301
|
Avitzur Y, Guo C, Mastropaolo LA, Bahrami E, Chen H, Zhao Z, Elkadri A, Dhillon S, Murchie R, Fattouh R, Huynh H, Walker JL, Wales PW, Cutz E, Kakuta Y, Dudley J, Kammermeier J, Powrie F, Shah N, Walz C, Nathrath M, Kotlarz D, Puchaka J, Krieger JR, Racek T, Kirchner T, Walters TD, Brumell JH, Griffiths AM, Rezaei N, Rashtian P, Najafi M, Monajemzadeh M, Pelsue S, McGovern DPB, Uhlig HH, Schadt E, Klein C, Snapper SB, Muise AM. Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology 2014; 146:1028-39. [PMID: 24417819 PMCID: PMC4002656 DOI: 10.1053/j.gastro.2014.01.015] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/23/2013] [Accepted: 01/03/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Very early onset inflammatory bowel diseases (VEOIBD), including infant disorders, are a diverse group of diseases found in children younger than 6 years of age. They have been associated with several gene variants. Our aim was to identify the genes that cause VEOIBD. METHODS We performed whole exome sequencing of DNA from 1 infant with severe enterocolitis and her parents. Candidate gene mutations were validated in 40 pediatric patients and functional studies were carried out using intestinal samples and human intestinal cell lines. RESULTS We identified compound heterozygote mutations in the Tetratricopeptide repeat domain 7 (TTC7A) gene in an infant from non-consanguineous parents with severe exfoliative apoptotic enterocolitis; we also detected TTC7A mutations in 2 unrelated families, each with 2 affected siblings. TTC7A interacts with EFR3 homolog B to regulate phosphatidylinositol 4-kinase at the plasma membrane. Functional studies demonstrated that TTC7A is expressed in human enterocytes. The mutations we identified in TTC7A result in either mislocalization or reduced expression of TTC7A. Phosphatidylinositol 4-kinase was found to co-immunoprecipitate with TTC7A; the identified TTC7A mutations reduced this binding. Knockdown of TTC7A in human intestinal-like cell lines reduced their adhesion, increased apoptosis, and decreased production of phosphatidylinositol 4-phosphate. CONCLUSIONS In a genetic analysis, we identified loss of function mutations in TTC7A in 5 infants with VEOIBD. Functional studies demonstrated that the mutations cause defects in enterocytes and T cells that lead to severe apoptotic enterocolitis. Defects in the phosphatidylinositol 4-kinase-TTC7A-EFR3 homolog B pathway are involved in the pathogenesis of VEOIBD.
Collapse
Affiliation(s)
- Yaron Avitzur
- Group for Improvement of Intestinal Function and Treatment (GIFT), Hospital for Sick Children, Toronto, Ontario, Canada; SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Conghui Guo
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lucas A Mastropaolo
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ehsan Bahrami
- Department of Pediatrics, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Hannah Chen
- Translational Gastroenterology Unit and Paediatric Gastroenterology, University of Oxford, Oxford, UK
| | - Zhen Zhao
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Abdul Elkadri
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sandeep Dhillon
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ryan Murchie
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ramzi Fattouh
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hien Huynh
- Division of Pediatric Gastroenterology, Stollery Children's Hospital, Edmonton, Ontario, Canada
| | - Jennifer L Walker
- Department of Immunology and Molecular Biology, University of Southern Maine, Portland, Maine
| | - Paul W Wales
- Group for Improvement of Intestinal Function and Treatment (GIFT), Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ernest Cutz
- Division of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yoichi Kakuta
- F. Widjaja Foundation Inflammatory Bowel Disease Center and Immunobiology Research Institute at Cedars-Sinai Medical Center, Los Angeles, California
| | - Joel Dudley
- Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomics Sciences at Mount Sinai, New York, New York
| | | | - Fiona Powrie
- Translational Gastroenterology Unit, Nuffield Department Clinical Medicine-Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Neil Shah
- Gastroenterology Department, Great Ormond Street Hospital, London, UK
| | - Christoph Walz
- Institute for Pathology, Ludwig-Maximilians University, Munich, Germany
| | - Michaela Nathrath
- Department of Pediatric Oncology, Kassel and CCG Osteosarcoma, Helmholtz Center Munich, Munich, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Jacek Puchaka
- Department of Pediatrics, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Jonathan R Krieger
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tomas Racek
- Department of Pediatrics, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Kirchner
- Institute for Pathology, Ludwig-Maximilians University, Munich, Germany
| | - Thomas D Walters
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - John H Brumell
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Anne M Griffiths
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Molecular Immunology Research Center and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Rashtian
- Department of Pediatric Gastroenterology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Najafi
- Department of Pediatric Gastroenterology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Monajemzadeh
- Department of Pathology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Stephen Pelsue
- Department of Immunology and Molecular Biology, University of Southern Maine, Portland, Maine
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel Disease Center and Immunobiology Research Institute at Cedars-Sinai Medical Center, Los Angeles, California
| | - Holm H Uhlig
- Translational Gastroenterology Unit and Paediatric Gastroenterology, University of Oxford, Oxford, UK
| | - Eric Schadt
- Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomics Sciences at Mount Sinai, New York, New York
| | - Christoph Klein
- Department of Pediatrics, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Scott B Snapper
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Children's Hospital Boston, Massachusetts; Division of Gastroenterology and Hepatology, Brigham & Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
302
|
Hsu P, Nanan RKH. Innate and adaptive immune interactions at the fetal-maternal interface in healthy human pregnancy and pre-eclampsia. Front Immunol 2014; 5:125. [PMID: 24734032 PMCID: PMC3975095 DOI: 10.3389/fimmu.2014.00125] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/11/2014] [Indexed: 11/13/2022] Open
Abstract
Maternal immune tolerance of the fetus is indispensable for a healthy pregnancy outcome. Nowhere is this immune tolerance more important than at the fetal–maternal interface – the decidua, the site of implantation, and placentation. Indeed, many lines of evidence suggest an immunological origin to the common pregnancy-related disorder, pre-eclampsia. Within the innate immune system, decidual NK cells and antigen presenting cells (including dendritic cells and macrophages) make up a large proportion of the decidual leukocyte population, and are thought to modulate vascular remodeling and trophoblast invasion. On the other hand, within the adaptive immune system, Foxp3+ regulatory T cells are crucial for ensuring immune tolerance toward the semi-allogeneic fetus. Additionally, another population of CD4+HLA-G+ suppressor T cells has also been identified as a potential player in the maintenance of immune tolerance. More recently, studies are beginning to unravel the potential interactions between the innate and the adaptive immune system within the decidua, that are required to maintain a healthy pregnancy. In this review, we discuss the recent advances exploring the complex crosstalk between the innate and the adaptive immune system during human pregnancy.
Collapse
Affiliation(s)
- Peter Hsu
- Charles Perkins Centre Nepean , Penrith, NSW , Australia ; Department of Allergy and Immunology, The Children's Hospital at Westmead , Sydney, NSW , Australia ; Sydney Medical School, The University of Sydney , Sydney, NSW , Australia
| | - Ralph Kay Heinrich Nanan
- Charles Perkins Centre Nepean , Penrith, NSW , Australia ; Sydney Medical School, The University of Sydney , Sydney, NSW , Australia
| |
Collapse
|
303
|
Heine G, Drozdenko G, Grün JR, Chang HD, Radbruch A, Worm M. Autocrine IL-10 promotes human B-cell differentiation into IgM- or IgG-secreting plasmablasts. Eur J Immunol 2014; 44:1615-21. [DOI: 10.1002/eji.201343822] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 01/23/2014] [Accepted: 02/13/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Guido Heine
- Allergie-Centrum-Charité; CCM; Klinik für Dermatologie; Venerologie und Allergologie; Charité-Universitätsmedizin Berlin; Berlin Germany
- Cell Biology Group; Deutsches Rheuma-Forschungszentrum Berlin (DRFZ); Berlin Germany
| | - Gennadiy Drozdenko
- Allergie-Centrum-Charité; CCM; Klinik für Dermatologie; Venerologie und Allergologie; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - Joachim R. Grün
- Bioinformatics Group; Deutsches Rheuma-Forschungszentrum Berlin (DRFZ); Berlin Germany
| | - Hyun-Dong Chang
- Cell Biology Group; Deutsches Rheuma-Forschungszentrum Berlin (DRFZ); Berlin Germany
| | - Andreas Radbruch
- Cell Biology Group; Deutsches Rheuma-Forschungszentrum Berlin (DRFZ); Berlin Germany
| | - Margitta Worm
- Allergie-Centrum-Charité; CCM; Klinik für Dermatologie; Venerologie und Allergologie; Charité-Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
304
|
Moens L, Tangye SG. Cytokine-Mediated Regulation of Plasma Cell Generation: IL-21 Takes Center Stage. Front Immunol 2014; 5:65. [PMID: 24600453 PMCID: PMC3927127 DOI: 10.3389/fimmu.2014.00065] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/05/2014] [Indexed: 11/20/2022] Open
Abstract
During our life, we are surrounded by continuous threats from a diverse range of invading pathogens. Our immune system has evolved multiple mechanisms to efficiently deal with these threats so as to prevent them from causing disease. Terminal differentiation of mature B cells into plasma cells (PC) – the antibody (Ab) secreting cells of the immune system – is critical for the generation of protective and long-lived humoral immune responses. Indeed, efficient production of antigen (Ag)-specific Ab by activated B cells underlies the success of most currently available vaccines. The mature B-cell pool is composed of several subsets, distinguished from one according to size, surface marker expression, location, and Ag exposure, and they all have the capacity to differentiate into PCs. For a B-cell to acquire the capacity to produce Abs, it must undergo an extensive differentiation process driven by changes in gene expression. Two broad categories of Ags exist that cause B-cell activation and differentiation: T cell dependent (TD) or T cell independent (TI). In addition to the B-cell subset and nature of the Ag, it is important to consider the cytokine environment that can also influence how B-cell differentiation is achieved. Thus, while many cytokines can induce Ab-secretion by B cells after activation with mimics of TD and TI stimuli in vitro, they can have different efficacies and specificities, and can often preferentially induce production of one particular Ig isotype over another. Here, we will provide an overview of in vitro studies (mouse and human origin) that evaluated the role of different cytokines in inducing the differentiation of distinct B-cell subsets to the PC lineage. We will place particular emphasis on IL-21, which has emerged as the most potent inducer of terminal B-cell differentiation in humans. We will also focus on the role of IL-21 and defects in B-cell function and how these contribute to human immunopathologies such as primary immunodeficiencies and B-cell mediated autoimmune conditions.
Collapse
Affiliation(s)
- Leen Moens
- Immunology and Immunodeficiency Group, Immunology Research Program, Garvan Institute of Medical Research , Darlinghurst, NSW , Australia
| | - Stuart G Tangye
- Immunology and Immunodeficiency Group, Immunology Research Program, Garvan Institute of Medical Research , Darlinghurst, NSW , Australia ; St Vincent's Clinical School, University of New South Wales , Darlinghurst, NSW , Australia
| |
Collapse
|
305
|
Marvel DM, Finn OJ. Global Inhibition of DC Priming Capacity in the Spleen of Self-Antigen Vaccinated Mice Requires IL-10. Front Immunol 2014; 5:59. [PMID: 24596571 PMCID: PMC3925839 DOI: 10.3389/fimmu.2014.00059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 02/01/2014] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DC) in the spleen are highly activated following intravenous vaccination with a foreign-antigen, promoting expansion of effector T cells, but remain phenotypically and functionally immature after vaccination with a self-antigen. Up-regulation or suppression of expression of a cohort of pancreatic enzymes 24–72 h post-vaccination can be used as a biomarker of stimulatory versus tolerogenic DC, respectively. Here we show, using MUC1 transgenic mice and a vaccine based on the MUC1 peptide, which these mice perceive as a self-antigen, that the difference in enzyme expression that predicts whether DC will promote immune response or immune tolerance is seen as early as 4–8 h following vaccination. We also identify early production of IL-10 as a predominant factor that both correlates with this early-time point and controls DC function. Pre-treating mice with an antibody against the IL-10 receptor prior to vaccination results in DC that up-regulate CD40, CD80, and CD86 and promote stronger IFNγ+ T cell responses. This study suggests that transient inhibition of IL-10 prior to vaccination could improve responses to cancer vaccines that utilize self-tumor antigens.
Collapse
Affiliation(s)
- Douglas M Marvel
- Department of Immunology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| |
Collapse
|
306
|
Murugan D, Albert MH, Langemeier J, Bohne J, Puchalka J, Järvinen PM, Hauck F, Klenk AK, Prell C, Schatz S, Diestelhorst J, Sciskala B, Kohistani N, Belohradsky BH, Müller S, Kirchner T, Walter MR, Bufler P, Muise AM, Snapper SB, Koletzko S, Klein C, Kotlarz D. Very early onset inflammatory bowel disease associated with aberrant trafficking of IL-10R1 and cure by T cell replete haploidentical bone marrow transplantation. J Clin Immunol 2014; 34:331-9. [PMID: 24519095 DOI: 10.1007/s10875-014-9992-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/20/2014] [Indexed: 12/19/2022]
Abstract
PURPOSE Loss-of-function mutations in IL10 and IL10R cause very early onset inflammatory bowel disease (VEO-IBD). Here, we investigated the molecular pathomechanism of a novel intronic IL10RA mutation and describe a new therapeutic approach of T cell replete haploidentical hematopoietic stem cell transplantation (HSCT). METHODS Clinical data were collected by chart review. Genotypes of IL10 and IL10R genes were determined by Sanger sequencing. Expression and function of mutated IL-10R1 were assessed by quantitative PCR, Western blot analysis, enzyme-linked immunosorbent assays, confocal microscopy, and flow cytometry. RESULTS We identified a novel homozygous point mutation in intron 3 of the IL10RA (c.368-10C > G) in three related children with VEO-IBD. Bioinformatical analysis predicted an additional 3' splice site created by the mutation. Quantitative PCR analysis showed normal mRNA expression of mutated IL10RA. Sequencing of the patient's cDNA revealed an insertion of the last nine nucleotides of intron 3 as a result of aberrant splicing. Structure-based modeling suggested misfolding of mutated IL-10R1. Western blot analysis demonstrated a different N-linked glycosylation pattern of mutated protein. Immunofluorescence and FACS analysis revealed impaired expression of mutated IL-10R1 at the plasma membrane. In the absence of HLA-identical donors, T cell replete haploidentical HSCT was successfully performed in two patients. CONCLUSIONS Our findings expand the spectrum of IL10R mutations in VEO-IBD and emphasize the need for genetic diagnosis of mutations in conserved non-coding sequences of candidate genes. Transplantation of haploidentical stem cells represents a curative therapy in IL-10R-deficient patients, but may be complicated by non-engraftment.
Collapse
Affiliation(s)
- Dhaarini Murugan
- Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
307
|
Bates J, Diehl L. Dendritic cells in IBD pathogenesis: an area of therapeutic opportunity? J Pathol 2014; 232:112-20. [PMID: 24122796 PMCID: PMC4285849 DOI: 10.1002/path.4277] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 09/03/2013] [Accepted: 09/22/2013] [Indexed: 12/15/2022]
Abstract
Dysfunction of the mucosal immune system plays an important role in inflammatory bowel disease (IBD) pathogenesis. Dendritic cells are emerging as central players based on both our increasing understanding of how genetic susceptibility impacts the mucosal immune system and the key role of dendritic cells in regulating response to gut microflora. We discuss areas of therapeutic opportunity in this evolving landscape. © 2013 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
|
308
|
Abstract
IBD is a chronic disorder with disease onset ranging from early childhood to beyond the sixth decade of life. The factors that determine the age of onset currently remain unexplained. Is timing of occurrence a random event or is it indicative of different pathophysiological pathways leading to different phenotypes across the age spectrum? Over the past decade, several studies have suggested that the characteristics and natural history of IBD seem to be different according to age of onset. This heterogeneity suggests that the respective contributions of genetics, host immune system and environment to the aetiology and phenotype of Crohn's disease and ulcerative colitis are different across ages. Critical reviews that focus on differences characterizing IBD between age groups are scarce. Therefore, this Review updates the knowledge of the differences in epidemiology, clinical characteristics, and natural history of paediatric, adult and elderly-onset IBD. In addition, potential differences in host-gene-microbial interactions according to age are highlighted.
Collapse
|
309
|
Shouval DS, Ouahed J, Biswas A, Goettel JA, Horwitz BH, Klein C, Muise AM, Snapper SB. Interleukin 10 receptor signaling: master regulator of intestinal mucosal homeostasis in mice and humans. Adv Immunol 2014; 122:177-210. [PMID: 24507158 PMCID: PMC4741283 DOI: 10.1016/b978-0-12-800267-4.00005-5] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interleukin 10 (IL10) is a key anti-inflammatory cytokine that can inhibit proinflammatory responses of both innate and adaptive immune cells. An association between IL10 and intestinal mucosal homeostasis became clear with the discovery that IL10 and IL10 receptor (IL10R)-deficient mice develop spontaneous intestinal inflammation. Similarly, patients with deleterious mutations in IL10, IL10RA, or IL10RB present with severe enterocolitis within the first months of life. Here, we review recent findings on how IL10- and IL10R-dependent signaling modulates innate and adaptive immune responses in the murine gastrointestinal tract, with implications of their role in the prevention of inflammatory bowel disease (IBD). In addition, we discuss the impact of IL10 and IL10R signaling defects in humans and their relationship to very early-onset IBD (VEO-IBD).
Collapse
Affiliation(s)
- Dror S Shouval
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jodie Ouahed
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amlan Biswas
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeremy A Goettel
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce H Horwitz
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Christoph Klein
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Aleixo M Muise
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada; Program in Cell Biology at University of Toronto, Toronto, Ontario, Canada
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Division of Gastroenterology, Brigham & Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
310
|
Engelhardt KR, Grimbacher B. IL-10 in humans: lessons from the gut, IL-10/IL-10 receptor deficiencies, and IL-10 polymorphisms. Curr Top Microbiol Immunol 2014; 380:1-18. [PMID: 25004811 DOI: 10.1007/978-3-662-43492-5_1] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) represents a heterogeneous group of gastrointestinal disorders, where commensal gut flora provokes an either (a) insufficient or (b) uncontrolled immune response. This results either in a lack of or in excessive inflammation mainly manifesting as Crohn's disease or ulcerative colitis. IBD commonly presents in adolescence and adulthood and often follows a chronic relapsing course. Genetic and/or environmental factors contribute to the failure of gut immune homeostasis. Genome-wide association studies have identified over 160 susceptibility loci associated with IBD, including polymorphisms in interleukin-10 (IL-10). The anti-inflammatory cytokine IL-10 dampens intestinal inflammation and is therefore a good candidate gene for IBD. Polymorphisms in the IL-10 receptor are also associated with ulcerative colitis presenting in early childhood. Moreover, severe infantile enterocolitis resembling Crohn's disease, caused by loss-of-function mutations in IL-10 and IL-10 receptor, is characterised by a very early onset (usually within the first 3 months of life), unresponsiveness to standard treatment including immunosuppressive therapy, and severe perianal disease with abscesses and fistulas. In these patients, inflammation and polymorphic infiltrates are mainly confined to the colon with very little involvement of the small intestine. Ulceration and granulomas, bloody diarrhoea and failure to thrive also occur. Furthermore, patients may suffer from recurrent fever and respiratory infections. Individuals with IL-10 receptor mutations also experience cutaneous folliculitis and arthritis. Hematopoietic stem cell transplantation is currently the only curative therapy.
Collapse
|
311
|
Highlights in IBD Epidemiology and Its Natural History in the Paediatric Age. Gastroenterol Res Pract 2013; 2013:829040. [PMID: 24454343 PMCID: PMC3884601 DOI: 10.1155/2013/829040] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/27/2013] [Accepted: 11/20/2013] [Indexed: 12/30/2022] Open
Abstract
Background. The number of patients of all age brackets diagnosed with Inflammatory Bowel Disease (IBD) has risen dramatically worldwide over the past 50 years. IBD's changing epidemiology suggests that environmental factors play a major role in modifying disease expression. Aim. To review studies carried out worldwide analyzing IBD epidemiology. Methods. A Medline search indicating as keywords “Inflammatory Bowel Disease,” “epidemiology,” “natural history,” “Crohn's Disease,” “Ulcerative Colitis,” and “IBD Unclassified” was performed. A selection of clinical cohort and systematic review studies that were carried out between 2002 and 2013 was reviewed. Studies referring to an earlier date were also considered whenever the data were relevant to our review. Results. The current mean prevalence of IBD in the total population of Western countries is estimated at 1/1,000. The highest prevalence and incidence rates of IBD worldwide are reported from Canada. Just as urbanization and socioeconomic development, the incidence of IBD is rising in China. Conclusions. Multicenter national registers and international networks can provide information on IBD epidemiology and lead to hypotheses about its causes and possible management strategies. The rising trend in the disease's incidence in developing nations suggests that its epidemiological evolution is linked to industrialization and modern Westernized lifestyles.
Collapse
|
312
|
Galatola M, Miele E, Strisciuglio C, Paparo L, Rega D, Delrio P, Duraturo F, Martinelli M, Rossi GB, Staiano A, Izzo P, Rosa MD. Synergistic effect of interleukin-10-receptor variants in a case of early-onset ulcerative colitis. World J Gastroenterol 2013; 19:8659-8670. [PMID: 24379584 PMCID: PMC3870512 DOI: 10.3748/wjg.v19.i46.8659] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/16/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigated the molecular cause of very early-onset ulcerative colitis (UC) in an 18-mo-old affected child.
METHODS: We analysed the interleukin-10 (IL10) receptor genes at the DNA and RNA level in the proband and his relatives. Beta catenin and tumor necrosis factor-α (TNFα) receptors were analysed in the proteins extracted from peripheral blood cells of the proband, his relatives and familial adenomatous polyposis (FAP) and PTEN hamartoma tumor syndrome (PHTS) patients. Samples were also collected from the proband’s inflamed colorectal mucosa and compared to healthy and tumour mucosa collected from a FAP patient and patients affected by sporadic colorectal cancer (CRC). Finally, we examined mesalazine and azathioprine effects on primary fibroblasts stabilised from UC and FAP patients.
RESULTS: Our patient was a compound heterozygote for the IL10RB E47K polymorphism, inherited from his father, and for a novel point mutation within the IL10RA promoter (the -413G->T), inherited from his mother. Beta catenin and tumour necrosis factor α receptors-I (TNFRI) protein were both over-expressed in peripheral blood cells of the proband’s relatives more than the proband. However, TNFRII was over-expressed only in the proband. Finally, both TNFα-receptors were shown to be under-expressed in the inflamed colon mucosa and colorectal cancer tissue compared to healthy colon mucosa. Consistent with this observation, mesalazine and azathioprine induced, in primary fibroblasts, IL10RB and TNFRII over-expression and TNFRI and TNFα under-expression. We suggest that β-catenin and TNFRI protein expression in peripheral blood cells could represent molecular markers of sub-clinical disease in apparently healthy relatives of patients with early-onset UC.
CONCLUSION: A synergistic effect of several variant alleles of the IL10 receptor genes, inherited in a Mendelian manner, is involved in UC onset in this young child.
Collapse
MESH Headings
- Adenomatous Polyposis Coli/genetics
- Adenomatous Polyposis Coli/immunology
- Age of Onset
- Anti-Infective Agents/pharmacology
- Azathioprine/pharmacology
- Biomarkers/blood
- Cells, Cultured
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/metabolism
- Colon/drug effects
- Colon/immunology
- Colon/metabolism
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/immunology
- Female
- Fibroblasts/drug effects
- Fibroblasts/immunology
- Fibroblasts/metabolism
- Gastrointestinal Agents/pharmacology
- Genetic Predisposition to Disease
- Hamartoma Syndrome, Multiple/genetics
- Hamartoma Syndrome, Multiple/immunology
- Heredity
- Humans
- Infant
- Interleukin-10 Receptor alpha Subunit/genetics
- Interleukin-10 Receptor alpha Subunit/metabolism
- Interleukin-10 Receptor beta Subunit/genetics
- Interleukin-10 Receptor beta Subunit/metabolism
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Male
- Mesalamine/pharmacology
- Pedigree
- Phenotype
- Point Mutation
- Polymorphism, Genetic
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor, Type I/blood
- Receptors, Tumor Necrosis Factor, Type II/blood
- beta Catenin/blood
Collapse
|
313
|
Uhlig HH. Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease. Gut 2013; 62:1795-805. [PMID: 24203055 DOI: 10.1136/gutjnl-2012-303956] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, has multifactorial aetiology with complex interactions between genetic and environmental factors. Over 150 genetic loci are associated with IBD. The genetic contribution of the majority of those loci towards explained heritability is low. Recent studies have reported an increasing spectrum of human monogenic diseases that can present with IBD-like intestinal inflammation. A substantial proportion of patients with those genetic defects present with very early onset of intestinal inflammation. The 40 monogenic defects with IBD-like pathology selected in this review can be grouped into defects in intestinal epithelial barrier and stress response, immunodeficiencies affecting granulocyte and phagocyte activity, hyper- and autoinflammatory disorders as well as defects with disturbed T and B lymphocyte selection and activation. In addition, there are defects in immune regulation affecting regulatory T cell activity and interleukin (IL)-10 signalling. Related to the variable penetrance of the IBD-like phenotype, there is a likely role for modifier genes and gene-environment interactions. Treatment options in this heterogeneous group of disorders range from anti-inflammatory and immunosuppressive therapy to blockade of tumour necrosis factor α and IL-1β, surgery, haematopoietic stem cell transplantation or gene therapy. Understanding of prototypic monogenic 'orphan' diseases cannot only provide treatment options for the affected patients but also inform on immunological mechanisms and complement the functional understanding of the pathogenesis of IBD.
Collapse
|
314
|
Aloi M, D'Arcangelo G, Pofi F, Vassallo F, Rizzo V, Nuti F, Di Nardo G, Pierdomenico M, Viola F, Cucchiara S. Presenting features and disease course of pediatric ulcerative colitis. J Crohns Colitis 2013; 7:e509-15. [PMID: 23583691 DOI: 10.1016/j.crohns.2013.03.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 02/08/2023]
Abstract
UNLABELLED Clinical variables and disease course of pediatric ulcerative colitis (UC) have been poorly reported. The aim of this study was to retrospectively describe the phenotype and disease course of pediatric onset UC diagnosed at a tertiary referral Center for Pediatric Gastroenterology. PATIENTS AND METHODS 110 patients with a diagnosis of UC were identified at our Department database. Records were reviewed for disease location and behavior at the diagnosis, family history for inflammatory bowel disease, pattern changes at the follow-up, need of surgery and cumulative risk for colectomy. RESULTS Thirty-five % of patients had an early-onset disease (0-7 years). At the diagnosis, 29% had proctitis, 22% left-sided colitis, 15% extensive colitis and 34% pancolitis. Fifteen % presented with a rectal sparing, while a patchy colonic inflammation was reported in 18%. Rectal sparing was significantly related to the younger age (p: <0.05). Disease extension at the follow up was reported in 29% of pts. No clinical variables at the diagnosis were related to the subsequent extension of the disease. The cumulative rates of colectomy were 9% at 2 year and 14% at 5 years. An extensive disease as well as acute severe colitis and corticosteroid therapy at the diagnosis were significantly associated with an increased risk of colectomy. CONCLUSIONS Pediatric UC is extensive and severe at the diagnosis, with an overall high rate of disease extension at the follow-up. Endoscopic atypical features are common in young children. The colectomy rate is related to the location and severity of the disease at the diagnosis.
Collapse
Affiliation(s)
- Marina Aloi
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Phenotypic characterization of very early-onset IBD due to mutations in the IL10, IL10 receptor alpha or beta gene: a survey of the Genius Working Group. Inflamm Bowel Dis 2013; 19:2820-8. [PMID: 24216686 DOI: 10.1097/01.mib.0000435439.22484.d3] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Early-onset inflammatory bowel disease starting within the first months of life could be due to a particular genetic defect. We set up the GENetically determined ImmUne-mediated enteropathieS (GENIUS) network and collected infants with a proven defect of the IL10 axis for accurate phenotyping of disease presentation and evolution. DESIGN Ten patients with early-onset inflammatory bowel disease with confirmed mutations in IL10, IL10RA, or IL10RB genes were characterized on clinical, endoscopic-histological, immunobiological, and radiological findings. Functional assays to confirm defective responses to IL10 were performed on peripheral blood mononuclear cells. RESULTS A functional defect in IL10 signaling was confirmed in all IL10R patients tested. Disease started with severe diarrhea within the first 12 weeks in all patients. All infants showed Crohn's disease-like ulcerations limited to the colon with marked perianal inflammation (fissures, abscess, and fistula); disease progression to the small bowel occurred in only 1 patient. Four of the 10 patients had granulomata on histology, and all patients showed Crohn's disease-like mesenteric infiltration on imaging. Disease pattern was indistinguishable between IL10R alpha or beta chain or IL10 defects; autoimmunity was not observed. Mutations in IL10 were more frequently associated with bacterial and viral infections. Patients responded partially to treatment with steroids or anti-tumor necrosis factor drugs, whereas hematopoietic stem cell transplantation proved efficacious. CONCLUSION The importance of the IL10 pathway within the colonic mucosa is highlighted by the development of severe colitis within a few weeks in infants with mutations in IL10, IL10RA, or IL10RB. Immunosuppression failed to correct the defect in this pathway, which seems to be a key to controlling inflammation in the colon.
Collapse
|
316
|
Lin Y, Wang SL, Yue YY, Zheng CQ. Mechanisms underlying therapeutic effects of recombinant human granulocyte colony-stimulating factor against TNBS-induced experimental colitis in mice. Shijie Huaren Xiaohua Zazhi 2013; 21:3700-3705. [DOI: 10.11569/wcjd.v21.i33.3700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine if recombinant human granulocyte colony-stimulating factor (rhG-CSF) could promote the recovery of 2,4,6-trinitrobenzene sulfuric acid (TNBS)-induced colitis in Balb/c mice and to analyze the potential mechanisms involved.
METHODS: Colitis was induced in Balb/c mice by rectal administration of 5%TNBS. Three hours later, the mice were given rhG-CSF (100 µg/kg) or phosphate-buffered saline (PBS) subcutaneously once a day from day 0 to day 5. The weight loss, stool, and fecal occult blood were then recorded daily. The mice were sacrificed on day 5, and the whole colons were obtained and scored for adhesion, ulcer and inflammation. Tissue specimens from the descending colon were obtained and stained with hematoxylin and eosin. Inflammation was scored for severity, extent, epithelial damage and crypt loss. The expression of pro-inflammatory cytokine proteins IL-17 and IL-23 in colon tissues was detected by ELISA. Mesenteric lymph node (MLN) cells were prepared and cultured in vitro for 3 d to examine the expression of CD4+ CD25+ Tregs by flow cytometry.
RESULTS: Treatment with rhG-CSF significantly ameliorated murine colitis in terms of improved clinical and pathological signs. The levels of IL-17 and IL-23 were significantly lower in the colon tissues of rhG-CSF-treated mice in comparison with controls. The expression of CD4+ CD25+ Tregs in MLN cells from rhG-CSF-treated mice increased.
CONCLUSION: Treatment with rhG-CSF ameliorates murine TNBS-induced colitis via mechanisms possibly associated with the suppression of IL-23/IL-17 and promotion of CD4+ CD25+ Tregs.
Collapse
|
317
|
Deenick EK, Avery DT, Chan A, Berglund LJ, Ives ML, Moens L, Stoddard JL, Bustamante J, Boisson-Dupuis S, Tsumura M, Kobayashi M, Arkwright PD, Averbuch D, Engelhard D, Roesler J, Peake J, Wong M, Adelstein S, Choo S, Smart JM, French MA, Fulcher DA, Cook MC, Picard C, Durandy A, Klein C, Holland SM, Uzel G, Casanova JL, Ma CS, Tangye SG. Naive and memory human B cells have distinct requirements for STAT3 activation to differentiate into antibody-secreting plasma cells. ACTA ACUST UNITED AC 2013; 210:2739-53. [PMID: 24218138 PMCID: PMC3832925 DOI: 10.1084/jem.20130323] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Long-lived antibody memory is mediated by the combined effects of long-lived plasma cells (PCs) and memory B cells generated in response to T cell-dependent antigens (Ags). IL-10 and IL-21 can activate multiple signaling pathways, including STAT1, STAT3, and STAT5; ERK; PI3K/Akt, and potently promote human B cell differentiation. We previously showed that loss-of-function mutations in STAT3, but not STAT1, abrogate IL-10- and IL-21-mediated differentiation of human naive B cells into plasmablasts. We report here that, in contrast to naive B cells, STAT3-deficient memory B cells responded to these STAT3-activating cytokines, differentiating into plasmablasts and secreting high levels of IgM, IgG, and IgA, as well as Ag-specific IgG. This was associated with the induction of the molecular machinery necessary for PC formation. Mutations in IL21R, however, abolished IL-21-induced responses of both naive and memory human B cells and compromised memory B cell formation in vivo. These findings reveal a key role for IL-21R/STAT3 signaling in regulating human B cell function. Furthermore, our results indicate that the threshold of STAT3 activation required for differentiation is lower in memory compared with naive B cells, thereby identifying an intrinsic difference in the mechanism underlying differentiation of naive versus memory B cells.
Collapse
Affiliation(s)
- Elissa K Deenick
- Immunology and Immunodeficiency Group, Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
318
|
Sanchez GAM, de Jesus AA, Goldbach-Mansky R. Monogenic autoinflammatory diseases: disorders of amplified danger sensing and cytokine dysregulation. Rheum Dis Clin North Am 2013; 39:701-34. [PMID: 24182851 PMCID: PMC3888876 DOI: 10.1016/j.rdc.2013.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenesis of monogenic autoinflammatory diseases converges on the presence of exaggerated immune responses that are triggered through activation of altered pattern recognition receptor (PRR) pathways and result in cytokine/chemokine amplification loops and the inflammatory clinical phenotype seen in autoinflammatory patients. The PRR response can be triggered by accumulation of metabolites, by mutations in sensors leading to their constitutive overactivation, or by mutations in mediator cytokine pathways that lead to amplification and/or inability to downregulate an inflammatory response in hematopoietic and/or nonhematopoietic cells. The study of the pathogenesis of sterile inflammation in patients with autoinflammatory syndromes continues to uncover novel inflammatory pathways.
Collapse
Affiliation(s)
- Gina A Montealegre Sanchez
- Translational Autoinflammatory Disease Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Building 10, Room 6D47-B, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
319
|
Keeping the bowel regular: the emerging role of Treg as a therapeutic target in inflammatory bowel disease. Inflamm Bowel Dis 2013; 19:2716-24. [PMID: 23899545 DOI: 10.1097/mib.0b013e31829ed7df] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The understanding of the intricate mechanisms by which gut immune cells interact with each other and the intestinal flora is constantly developing. The mucosal immune system must retain the ability to mount a prompt response to intestinal pathogens while maintaining tolerance for commensal organisms. Effector T lymphocytes drive inflammation, whereas their actions are counteracted by populations of regulatory T cells (Treg), which act as an endogenous suppressor of mucosal inflammation. There is growing evidence that a loss of this delicate counterbalance is important in the etiology of inflammatory bowel disease (IBD). Here, we review studies highlighting alterations in Treg in the pathogenesis of IBD. Observations of dynamic changes in Treg activity with successful IBD treatment have highlighted their functional importance and potential to also serve as a biomarker of disease activity and to predict response to therapy. Furthermore, we explore the potential for adoptive transfer of Treg as part of IBD treatment.
Collapse
|
320
|
|
321
|
Arthur JC, Gharaibeh RZ, Uronis JM, Perez-Chanona E, Sha W, Tomkovich S, Mühlbauer M, Fodor AA, Jobin C. VSL#3 probiotic modifies mucosal microbial composition but does not reduce colitis-associated colorectal cancer. Sci Rep 2013; 3:2868. [PMID: 24100376 PMCID: PMC3792409 DOI: 10.1038/srep02868] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/18/2013] [Indexed: 02/07/2023] Open
Abstract
Although probiotics have shown success in preventing the development of experimental colitis-associated colorectal cancer (CRC), beneficial effects of interventional treatment are relatively unknown. Here we show that interventional treatment with VSL#3 probiotic alters the luminal and mucosally-adherent microbiota, but does not protect against inflammation or tumorigenesis in the azoxymethane (AOM)/Il10⁻/⁻ mouse model of colitis-associated CRC. VSL#3 (10⁹ CFU/animal/day) significantly enhanced tumor penetrance, multiplicity, histologic dysplasia scores, and adenocarcinoma invasion relative to VSL#3-untreated mice. Illumina 16S sequencing demonstrated that VSL#3 significantly decreased (16-fold) the abundance of a bacterial taxon assigned to genus Clostridium in the mucosally-adherent microbiota. Mediation analysis by linear models suggested that this taxon was a contributing factor to increased tumorigenesis in VSL#3-fed mice. We conclude that VSL#3 interventional therapy can alter microbial community composition and enhance tumorigenesis in the AOM/Il10⁻/⁻ model.
Collapse
Affiliation(s)
| | - Raad Z. Gharaibeh
- Bioinformatics Services Division, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, NC 28081, USA
| | | | | | - Wei Sha
- Bioinformatics Services Division, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, NC 28081, USA
| | - Sarah Tomkovich
- Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Anthony A. Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Christian Jobin
- Department of Medicine, Chapel Hill, NC 27599, USA
- Pharmacology, Chapel Hill, NC 27599, USA
- Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, University of Florida at Gainesville, Gainesville, FL32611, USA
- Department of Infectious Diseases and Pathology, University of Florida at Gainesville, Gainesville, FL32611, USA
| |
Collapse
|
322
|
Abstract
Monogenic interleukin-10 (IL-10) and IL-10 receptor (IL-10R) deficiencies cause very early onset severe inflammatory bowel disease. Here, we report that 5 patients with an IL-10R1 (n = 1) or IL-10R2 (n = 4) deficiency developed B-cell non-Hodgkin lymphoma between the ages of 5 and 6 years (which was recurrent in 1 patient). These lymphomas had some of the characteristics of diffuse large B-cell lymphomas and contained monoclonal, Epstein-Barr virus-negative germinal center B cells. The tumors displayed a remarkably homogeneous signature, with original activation of the nuclear factor κB pathway and a decrease in intratumor T-cell infiltration. Hence, IL-10R deficiency is associated with a high risk of developing B-cell lymphoma. Our results revealed an unexpected role of the IL-10R pathway in lymphomagenesis.
Collapse
|
323
|
Verdier J, Ruemmele FM. Molecular mechanisms and cell targets of Th17 cells in the gastrointestinal tract: an innate sense of adaptivity. Int Rev Immunol 2013; 32:475-92. [PMID: 24069950 DOI: 10.3109/08830185.2013.829471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
T-helper (TH) 17 activation is crucial for protective immune responses against bacteria and fungi at mucosal surfaces, but it can also be implicated in the pathogenesis of several autoimmune and chronic inflammatory diseases, such as inflammatory bowel diseases (IBD). Although rapid progress was made elucidating induction and functional heterogeneity of Th17 responses, the underlying molecular effects of Th17 response including the most relevant different cell targets of Th17 cytokines remain poorly understood. Cytokines produced by Th17 cells have broad effects on both hematopoietic and nonhematopoietic cells and can act in synergy with various inflammatory factors. In this review, we will focus on the effects of Th17-derived cytokines in the gastrointestinal tract and discuss how Th17 responses can affect both innate and adaptive immunity and may contribute to the pathogenesis of inflammatory GI processes.
Collapse
Affiliation(s)
- Julien Verdier
- Institut National de la Santé et de la Recherche Médicale (INSERM) , UMR989, Paris , France
| | | |
Collapse
|
324
|
Buettner M, Bleich A. Mapping colitis susceptibility in mouse models: distal chromosome 3 contains major loci related to Cdcs1. Physiol Genomics 2013; 45:925-30. [PMID: 24022218 DOI: 10.1152/physiolgenomics.00084.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) summarizes a group of chronic intestinal disorders with Crohn's disease and ulcerative colitis being most prominent. Though much effort is put into identification of causative factors, its etiology is still not understood. Risk factors for disease development include genetic predisposition and environmental triggers. Crucial for identification and analysis of relevant factors are mouse models. Experimental IBD in mice occurs spontaneously or is induced by chemicals, cell transfer, pathogens, or genetic mutation. These models were utilized for analyzing genetic contribution to disease and genotype-environmental interactions. In these studies, a variety of modifier loci were identified, thereby demonstrating the complexity of disease. A major contribution of distal chromosome 3 was independently replicated in several studies. The first colitogenic QTL in this region was detected using the IL-10-deficient mouse model and called cytokine deficiency-induced colitis susceptibility (Cdcs)1. This quantitative trait locus contains at least three subintervals with independent genetic factors. This locus or defined subintervals were replicated in at least seven studies, using models based on dysregulation of innate or adaptive immunity or pathogen control. In this review we illustrate the various models used for genetic mapping of susceptibility to experimental IBD and display Cdcs1-related loci as well as the mechanism of their contribution identified so far.
Collapse
Affiliation(s)
- Manuela Buettner
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
325
|
Biancheri P, Powell N, Monteleone G, Lord G, MacDonald TT. The challenges of stratifying patients for trials in inflammatory bowel disease. Trends Immunol 2013; 34:564-71. [PMID: 24035478 DOI: 10.1016/j.it.2013.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/24/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022]
Abstract
Immunotherapy with biological agents or small molecules is revolutionising the treatment of chronic inflammatory disease in humans; however, a significant proportion of patients fail to respond or lose responsiveness. This is particularly evident in inflammatory bowel disease (IBD), a group of chronic, immune-mediated disorders of the gastrointestinal tract. Different responsiveness to treatment in IBD can be explained by substantial disease heterogeneity, which is being increasingly recognised by genetic and immunological studies. The current enthusiasm for stratified medicine suggests that it may become possible to identify clinical, immunological, biochemical or genetic biomarkers to target immunotherapy to patients more likely to respond. Here, we identify and highlight the opportunities and the challenges of this strategy in the context of IBD.
Collapse
Affiliation(s)
- Paolo Biancheri
- Centre for Immunology and Infectious Disease, Blizard Institute, Barts and the London School of Medicine and Dentistry, London, UK
| | | | | | | | | |
Collapse
|
326
|
Agarwal S, Mayer L. Diagnosis and treatment of gastrointestinal disorders in patients with primary immunodeficiency. Clin Gastroenterol Hepatol 2013; 11:1050-63. [PMID: 23501398 PMCID: PMC3800204 DOI: 10.1016/j.cgh.2013.02.024] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/08/2013] [Accepted: 02/15/2013] [Indexed: 02/06/2023]
Abstract
Gastrointestinal disorders such as chronic or acute diarrhea, malabsorption, abdominal pain, and inflammatory bowel diseases can indicate immune deficiency. The gastrointestinal tract is the largest lymphoid organ in the body, so it is not surprising that intestinal diseases are common among immunodeficient patients. Gastroenterologists therefore must be able to diagnose and treat patients with primary immunodeficiency. Immune-related gastrointestinal diseases can be classified as those that develop primarily via autoimmunity, infection, an inflammatory response, or malignancy. Immunodeficient and immunocompetent patients with gastrointestinal diseases present with similar symptoms. However, intestinal biopsy specimens from immunodeficient patients often have distinct histologic features, and these patients often fail to respond to conventional therapies. Therefore, early recognition of symptoms and referral to an immunologist for a basic immune evaluation is required to select appropriate treatments. Therapies for primary immunodeficiency comprise immunoglobulin replacement, antibiotics, and, in severe cases, bone marrow transplantation. Treatment of immunodeficient patients with concomitant gastrointestinal disease can be challenging, and therapy with immunomodulators often is required for severe disease. This review aims to guide gastroenterologists in the diagnosis and treatment of patients with primary immunodeficiency.
Collapse
Affiliation(s)
- Shradha Agarwal
- Division of Clinical Immunology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|
327
|
Molecular diagnosis of infantile onset inflammatory bowel disease by exome sequencing. Genomics 2013; 102:442-7. [PMID: 24001973 DOI: 10.1016/j.ygeno.2013.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 12/19/2022]
Abstract
Pediatric-onset inflammatory bowel disease (IBD) is known to be associated with severe disease, poor response to therapy, and increased morbidity and mortality. We conducted exome sequencing of two brothers from a non-consanguineous relationship who presented before the age of one with severe infantile-onset IBD, failure to thrive, skin rash, and perirectal abscesses refractory to medical management. We examined the variants discovered in all known IBD-associated and primary immunodeficiency genes in both siblings. The siblings were identified to harbor compound heterozygous mutations in IL10RA (c.784C>T, p.Arg262Cys; c.349C>T, p.Arg117Cys). Upon molecular diagnosis, the proband underwent successful hematopoietic stem cell transplantation and demonstrated marked clinical improvement of all IBD-associated clinical symptoms. Exome sequencing can be an effective tool to aid in the molecular diagnosis of pediatric-onset IBD. We provide additional evidence of the safety and benefit of HSCT for patients with IBD due to mutations in the IL10RA gene.
Collapse
|
328
|
Kobold S, Völk S, Clauditz T, Küpper NJ, Minner S, Tufman A, Düwell P, Lindner M, Koch I, Heidegger S, Rothenfuer S, Schnurr M, Huber RM, Wilczak W, Endres S. Interleukin-22 is frequently expressed in small- and large-cell lung cancer and promotes growth in chemotherapy-resistant cancer cells. J Thorac Oncol 2013; 8:1032-42. [PMID: 23774470 DOI: 10.1097/jto.0b013e31829923c8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION In lung cancer, interleukin-22 (IL-22) expression within primary tissue has been demonstrated, but the frequency and the functional consequence of IL-22 signaling have not been addressed. This study aims at analyzing the cellular effects of IL-22 on lung carcinoma cell lines and the prognostic impact of IL-22 tissue expression in lung cancer patients. METHODS Biological effects of IL-22 signaling were investigated in seven lung cancer cell lines by Western blot, flow cytometry, real-time polymerase chain reaction, and proliferation assays. Tumor tissue specimens of two cohorts with a total of 2300 lung cancer patients were tested for IL-22 expression by immunohistochemistry. IL-22 serum concentrations were analyzed in 103 additional patients by enzyme-linked immunosorbent assay. RESULTS We found the IL-22 receptor 1 (IL-22-R1) to be expressed in six of seven lung cancer cell lines. However IL-22 signaling was functional in only four cell lines, where IL-22 induced signal transducer activator of transcription 3 phosphorylation and increased cell proliferation. Furthermore, IL-22 induced the expression of antiapoptotic B-cell lymphoma 2, but did not rescue tumor cells from carboplatin-induced apoptosis. Cisplatin-resistant cell lines showed a significant up-regulation of IL-22-R1 along with a stronger proliferative response to IL-22 stimulation. IL-22 was preferentially expressed in small- and large-cell lung carcinoma (58% and 46% of cases, respectively). However, no correlation between IL-22 expression by immunohistochemistry and prognosis was observed. CONCLUSION IL-22 is frequently expressed in lung cancer tissue. Enhanced IL-22-R1 expression and signaling in chemotherapy-refractory cell lines are indicative of a protumorigenic function of IL-22 and may contribute to a more aggressive phenotype.
Collapse
Affiliation(s)
- Sebastian Kobold
- Department of Internal Medicine IV, Division of Clinical Pharmacology and Center of Integrated Protein Science, Ludwig-Maximilians Universität München, Member of the German Center for Lung Research, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
329
|
Abstract
BACKGROUND Genome-wide association studies have identified at least 71 Crohn's disease (CD) genetic risk loci, but the role of gene-gene interactions is unclear. The value of genetic variants in clinical practice is not defined because of limited explained heritability. METHODS We examined model predictability of combining the 71 CD risk alleles and genetic interactions in an ongoing inflammatory bowel disease genome-wide association study. The Wellcome Trust Case Control Consortium inflammatory bowel disease genome-wide association study was used as a replicate cohort. We used logic regression, an adaptive regression methodology, to search for high-order binary predictors (e.g., single-nucleotide polymorphism [SNP] interactions). RESULTS The combined 71 CD SNPs had good CD risk predictability (area under the curve of 0.75 and 0.73 in the 2 cohorts). Higher cumulative allele score predicted higher CD risk, but a relatively small difference in cumulative allele scores was observed between CD and controls (49 versus 47, P < 0.001). Through LR, we identified high-order genetic interactions and significantly improved the model predictability (area under the curve, from 0.75 to 0.77, P < 0.0001). A genetic interaction model, including NOD2, ATG16L1, IL10/IL19, C13orf31, and chr21q loci, was discovered and successfully replicated in the independent Wellcome Trust Case Control Consortium cohort. The explained heritability of the 71 CD SNPs alone was 24% and increased to 27% after adding the genetic interactions. CONCLUSIONS A novel approach allowed the identification and replication of genetic interactions among NOD2, ATG16L1, IL10/IL19, C13orf31, and chr21q loci. CD risk can be predicted by a model of 71 CD loci and improved by adding genetic interactions.
Collapse
|
330
|
|
331
|
Harrison OJ, Powrie FM. Regulatory T cells and immune tolerance in the intestine. Cold Spring Harb Perspect Biol 2013; 5:5/7/a018341. [PMID: 23818502 DOI: 10.1101/cshperspect.a018341] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A fundamental role of the mammalian immune system is to eradicate pathogens while minimizing immunopathology. Instigating and maintaining immunological tolerance within the intestine represents a unique challenge to the mucosal immune system. Regulatory T cells are critical for continued immune tolerance in the intestine through active control of innate and adaptive immune responses. Dynamic adaptation of regulatory T-cell populations to the intestinal tissue microenvironment is key in this process. Here, we discuss specialization of regulatory T-cell responses in the intestine, and how a breakdown in these processes can lead to chronic intestinal inflammation.
Collapse
Affiliation(s)
- Oliver J Harrison
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
332
|
Monteleone G, Caruso R, Pallone F. Targets for new immunomodulation strategies in inflammatory bowel disease. Autoimmun Rev 2013; 13:11-4. [PMID: 23774108 DOI: 10.1016/j.autrev.2013.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Crohn's disease (CD) and ulcerative colitis (UC), the major forms of inflammatory bowel diseases (IBD) in human beings, are characterized by damage to the intestinal epithelium and deeper layers, which is caused by an excessive immune response directed against normal constituents of the gut microflora. In both IBD, the diseased tissue is heavily infiltrated with several subsets of leukocytes that produce huge amounts of inflammatory cytokines whose profiles varies not only between CD and UC but also during the evolution of the same disease. These recent discoveries together with the demonstration that the inhibition of some soluble cytokines is not beneficial in IBD have contributed to delineate new scenarios by which tissue damage is induced and perpetuated. We here review some of the major immunological defects documented in IBD and discuss why compounds inhibiting soluble cytokines were not beneficial in patients and how we can optimize therapeutic strategies with biologics.
Collapse
Affiliation(s)
- Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata," Rome, Italy.
| | | | | |
Collapse
|
333
|
Elinav E, Peer D. Harnessing nanomedicine for mucosal theranostics--a silver bullet at last? ACS NANO 2013; 7:2883-2890. [PMID: 23570555 DOI: 10.1021/nn400885b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Inflammatory bowel disease (IBD) has been extensively studied in the last four decades both in animal models and humans. The treatment options remain disappointing, nonspecific, and associated with multiple systemic adverse effects. In this Perspective, we highlight issues related to emerging nanotechnologies designed particularly for treatment and disease management of IBD and discuss potential therapeutic target options with novel molecular imaging modalities.
Collapse
Affiliation(s)
- Eran Elinav
- Department of Immunology, Weizmann Institute of Sciences, Rehovot 76100, Israel.
| | | |
Collapse
|
334
|
Almeida de Jesus A, Goldbach-Mansky R. Monogenic autoinflammatory diseases: concept and clinical manifestations. Clin Immunol 2013; 147:155-74. [PMID: 23711932 DOI: 10.1016/j.clim.2013.03.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/29/2013] [Accepted: 03/30/2013] [Indexed: 12/14/2022]
Abstract
The objective of this review is to describe the clinical manifestations of the growing spectrum of monogenic autoinflammatory diseases including recently described syndromes. The autoinflammatory diseases can be grouped based on clinical findings: 1. the three classic hereditary "periodic fever syndromes", familial Mediterranean Fever (FMF); TNF receptor associated periodic syndrome (TRAPS); and mevalonate kinase deficiency/hyperimmunoglobulinemia D and periodic fever syndrome (HIDS); 2. the cryopyrin associated periodic syndromes (CAPS), comprising familial cold autoinflammatory syndrome (FCAS), Muckle-Wells syndrome (MWS) and neonatal-onset multisystem inflammatory disease (NOMID) or CINCA, and; 3. pediatric granulomatous arthritis (PGA); 4. disorders presenting with skin pustules, including deficiency of interleukin 1 receptor antagonist (DIRA); Majeed syndrome; pyogenic arthritis, pyoderma gangrenosum and acne (PAPA) syndrome; deficiency of interleukin 36 receptor antagonist (DITRA); CARD14 mediated psoriasis (CAMPS), and early-onset inflammatory bowel diseases (EO-IBD); 5. inflammatory disorders caused by mutations in proteasome components, the proteasome associated autoinflammatory syndromes (PRAAS) and 6. very rare conditions presenting with autoinflammation and immunodeficiency.
Collapse
Affiliation(s)
- Adriana Almeida de Jesus
- Translational Autoinflammatory Diseases Section, National Institute of Arthritis, Musculoskeletal and Skin diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | | |
Collapse
|
335
|
Hisamatsu T, Kanai T, Mikami Y, Yoneno K, Matsuoka K, Hibi T. Immune aspects of the pathogenesis of inflammatory bowel disease. Pharmacol Ther 2013; 137:283-97. [PMID: 23103332 DOI: 10.1016/j.pharmthera.2012.10.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 12/11/2022]
Abstract
Although the precise etiologies of inflammatory bowel disease (IBD) (ulcerative colitis and Crohn's disease) remain obscure, several reports have indicated that dysfunction of the mucosal immune system plays an important role in its pathogenesis. Recent progress with genome-wide association studies has identified many IBD susceptibility genes. In individuals with genetic risk, abnormal interactions between the host immune system and gut flora, and dysregulation of cellular responses such as autophagy and ER stress, induce an abnormal host immune response in the gut resulting in intestinal inflammation. Research progress animal models in IBD, and in human IBD, has identified several key molecules in IBD pathogenesis such as TNFα and adhesion molecules, and molecular targeting therapies based on these molecules have been developed. Here, we review immunological aspects in IBD pathogenesis and the development of immunoregulatory therapy.
Collapse
Affiliation(s)
- Tadakazu Hisamatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
336
|
Dalal J. Mesenchymal Stromal Cell (MSC) Therapy for Crohn’s Disease. ESSENTIALS OF MESENCHYMAL STEM CELL BIOLOGY AND ITS CLINICAL TRANSLATION 2013:229-240. [DOI: 10.1007/978-94-007-6716-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
337
|
Engelhardt KR, Shah N, Faizura-Yeop I, Kocacik Uygun DF, Frede N, Muise AM, Shteyer E, Filiz S, Chee R, Elawad M, Hartmann B, Arkwright PD, Dvorak C, Klein C, Puck JM, Grimbacher B, Glocker EO. Clinical outcome in IL-10- and IL-10 receptor-deficient patients with or without hematopoietic stem cell transplantation. J Allergy Clin Immunol 2012; 131:825-30. [PMID: 23158016 DOI: 10.1016/j.jaci.2012.09.025] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND Inherited deficiencies of IL-10 or IL-10 receptor (IL-10R) lead to immune dysregulation with life-threatening early-onset enterocolitis. OBJECTIVES We sought to gather clinical data of IL-10/IL-10R-deficient patients and devise guidelines for diagnosis and management, including hematopoietic stem cell transplantation (HSCT). METHODS We enrolled 40 patients with early-onset enterocolitis and screened for mutations in IL10/IL10R using genetic studies, functional studies, or both of the IL-10 signaling pathway. Medical records of IL-10/IL-10R-deficient patients were reviewed and compiled. RESULTS Of 40 patients, we identified 7 with novel mutations, predominantly in consanguineous families with more than 1 affected member. IL-10/IL-10R-deficient patients had intractable enterocolitis, perianal disease, and fistula formation. HSCT was carried out in 2 patients with IL-10 deficiency and 1 patient with IL-10R α chain deficiency and proved to be an effective therapy, leading to rapid improvement of clinical symptoms and quality of life. CONCLUSION Because the defect in patients with IL-10/IL-10R deficiency resides in hematopoietic lineage cells and their colitis is resistant to standard immunosuppressive therapy, HSCT should be considered early as a potentially curative therapeutic option.
Collapse
Affiliation(s)
- Karin R Engelhardt
- Department of Immunology, University College London Medical School (Royal Free Campus), London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
338
|
Long-term follow-up of children conditioned with Treosulfan: German and Austrian experience. Bone Marrow Transplant 2012; 48:491-501. [PMID: 23085832 DOI: 10.1038/bmt.2012.188] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We report the long-term follow-up of children transplanted with Treosulfan (TREO)-based conditioning in Germany and Austria. Nine centres reported a total of 109 transplantations. Patients were stratified according to the paediatric TRM risk score derived from the paediatric BMT registry (PRST) and compared with the historical transplant population of this registry. Underlying diseases were malignancies, immunodeficiencies, and haematologic and metabolic disorders. TREO total dose ranged from 21-42 g/m(2). Additional conditioning drugs included fludarabine, thiotepa, melphalan, CY and/or TBI. EFS at 3 years for non-malignant and malignant diseases was 88% and 49%, respectively. Leukaemia patients in remission had a survival of 51% at 3 years; nonremission patients relapsed and died within 18 months. TRM and OS in the low-risk groups 0 and 1 were similar to PRST controls. TRM in the high-risk groups 2 and 3 was markedly lower (9% vs 28% and 13% vs 53%, respectively) than in the PRST group, but OS was similar. In conclusion, TREO-based conditioning regimens in children resulted in excellent engraftment and long-term survival in nonmalignant disease. In high-risk malignancy, low acute toxicity was followed by low TRM but it did not translate into increased survival.
Collapse
|
339
|
Shah N, Kammermeier J, Elawad M, Glocker EO. Interleukin-10 and interleukin-10-receptor defects in inflammatory bowel disease. Curr Allergy Asthma Rep 2012; 12:373-9. [PMID: 22890722 DOI: 10.1007/s11882-012-0286-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease characterized by abdominal pain, bloody diarrhoea, and malabsorption leading to weight loss. It is considered the result of inadequate control of an excessive reaction of the immune system to the resident flora of the gut. Like other primary immunodeficiencies, IL-10 and IL-10 receptor (IL10R) deficiency present with IBD and demonstrate the sensitivity of the intestine to any changes of the immune system. Both IL-10 and IL10R deficiency cause severe early-onset enterocolitis and can be successfully treated by hematopoietic stem cell transplantation (HSCT).
Collapse
Affiliation(s)
- Neil Shah
- Department of Paediatric Gastroenterology, Great Ormond Street Hospital, University College London, London, UK
| | | | | | | |
Collapse
|
340
|
Muise AM, Snapper SB, Kugathasan S. The age of gene discovery in very early onset inflammatory bowel disease. Gastroenterology 2012; 143:285-8. [PMID: 22727850 DOI: 10.1053/j.gastro.2012.06.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|