NAD+ levels by NAD+, NMN, or NADP+ supplementation reversed the inhibitory effects of FK866. We conclude that direct coupling to local, actin-based, cytoskeletal dynamics is an important aspect of NAD+'s cytosolic role in the regulation of morphofunctional characteristics of macrophages.
Collapse
Affiliation(s)
- Gerda Venter
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Frank T. J. J. Oerlemans
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marieke Willemse
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mietske Wijers
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jack A. M. Fransen
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
348
|
Lin AL, Rothman DL. What have novel imaging techniques revealed about metabolism in the aging brain? FUTURE NEUROLOGY 2014; 9:341-354. [PMID: 25214817 DOI: 10.2217/fnl.14.13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Brain metabolism declines with age and do so in an accelerated manner in neurodegenerative disorders. Noninvasive neuroimaging techniques have played an important role to identify the metabolic biomarkers in aging brain. Particularly, PET with fluorine-18 (18F)-labeled 2-fluoro-2-deoxy-d-glucose tracer and proton magnetic resonance spectroscopy (MRS) have been widely used to monitor changes in brain metabolism over time, identify the risk for Alzheimer's disease (AD) and predict the conversion from mild cognitive impairment to AD. Novel techniques, including PET carbon-11 Pittsburgh compound B, carbon-13 and phosphorus-31 MRS, have also been introduced to determine Aβ plaques deposition, mitochondrial functions and brain bioenergetics in aging brain and neurodegenerative disorders. Here, we introduce the basic principle of the imaging techniques, review the findings from 2-fluoro-2-deoxy-d-glucose-PET, Pittsburgh compound B PET, proton, carbon-13 and phosphorus-31 MRS on changes in metabolism in normal aging brain, mild cognitive impairment and AD, and discuss the potential of neuroimaging to identify effective interventions and treatment efficacy for neurodegenerative disorders.
Collapse
Affiliation(s)
- Ai-Ling Lin
- Sanders-Brown Center on Aging, Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Diagnostic Radiology & Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
349
|
Damayanti NP, Craig AP, Irudayaraj J. A hybrid FLIM-elastic net platform for label free profiling of breast cancer. Analyst 2014; 138:7127-34. [PMID: 24106733 DOI: 10.1039/c3an01097j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a label-free fluorescence lifetime profiling strategy to classify breast cancer cells, MCF10CA1h (malignant), MCF10A (nonmalignant), and MCF10AneoT (premalignant) in different stages of malignancy. Fluorescence Lifetime Imaging Microscopy (FLIM) was used to record the lifetime of autofluorescence of endogenous flavin in MCF10 cells in different stages of malignancy. Predominant differences in lifetimes ascertained by multi-exponential fitting curves can be attributed to the different forms of flavin protein; flavin mononucleotide (FMN), free flavin adenine dinucleotide (FAD), semiquinone, and bound FAD. A lifetime map of the metabolite was derived from the contribution of the lifetime of each metabolite by iterative reconvolution fitting of the Time Correlated Single Photon Counting (TCSPC) decay curves. Lifetime maps were constructed by mapping the average lifetime values pixel by pixel using MATLAB. The FLIM image (150 × 150 pixels) of each cell was extracted, resized and centered into 100 × 100 pixels using the nearest neighbor algorithm. Principal Component Analysis (PCA) in conjunction with Elastic net Analysis (EnA) was then used to classify the different stages of MCF10 cell lines based on average lifetime values. The EnA model provided an excellent classification of the cells at different stages of tumorigenesis yielding 100% accuracy.
Collapse
Affiliation(s)
- Nur P Damayanti
- Department of Agricultural and Biological Engineering and Bindley Bioscience Center, 225 S. University Street, West Lafayette, IN, USA
| | | | | |
Collapse
|
350
|
Colinas M, Shaw HV, Loubéry S, Kaufmann M, Moulin M, Fitzpatrick TB. A pathway for repair of NAD(P)H in plants. J Biol Chem 2014; 289:14692-706. [PMID: 24706747 DOI: 10.1074/jbc.m114.556092] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Unwanted enzyme side reactions and spontaneous decomposition of metabolites can lead to a build-up of compounds that compete with natural enzyme substrates and must be dealt with for efficient metabolism. It has recently been realized that there are enzymes that process such compounds, formulating the concept of metabolite repair. NADH and NADPH are vital cellular redox cofactors but can form non-functional hydrates (named NAD(P)HX) spontaneously or enzymatically that compete with enzymes dependent on NAD(P)H, impairing normal enzyme function. Here we report on the functional characterization of components of a potential NAD(P)H repair pathway in plants comprising a stereospecific dehydratase (NNRD) and an epimerase (NNRE), the latter being fused to a vitamin B6 salvage enzyme. Through the use of the recombinant proteins, we show that the ATP-dependent NNRD and NNRE act concomitantly to restore NAD(P)HX to NAD(P)H. NNRD behaves as a tetramer and NNRE as a dimer, but the proteins do not physically interact. In vivo fluorescence analysis demonstrates that the proteins are localized to mitochondria and/or plastids, implicating these as the key organelles where this repair is required. Expression analysis indicates that whereas NNRE is present ubiquitously, NNRD is restricted to seeds but appears to be dispensable during the normal Arabidopsis life cycle.
Collapse
Affiliation(s)
- Maite Colinas
- From the Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Holly V Shaw
- From the Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Sylvain Loubéry
- From the Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Markus Kaufmann
- From the Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Michael Moulin
- From the Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Teresa B Fitzpatrick
- From the Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|