301
|
Genomic context and TP53 allele frequency define clinical outcomes in TP53-mutated myelodysplastic syndromes. Blood Adv 2021; 4:482-495. [PMID: 32027746 DOI: 10.1182/bloodadvances.2019001101] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022] Open
Abstract
TP53 mutations are associated with adverse outcomes and shorter response to hypomethylating agents (HMAs) in myelodysplastic syndrome (MDS). Limited data have evaluated the impact of the type, number, and patterns of TP53 mutations in response outcomes and prognosis of MDS. We evaluated the clinicopathologic characteristics, outcomes, and response to therapy of 261 patients with MDS and TP53 mutations. Median age was 68 years (range, 18-80 years). A total of 217 patients (83%) had a complex karyotype. TP53 mutations were detected at a median variant allele frequency (VAF) of 0.39 (range, 0.01-0.94). TP53 deletion was associated with lower overall response rate (ORR) (odds ratio, 0.3; P = .021), and lower TP53 VAF correlated with higher ORR to HMAs. Increase in TP53 VAF at the time of transformation was observed in 13 patients (61%), and previously undetectable mutations were observed in 15 patients (65%). TP53 VAF was associated with worse prognosis (hazard ratio, 1.02 per 1% VAF increase; 95% confidence interval, 1.01-1.03; P < .001). Integration of TP53 VAF and karyotypic complexity identified prognostic subgroups within TP53-mutant MDS. We developed a multivariable model for overall survival that included the revised International Prognostic Scoring System (IPSS-R) categories and TP53 VAF. Total score for each patient was calculated as follows: VAF TP53 + 13 × IPSS-R blast score + 16 × IPSS-R cytogenetic score + 28 × IPSS-R hemoglobin score + 46 × IPSS-R platelet score. Use of this model identified 4 prognostic subgroups with median survival times of not reached, 42.2, 21.9, and 9.2 months. These data suggest that outcomes of patients with TP53-mutated MDS are heterogeneous and that transformation may be driven not only by TP53 but also by other factors.
Collapse
|
302
|
Ex vivo drug screening defines novel drug sensitivity patterns for informing personalized therapy in myeloid neoplasms. Blood Adv 2021; 4:2768-2778. [PMID: 32569379 DOI: 10.1182/bloodadvances.2020001934] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Precision medicine approaches such as ex vivo drug sensitivity screening (DSS) are appealing to inform rational drug selection in myelodysplastic syndromes (MDSs) and acute myeloid leukemia, given their marked biologic heterogeneity. We evaluated a novel, fully automated ex vivo DSS platform that uses high-throughput flow cytometry in 54 patients with newly diagnosed or treatment-refractory myeloid neoplasms to evaluate sensitivity (blast cytotoxicity and differentiation) to 74 US Food and Drug Administration-approved or investigational drugs and 36 drug combinations. After piloting the platform in 33 patients, we conducted a prospective feasibility study enrolling 21 patients refractory to hypomethylating agents (HMAs) to determine whether this assay could be performed within a clinically actionable time frame and could accurately predict clinical responses in vivo. When assayed for cytotoxicity, ex vivo drug sensitivity patterns were heterogeneous, but they defined distinct patient clusters with differential sensitivity to HMAs, anthracyclines, histone deacetylase inhibitors, and kinase inhibitors (P < .001 among clusters) and demonstrated synergy between HMAs and venetoclax (P < .01 for combinations vs single agents). In our feasibility study, ex vivo DSS results were available at a median of 15 days after bone marrow biopsy, and they informed personalized therapy, which frequently included venetoclax combinations, kinase inhibitors, differentiative agents, and androgens. In 21 patients with available ex vivo and in vivo clinical response data, the DSS platform had a positive predictive value of 0.92, negative predictive value of 0.82, and overall accuracy of 0.85. These data demonstrate the utility of this approach for identifying potentially useful and often novel therapeutic drugs for patients with myeloid neoplasms refractory to standard therapies.
Collapse
|
303
|
Clonal evolution and clinical implications of genetic abnormalities in blastic transformation of chronic myeloid leukaemia. Nat Commun 2021; 12:2833. [PMID: 33990592 PMCID: PMC8121838 DOI: 10.1038/s41467-021-23097-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/15/2021] [Indexed: 12/30/2022] Open
Abstract
Blast crisis (BC) predicts dismal outcomes in patients with chronic myeloid leukaemia (CML). Although additional genetic alterations play a central role in BC, the landscape and prognostic impact of these alterations remain elusive. Here, we comprehensively investigate genetic abnormalities in 136 BC and 148 chronic phase (CP) samples obtained from 216 CML patients using exome and targeted sequencing. One or more genetic abnormalities are found in 126 (92.6%) out of the 136 BC patients, including the RUNX1-ETS2 fusion and NBEAL2 mutations. The number of genetic alterations increase during the transition from CP to BC, which is markedly suppressed by tyrosine kinase inhibitors (TKIs). The lineage of the BC and prior use of TKIs correlate with distinct molecular profiles. Notably, genetic alterations, rather than clinical variables, contribute to a better prediction of BC prognosis. In conclusion, genetic abnormalities can help predict clinical outcomes and can guide clinical decisions in CML. In chronic myeloid leukaemia (CML), the drivers of blast crisis and resistance to tyrosine kinase inhibitors are not fully characterised. Here, the authors analyse a cohort of CML samples with genomic technologies and find that at least one driver alteration is associated with progression and worse prognosis.
Collapse
|
304
|
Wang W, Auer P, Zhang T, Spellman S, Carlson KS, Nazha A, Bolon YT, Saber W. Impact of Epigenomic Hypermethylation at TP53 on Allogeneic Hematopoietic Cell Transplantation Outcomes for Myelodysplastic Syndromes. Transplant Cell Ther 2021; 27:659.e1-659.e6. [PMID: 33992829 PMCID: PMC8421055 DOI: 10.1016/j.jtct.2021.04.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/03/2021] [Accepted: 04/29/2021] [Indexed: 01/25/2023]
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematopoietic stem cell disorders for which allogeneic hematopoietic cell transplantation (HCT) is currently the sole curative treatment. Epigenetic lesions are considered a major pathogenetic determinant in many cancers, and in MDS, epigenetic-based interventions have emerged as life-prolonging therapies. However, the impact of epigenomic aberrations on HCT outcomes among patients with MDS are not well understood. We hypothesized that epigenomic signatures in MDS patients before undergoing HCT serve as a novel prognostic indicator of the risk of post-HCT MDS relapse. To evaluate these epigenomic signatures in MDS patients, we analyzed reduced representation bisulfite sequencing profiles in a matched case-control population of 94 patients. Among these HCT recipients, 47 patients with MDS who relapsed post-HCT (cases) were matched 1:1 to patients with MDS who did not relapse (controls). Only patients with wild-type TP53, RAS pathway, and JAK2 mutations were included in this study to promote the discovery of novel factors. Cases were matched with controls based on conditioning regimen intensity, age, sex, Revised International Prognostic Scoring System, Karnofsky Performance Status, graft type, and donor type. Pre-HCT whole-blood samples from cases and matched controls were obtained from the Center for International Blood and Marrow Transplant Research repository. We comprehensively identified differentially methylated regions (DMRs) by comparing the methylation patterns among matched cases and controls. Our findings show that cases displayed more hyper-DMRs pretransplantation compared with controls, even after adjusting for pre-HCT use of hypomethylating agents. Hyper-DMRs specific to cases were mapped to the transcription start site of 218 unique genes enriched in 5 different signaling pathways that may serve as regions of interest and factors to consider as prognostic determinants of post-HCT relapse in MDS patients. Interestingly, although patients selected for this cohort were wild-type for the TP53 gene, cases showed significantly greater levels of methylation at TP53 compared with controls. These findings indicate that previously identified prognostic genes for MDS, such as TP53, may affect disease relapse not only through genetic mutation, but also through epigenetic methylation mechanisms.
Collapse
Affiliation(s)
- Wei Wang
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Paul Auer
- National Marrow Donor Program/Be the Match, Minneapolis, Minnesota
| | - Tao Zhang
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota
| | | | - Aziz Nazha
- Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Avon Lake, Ohio
| | - Yung-Tsi Bolon
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, Minnesota.
| | - Wael Saber
- Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
305
|
Pretransplantation Red Blood Cell and Platelet Transfusion Burden in De Novo Myelodysplastic Syndrome Undergoing Allogeneic Transplantation. Transplant Cell Ther 2021; 27:671-678. [PMID: 33991723 DOI: 10.1016/j.jtct.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/28/2022]
Abstract
Most patients of myelodysplastic syndrome (MDS) require red blood cell (RBC) or platelet transfusion during their disease courses, which could cause an increased risk of iron overload and alloimmunization. However, it remains less clear whether pretransplantation RBC or platelet transfusion burden affects transplant outcomes in patients with MDS. The objective was to examine the significance of pretransplantation RBC and platelet transfusion burden on transplant outcomes after allogeneic HCT for adults with de novo MDS. We retrospectively evaluated the effect of pretransplantation RBC or platelet transfusion burden on transplant outcomes in a cohort of 1007 adult patients with de novo MDS treated by upfront allogeneic hematopoietic cell transplantation (HCT) between 2006 and 2018. Both higher pretransplantation RBC and platelet transfusion burdens were significantly associated with higher overall mortality and relapse-related mortality, but not non-relapse mortality in the multivariate analysis. Higher pretransplantation RBC transfusion burden was also significantly associated with lower neutrophil, platelet, and reticulocyte recovery in the multivariate analysis. In summary, our study clearly demonstrated that a higher pretransplantation RBC and platelet transfusion burden was independently associated with higher overall mortality, relapse-related mortality, and lower hematopoietic recovery after allogeneic HCT for de novo MDS. Early allogeneic HCT should be considered for patients with de novo MDS who require RBC and platelet transfusion repeatedly.
Collapse
|
306
|
Zhang R, Wang L, Chen P, Gao X, Wang S, Li F, Dou L, Gao C, Li Y, Liu D. Haematologic malignancies with unfavourable gene mutations benefit from donor lymphocyte infusion with/without decitabine for prophylaxis of relapse after allogeneic HSCT: A pilot study. Cancer Med 2021; 10:3165-3176. [PMID: 33932107 PMCID: PMC8124122 DOI: 10.1002/cam4.3763] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Relapse is the main cause of treatment failure for leukaemia patients with unfavourable gene mutations who receive allogeneic haematopoietic stem cell transplantation (allo‐HSCT). There is no consensus on the indication of donor lymphocyte infusion (DLI) for prophylaxis of relapse after allo‐HSCT. To evaluate the tolerance and efficacy of prophylactic DLI in patients with unfavourable gene mutations such as FLT3‐ITD, TP53, ASXL1, DNMT3A or TET2, we performed a prospective, single‐arm study. Prophylactic use of decitabine followed by DLI was planned in patients with TP53 or epigenetic modifier gene mutations. The prophylaxis was planned in 46 recipients: it was administered in 28 patients and it was not administered in 18 patients due to contraindications. No DLI‐associated pancytopenia was observed. The cumulative incidences of grade II–IV and III–IV acute graft‐versus‐host disease (GVHD) at 100 days post‐DLI were 25.8% and 11.0%, respectively. The rates of chronic GVHD, non‐relapse mortality and relapse at 3 years post‐DLI were 21.6%, 25.0% and 26.1%, respectively. The 3‐year relapse‐free survival and overall survival (OS) rates were 48.9% and 48.2%, respectively. Acute GVHD (HR: 2.30, p = 0.016) and relapse (HR: 2.46, p = 0.003) after DLI were independently associated with inferior OS. Data in the current study showed the feasibility of prophylactic DLI with/without decitabine in the early stage after allo‐HSCT in patients with unfavourable gene mutations.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China.,Department of Hematology, People's Hospital of Cangzhou, Hebei, China
| | - Lili Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Peng Chen
- Department of Hematology, the 7th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoning Gao
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Shuhong Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Fei Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Liping Dou
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Chunji Gao
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Yan Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China.,Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Daihong Liu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
307
|
Veiga CB, Lawrence EM, Murphy AJ, Herold MJ, Dragoljevic D. Myelodysplasia Syndrome, Clonal Hematopoiesis and Cardiovascular Disease. Cancers (Basel) 2021; 13:cancers13081968. [PMID: 33921778 PMCID: PMC8073047 DOI: 10.3390/cancers13081968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The development of blood cancers is a complex process that involves the acquisition of specific blood disorders that precede cancer. These blood disorders are often driven by the accumulation of genetic abnormalities, which are discussed in this review. Likewise, predicting the rate of progression of these diseases is difficult, but it appears to be linked to which specific gene mutations are present in blood cells. In this review, we discuss a variety of genetic abnormalities that drive blood cancer, conditions that precede clinical symptoms of blood cancer, and how alterations in these genes change blood cell function. Additionally, we discuss the novel links between blood cancer development and heart disease. Abstract The development of myelodysplasia syndromes (MDS) is multiphasic and can be driven by a plethora of genetic mutations and/or abnormalities. MDS is characterized by a hematopoietic differentiation block, evidenced by increased immature hematopoietic cells, termed blast cells and decreased mature circulating leukocytes in at least one lineage (i.e., cytopenia). Clonal hematopoiesis of indeterminate potential (CHIP) is a recently described phenomenon preceding MDS development that is driven by somatic mutations in hemopoietic stem cells (HSCs). These mutant HSCs have a competitive advantage over healthy cells, resulting in an expansion of these clonal mutated leukocytes. In this review, we discuss the multiphasic development of MDS, the common mutations found in both MDS and CHIP, how a loss-of-function in these CHIP-related genes can alter HSC function and leukocyte development and the potential disease outcomes that can occur with dysfunctional HSCs. In particular, we discuss the novel connections between MDS development and cardiovascular disease.
Collapse
Affiliation(s)
- Camilla Bertuzzo Veiga
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (C.B.V.); (A.J.M.)
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Erin M. Lawrence
- Walter and Eliza Hall Institute of Medical Research, 1 G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; (E.M.L.); (M.J.H.)
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Andrew J. Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (C.B.V.); (A.J.M.)
- Department of Diabetes, Department of Immunology, Monash University, Clayton, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Marco J. Herold
- Walter and Eliza Hall Institute of Medical Research, 1 G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; (E.M.L.); (M.J.H.)
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Dragana Dragoljevic
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (C.B.V.); (A.J.M.)
- Department of Diabetes, Department of Immunology, Monash University, Clayton, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3052, Australia
- Correspondence:
| |
Collapse
|
308
|
What's new in the pathogenesis and treatment of therapy-related myeloid neoplasms. Blood 2021; 138:749-757. [PMID: 33876223 DOI: 10.1182/blood.2021010764] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/02/2021] [Indexed: 12/14/2022] Open
Abstract
Therapy-related myeloid neoplasms (t-MN) include diseases onsetting in patients treated with chemo- and/or radiotherapy for a primary cancer, or an autoimmune disorder. Genomic variants, in particular in familial cancer genes, may play a predisposing role. Recent advances in deep sequencing techniques have shed light on the pathogenesis of t-MN, identifying clonal hematopoiesis of indeterminate potential (CHIP) as a frequent first step in the multi-hit model of t-MN. CHIP is often detectable prior to any cytotoxic treatment, probably setting the fertile genomic background for secondary leukemogenesis. The evolution pattern towards t-MN is then a complex process, shaped by the type of cancer therapy, the aging process, and the individual exposures, that favor additional hits, such as the acquisition of TP53 mutations and unfavorable karyotype abnormalities. The pathogenesis of t-MN differs from MN associated with environmental exposure. Indeed, the genetic aberration patterns of MN developing in atomic bomb survivors show few mutations in classical DNA methylation genes, and a high prevalence of 11q and ATM alterations, together with TP53 mutations. Survival in t-MN is poor. In addition to the biology of t-MN, the patient's previous disease history and the remission status at t-MN diagnosis are significant factors contributing to unfavorable outcome. New drugs active in secondary leukemias include CPX-351, or venetoclax in combination with hypomethylating agents, monoclonal antibodies as magrolimab, or targeted drugs against pathogenic mutations. Allogeneic stem cell transplantation remains the best currently available therapeutic option with curative intent for fit patients with unfavorable genetic profiles.
Collapse
|
309
|
Bewersdorf JP, Zeidan AM. Risk-Adapted, Individualized Treatment Strategies of Myelodysplastic Syndromes (MDS) and Chronic Myelomonocytic Leukemia (CMML). Cancers (Basel) 2021; 13:1610. [PMID: 33807279 PMCID: PMC8036734 DOI: 10.3390/cancers13071610] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Myelodysplastic syndrome (MDS) and chronic myelomonocytic leukemia (CMML) are two distinct blood cancers with a variable clinical symptom burden and risk of progression to acute myeloid leukemia. Management decisions should be guided by individual patient and disease characteristics and based on validated risk stratification tools. While supportive care with red blood cell transfusions, erythropoiesis-stimulating agents, and iron chelation remains the mainstay of therapy for lower-risk (LR)-MDS patients, luspatercept has recently been approved for transfusion-dependent anemic LR-MDS patients ending a decade without any new drug approvals for MDS. For higher-risk patients, allogeneic hematopoietic cell transplant (allo-HCT) remains the only curative therapy for both MDS and CMML but most patients are not eligible for allo-HCT. For those patients, the hypomethylating agents (HMA) azacitidine and decitabine remain standard of care with azacitidine being the only agent that has shown an overall survival benefit in randomized trials. Although early results from novel molecularly driven agents such as IDH1/2 inhibitors, venetoclax, magrolimab, and APR-246 for MDS as well as tagraxofusp, tipifarnib, and lenzilumab for CMML appear encouraging, confirmatory randomized trials must be completed to fully assess their safety and efficacy prior to routine clinical use. Herein, we review the current management of MDS and CMML and conclude with a critical appraisal of novel therapies and general trends in this field.
Collapse
Affiliation(s)
| | - Amer M. Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208028, New Haven, CT 06520-8028, USA;
| |
Collapse
|
310
|
Bewersdorf JP, Zeidan AM. Management of patients with higher-risk myelodysplastic syndromes after failure of hypomethylating agents: What is on the horizon? Best Pract Res Clin Haematol 2021; 34:101245. [PMID: 33762100 DOI: 10.1016/j.beha.2021.101245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hypomethylating agents (HMA) azacitidine (AZA) and decitabine (DAC) are the standard of care for frontline treatment of patients with higher-risk myelodysplastic syndromes (MDS). As complete responses to HMAs are rare and typically not durable, HMA failure is a common clinical dilemma and associated with very short survival in most patients. Salvage therapies with various agents such as novel HMAs (guadecitabine, CC-486), and CTLA-4/PD1-type immune checkpoint inhibitors (ICPIs) have yielded mixed and only modest results at best in MDS patients with HMA failure. Thanks to advances in the understanding of the molecular and biologic pathogenesis of MDS, several novel targeted agents such as the BCL-2 inhibitor venetoclax, TP-53 refolding agent APR-246, IDH1/2 inhibitors, and novel ICPIs such as magrolimab and sabatolimab have been developed and demonstrated activity in combination with HMA in the frontline setting. However, clinical testing of these agents post HMA failure has been limited to date. Furthermore, the biology of HMA failure remains poorly defined which significantly limits rationale drug development. This highlights the importance of optimization of frontline therapy to avoid/delay HMA failure in addition to development of more effective salvage therapies.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
311
|
Daher-Reyes G, Kim T, Novitzky-Basso I, Kim KH, Smith A, Stockley T, Capochichi JM, Al-Shaibani Z, Pasic I, Law A, Lam W, Michelis FV, Gerbitz A, Viswabandya A, Lipton J, Kumar R, Mattsson J, Schimmer A, McNamara C, Murphy T, Maze D, Gupta V, Sibai H, Chan S, Yee K, Minden M, Zhang Z, Schuh A, Kim DDH. Prognostic impact of the adverse molecular-genetic profile on long-term outcomes following allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia. Bone Marrow Transplant 2021; 56:1908-1918. [PMID: 33767401 DOI: 10.1038/s41409-021-01255-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 12/27/2022]
Abstract
The impact of adverse risk genetic profiles on outcomes in acute myeloid leukemia (AML) patients following allogeneic hematopoietic stem cell transplantation (HCT) has not been fully elucidated. Accordingly, we have profiled somatic mutations at diagnosis using next-generation sequencing (NGS) in 178 AML patients who received allogeneic HCT. NGS revealed 598 somatic mutations in 165/178 patients (92.7%). Frequently mutated genes include DNMT3A, TET2, NPM1, RUNX1, IDH2, and FLT3. Commonly detected cytogenetic profiles include normal karyotype, trisomy 8, monosomal karyotype (MK), deletion 5, complex karyotype (CK), and monosomy 7. In univariate analyses, TP53 mutation, MK, CK, and monosomy 7 were associated with decreased overall survival (OS), relapse-free survival (RFS), and a higher relapse incidence (RI). We defined adverse molecular-genetic profile as harboring at least one of the molecular/genetic abnormalities of TP53 mutation, MK, CK, monosomy 7, and deletion 5. The patients harboring adverse molecular-genetic profile (n = 30) showed a lower 2-year OS (24.9% vs. 57.9%; p = 0.003), RFS (23.7% vs. 57.9%; p = 0.002), and higher RI (47.2% and 17.2%; p = 0.001) after HCT when compared to patients without those lesions. Multivariate analysis confirmed adverse molecular-genetic profile as an independent prognostic factor, associated with decreased OS (HR 2.19), RFS (HR 2.23), and higher RI (HR 2.94).
Collapse
Affiliation(s)
- Georgina Daher-Reyes
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - TaeHyung Kim
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, Toronto, ON, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Igor Novitzky-Basso
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Kyuoung Ha Kim
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada.,Department of Internal Medicine, Soonchunhyang University Hospital, Seoul, Korea
| | - Adam Smith
- Clinical Lab Genetics Division, Laboratory of Molecular Pathology, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Tracy Stockley
- Clinical Lab Genetics Division, Laboratory of Molecular Pathology, Toronto General Hospital, University Health Network, Toronto, ON, Canada.,Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Jose-Mario Capochichi
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Zeyad Al-Shaibani
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Ivan Pasic
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Arjun Law
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Wilson Lam
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Fotios V Michelis
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Armin Gerbitz
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Auro Viswabandya
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Jeffrey Lipton
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Rajat Kumar
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Jonas Mattsson
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Aaron Schimmer
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Caroline McNamara
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Tracy Murphy
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Dawn Maze
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Vikas Gupta
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Hassan Sibai
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Steven Chan
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Karen Yee
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Mark Minden
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Zhaolei Zhang
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Andre Schuh
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Dennis D H Kim
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada.
| |
Collapse
|
312
|
Crisà E, Boggione P, Nicolosi M, Mahmoud AM, Al Essa W, Awikeh B, Aspesi A, Andorno A, Boldorini R, Dianzani I, Gaidano G, Patriarca A. Genetic Predisposition to Myelodysplastic Syndromes: A Challenge for Adult Hematologists. Int J Mol Sci 2021; 22:ijms22052525. [PMID: 33802366 PMCID: PMC7959319 DOI: 10.3390/ijms22052525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Myelodysplastic syndromes (MDS) arising in the context of inherited bone marrow failure syndromes (IBMFS) differ in terms of prognosis and treatment strategy compared to MDS occurring in the adult population without an inherited genetic predisposition. The main molecular pathways affected in IBMFS involve telomere maintenance, DNA repair, biogenesis of ribosomes, control of proliferation and others. The increased knowledge on the genes involved in MDS pathogenesis and the wider availability of molecular diagnostic assessment have led to an improvement in the detection of IBMFS genetic predisposition in MDS patients. A punctual recognition of these disorders implies a strict surveillance of the patient in order to detect early signs of progression and promptly offer allogeneic hematopoietic stem cell transplantation, which is the only curative treatment. Moreover, identifying an inherited mutation allows the screening and counseling of family members and directs the choice of donors in case of need for transplantation. Here we provide an overview of the most recent data on MDS with genetic predisposition highlighting the main steps of the diagnostic and therapeutic management. In order to highlight the pitfalls of detecting IBMFS in adults, we report the case of a 27-year-old man affected by MDS with an underlying telomeropathy.
Collapse
Affiliation(s)
- Elena Crisà
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
- Correspondence: (E.C.); (G.G.); Tel.: +39-0321-660-655 (E.C. & G.G.); Fax: +39-0321-373-3095 (E.C.)
| | - Paola Boggione
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| | - Maura Nicolosi
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| | - Abdurraouf Mokhtar Mahmoud
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| | - Wael Al Essa
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| | - Bassel Awikeh
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| | - Anna Aspesi
- Laboratory of Genetic Pathology, Division of Pathology, Department of Health Sciences, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (A.A.); (I.D.)
| | - Annalisa Andorno
- Division of Pathology, Department of Health Sciences, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (A.A.); (R.B.)
| | - Renzo Boldorini
- Division of Pathology, Department of Health Sciences, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (A.A.); (R.B.)
| | - Irma Dianzani
- Laboratory of Genetic Pathology, Division of Pathology, Department of Health Sciences, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (A.A.); (I.D.)
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
- Correspondence: (E.C.); (G.G.); Tel.: +39-0321-660-655 (E.C. & G.G.); Fax: +39-0321-373-3095 (E.C.)
| | - Andrea Patriarca
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| |
Collapse
|
313
|
Garcia JS, Swords RT, Roboz GJ, Jacoby MA, Garcia-Manero G, Hong WJ, Yang X, Zhou Y, Platzbecker U, Steensma DP, Wolff JE, Fenaux P. A systematic review of higher-risk myelodysplastic syndromes clinical trials to determine the benchmark of azacitidine and explore alternative endpoints for overall survival. Leuk Res 2021; 104:106555. [PMID: 33705966 DOI: 10.1016/j.leukres.2021.106555] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/29/2022]
Abstract
The hypomethylating agent azacitidine can prolong overall survival (OS) in patients with higher risk-myelodysplastic syndromes (HR-MDS) compared to conventional regimens. However, outcomes differ largely between studies, making it challenging to determine the contribution of novel therapies added to azacitidine. Further, a discrepancy is seen between complete (CR) or partial (PR) response rates and OS improvement with azacitidine, making it challenging to rely on earlier endpoints than OS. We conducted a systematic literature search and study-level systematic review of 237 clinical studies to better understand outcomes for HR-MDS patients treated with azacitidine. Pooled marrow CR was 9% (N = 2654; 95% CI: 6-13 %), CR rate was 17 % (N = 6943; 95% CI: 15-20 %), and median OS (mOS) was 18.6 months (N = 2820; 95% CI: 15.3-21.9). A weak correlation to mOS was detected with CR rate (207 patient cohorts, Pearson's r = 0.315; P < 0.0005), and a much stronger correlation with median progression-free survival (mPFS) (r=0.88, P = 3 × 10-14). Six-months progression-free survival rates correlated with 1-year OS rates but were only infrequently reported (N = 41 patient cohorts) therefore not allowing a robust recommendation for a surrogate to the established OS endpoint. Larger patient numbers and patient-level data appear necessary, especially for designing future clinical trials using azacitidine combinations.
Collapse
Affiliation(s)
| | | | - Gail J Roboz
- Weill Medical College of Cornell University and New York-Presbyterian Hospital, NY, NY, USA
| | - Meagan A Jacoby
- Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | - Pierre Fenaux
- Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Université de Paris, Paris, France
| |
Collapse
|
314
|
Hasserjian RP, Buckstein R, Patnaik MM. Navigating Myelodysplastic and Myelodysplastic/Myeloproliferative Overlap Syndromes. Am Soc Clin Oncol Educ Book 2021; 41:328-350. [PMID: 34010050 DOI: 10.1200/edbk_320113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Myelodysplastic syndromes (MDS) and MDS/myeloproliferative neoplasms (MPNs) are clonal diseases that differ in morphologic diagnostic criteria but share some common disease phenotypes that include cytopenias, propensity to acute myeloid leukemia evolution, and a substantially shortened patient survival. MDS/MPNs share many clinical and molecular features with MDS, including frequent mutations involving epigenetic modifier and/or spliceosome genes. Although the current 2016 World Health Organization classification incorporates some genetic features in its diagnostic criteria for MDS and MDS/MPNs, recent accumulation of data has underscored the importance of the mutation profiles on both disease classification and prognosis. Machine-learning algorithms have identified distinct molecular genetic signatures that help refine prognosis and notable associations of these genetic signatures with morphologic and clinical features. Combined geno-clinical models that incorporate mutation data seem to surpass the current prognostic schemes. Future MDS classification and prognostication schema will be based on the portfolio of genetic aberrations and traditional features, such as blast count and clinical factors. Arriving at these systems will require studies on large patient cohorts that incorporate advanced computational analysis. The current treatment algorithm in MDS is based on patient risk as derived from existing prognostic and disease classes. Luspatercept is newly approved for patients with MDS and ring sideroblasts who are transfusion dependent after erythropoietic-stimulating agent failure. Other agents that address red blood cell transfusion dependence in patients with lower-risk MDS and the failure of hypomethylating agents in higher-risk disease are in advanced testing. Finally, a plethora of novel targeted agents and immune checkpoint inhibitors are being evaluated in combination with a hypomethylating agent backbone to augment the depth and duration of response and, we hope, improve overall survival.
Collapse
Affiliation(s)
| | - Rena Buckstein
- Division of Hematology/Oncology, Sunnybrook Odette Cancer Center, Toronto, Ontario, Canada
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, MN
| |
Collapse
|
315
|
Iacobucci I, Mullighan C. Prognostic mutation constellations in acute myeloid leukaemia and myelodysplastic syndrome. Curr Opin Hematol 2021; 28:101-109. [PMID: 33427759 PMCID: PMC8174569 DOI: 10.1097/moh.0000000000000629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW In the past decade, numerous studies analysing the genome and transcriptome of large cohorts of acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS) patients have substantially improved our knowledge of the genetic landscape of these diseases with the identification of heterogeneous constellations of germline and somatic mutations with prognostic and therapeutic relevance. However, inclusion of integrated genetic data into classification schema is still far from a reality. The purpose of this review is to summarize recent insights into the prevalence, pathogenic role, clonal architecture, prognostic impact and therapeutic management of genetic alterations across the spectrum of myeloid malignancies. RECENT FINDINGS Recent multiomic-studies, including analysis of genetic alterations at the single-cell resolution, have revealed a high heterogeneity of lesions in over 200 recurrently mutated genes affecting disease initiation, clonal evolution and clinical outcome. Artificial intelligence and specifically machine learning approaches have been applied to large cohorts of AML and MDS patients to define in an unbiased manner clinically meaningful disease patterns including, disease classification, prognostication and therapeutic vulnerability, paving the way for future use in clinical practice. SUMMARY Integration of genomic, transcriptomic, epigenomic and clinical data coupled to conventional and machine learning approaches will allow refined leukaemia classification and risk prognostication and will identify novel therapeutic targets for these still high-risk leukaemia subtypes.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis (USA)
| | - Charles Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis (USA)
- Hematological Malignancies Program, St Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
316
|
Ney GM, Yang KB, Ng V, Liu L, Zhao M, Kuk W, Alaka L, Sampang L, Ross A, Jones MA, Jin X, McKay LM, Evarts H, Li Q. Oncogenic N-Ras Mitigates Oxidative Stress-Induced Apoptosis of Hematopoietic Stem Cells. Cancer Res 2021; 81:1240-1251. [PMID: 33441311 PMCID: PMC8647627 DOI: 10.1158/0008-5472.can-20-0118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/07/2020] [Accepted: 01/12/2021] [Indexed: 11/16/2022]
Abstract
Leukemic relapse is believed to be driven by transformed hematopoietic stem cells (HSC) that harbor oncogenic mutations or have lost tumor suppressor function. Recent comprehensive sequencing studies have shown that mutations predicted to activate Ras signaling are highly prevalent in hematologic malignancies and, notably, in refractory and relapsed cases. To better understand what drives this clinical phenomenon, we expressed oncogenic NrasG12D within the hematopoietic system in mice and interrogated its effects on HSC survival. N-RasG12D conferred a survival benefit to HSCs and progenitors following metabolic and genotoxic stress. This effect was limited to HSCs and early progenitors and was independent of autophagy and cell proliferation. N-RasG12D-mediated HSC survival was not affected by inhibition of canonical Ras effectors such as MEK and PI3K. However, inhibition of the noncanonical Ras effector pathway protein kinase C (PKC) ameliorated the protective effects of N-RasG12D. Mechanistically, N-RasG12D lowered levels of reactive oxygen species (ROS), which correlated with reduced mitochondrial membrane potential and ATP levels. Inhibition of PKC restored the levels of ROS to that of control HSCs and abrogated the protective effects granted by N-RasG12D. Thus, N-RasG12D activation within HSCs promotes cell survival through the mitigation of ROS, and targeting this mechanism may represent a viable strategy to induce apoptosis during malignant transformation of HSCs. SIGNIFICANCE: Targeting oncogenic N-Ras-mediated reduction of ROS in hematopoietic stem cells through inhibition of the noncanonical Ras effector PKC may serve as a novel strategy for treatment of leukemia and other Ras-mutated cancers.
Collapse
Affiliation(s)
- Gina M Ney
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Kevin B Yang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Victor Ng
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Lu Liu
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Meiling Zhao
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Wun Kuk
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Lila Alaka
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Leilani Sampang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Adam Ross
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Morgan A Jones
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Xi Jin
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Laura M McKay
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Hadie Evarts
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Qing Li
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
317
|
Kennedy AL, Myers KC, Bowman J, Gibson CJ, Camarda ND, Furutani E, Muscato GM, Klein RH, Ballotti K, Liu S, Harris CE, Galvin A, Malsch M, Dale D, Gansner JM, Nakano TA, Bertuch A, Vlachos A, Lipton JM, Castillo P, Connelly J, Churpek J, Edwards JR, Hijiya N, Ho RH, Hofmann I, Huang JN, Keel S, Lamble A, Lau BW, Norkin M, Stieglitz E, Stock W, Walkovich K, Boettcher S, Brendel C, Fleming MD, Davies SM, Weller EA, Bahl C, Carter SL, Shimamura A, Lindsley RC. Distinct genetic pathways define pre-malignant versus compensatory clonal hematopoiesis in Shwachman-Diamond syndrome. Nat Commun 2021; 12:1334. [PMID: 33637765 PMCID: PMC7910481 DOI: 10.1038/s41467-021-21588-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/29/2021] [Indexed: 12/23/2022] Open
Abstract
To understand the mechanisms that mediate germline genetic leukemia predisposition, we studied the inherited ribosomopathy Shwachman-Diamond syndrome (SDS), a bone marrow failure disorder with high risk of myeloid malignancies at an early age. To define the mechanistic basis of clonal hematopoiesis in SDS, we investigate somatic mutations acquired by patients with SDS followed longitudinally. Here we report that multiple independent somatic hematopoietic clones arise early in life, most commonly harboring heterozygous mutations in EIF6 or TP53. We show that germline SBDS deficiency establishes a fitness constraint that drives selection of somatic clones via two distinct mechanisms with different clinical consequences. EIF6 inactivation mediates a compensatory pathway with limited leukemic potential by ameliorating the underlying SDS ribosome defect and enhancing clone fitness. TP53 mutations define a maladaptive pathway with enhanced leukemic potential by inactivating tumor suppressor checkpoints without correcting the ribosome defect. Subsequent development of leukemia was associated with acquisition of biallelic TP53 alterations. These results mechanistically link leukemia predisposition to germline genetic constraints on cellular fitness, and provide a rational framework for clinical surveillance strategies.
Collapse
Affiliation(s)
- Alyssa L Kennedy
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kasiani C Myers
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James Bowman
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Institute for Protein Innovation, Boston, MA, USA
| | - Christopher J Gibson
- Department of Medical Oncology, Division of Hematological Malignancies Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Elissa Furutani
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Robert H Klein
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute, Boston, MA, USA
| | | | - Shanshan Liu
- Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, USA
| | | | | | | | - David Dale
- Department of Internal Medicine, University of Washington, Seattle, WA, USA
| | - John M Gansner
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Taizo A Nakano
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Alison Bertuch
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Adrianna Vlachos
- Division of Hematology/Oncology and Cellular Therapy, Cohen Children's Medical Center of New York, New Hyde Park, NY, USA
- Zucker School of Medicine at Hofstra/Northwell School of Medicine, Hempstead, NY, USA
| | - Jeffrey M Lipton
- Division of Hematology/Oncology and Cellular Therapy, Cohen Children's Medical Center of New York, New Hyde Park, NY, USA
- Zucker School of Medicine at Hofstra/Northwell School of Medicine, Hempstead, NY, USA
| | - Paul Castillo
- Shands Children's Hospital, Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL, USA
| | - James Connelly
- Department of Pediatrics, Division of Pediatric Hematology Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jane Churpek
- Department of Medicine, Section of Hematology, Oncology, and Palliative Care, The University of Wisconsin-Madison, Madison, WI, USA
| | - John R Edwards
- Indiana Blood and Marrow Transplantation, Indianapolis, IN, USA
| | - Nobuko Hijiya
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Richard H Ho
- Department of Pediatrics, Division of Pediatric Hematology Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Inga Hofmann
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and BMT, University of Wisconsin, Madison, WI, USA
| | - James N Huang
- Department of Pediatrics, UCSF Benioff Children's Hospital, San Francisco, CA, USA
- Division of Pediatric Allergy, Immunology, and Blood & Marrow Transplantation, UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Siobán Keel
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Adam Lamble
- Division of Hematology-Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Bonnie W Lau
- Dartmouth-Hitchcock Medical Center, Pediatric Hematology Oncology, Geisel School of Medicine, Lebanon, NH, USA
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Maxim Norkin
- Division of Cancer Medicine, Baptist MD Anderson Cancer Center, Jacksonville, FL, USA
| | - Elliot Stieglitz
- Department of Pediatrics, UCSF Benioff Children's Hospital, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Wendy Stock
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Kelly Walkovich
- Division of Pediatric Hematology- Oncology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Steffen Boettcher
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Brendel
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Stella M Davies
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Edie A Weller
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, USA
| | - Christopher Bahl
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Institute for Protein Innovation, Boston, MA, USA
| | - Scott L Carter
- Broad Institute, Boston, MA, USA
- Joint Center for Cancer Precision Medicine, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, USA
| | - Akiko Shimamura
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - R Coleman Lindsley
- Department of Medical Oncology, Division of Hematological Malignancies Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
318
|
Stauber J, Greally JM, Steidl U. Preleukemic and leukemic evolution at the stem cell level. Blood 2021; 137:1013-1018. [PMID: 33275656 PMCID: PMC7907728 DOI: 10.1182/blood.2019004397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Hematological malignancies are an aggregate of diverse populations of cells that arise following a complex process of clonal evolution and selection. Recent approaches have facilitated the study of clonal populations and their evolution over time across multiple phenotypic cell populations. In this review, we present current concepts on the role of clonal evolution in leukemic initiation, disease progression, and relapse. We highlight recent advances and unanswered questions about the contribution of the hematopoietic stem cell population to these processes.
Collapse
Affiliation(s)
- Jacob Stauber
- Albert Einstein College of Medicine-Montefiore Health System, The Bronx, NY
| | - John M Greally
- Albert Einstein College of Medicine-Montefiore Health System, The Bronx, NY
| | - Ulrich Steidl
- Albert Einstein College of Medicine-Montefiore Health System, The Bronx, NY
| |
Collapse
|
319
|
Kim YJ, Jung SH, Hur EH, Choi EJ, Lee KH, Park HC, Kim HJ, Kwon YR, Park S, Lee SH, Chung YJ, Lee JH. Clinical implications of copy number alteration detection using panel-based next-generation sequencing data in myelodysplastic syndrome. Leuk Res 2021; 103:106540. [PMID: 33667811 DOI: 10.1016/j.leukres.2021.106540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 01/24/2023]
Abstract
Recent advancements in next-generation sequencing (NGS) technologies allow the simultaneous identification of targeted copy number alterations (CNAs) as well as somatic mutations using the same panel-based NGS data. We investigated whether CNAs detected by the targeted NGS data provided additional clinical implications, over somatic mutations, in myelodysplastic syndrome (MDS). Targeted deep sequencing of 28 well-known MDS-related genes was performed for 266 patients with MDS. Overall, 215 (80.8 %) patients were found to have at least one somatic mutation; 67 (25.2 %) had at least one CNA; 227 (85.3 %) had either a somatic mutation or CNA; and 12 had CNA without somatic mutations. Considering the clinical variables and somatic mutations alone, multivariate analysis demonstrated that sex, revised International Prognostic Scoring System (IPSS-R), and NRAS and TP53 mutations were independent prognostic factors for overall survival. For AML-free survival, these factors were sex, IPSS-R, and mutations in NRAS, DNMT3A, and complex karyotype/TP53 mutations. When we consider clinical variables along with somatic mutations and CNAs, genetic alterations in TET2, LAMB4, U2AF1, and CBL showed additional significant impact on the survivals. In conclusion, our study suggests that the concurrent detection of somatic mutations and targeted CNAs may provide clinically useful information for the prognosis of MDS patients.
Collapse
Affiliation(s)
- Yoo-Jin Kim
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Hyun Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun-Hye Hur
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun-Ji Choi
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyoo-Hyung Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyeon-Chun Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye Joung Kim
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong-Rim Kwon
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Silvia Park
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sug Hyung Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeun-Jun Chung
- Integrated Research Center for Genome Polymorphism, Precision Medicine Research Center, Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Je-Hwan Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
320
|
Rimando JC, Christopher MJ, Rettig MP, DiPersio JF. Biology of Disease Relapse in Myeloid Disease: Implication for Strategies to Prevent and Treat Disease Relapse After Stem-Cell Transplantation. J Clin Oncol 2021; 39:386-396. [PMID: 33434062 PMCID: PMC8462627 DOI: 10.1200/jco.20.01587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Joseph C. Rimando
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Matthew J. Christopher
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Michael P. Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
321
|
Molica M, Mazzone C, Niscola P, de Fabritiis P. TP53 Mutations in Acute Myeloid Leukemia: Still a Daunting Challenge? Front Oncol 2021; 10:610820. [PMID: 33628731 PMCID: PMC7897660 DOI: 10.3389/fonc.2020.610820] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/21/2020] [Indexed: 01/03/2023] Open
Abstract
TP53 is a key tumor suppressor gene with protean functions associated with preservation of genomic balance, including regulation of cellular senescence, apoptotic pathways, metabolism functions, and DNA repair. The vast majority of de novo acute myeloid leukemia (AML) present unaltered TP53 alleles. However, TP53 mutations are frequently detected in AML related to an increased genomic instability, such as therapy‐related (t-AML) or AML with myelodysplasia-related changes. Of note, TP53 mutations are associated with complex cytogenetic abnormalities, advanced age, chemoresistance, and poor outcomes. Recent breakthroughs in AML research and the development of targeted drugs directed at specific mutations have led to an explosion of novel treatments with different mechanisms. However, optimal treatment strategy for patients harboring TP53 mutations remains a critical area of unmet need. In this review, we focus on the incidence and clinical significance of TP53 mutations in de novo and t-AML. The influence of these alterations on response and clinical outcomes as well as the current and future therapeutic perspectives for this hardly treatable setting are discussed.
Collapse
Affiliation(s)
- Matteo Molica
- Haematology Unit, S. Eugenio Hospital, ASL Roma 2, Rome, Italy
| | - Carla Mazzone
- Haematology Unit, S. Eugenio Hospital, ASL Roma 2, Rome, Italy
| | | | - Paolo de Fabritiis
- Haematology Unit, S. Eugenio Hospital, ASL Roma 2, Rome, Italy.,Department of Biomedicina and Prevenzione, Tor Vergata University, Rome, Italy
| |
Collapse
|
322
|
Bersanelli M, Travaglino E, Meggendorfer M, Matteuzzi T, Sala C, Mosca E, Chiereghin C, Di Nanni N, Gnocchi M, Zampini M, Rossi M, Maggioni G, Termanini A, Angelucci E, Bernardi M, Borin L, Bruno B, Bonifazi F, Santini V, Bacigalupo A, Voso MT, Oliva E, Riva M, Ubezio M, Morabito L, Campagna A, Saitta C, Savevski V, Giampieri E, Remondini D, Passamonti F, Ciceri F, Bolli N, Rambaldi A, Kern W, Kordasti S, Sole F, Palomo L, Sanz G, Santoro A, Platzbecker U, Fenaux P, Milanesi L, Haferlach T, Castellani G, Della Porta MG. Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes. J Clin Oncol 2021; 39:1223-1233. [PMID: 33539200 PMCID: PMC8078359 DOI: 10.1200/jco.20.01659] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recurrently mutated genes and chromosomal abnormalities have been identified in myelodysplastic syndromes (MDS). We aim to integrate these genomic features into disease classification and prognostication.
Collapse
Affiliation(s)
- Matteo Bersanelli
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy.,National Institute of Nuclear Physics (INFN), Bologna, Italy
| | - Erica Travaglino
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | | | - Tommaso Matteuzzi
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy.,National Institute of Nuclear Physics (INFN), Bologna, Italy
| | - Claudia Sala
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy.,National Institute of Nuclear Physics (INFN), Bologna, Italy
| | - Ettore Mosca
- Institute of Biomedical Technologies, National Research Council (CNR), Segrate, Milan, Italy
| | | | - Noemi Di Nanni
- Institute of Biomedical Technologies, National Research Council (CNR), Segrate, Milan, Italy
| | - Matteo Gnocchi
- Institute of Biomedical Technologies, National Research Council (CNR), Segrate, Milan, Italy
| | - Matteo Zampini
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Marianna Rossi
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Giulia Maggioni
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy.,Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | | | - Emanuele Angelucci
- Hematology and Transplant Center, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Massimo Bernardi
- Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, & University Vita-Salute San Raffaele, Milan, Italy
| | | | - Benedetto Bruno
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesca Bonifazi
- Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Valeria Santini
- Hematology, Azienda Ospedaliero-Universitaria Careggi & University of Florence, Florence Italy
| | - Andrea Bacigalupo
- Hematology, IRCCS Fondazione Policlinico Universitario Gemelli & Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Teresa Voso
- Hematology, Policlinico Tor Vergata & Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Esther Oliva
- Hematology, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, Reggio Calabria, Italy
| | - Marta Riva
- Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Marta Ubezio
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Lucio Morabito
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Alessia Campagna
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Claudia Saitta
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza Italy
| | - Victor Savevski
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Enrico Giampieri
- National Institute of Nuclear Physics (INFN), Bologna, Italy.,Experimental, Diagnostic and Specialty Medicine-DIMES, Bologna, Italy
| | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy.,National Institute of Nuclear Physics (INFN), Bologna, Italy
| | - Francesco Passamonti
- Hematology, ASST Sette Laghi, Ospedale di Circolo of Varese & Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, & University Vita-Salute San Raffaele, Milan, Italy
| | - Niccolò Bolli
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | | | - Shahram Kordasti
- Haematology, Guy's Hospital & Comprehensive Cancer Centre, King's College, London, United Kingdom.,Hematology Department & Stem Cell Transplant Unit, DISCLIMO-Università Politecnica delle Marche, Ancona, Italy
| | - Francesc Sole
- Institut de Recerca Contra la Leucèmia Josep Carreras, Ctra de Can Ruti, Badalona-Barcelona, Spain
| | - Laura Palomo
- Institut de Recerca Contra la Leucèmia Josep Carreras, Ctra de Can Ruti, Badalona-Barcelona, Spain
| | - Guillermo Sanz
- Hematology, Hospital Universitario La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Armando Santoro
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy.,Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | - Uwe Platzbecker
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany
| | - Pierre Fenaux
- Service d'Hématologie Séniors, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris and Université Paris, Paris, France
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council (CNR), Segrate, Milan, Italy
| | | | - Gastone Castellani
- National Institute of Nuclear Physics (INFN), Bologna, Italy.,Experimental, Diagnostic and Specialty Medicine-DIMES, Bologna, Italy
| | - Matteo G Della Porta
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy.,Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| |
Collapse
|
323
|
Patel BJ, Barot SV, Xie Y, Cook JR, Carraway HE, Hsi ED. Impact of next generation sequencing results on clinical management in patients with hematological disorders. Leuk Lymphoma 2021; 62:1702-1710. [PMID: 33533694 DOI: 10.1080/10428194.2021.1876860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Application of next generation sequencing (NGS) has shed light on the molecular heterogeneity of hematological malignancies. NGS panels targeting recurrent mutations have become common in many large centers and commercial laboratories. However, its impact in clinical practice is unclear. We sought to characterize the use of NGS at a tertiary care center in an observational study of 343 patients with suspected hematological malignancies. We found that NGS changed or refined the clinical and pathologic diagnosis in 9% of patients and affected management decisions in 65% (including clinical trial eligibility, targeted therapy selection, and consideration for stem cell transplantation). This study emphasizes early incorporation of NGS in clinical practice while also highlighting the present limitations. As our understanding of these disorders increases and more clinically relevant genetic targets emerge, it will be important to refine the molecular testing strategy to deliver personalized medicine given the high cost associated with this technology.
Collapse
Affiliation(s)
- Bhumika J Patel
- Leukemia and Myeloid Disorders Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Shimoli V Barot
- Leukemia and Myeloid Disorders Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Yan Xie
- Department of Laboratory Medicine, Robert J. Tomsich Institute of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - James R Cook
- Department of Laboratory Medicine, Robert J. Tomsich Institute of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Hetty E Carraway
- Leukemia and Myeloid Disorders Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Eric D Hsi
- Department of Laboratory Medicine, Robert J. Tomsich Institute of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
324
|
Fenaux P, Haase D, Santini V, Sanz GF, Platzbecker U, Mey U. Myelodysplastic syndromes: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up †☆. Ann Oncol 2021; 32:142-156. [PMID: 33221366 DOI: 10.1016/j.annonc.2020.11.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- P Fenaux
- Service d'Hématologie Clinique, Groupe Francophone des Myélodysplasies (GFM), Department of Hematology, Hôpital St. Louis (Assistance Publique, Hôpitaux de Paris), Paris, France; Paris 7 University, Paris, France
| | - D Haase
- Department of Hematology and Medical Oncology, University Medical Center, Göttingen, Germany
| | - V Santini
- MDS Unit, Haematology, AOU Careggi, University of Florence, Florence, Italy
| | - G F Sanz
- Department of Haematology, Hospital Universitario La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - U Platzbecker
- Department of Hematology and Cellular Therapy, Medical Clinic and Policlinic 1, University Hospital Leipzig, Germany
| | - U Mey
- Department of Oncology and Haematology, Kantonsspital Graubuenden, Chur, Switzerland
| |
Collapse
|
325
|
Asian Population Is More Prone to Develop High-Risk Myelodysplastic Syndrome, Concordantly with Their Propensity to Exhibit High-Risk Cytogenetic Aberrations. Cancers (Basel) 2021; 13:cancers13030481. [PMID: 33513838 PMCID: PMC7865620 DOI: 10.3390/cancers13030481] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The world population is genetically and environmentally diverse. In particular, genetic differences related to an ethnic factor may underlie differences in cancer phenotypic expression. Therefore, we compared the epidemiology, and the clinical, biological and genetic characteristics of myelodysplastic syndrome (MDS) between Asian and Western countries. Our results show substantial differences in the incidence and age of onset between Asian and Western MDS patients. A higher proportion of Asian MDS patients fall into the high- and very-high risk prognostic MDS groups. This finding is supported by the identification of a higher proportion of high-risk cytogenetic aberrations in Asian MDS patients. However, the survival rate is similar for Western and Asian MDS patients. Our findings may impact the clinical management as well as the strategy of clinical trials targeting those genetic aberrations and mutations depending on the world area where they are run. Abstract This study explores the hypothesis that genetic differences related to an ethnic factor may underlie differences in phenotypic expression of myelodysplastic syndrome (MDS). First, to identify clear ethnic differences, we systematically compared the epidemiology, and the clinical, biological and genetic characteristics of MDS between Asian and Western countries over the last 20 years. Asian MDS cases show a 2- to 4-fold lower incidence and a 10-year younger age of onset compared to the Western cases. A higher proportion of Western MDS patients fall into the very low- and low-risk categories while the intermediate, high and very high-risk groups are more represented in Asian MDS patients according to the Revised International Prognostic Scoring System. Next, we investigated whether differences in prognostic risk scores could find their origin in differential cytogenetic profiles. We found that 5q deletion (del(5q)) aberrations and mutations in TET2, SF3B1, SRSF2 and IDH1/2 are more frequently reported in Western MDS patients while trisomy 8, del(20q), U2AF1 and ETV6 mutations are more frequent in Asian MDS patients. Treatment approaches differ between Western and Asian countries owing to the above discrepancies, but the overall survival rate within each prognostic group is similar for Western and Asian MDS patients. Altogether, our study highlights greater risk MDS in Asians supported by their cytogenetic profile.
Collapse
|
326
|
Dillon LW, Gui G, Logan BR, Fei M, Ghannam J, Li Y, Licon A, Alyea EP, Bashey A, Devine SM, Fernandez HF, Giralt S, Hamadani M, Howard A, Maziarz RT, Porter DL, Warlick ED, Pasquini MC, Scott BL, Horwitz ME, Deeg HJ, Hourigan CS. Impact of Conditioning Intensity and Genomics on Relapse After Allogeneic Transplantation for Patients With Myelodysplastic Syndrome. JCO Precis Oncol 2021; 5:PO.20.00355. [PMID: 34036237 PMCID: PMC8140814 DOI: 10.1200/po.20.00355] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Patients with myelodysplastic syndrome (MDS) are at risk of relapse after allogeneic hematopoietic cell transplantation. The utility of ultra-deep genomic testing to predict and the impact of conditioning intensity to prevent MDS relapse are unknown. METHODS Targeted error-corrected DNA sequencing was performed on preconditioning blood samples from patients with MDS (n = 48) from the Blood and Marrow Transplant Clinical Trials Network 0901 phase III randomized clinical trial, which compared outcomes by allogeneic hematopoietic cell transplantation conditioning intensity in adult patients with < 5% marrow myeloblasts and no leukemic myeloblasts in blood on morphological analysis at the time of pretransplant assessment. Clinical end points (53-month median follow-up) included transplant-related mortality (TRM), relapse, relapse-free survival (RFS), and overall survival (OS). Of the 48 patients examined, 14 experienced TRM, 23 are relapse-free, and 11 relapsed, of which 7 died. RESULTS Using a previously described set of 10 gene regions, 42% of patients (n = 20) had mutations detectable before random assignment to reduced intensity conditioning (RIC) or myeloablative conditioning (MAC). Testing positive was associated with increased rates of relapse (3-year relapse, 40% v 11%; P = .022) and decreased OS (3-year OS, 55% v 79%, P = .045). In those testing positive, relapse rates were higher (3-year relapse, 75% v 17%; P = .003) and RFS was lower (3-year RFS, 13% v 49%; P = .003) in RIC versus MAC arms. Testing additional genes, including those associated with MDS, did not improve prognostication. CONCLUSION This study provides evidence that targeted DNA sequencing in patients with MDS before transplant can identify those with highest post-transplant relapse rates. In those testing positive, random assignment to MAC lowered but did not eliminate relapse risk.
Collapse
Affiliation(s)
- Laura W. Dillon
- Laboratory of Myeloid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Gege Gui
- Laboratory of Myeloid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | | | - Jack Ghannam
- Laboratory of Myeloid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Yuesheng Li
- Laboratory of Myeloid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | | | - Asad Bashey
- Blood and Marrow Transplant Program at Northside Hospital, Atlanta, GA
| | - Steven M. Devine
- National Marrow Donor Program and Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | | | - Sergio Giralt
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Alan Howard
- National Marrow Donor Program and Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | - Richard T. Maziarz
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | | | | | | | | | | | | | - Christopher S. Hourigan
- Laboratory of Myeloid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
327
|
Jiang EL. [How I treat myelodysplastic syndromes with allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:10-14. [PMID: 33677862 PMCID: PMC7957254 DOI: 10.3760/cma.j.issn.0253-2727.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 11/15/2022]
Affiliation(s)
- E L Jiang
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin 300020, China
| |
Collapse
|
328
|
Fang Y, Guo J, Wu D, Wu LY, Song LX, Zhang Z, Zhao YS, Chang CK. Integration Analysis of JAK2 or RUNX1 Mutation With Bone Marrow Blast Can Improve Risk Stratification in the Patients With Lower Risk Myelodysplastic Syndrome. Front Oncol 2021; 10:610525. [PMID: 33520721 PMCID: PMC7839382 DOI: 10.3389/fonc.2020.610525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
Despite the improvements in prognostication of the revised International Prognostic Scoring System (IPSS-R) in myelodysplastic syndrome (MDS), there remain a portion of patients with lower risk (low/intermediate risk, LR) but poor prognostics. This study aimed to evaluate the relative contribution of mutational status when added to the IPSS-R, for estimating overall survival (OS) and progression-free survival (PFS) in patients with LR-MDS. We retrospectively analyzed clinical and laboratory variables of 328 patients diagnosed with MDS according to the FAB criteria. Twenty-nine-gene NGS assay was applied to bone marrow samples obtained at diagnosis. 233 (71.04%) patients were classified as LR-MDS. Univariate analysis showed association between inferior outcome (OS and PFS) and presence of JAK2 (p = 0.0177, p = 0.0002), RUNX1 (p = 0.0250, p = 0.0387), and U2AF1 (p = 0.0227, p = 0.7995) mutations. Multivariable survival analysis revealed JAK2 (p < 0.0001) and RUNX1 (p = 0.0215) mutations were independently prognostic for PFS in LR-MDS. Interestingly, bone marrow blast >1.5% could further predict disease progression of patients with LR-MDS (HR 8.06, 95%CI 2.95–22.04, p < 0.0001). Incorporation of JAK2, RUNX1 mutation and bone marrow blast in the IPSS-R can improve risk stratification in patients with LR-MDS. In summary, our result provided new risk factors for LR-MDS prognostics to identify candidates for early therapeutic intervention.
Collapse
Affiliation(s)
- Ying Fang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ling-Yun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lu-Xi Song
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - You-Shan Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
329
|
Vedula RS, Cheng MP, Ronayne CE, Farmakiotis D, Ho VT, Koo S, Marty FM, Lindsley RC, Bold TD. Somatic GATA2 mutations define a subgroup of myeloid malignancy patients at high risk for invasive fungal disease. Blood Adv 2021; 5:54-60. [PMID: 33570623 PMCID: PMC7805332 DOI: 10.1182/bloodadvances.2020002854] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022] Open
Abstract
Invasive fungal disease (IFD) can be a severe treatment complication in patients with myeloid malignancies, but current risk models do not incorporate disease-specific factors, such as somatic gene mutations. Germline GATA2 deficiency is associated with a susceptibility to IFD. To determine whether myeloid gene mutations were associated with IFD risk, we identified 2 complementary cohorts of patients with myeloid malignancy, based on (1) the diagnosis of invasive aspergillosis (IA), or (2) the presence of GATA2 mutations identified during standard clinical sequencing. We found somatic GATA2 mutations in 5 of 27 consecutive patients who had myeloid malignancy and developed IA. Among 51 consecutive patients with GATA2 mutations identified in the evaluation of myeloid malignancy, we found that IFD was diagnosed and treated in 21 (41%), all of whom had received chemotherapy or had undergone an allogeneic stem cell transplant. Pulmonary infections and disseminated candidiasis were most common. The 90-day mortality was 52% among patients with IFD. Our results indicate that patients with somatic GATA2 mutations are a vulnerable subgroup of patients with myeloid malignancy who have high risk for treatment-associated IFD and suggest that a focused approach to antifungal prophylaxis be considered.
Collapse
Affiliation(s)
- Rahul S Vedula
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Matthew P Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA
| | - Christine E Ronayne
- Division of Infectious Diseases and International Medicine, University of Minnesota Medical School, Minneapolis, MN; and
| | - Dimitrios Farmakiotis
- Division of Infectious Diseases, Warren Alpert Medical School, Brown University, Providence, RI
| | - Vincent T Ho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Sophia Koo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA
| | - Francisco M Marty
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA
| | - R Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Tyler D Bold
- Division of Infectious Diseases and International Medicine, University of Minnesota Medical School, Minneapolis, MN; and
| |
Collapse
|
330
|
Rautenberg C, Germing U, Stepanow S, Lauseker M, Köhrer K, Jäger PS, Geyh S, Fan M, Haas R, Kobbe G, Schroeder T. Influence of somatic mutations and pretransplant strategies in patients allografted for myelodysplastic syndrome or secondary acute myeloid leukemia. Am J Hematol 2021; 96:E15-E17. [PMID: 33017477 DOI: 10.1002/ajh.26013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Christina Rautenberg
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine - University, Duesseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine - University, Duesseldorf, Germany
| | - Stefanie Stepanow
- Biological and Medical Research Center (BMFZ), Genomics and Transcriptomics Laboratory, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine - University, Duesseldorf, Germany
| | - Michael Lauseker
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-University, Munich, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Genomics and Transcriptomics Laboratory, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine - University, Duesseldorf, Germany
| | - Paul S Jäger
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine - University, Duesseldorf, Germany
| | - Stefanie Geyh
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine - University, Duesseldorf, Germany
| | - Min Fan
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-University, Munich, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine - University, Duesseldorf, Germany
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine - University, Duesseldorf, Germany
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine - University, Duesseldorf, Germany
| |
Collapse
|
331
|
Atallah E, Logan B, Chen M, Cutler C, Deeg J, Jacoby M, Champlin R, Nishihori T, Confer D, Gajewski J, Farnia S, Greenberg P, Warlick E, Weisdorf D, Saber W, Horowitz MM, Rizzo JD. Comparison of Patient Age Groups in Transplantation for Myelodysplastic Syndrome: The Medicare Coverage With Evidence Development Study. JAMA Oncol 2020; 6:486-493. [PMID: 31830234 DOI: 10.1001/jamaoncol.2019.5140] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance In 2010, the US Centers for Medicare & Medicaid Services (CMS) indicated that data regarding efficacy of allogeneic hematopoietic stem cell transplantation (HCT) in the CMS beneficiary population with myelodysplastic syndrome (MDS) were currently insufficient, but that coverage would be provided for patients enrolled in a clinical study that met its criteria for Coverage with Evidence Development (CED). Objective The Center for International Bone Marrow Transplant Research (CIBMTR) submitted a study concept comparing the outcomes of patients aged 55 to 64 years vs aged 65 years or older who met those criteria, effectively providing coverage by CMS for HCT for MDS. Design, Setting, and Participants Data on patients aged 65 years or older were prospectively collected and their outcomes compared with patients aged 55 to 64 years. Patients were enrolled in the study from December 15, 2010, to May 14, 2014. The results reported herein were analyzed as of September 4, 2017, with a median follow-up of 47 months. The study was conducted by the CIBMTR. It comprises a voluntary working group of more than 420 centers worldwide that contribute detailed data on allogeneic and autologous HCT and cellular therapies. Interventions Patients with MDS received HCT according to institutional guidelines and preferences. Main Outcomes and Measures The primary outcome was overall survival (OS); secondary outcomes included nonrelapse mortality (NRM), relapse-free survival, and acute and chronic graft vs host disease. Results During the study period, 688 patients aged 65 years or older underwent HCT for MDS and were compared with 592 patients aged 55 to 64 years. Other than age, there were no differences in patient and disease characteristics between the groups. On univariate analysis, the 3-year NRM rate was 28% vs 25% for the 65 years or older group vs those aged 55 to 64 years, respectively. The 3-year OS was 37% vs 42% for the 65 years or older group vs the 55 to 64 years age group, respectively. On multivariable analysis after adjusting for excess risk of mortality in the older group, age group had no significant association with OS (HR, 1.09; 95% CI, 0.94-1.27; P = .23) or NRM (HR, 1.19; 95% CI, 0.93-1.52; P = .16). Conclusions and Relevance Older patients with MDS undergoing HCT have similar OS compared with younger patients. Based on current data, we would recommend coverage of HCT for MDS by the CMS. Trial Registration ClinicalTrials.gov identifier: NCT01166009.
Collapse
Affiliation(s)
- Ehab Atallah
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee
| | - Brent Logan
- Division of Biostatistics, Department of Institute for Health and Equity, Medical College of Wisconsin, Milwaukee
| | - Min Chen
- Center for International Bone Marrow Transplant Research, Medical College of Wisconsin, Milwaukee
| | - Corey Cutler
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joachim Deeg
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Meagan Jacoby
- Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Richard Champlin
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas
| | | | - Dennis Confer
- National Marrow Donor Program, Minneapolis, Minnesota
| | - James Gajewski
- Lu Daopei Hospitals, Beijing.,Oregon Society of Medical Oncology, Portland
| | | | - Peter Greenberg
- Stanford University School of Medicine, Stanford, California
| | | | | | - Wael Saber
- Center for International Bone Marrow Transplant Research, Medical College of Wisconsin, Milwaukee
| | - Mary M Horowitz
- Center for International Bone Marrow Transplant Research, Medical College of Wisconsin, Milwaukee
| | - J Douglas Rizzo
- Center for International Bone Marrow Transplant Research, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
332
|
Current and emerging strategies for management of myelodysplastic syndromes. Blood Rev 2020; 48:100791. [PMID: 33423844 DOI: 10.1016/j.blre.2020.100791] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022]
Abstract
Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis with varying degrees of dysplasia and peripheral cytopenias. MDS are driven by structural chromosomal alterations and somatic mutations in neoplastic myeloid cells, which are supported by a tumorigenic and a proinflammatory marrow microenvironment. Current treatment strategies for lower-risk MDS focus on improving quality of life and cytopenias, while prolonging survival and delaying disease progression is the focus for higher-risk MDS. Several promising drugs are in the horizon, including the hypoxia-inducible factor stabilizer roxadustat, telomerase inhibitor imetelstat, oral hypomethylating agents (CC-486), TP53 modulators (APR-246 and ALRN-6924), and the anti-CD47 antibody magrolimab. Targeted therapies approved for acute myeloid leukemia treatment, such as isocitrate dehdyrogenase inhibitors and venetoclax, are also being studied for use in MDS. In this review, we provide a brief overview of pathogenesis and current treatment strategies in MDS followed by a discussion of newer agents that are under clinical investigation.
Collapse
|
333
|
Myllymäki M, Redd R, Reilly CR, Saber W, Spellman SR, Gibson CJ, Hu ZH, Wang T, Orr EH, Grenier JG, Chen MM, Steensma DP, Cutler C, De Vivo I, Antin JH, Neuberg D, Agarwal S, Lindsley RC. Short telomere length predicts nonrelapse mortality after stem cell transplantation for myelodysplastic syndrome. Blood 2020; 136:3070-3081. [PMID: 33367544 PMCID: PMC7770569 DOI: 10.1182/blood.2020005397] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is the only potentially curative treatment for patients with myelodysplastic syndrome (MDS), but long-term survival is limited by the risk of transplant-related complications. Short telomere length, mediated by inherited or acquired factors, impairs cellular response to genotoxic and replicative stress and could identify patients at higher risk for toxicity after transplantation. We measured relative telomere length in pretransplant recipient blood samples in 1514 MDS patients and evaluated the association of telomere length with MDS disease characteristics and transplantation outcomes. Shorter telomere length was significantly associated with older age, male sex, somatic mutations that impair the DNA damage response, and more severe pretransplant cytopenias, but not with bone marrow blast count, MDS treatment history, or history of prior cancer therapy. Among 1267 patients ≥40 years old, telomere length in the shortest quartile was associated with inferior survival (P < .001) because of a high risk of nonrelapse mortality (NRM; P = .001) after adjusting for significant clinical and genetic variables. The adverse impact of shorter telomeres on NRM was independent of recipient comorbidities and was observed selectively among patients receiving more intensive conditioning, including myeloablative regimens and higher dose melphalan-based reduced-intensity regimens. The effect of shorter telomeres on NRM was prominent among patients who developed severe acute graft-versus-host disease, suggesting that short telomere length may limit regenerative potential of mucosal tissues after acute injury. MDS patients with shorter telomere length, who have inferior survival driven by excess toxicity, could be considered for strategies focused on minimizing toxic effects of transplantation.
Collapse
Affiliation(s)
- Mikko Myllymäki
- Division of Hematological Malignancies, Department of Medical Oncology, and
| | - Robert Redd
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston MA
| | | | - Wael Saber
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | | | - Zhen-Huan Hu
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Esther H Orr
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Jaclyn G Grenier
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Maxine M Chen
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA
| | - David P Steensma
- Division of Hematological Malignancies, Department of Medical Oncology, and
| | - Corey Cutler
- Division of Hematological Malignancies, Department of Medical Oncology, and
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Boston, MA; and
| | - Joseph H Antin
- Division of Hematological Malignancies, Department of Medical Oncology, and
| | - Donna Neuberg
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston MA
| | - Suneet Agarwal
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - R Coleman Lindsley
- Division of Hematological Malignancies, Department of Medical Oncology, and
| |
Collapse
|
334
|
He W, Zhao C, Hu H. Prognostic effect of RUNX1 mutations in myelodysplastic syndromes: a meta-analysis. ACTA ACUST UNITED AC 2020; 25:494-501. [PMID: 33317419 DOI: 10.1080/16078454.2020.1858598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES RUNX1 mutations have been widely found in patients with myelodysplastic syndrome (MDS). Majority of reports revealed that RUNX1 mutations are associated with a poor prognosis. However, discrepancies still remain. The results of univariate analysis were not confirmed in multivariate analysis in some cases. Therefore, we performed a meta-analysis to assess the prognostic effect of RUNX1 mutations in MDS. METHODS We extracted data from qualified studies that were searched from PubMed, Embase and the Cochrane Library. Hazard ratios (HRs) and their 95% confidence intervals (CIs) for the overall survival (OS) and leukemia free survival (LFS) were pooled from the multivariate Cox proportional hazard models. RESULTS Sixteen studies containing 5422 patients were included in this meta-analysis. There were 617 patients with mutated RUNX1 and 4805 patients with wide type RUNX1. The total HR for OS was 1.43 (95% CI = 1.21-1.70, P < 0.0001) and the counterpart of LFS was 1.88 (95% CI = 1.42-2.51, P < 0.0001). DISCUSSION AND CONCLUSION These results suggest that the RUNX1 mutations are associated with unfavorable outcomes and shorter survival in patients with MDS. Furthermore, poor prognosis of patients might be alleviated by stem cell transplantation. Patients bearing these mutations should be prioritized for aggressive therapy.
Collapse
Affiliation(s)
- Wei He
- Department of Hematology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People's Republic of China
| | - Caifang Zhao
- Department of Hematology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People's Republic of China
| | - Huixian Hu
- Department of Hematology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People's Republic of China
| |
Collapse
|
335
|
Sallman DA, McLemore AF, Aldrich AL, Komrokji RS, McGraw KL, Dhawan A, Geyer S, Hou HA, Eksioglu EA, Sullivan A, Warren S, MacBeth KJ, Meggendorfer M, Haferlach T, Boettcher S, Ebert BL, Al Ali NH, Lancet JE, Cleveland JL, Padron E, List AF. TP53 mutations in myelodysplastic syndromes and secondary AML confer an immunosuppressive phenotype. Blood 2020; 136:2812-2823. [PMID: 32730593 PMCID: PMC7731792 DOI: 10.1182/blood.2020006158] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Somatic gene mutations are key determinants of outcome in patients with myelodysplastic syndromes (MDS) and secondary AML (sAML). In particular, patients with TP53 mutations represent a distinct molecular cohort with uniformly poor prognosis. The precise pathogenetic mechanisms underlying these inferior outcomes have not been delineated. In this study, we characterized the immunological features of the malignant clone and alterations in the immune microenvironment in patients with TP53-mutant and wild-type MDS or sAML. Notably, PDL1 expression is significantly increased in hematopoietic stem cells of patients with TP53 mutations, which is associated with MYC upregulation and marked downregulation of MYC's negative regulator miR-34a, a p53 transcription target. Notably, patients with TP53 mutations display significantly reduced numbers of bone marrow-infiltrating OX40+ cytotoxic T cells and helper T cells, as well as decreased ICOS+ and 4-1BB+ natural killer cells. Further, highly immunosuppressive regulatory T cells (Tregs) (ie, ICOShigh/PD-1-) and myeloid-derived suppressor cells (PD-1low) are expanded in cases with TP53 mutations. Finally, a higher proportion of bone marrow-infiltrating ICOShigh/PD-1- Treg cells is a highly significant independent predictor of overall survival. We conclude that the microenvironment of TP53 mutant MDS and sAML has an immune-privileged, evasive phenotype that may be a primary driver of poor outcomes and submit that immunomodulatory therapeutic strategies may offer a benefit for this molecularly defined subpopulation.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Female
- Humans
- Immunosuppression Therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Male
- MicroRNAs/genetics
- MicroRNAs/immunology
- Middle Aged
- Mutation
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/immunology
- Myelodysplastic Syndromes/pathology
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/pathology
- RNA, Neoplasm/genetics
- RNA, Neoplasm/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Tumor Suppressor Protein p53/immunology
Collapse
Affiliation(s)
- David A Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Amy F McLemore
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Amy L Aldrich
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Rami S Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Kathy L McGraw
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Abhishek Dhawan
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Susan Geyer
- Health Informatics Institute, University of South Florida, Tampa, FL
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Erika A Eksioglu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | | | | | | | | | - Steffen Boettcher
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Benjamin L Ebert
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - Najla H Al Ali
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Jeffrey E Lancet
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - John L Cleveland
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Alan F List
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| |
Collapse
|
336
|
Husby S, Hjermind Justesen E, Grønbæk K. Protein phosphatase, Mg 2+/Mn 2+-dependent 1D (PPM1D) mutations in haematological cancer. Br J Haematol 2020; 192:697-705. [PMID: 33616916 DOI: 10.1111/bjh.17120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/02/2020] [Indexed: 01/07/2023]
Abstract
Until recently, the protein phosphatase, Mg2+/Mn2+-dependent 1D (PPM1D) gene had not been examined in haematological cancer, but several studies have now explored the functional role of this gene and its aberrations. It is often mutated in the context of clonal haemopoiesis (including in patients with lymphoma, myeloproliferative neoplasms and myelodysplastic syndrome) and mutations have been associated with exposure to cytotoxic and radiation therapy, development of therapy-related neoplasms and inferior survival. The vast majority of PPM1D mutations found in haematopoietic cells are of the nonsense or frameshift type and located within terminal exon 6. These genetic defects are rarely found in the blood of healthy individuals. PPM1D encodes the PPM1D phosphatase [also named wild-type p53-induced phosphatase 1 (WIP1)], which negatively regulates signalling molecules within the DNA damage response pathway, including tumour suppressor p53. Clonal expansion of PPM1D mutant haematopoietic cells can potentially be prevented with inhibitors; however, human trials are awaited. In the present review, we provide a review of the literature regarding PPM1D and its role in haematological cancer.
Collapse
Affiliation(s)
- Simon Husby
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Emma Hjermind Justesen
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Grønbæk
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
337
|
Kubasch AS, Platzbecker U. Patient stratification in myelodysplastic syndromes: how a puzzle may become a map. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:418-425. [PMID: 33275703 PMCID: PMC7727505 DOI: 10.1182/hematology.2020000126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Heterogeneity is the disease-defining epithet of myelodysplastic syndromes (MDS), a clonal disorder of hematopoietic stem and progenitor cells. During the last decade, significant progress has been made to better understand the diversity of clinical, molecular, cellular, and immunological factors that are bound to the prognosis and outcomes of patients with MDS. Despite the rapid generation of all of this biological information, how to implement it has fallen short. Redefining clinical tools to use this new information remains a challenge. The holistic integration of novel, high-impact individual risk parameters such as patient-reported outcomes or mutational and immunological data into conventional risk stratification systems may further refine patient subgroups, improve predictive power for survival, and provide a next-generation classification and prognosis system for patients with MDS. Dichotomic treatment strategies in patients with MDS according to their patient and disease profiles highlight the importance of precise risk stratification, which may be complemented by the definition of granular cohorts of patients with myeloid neoplasms and a druggable target (ie, IDH1/2 mutations) across conventional blast thresholds.
Collapse
Affiliation(s)
- Anne Sophie Kubasch
- Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany; German MDS Study Group (D-MDS), Leipzig, Germany; and European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany
| | - Uwe Platzbecker
- Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany; German MDS Study Group (D-MDS), Leipzig, Germany; and European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany
| |
Collapse
|
338
|
Scott BL. Existing agents, novel agents, or transplantation for high-risk MDS. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:411-417. [PMID: 33275695 PMCID: PMC7727538 DOI: 10.1182/hematology.2020000125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The decision algorithm for treatment of advanced myelodysplastic syndrome (MDS) (intermediate- to very high-risk by the revised International Prognostic Scoring System [IPSS-R]) is complex. Often, the appropriate choice is unknown and not currently addressed by available clinical evidence. Although allogeneic hematopoietic cell transplantation (alloHCT) is curative for some patients with MDS, there is a concurrent high risk of mortality and morbidity. Alternatively, although hypomethylating agents (HMAs) have low toxicity, they are not thought to be curative, with a median increase in overall survival of only 9 months. Initial attempts to improve outcomes with HMAs through addition of novel agents failed, but there is hope that newer combination strategies will improve outcomes. Challenging clinical questions include who should be considered for alloHCT, appropriate timing and preparation for alloHCT, and appropriate therapeutic choices for patients who are not candidates for alloHCT. Given the interplay between alloHCT and non-alloHCT approaches, a unified coordinated approach is optimal for patients with advanced MDS. When possible, patients with advanced MDS should be encouraged to enroll into clinical trials that include alloHCT and non-alloHCT approaches.
Collapse
Affiliation(s)
- Bart L Scott
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA
| |
Collapse
|
339
|
Jiang L, Wang L, Shen C, Zhu S, Lang W, Luo Y, Zhang H, Yang W, Han Y, Ma L, Ren Y, Zhou X, Mei C, Ye L, Xu W, Yang H, Lu C, Jin J, Tong H. Impact of mutational variant allele frequency on prognosis in myelodysplastic syndromes. Am J Cancer Res 2020; 10:4476-4487. [PMID: 33415012 PMCID: PMC7783761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023] Open
Abstract
The clinical relevance of variant allele frequency (VAF) of recurrent mutations in myelodysplastic syndromes (MDS) has been increasingly reported. However, the prognostic value of mutational VAF across the genetic spectrum of MDS has not been extensively evaluated. In this study, we profiled the mutational spectrum of 382 newly diagnosed MDS patients using targeted next-generation sequencing. Exploratory analysis found that mutational VAF of some genes including TET2, TP53, and SF3B1 had significant associations with patient survival. Specifically, TET2 VAF ≥ 32% (HR 1.69, P = 0.025) and TP53 VAF ≥ 27% (HR 3.58, P < 0.001) were independently associated with shorter overall survival (OS). In contrast, SF3B1 VAF ≥ 15% had an independent association with better prognosis (HR 0.52, P = 0.048). In addition, high TET2 VAF was associated with an increased response to hypomethylating agents relative to low TET2 VAF (P = 0.009). Patients with high TP53 VAF more often possessed complex karyotypes than those with low VAF (P = 0.034). And patients with high SF3B1 VAF were more frequently classified as MDS with ring sideroblasts (MDS-RS) category than those with low VAF (P = 0.012). Meanwhile, we found that for some other genes like EZH2 and NRAS, once their mutations appeared, it meant poor survival regardless of mutational VAF. These findings suggest that mutational VAF of certain genes should be considered into the routine prognostic prediction and risk stratification of MDS patients.
Collapse
Affiliation(s)
- Lingxu Jiang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
| | - Lu Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
| | - Chuying Shen
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
| | - Shuanghong Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
| | - Wei Lang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
| | - Yingwan Luo
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
| | - Hua Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
| | - Wenli Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
| | - Yueyuan Han
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
| | - Liya Ma
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
| | - Yanling Ren
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
| | - Xinping Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
| | - Chen Mei
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
| | - Li Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
| | - Weilai Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
| | - Haiyang Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
| | - Chenxi Lu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhou 310003, Zhejiang Province, P. R. China
| |
Collapse
|
340
|
Ney GM, McKay L, Koschmann C, Mody R, Li Q. The Emerging Role of Ras Pathway Signaling in Pediatric Cancer. Cancer Res 2020; 80:5155-5163. [PMID: 32907837 PMCID: PMC10081825 DOI: 10.1158/0008-5472.can-20-0916] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
As genomic sequencing has become more widely available, the high prevalence of Ras pathway mutations in pediatric diseases has begun to emerge. Germline Ras-activating mutations have been known to contribute to cancer predisposition in a group of disorders known as the RASopathies, and now large pediatric sequencing studies have identified frequent somatic Ras pathway alterations across a diverse group of pediatric malignancies. These include glial brain tumors, relapsed high-risk neuroblastoma, embryonal rhabdomyosarcoma, acute myeloid leukemia, and relapsed acute lymphoblastic leukemia, and their prognostic impact is becoming increasingly better understood. Clinically, there has been success in targeting the Ras pathway in pediatric diseases, including the use of MEK inhibitors in plexiform neurofibromas associated with neurofibromatosis type 1 and the use of Ras pathway inhibitors in low-grade gliomas. Given the importance of this pathway in pediatric cancer, it is imperative that future studies strive to better understand the functional significance of these mutations, including their role in tumor growth and treatment resistance and how they can be better targeted to improve outcomes.
Collapse
Affiliation(s)
- Gina M Ney
- Department of Pediatrics, University of Michigan, Ann Arbor, MI.
| | - Laura McKay
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Carl Koschmann
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Rajen Mody
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Qing Li
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
341
|
Olson OC, Kang YA, Passegué E. Normal Hematopoiesis Is a Balancing Act of Self-Renewal and Regeneration. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a035519. [PMID: 31988205 DOI: 10.1101/cshperspect.a035519] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hematopoietic system is highly organized to maintain its functional integrity and to meet lifelong organismal demands. Hematopoietic stem cells (HSCs) must balance self-renewal with differentiation and the regeneration of the blood system. It is a complex balancing act between these competing HSC functions. Although highly quiescent at steady state, HSCs become activated in response to inflammatory cytokines and regenerative challenges. This activation phase leads to many intrinsic stresses such as replicative, metabolic, and oxidative stress, which can cause functional decline, impaired self-renewal, and exhaustion of HSCs. To cope with these insults, HSCs use both built-in and emergency-triggered stress-response mechanisms to maintain homeostasis and to defend against disease development. In this review, we discuss how the hematopoietic system operates in steady state and stress conditions, what strategies are used to maintain functional integrity, and how deregulation in the balance between self-renewal and regeneration can drive malignant transformation.
Collapse
Affiliation(s)
- Oakley C Olson
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Yoon-A Kang
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
342
|
Fit older adults with advanced myelodysplastic syndromes: who is most likely to benefit from transplant? Leukemia 2020; 35:1166-1175. [PMID: 33204012 PMCID: PMC8035144 DOI: 10.1038/s41375-020-01092-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/31/2020] [Indexed: 12/14/2022]
Abstract
We conducted a prospective observational study of fit adults aged 60 to 75 with advanced MDS, enrolled hierarchically for adverse MDS risk (intermediate-2 or high-risk international prognostic score [IPSS], low or intermediate-1 IPSS with poor-risk cytogenetics, or therapy-related MDS) or standard risk with severe cytopenia. A total of 290 patients enrolled at two centers: 175 for adverse risk and 115 for standard risk with severe cytopenia. 113 underwent HCT after a median of 5 months; median follow-up for all was 39.5 months. In univariable analyses, the hazard ratio (HR) for death comparing HCT with no HCT was 0.84 (p=0.30). The HR for death was 0.64 (p=0.04) for HCT ≤5 months after enrollment and 1.20 (p=0.39) for HCT >5 months. In multivariable analyses controlling for age, gender, ECOG performance status, cytogenetic risk, and IPSS risk group, HR for death was 0.75 (p=0.13) for HCT compared to no HCT, 0.57 (p=0.01) for adverse MDS risk and 1.33 (p=0.36) for standard risk with severe cytopenia. In this large, prospective cohort of fit older adults with advanced MDS, we found that survival was significantly improved if HCT was performed early or for adverse risk disease but not for standard risk disease with severe cytopenia.
Collapse
|
343
|
Bewersdorf JP, Carraway H, Prebet T. Emerging treatment options for patients with high-risk myelodysplastic syndrome. Ther Adv Hematol 2020; 11:2040620720955006. [PMID: 33240476 PMCID: PMC7675905 DOI: 10.1177/2040620720955006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell disorders
characterized by ineffective hematopoiesis with peripheral blood cytopenias,
dysplastic cell morphology, and a variable risk of progression to acute myeloid
leukemia (AML). The hypomethylating agents (HMA) azacitidine and decitabine have
been used for over a decade in MDS treatment and lead to a modest survival
benefit. However, response rates are only around 40% and responses are mostly
transient. For HMA-refractory patients the prognosis is poor and there are no
therapies approved by the United States Food and Drug Administration. Combinations of HMAs, especially along with immune checkpoint inhibitors, have
shown promising signals in both the frontline and HMA-refractory setting.
Several other novel agents including orally available and longer acting HMAs,
the BCL-2 inhibitor venetoclax, oral agents targeting driver mutations
(IDH1/2, FLT3), immunotherapies, and new options for
intensive chemotherapy have been studied with variable success and will be
reviewed herein. Except for the minority of patients with targetable driver
mutations, HMAs – likely as part of combination therapies – will remain the
backbone of frontline MDS treatment. However, the wider use of genetic testing
may enable a more targeted and individualized therapy of MDS patients.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA
| | - Hetty Carraway
- Leukemia Program, Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas Prebet
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, 37 College Street, Room 101, New Haven, CT 06511, USA
| |
Collapse
|
344
|
Miller PG, Steensma DP. Implications of Clonal Hematopoiesis for Precision Oncology. JCO Precis Oncol 2020; 4:639-646. [PMID: 35050749 DOI: 10.1200/po.20.00144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clonal hematopoiesis (CH) is common in middle-aged and elderly populations and confers a risk of hematological malignancy and also death due to cardiovascular disease. Prior therapy with cytotoxic chemotherapy or radiation increases the risk of CH, especially that associated with TP53 or PPM1D mutations. CH can complicate interpretation of cell-free or circulating tumor DNA assays, since most blood DNA is derived from hematopoietic cells. The specific determinants of clonal progression are unclear, but the gene carrying the mutation, size of the mutant clone, and presence of multiple mutations appear to increase risk of evolution to myeloid leukemia. While CH is not yet modifiable, specific mutations such as TET2 or IDH1/IDH2 confer vulnerabilities to established drugs or developmental compounds, and investigators are developing clinical trials to try to exploit these vulnerabilities.
Collapse
Affiliation(s)
- Peter G Miller
- Dana-Farber Cancer Institute, Boston MA.,Harvard Medical School, Boston MA
| | - David P Steensma
- Dana-Farber Cancer Institute, Boston MA.,Harvard Medical School, Boston MA
| |
Collapse
|
345
|
Suo P, Wang S, Xue Y, Cheng Y, Kong J, Yan C, Zhao X, Chen Y, Han W, Xu L, Zhang X, Liu K, Zhang L, Huang X, Wang Y. Unmanipulated haploidentical hematopoietic stem cell transplantation for children with myelodysplastic syndrome. Pediatr Transplant 2020; 24:e13864. [PMID: 32985788 DOI: 10.1111/petr.13864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022]
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous group of clonal disorders and is rare in children. Allogeneic hematopoietic stem cell transplantation (HSCT) is commonly used in children with MDS with excess blasts and in patients with refractory cytopenia of childhood (RCC) associated with monosomy 7, complex karyotype, severe neutropenia, or transfusion dependence. We recruited 27 children with MDS who received haploidentical hematopoietic stem cell transplantation (haplo-HSCT). At transplantation, 10 patients had RCC, 12 patients had advanced MDS (RAEB and RAEB-T), and 5 patients had myelodysplasia-related acute myeloid leukemia (MDR-AML). All patients received granulocyte colony-stimulating factor (G-CSF)-mobilized bone marrow cells and peripheral blood stem cells. At a median follow-up of 24.1 months (range: 2.0-74.5 months) after HSCT, the estimated probabilities of 3-year disease-free survival (DFS) and overall survival (OS) were both 81.9% (95% CI, 66.8-100.0%). The estimated 3-year incidences of relapse (CIR) and non-relapse mortality (NRM) were both 7.4% (95% CI, 1.2%-21.4%). The 100-day cumulative incidence of grade II-IV aGVHD was 52.6% (95% CI, 42.9-62.3%), while that of grade III-IV aGVHD was 11.1% (95% CI, 5.1-17.1%). The 3-year cumulative incidences of overall and extensive cGVHD were 42.3% (95% CI, 19.8%-57.5%) and 21.1% (95% CI, 2.5%-63.2%), respectively. Univariate analysis showed that chronic GVHD significantly affected OS and DFS. Haploidentical HSCT may be an effective treatment option with easier donor availability for pediatric patients with MDS.
Collapse
Affiliation(s)
- Pan Suo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Shasha Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yujuan Xue
- Pediatrics Department of Peking University People's Hospital, Beijing, China
| | - Yifei Cheng
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jun Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chenhua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiangyu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yao Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lanping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Kaiyan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Leping Zhang
- Pediatrics Department of Peking University People's Hospital, Beijing, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
346
|
Garcia‐Manero G, Chien KS, Montalban‐Bravo G. Myelodysplastic syndromes: 2021 update on diagnosis, risk stratification and management. Am J Hematol 2020; 95:1399-1420. [PMID: 32744763 DOI: 10.1002/ajh.25950] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
DISEASE OVERVIEW The myelodysplastic syndromes (MDS) are a very heterogeneous group of myeloid disorders characterized by peripheral blood cytopenias and increased risk of transformation to acute myelogenous leukemia (AML). Myelodysplastic syndromes occur more frequently in older males and in individuals with prior exposure to cytotoxic therapy. DIAGNOSIS Diagnosis of MDS is based on morphological evidence of dysplasia upon visual examination of a bone marrow aspirate and biopsy. Information obtained from additional studies such as karyotype, flow cytometry and molecular genetics is usually complementary and may help refine diagnosis. RISK-STRATIFICATION Prognosis of patients with MDS can be calculated using a number of scoring systems. In general, all these scoring systems include analysis of peripheral cytopenias, percentage of blasts in the bone marrow and cytogenetic characteristics. The most commonly accepted system is the Revised International Prognostic Scoring System (IPSS-R). Somatic mutations can help define prognosis and therapy. RISK-ADAPTED THERAPY Therapy is selected based on risk, transfusion needs, percent of bone marrow blasts, cytogenetic and mutational profiles, comorbidities, potential for allogeneic stem cell transplantation (alloSCT) and prior exposure to hypomethylating agents (HMA). Goals of therapy are different in lower-risk patients than in higher-risk individuals and in those with HMA failure. In lower-risk MDS, the goal is to decrease transfusion needs and transformation to higher risk disease or AML, as well as to improve survival. In higher-risk disease, the goal is to prolong survival. In 2020, we witnessed an explosion of new agents and investigational approaches. Current available therapies include growth factor support, lenalidomide, HMAs, intensive chemotherapy and alloSCT. Novel therapeutics approved in 2020 are luspatercept and the oral HMA ASTX727. At the present time, there are no approved interventions for patients with progressive or refractory disease particularly after HMA-based therapy. Options include participation in a clinical trial, cytarabine-based therapy or alloSCT.
Collapse
Affiliation(s)
- Guillermo Garcia‐Manero
- Section of MDS, Department of Leukemia University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Kelly S. Chien
- Section of MDS, Department of Leukemia University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Guillermo Montalban‐Bravo
- Section of MDS, Department of Leukemia University of Texas MD Anderson Cancer Center Houston Texas USA
| |
Collapse
|
347
|
Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun 2020; 11:5327. [PMID: 33087716 PMCID: PMC7577981 DOI: 10.1038/s41467-020-19119-8] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/22/2020] [Indexed: 02/04/2023] Open
Abstract
Clonal diversity is a consequence of cancer cell evolution driven by Darwinian selection. Precise characterization of clonal architecture is essential to understand the evolutionary history of tumor development and its association with treatment resistance. Here, using a single-cell DNA sequencing, we report the clonal architecture and mutational histories of 123 acute myeloid leukemia (AML) patients. The single-cell data reveals cell-level mutation co-occurrence and enables reconstruction of mutational histories characterized by linear and branching patterns of clonal evolution, with the latter including convergent evolution. Through xenotransplantion, we show leukemia initiating capabilities of individual subclones evolving in parallel. Also, by simultaneous single-cell DNA and cell surface protein analysis, we illustrate both genetic and phenotypic evolution in AML. Lastly, single-cell analysis of longitudinal samples reveals underlying evolutionary process of therapeutic resistance. Together, these data unravel clonal diversity and evolution patterns of AML, and highlight their clinical relevance in the era of precision medicine. Understanding the evolutionary trajectory of cancer samples may enable understanding resistance to treatment. Here, the authors used single cell sequencing of a cohort of acute myeloid leukemia tumours and identify features of linear and branching evolution in tumours.
Collapse
|
348
|
Sill H, Zebisch A, Haase D. Acute Myeloid Leukemia and Myelodysplastic Syndromes with TP53 Aberrations - A Distinct Stem Cell Disorder. Clin Cancer Res 2020; 26:5304-5309. [PMID: 32816950 PMCID: PMC7116522 DOI: 10.1158/1078-0432.ccr-20-2272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022]
Abstract
The tumor suppressor p53 exerts pivotal roles in hematopoietic stem cell (HSC) homeostasis. Mutations of the TP53 gene have recently been described in individuals with clonal hematopoiesis conferring substantial risk of developing blood cancers. In patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), TP53 aberrations-mutations, deletions, and a combination thereof-are encountered at a constant frequency of approximately 10%. These aberrations affect HSCs transforming them into preleukemic stem cells, pinpointing their central role in leukemogenesis. AML and MDS with TP53 aberrations are characterized by complex chromosomal aberrations. Respective patients experience a dismal long-term outcome following treatment with both intensive and nonintensive regimens including novel agents like venetoclax combinations or even allogeneic HSC transplantation. However, according to the 2016 WHO classification, AML and MDS with TP53 aberrations are still regarded as separate disease entities. On the basis of their common biological and clinical features, we propose to classify AML and MDS with TP53 aberrations as a single, distinct stem cell disorder with a unique genetic make-up, comparable with the WHO classification of "AML with recurrent genetic abnormalities." This approach will have implications for basic and translational research endeavors, aid in harmonization of current treatment strategies, and facilitate the development of master trials targeting a common deleterious driver event.
Collapse
Affiliation(s)
- Heinz Sill
- Division of Hematology, Medical University of Graz, Graz, Austria.
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Graz, Austria
- Otto-Loewi-Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Austria
| | - Detlef Haase
- Clinics of Hematology and Medical Oncology, University Medical Center, Georg-August-University, Goettingen, Germany
| |
Collapse
|
349
|
Affiliation(s)
- Mario Cazzola
- From Fondazione IRCCS Policlinico San Matteo and the University of Pavia, Pavia, Italy
| |
Collapse
|
350
|
Bewersdorf JP, Zeidan AM. Following in the footsteps of acute myeloid leukemia: are we witnessing the start of a therapeutic revolution for higher-risk myelodysplastic syndromes? Leuk Lymphoma 2020; 61:2295-2312. [PMID: 32421403 PMCID: PMC7670856 DOI: 10.1080/10428194.2020.1761968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/21/2022]
Abstract
For most patients with higher-risk myelodysplastic syndromes (HR-MDS) the hypomethylating agents (HMA) azacitidine and decitabine remain the mainstay of therapy. However, the prognosis mostly remains poor and aside from allogeneic hematopoietic stem cell transplantation no curative treatment options exist. Unlike acute myeloid leukemia, which has seen a dramatic expansion of available therapies recently, no new agents have been approved for MDS in the United States since 2006. However, various novel HMAs, HMA in combination with venetoclax, immune checkpoint inhibitors, and targeted therapies for genetically defined patient subgroups such as APR-246 or IDH inhibitors, have shown promising results in early stages of clinical testing. Furthermore, the wider availability of genetic testing is going to allow for a more individualized treatment of MDS patients. Herein, we review the current treatment approach for HR-MDS and discuss recent therapeutic advances and the implications of genetic testing on management of HR-MDS.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT
| | - Amer M. Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|