301
|
Priller C, Mitteregger G, Paluch S, Vassallo N, Staufenbiel M, Kretzschmar HA, Jucker M, Herms J. Excitatory synaptic transmission is depressed in cultured hippocampal neurons of APP/PS1 mice. Neurobiol Aging 2009; 30:1227-37. [DOI: 10.1016/j.neurobiolaging.2007.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/18/2007] [Accepted: 10/25/2007] [Indexed: 01/01/2023]
|
302
|
Amadoro G, Corsetti V, Ciotti MT, Florenzano F, Capsoni S, Amato G, Calissano P. Endogenous Aβ causes cell death via early tau hyperphosphorylation. Neurobiol Aging 2009; 32:969-90. [PMID: 19628305 DOI: 10.1016/j.neurobiolaging.2009.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 03/25/2009] [Accepted: 06/20/2009] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is characterized by Aβ overproduction and tau hyperphosphorylation. We report that an early, transient and site-specific AD-like tau hyperphosphorylation at Ser262 and Thr231 epitopes is temporally and causally related with an activation of the endogenous amyloidogenic pathway that we previously reported in hippocampal neurons undergoing cell death upon NGF withdrawal [Matrone, C., Ciotti, M.T., Mercanti, D., Marolda, R., Calissano, P., 2008b. NGF and BDNF signaling control amyloidogenic route and Ab production in hippocampal neurons. Proc. Natl. Acad. Sci. 105, 13138-13143]. Such tau hyperphosphorylation, as well as apoptotic death, is (i) blocked by 4G8 and 6E10 Aβ antibodies or by specific β and/or γ-secretases inhibitors; (ii) temporally precedes tau cleavage mediated by a delayed (6-12h after NGF withdrawal) activation of caspase-3 and calpain-I; (iii) under control of Akt-GSK3β-mediated signaling. Finally, we show that such site-specific tau hyperphosphorylation causes tau detachment from microtubules and an impairment of mitochondrial trafficking. These results depict, for the first time, a rapid interplay between endogenous Aβ and tau post-translational modifications which act co-ordinately to compromise neuronal functions in the same neuronal system, under physiological conditions as seen in AD brain.
Collapse
Affiliation(s)
- G Amadoro
- Institute of Neurobiology and Molecular Medicine, CNR, Via del Fosso di Fiorano 64-65, 00143 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
303
|
Abstract
Treatment for Alzheimer's disease is entering a new and exciting phase, with several new drugs beginning clinical trials. Many of these new therapies are based on our best current understanding of the pathogenesis of Alzheimer's disease, and are designed to try to either slow or halt the progression of the disease. There are several different theories underlying the current efforts, and these are briefly reviewed. Therapies directed against some aspect of β-amyloid formation, against neurofibrillary tangle formation and against the inflammatory response are all considered, as are the problems associated with each area. It is as yet unclear which, if any, of these approaches will be successful, but the high level of activity in each of these three fields provides some hope that an effective treatment for Alzheimer's disease is on the horizon.
Collapse
Affiliation(s)
- Peter Davies
- Litwin-Zucker Center for Research on Alzheimer's Disease, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| | | |
Collapse
|
304
|
Alterations in excitotoxicity and prostaglandin metabolism in a transgenic mouse model of Alzheimer's disease. Neurochem Int 2009; 55:689-96. [PMID: 19560505 DOI: 10.1016/j.neuint.2009.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/17/2009] [Accepted: 06/19/2009] [Indexed: 11/21/2022]
Abstract
To address the potential impact of presenilin mutations on the prostaglandin metabolism in a neurodegenerative model of glutamatergic excitotoxicity, we injected kainic acid intraperitoneally (30mg/kg body weight) into mice over-expressing the human N141I mutation of presenilin-2, which is known to cause an early-onset form of Alzheimer's disease. We compared the seizure activity as well as seizure lethality in 2- and 6-month-old mice, transgenic for the above-mentioned point mutation, and their wildtype littermates and found that mice harboring the hN141I mutation showed a relative resistance to excitotoxic treatment. This was associated with a constituitively reduced expression of the cyclooxygenases COX-1 and COX-2 in the hippocampus of N141I presenilin-2 mice and a reduced induction of COX-2 expression post-kainate injection. In the past, clinical trials have suggested that both non-steroidal anti-inflammatory drugs, which impact upon a cell's prostaglandin metabolism, and glutamatergic antagonists might be of benefit to patients suffering from Alzheimer's-type dementias. Yet, the exact mechanism by which these drugs are beneficial remains unclear, although it seems possible that presenilins might be implicated in the process, at least in the case of early-onset forms. The data presented here strongly support the notion of an implication of presenilins in the alterations in the prostaglandin system, which have been observed in Alzheimer's disease and may contribute to the underlying pathogenesis of the disease.
Collapse
|
305
|
Jakob-Roetne R, Jacobsen H. Alzheimer's disease: from pathology to therapeutic approaches. Angew Chem Int Ed Engl 2009; 48:3030-59. [PMID: 19330877 DOI: 10.1002/anie.200802808] [Citation(s) in RCA: 486] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mind how you go: The current strategies for the development of therapies for Alzheimer's disease are very diverse. Particular attention is given to the search for inhibitors (see picture for two examples) of the proteolytic enzyme beta- and gamma-secretase, which inhibits the cleavage of the amyloid precursor proteins into amyloid beta peptides, from which the disease-defining deposits of plaque in the brains of Alzheimer's patients originates.Research on senile dementia and Alzheimer's disease covers an extremely broad range of scientific activities. At the recent international meeting of the Alzheimer's Association (ICAD 2008, Chicago) more than 2200 individual scientific contributions were presented. The aim of this Review is to give an overview of the field and to outline its main areas, starting from behavioral abnormalities and visible pathological findings and then focusing on the molecular details of the pathology. The "amyloid hypothesis" of Alzheimer's disease is given particular attention, since the majority of the ongoing therapeutic approaches are based on its theoretical framework.
Collapse
Affiliation(s)
- Roland Jakob-Roetne
- F.Hoffmann-La Roche AG, Medicinal Chemistry, Bldg 92/8.10B, 4070 Basel, Switzerland.
| | | |
Collapse
|
306
|
Abstract
The amyloid hypothesis has been the basis for most work on the pathogenesis of Alzheimer's disease. Recent clinical trials based on this hypothesis have been inconclusive. In this article I review the current status of the hypothesis and suggest that a major scientific need is to understand the normal function of amyloid-beta precursor protein (APP) and think how this may relate to the cell death in the disease process.
Collapse
Affiliation(s)
- John Hardy
- Reta Lilla Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.
| |
Collapse
|
307
|
Podoly E, Shalev DE, Shenhar-Tsarfaty S, Bennett ER, Ben Assayag E, Wilgus H, Livnah O, Soreq H. The butyrylcholinesterase K variant confers structurally derived risks for Alzheimer pathology. J Biol Chem 2009; 284:17170-17179. [PMID: 19383604 PMCID: PMC2719355 DOI: 10.1074/jbc.m109.004952] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The K variant of butyrylcholinesterase (BChE-K, 20% incidence) is a long debated risk factor for Alzheimer disease (AD). The A539T substitution in BChE-K is located at the C terminus, which is essential both for BChE tetramerization and for its capacity to attenuate β-amyloid (Aβ) fibril formation. Here, we report that BChE-K is inherently unstable as compared with the “usual” BChE (BChE-U), resulting in reduced hydrolytic activity and predicting prolonged acetylcholine maintenance and protection from AD. A synthetic peptide derived from the C terminus of BChE-K (BSP-K), which displayed impaired intermolecular interactions, was less potent in suppressing Aβ oligomerization than its BSP-U counterpart. Correspondingly, highly purified recombinant human rBChE-U monomers suppressed β-amyloid fibril formation less effectively than dimers, which also protected cultured neuroblastoma cells from Aβ neurotoxicity. Dual activity structurally derived changes due to the A539T substitution can thus account for both neuroprotective characteristics caused by sustained acetylcholine levels and elevated AD risk due to inefficient interference with amyloidogenic processes.
Collapse
Affiliation(s)
- Erez Podoly
- From The Alexander Silberman Life Sciences Institute, Jerusalem 91904, Israel; The Wolfson Centre for Applied Structural Biology, Safra Campus Givat Ram, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Deborah E Shalev
- The Wolfson Centre for Applied Structural Biology, Safra Campus Givat Ram, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shani Shenhar-Tsarfaty
- Department of Neurology, Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Estelle R Bennett
- From The Alexander Silberman Life Sciences Institute, Jerusalem 91904, Israel
| | - Einor Ben Assayag
- Department of Neurology, Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Harvey Wilgus
- PharmAthene Canada Inc., Montreal, Quebec QC H4S 2C8, Canada
| | - Oded Livnah
- From The Alexander Silberman Life Sciences Institute, Jerusalem 91904, Israel; The Wolfson Centre for Applied Structural Biology, Safra Campus Givat Ram, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Hermona Soreq
- From The Alexander Silberman Life Sciences Institute, Jerusalem 91904, Israel.
| |
Collapse
|
308
|
Hunter S, Friedland RP, Brayne C. Time for a change in the research paradigm for Alzheimer's disease: the value of a chaotic matrix modeling approach. CNS Neurosci Ther 2009; 16:254-62. [PMID: 20002628 DOI: 10.1111/j.1755-5949.2009.00117.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The amyloid cascade hypothesis, based on the genetic data from early onset, familial forms of the disease, has been the dominant model for many years and involves over production and deposition of the beta amyloid protein as causal in the disease process. However, it does not apply very well to the more common, later onset, sporadic form of the disease, where a wider range of factors appear to be involved in disease progression. Over recent years, data illustrating reciprocal interactions between the amyloid precursor protein (APP) and its various metabolites with many factors involved in normal synaptic plasticity have emerged. These feedback relationships have the potential to affect the complex kinase cascades involved in every aspect of neuronal function. Further, data regarding the multiple roles of the presenilins have the potential to allow the over expression and deposition of the amyloid beta protein to be both a cause and consequence of disease progression, with relevance in both sporadic and familial of Alzheimer's disease (AD). Disease progression might be better explained by a chaotic matrix of factors and raises the question again whether AD should be approached as a single entity or as a syndrome, with important consequences for disease identification and treatment.
Collapse
Affiliation(s)
- Sally Hunter
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Forvie Site, Robinson Way, Cambridge, United Kingdom.
| | | | | |
Collapse
|
309
|
Jakob-Roetne R, Jacobsen H. Die Alzheimer-Demenz: von der Pathologie zu therapeutischen Ansätzen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200802808] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
310
|
Matsuda S, Matsuda Y, D'Adamio L. BRI3 inhibits amyloid precursor protein processing in a mechanistically distinct manner from its homologue dementia gene BRI2. J Biol Chem 2009; 284:15815-25. [PMID: 19366692 DOI: 10.1074/jbc.m109.006403] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer disease (AD) is characterized by senile plaques, which are mainly composed of beta amyloid (Abeta) peptides. Abeta is cleaved off from amyloid precursor protein (APP) with consecutive proteolytic processing: beta-secretase, followed by gamma-secretase. Here, we show that BRI3, a member of the BRI gene family that includes the familial British and Danish dementia gene BRI2, interacts with APP and serves as an endogenous negative regulator of Abeta production. BRI3 colocalizes with APP along neuritis in differentiated N2a cells; endogenous BRI3-APP complexes are readily detectable in mouse brain extract; reducing endogenous BRI3 levels by RNA interference results in increased Abeta secretion. BRI3 resembles BRI2, because BRI3 overexpression reduces both alpha- and beta-APP cleavage. We propose that BRI3 inhibits the various processing of APP by blocking the access of alpha- and beta-secretases to APP. However, unlike BRI2, the binding of BRI3 to the beta-secretase cleaved APP C-terminal fragment is negligible and BRI3 does not cause the massive accumulation of this APP fragment, suggesting that, unlike BRI2, BRI3 is a poor gamma-cleavage inhibitor. Competitive inhibition of APP processing by BRI3 may provide a new approach to AD therapy and prevention.
Collapse
Affiliation(s)
- Shuji Matsuda
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York 1046, USA
| | | | | |
Collapse
|
311
|
McCarty JH. Integrin-mediated regulation of neurovascular development, physiology and disease. Cell Adh Migr 2009; 3:211-5. [PMID: 19372738 DOI: 10.4161/cam.3.2.7767] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mammalian central nervous system (CNS) is comprised of billions of neurons and glia that are intertwined with an elaborate network of blood vessels. These various neural and vascular cell types actively converse with one another to form integrated, multifunctional complexes, termed neurovascular units. Cell-cell communication within neurovascular units promotes normal CNS development and homeostasis, and abnormal regulation of these events leads to a variety of debilitating CNS diseases. This review will summarize (1) cellular and molecular mechanisms that regulate physiological assembly and maintenance of neurovascular units; and (2) signaling events that induce pathological alterations in neurovascular unit formation and function. An emphasis will be placed on neural-vascular cell adhesion events mediated by integrins and their extracellular matrix (ECM) ligands. I will highlight the role of a specific adhesion and signaling axis involving alphavbeta8 integrin, latent transforming growth factor beta's (TGFbeta's), and canonical TGFbeta receptors. Possible functional links between components of this axis and other signal transduction cascades implicated in neurovascular development and disease will be discussed. Comprehensively understanding the pathways that regulate bidirectional neural-vascular cell contact and communication will provide new insights into the mechanisms of neurovascular unit development, physiology and disease.
Collapse
Affiliation(s)
- Joseph H McCarty
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, 77030, USA.
| |
Collapse
|
312
|
Aoyama T, Takeshita K, Kikuchi R, Yamamoto K, Cheng XW, Liao JK, Murohara T. gamma-Secretase inhibitor reduces diet-induced atherosclerosis in apolipoprotein E-deficient mice. Biochem Biophys Res Commun 2009; 383:216-21. [PMID: 19345673 DOI: 10.1016/j.bbrc.2009.03.154] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 03/28/2009] [Indexed: 01/15/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease resulting from interactions between lipids, macrophages and arterial wall cells. The Notch signaling pathway is involved in the activation of macrophages in atherosclerotic lesions. This study examined whether pharmacological inhibition of Notch signaling using a gamma-secretase inhibitor (GSI) can reduce atherosclerotic lesion formation. Notch-related molecules were significantly increased in aortas from apolipoprotein E-deficient (ApoE(-/-)) mice. In particular, macrophages in the plaques showed strong expression of Notch1 and a downstream transcriptional factor, Hes-1. A GSI (LY411,575, 0.2, and 1.0mg/kg/day) or vehicle control was then administered to ApoE(-/-) mice fed Western diet for 8 weeks before measuring the expression of Notch-related molecules. Systemic administration of GSI suppressed Notch signaling in vivo and reduced total plaque areas and fatty streak content in the aortic sinus in a dose-dependent manner without serious adverse effects. The GSI also suppressed the migratory activity of macrophages and reduced the expression of intercellular adhesion molecule-1, resulting in significantly decreased macrophage infiltration in the atherosclerotic plaques. These results provided new insight into the anti-atherogenic properties of GSI in Apo E(-/-) mice fed Western diet.
Collapse
Affiliation(s)
- Toru Aoyama
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
313
|
Reiner O, Shmueli A, Sapir T. Neuronal migration and neurodegeneration: 2 sides of the same coin. Cereb Cortex 2009; 19 Suppl 1:i42-8. [PMID: 19346270 DOI: 10.1093/cercor/bhp039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The human genome contains only about double the number of genes in comparison to the fruit fly. This necessitates efficient recurrent usage of the same molecular components to participate in different processes. When the same proteins are used for different signaling pathways, it may be conceivable that if they go awry the phenotypic consequences may vary to a great extent. The involvement of amyloid beta precursor protein, Presenilin-1, and Tau in the pathogenesis of Alzheimer's disease is well established. Here we are highlighting a second facet of their function, their participation in developmental and adult neuronal migration. We propose that the prevalent and early Anosmia found in Alzheimer's patients may be due in part to malfunctioning of the above-mentioned proteins.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
314
|
Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 2009; 10:333-44. [PMID: 19339974 DOI: 10.1038/nrn2620] [Citation(s) in RCA: 794] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vast majority of Alzheimer's disease (AD) cases are late-onset and their development is probably influenced by both genetic and environmental risk factors. A strong genetic risk factor for late-onset AD is the presence of the epsilon4 allele of the apolipoprotein E (APOE) gene, which encodes a protein with crucial roles in cholesterol metabolism. There is mounting evidence that APOE4 contributes to AD pathogenesis by modulating the metabolism and aggregation of amyloid-beta peptide and by directly regulating brain lipid metabolism and synaptic functions through APOE receptors. Emerging knowledge of the contribution of APOE to the pathophysiology of AD presents new opportunities for AD therapy.
Collapse
|
315
|
Boonen RA, van Tijn P, Zivkovic D. Wnt signaling in Alzheimer's disease: up or down, that is the question. Ageing Res Rev 2009; 8:71-82. [PMID: 19101658 DOI: 10.1016/j.arr.2008.11.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/26/2008] [Accepted: 11/26/2008] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, neuropathologically characterized by amyloid-beta (Abeta) plaques and hyperphosphorylated tau accumulation. AD occurs sporadically (SAD), or is caused by hereditary missense mutations in the amyloid precursor protein (APP) or presenilin-1 and -2 (PSEN1 and PSEN2) genes, leading to early-onset familial AD (FAD). Accumulating evidence points towards a role for altered Wnt/beta-catenin-dependent signaling in the etiology of both forms of AD. Presenilins are involved in modulating beta-catenin stability; therefore FAD-linked PSEN-mediated effects can deregulate the Wnt pathway. Genetic variations in the low-density lipoprotein receptor-related protein 6 and apolipoprotein E in AD have been associated with reduced Wnt signaling. In addition, tau phosphorylation is mediated by glycogen synthase kinase-3 (GSK-3), a key antagonist of the Wnt pathway. In this review, we discuss Wnt/beta-catenin signaling in both SAD and FAD, and recapitulate which of its aberrant functions may be critical for (F)AD pathogenesis. We discuss the intriguing possibility that Abeta toxicity may downregulate the Wnt/beta-catenin pathway, thereby upregulating GSK-3 and consequent tau hyperphosphorylation, linking Abeta and tangle pathology. The currently available evidence implies that disruption of tightly regulated Wnt signaling may constitute a key pathological event in AD. In this context, drug targets aimed at rescuing Wnt signaling may prove to be a constructive therapeutic strategy for AD.
Collapse
|
316
|
Watanabe H, Smith MJ, Heilig E, Beglopoulos V, Kelleher RJ, Shen J. Indirect regulation of presenilins in CREB-mediated transcription. J Biol Chem 2009; 284:13705-13713. [PMID: 19289467 DOI: 10.1074/jbc.m809168200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Presenilins are essential for synaptic function, memory formation, and neuronal survival. Previously, we reported that expression of cAMP response element-binding protein (CREB) target genes is reduced in the cerebral cortex of presenilin (PS) conditional double knock-out (cDKO) mice. To determine whether the reduced expression of the CREB target genes in these mutant mice is due to loss of presenilin directly or secondary to the impaired neuronal activity, we established a sensitive luciferase reporter system to assess direct transcriptional regulation in cultured cells. We first used immortalized PS-deficient mouse embryonic fibroblasts (MEFs), and found that both CREB-mediated transcription and Notch-mediated HES1 transcription are decreased. However, the ubiquitin-C promoter-mediated transcription is also reduced, and among these three reporters, transfection of exogenous PS1 can rescue only the Notch-mediated HES1 transcription. Further Northern analysis revealed transcriptional alterations of Creb, ubiquitin-C, and other housekeeping genes in PS-deficient MEFs, indicating transcriptional dysregulation in these cells. We then used the Cre/loxP system to develop a postnatal PS-deficient cortical neuronal culture. Surprisingly, in these PS-null neurons, CREB-mediated transcription is not significantly decreased, and levels of total and phosphorylated CREB proteins are unchanged as well. Notch-mediated HES1 transcription is markedly reduced, and this reduction can be rescued by exogenous PS1. Together, our findings suggest that CREB-mediated transcription is regulated indirectly by PS in the adult cerebral cortex, and that attenuation of CREB target gene expression in PS cDKO mice is likely due to reduced neuronal activity in these mutant brains.
Collapse
Affiliation(s)
- Hirotaka Watanabe
- Center for Neurologic Diseases, Brigham & Women's Hospital Harvard Medical School, Boston, Massachusetts 02115
| | - Miriam J Smith
- Center for Neurologic Diseases, Brigham & Women's Hospital Harvard Medical School, Boston, Massachusetts 02115
| | - Elizabeth Heilig
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Vassilios Beglopoulos
- Center for Neurologic Diseases, Brigham & Women's Hospital Harvard Medical School, Boston, Massachusetts 02115
| | - Raymond J Kelleher
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jie Shen
- Center for Neurologic Diseases, Brigham & Women's Hospital Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
317
|
Futai E, Yagishita S, Ishiura S. Nicastrin is dispensable for gamma-secretase protease activity in the presence of specific presenilin mutations. J Biol Chem 2009; 284:13013-22. [PMID: 19254953 PMCID: PMC2676034 DOI: 10.1074/jbc.m807653200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
γ-Secretase is a multisubunit membrane protein complex consisting of
presenilin (PS1), nicastrin (NCT), anterior pharynx-1, and presenilin enhancer
2. To analyze the activity of familial Alzheimer disease mutants and to
understand the roles of the subunits, we established a yeast transcriptional
activator Gal4p system with artificial γ-secretase substrates containing
amyloid precursor protein or Notch fragments. The γ-secretase activities
were evaluated by transcriptional activation of reporter genes upon Gal4p
release from the membrane-bound substrates, i.e. growth of yeast on
histidine and adenine, or β-galactosidase assay. We screened and
evaluated γ-secretase mutants using this reconstitution system in yeast,
which does not possess endogenous γ-secretase activity. When we
introduced familial Alzheimer mutants of PS1 in this system, their activities
were shown to be loss of function. Although the protease activity of wild type
PS1 depends on the other three subunits introduced, we obtained 15 new PS1
mutants, which are active in the absence of NCT. They possessed a S438P
mutation at the ninth transmembrane domain (TM9) together with one missense
mutation distributed through transmembrane and loop regions. These mutations
were not related to familial Alzheimer mutations of PS1 as identified so far.
The S438P mutant was partially active but required other mutations for full
activation. Results of the β-galactosidase assay suggested that they have
wild type protease activities, which were further confirmed by the
endoproteolysis of PS1, amyloid β peptides, and Notch intracellular
domain production in mammalian cells. These results suggest that NCT is
dispensable for the protease activity of γ-secretase.
Collapse
Affiliation(s)
- Eugene Futai
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
318
|
Mendonsa G, Dobrowolska J, Lin A, Vijairania P, Jong YJI, Baenziger NL. Molecular profiling reveals diversity of stress signal transduction cascades in highly penetrant Alzheimer's disease human skin fibroblasts. PLoS One 2009; 4:e4655. [PMID: 19247475 PMCID: PMC2644820 DOI: 10.1371/journal.pone.0004655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 01/26/2009] [Indexed: 11/18/2022] Open
Abstract
The serious and growing impact of the neurodegenerative disorder Alzheimer's disease (AD) as an individual and societal burden raises a number of key questions: Can a blanket test for Alzheimer's disease be devised forecasting long-term risk for acquiring this disorder? Can a unified therapy be devised to forestall the development of AD as well as improve the lot of present sufferers? Inflammatory and oxidative stresses are associated with enhanced risk for AD. Can an AD molecular signature be identified in signaling pathways for communication within and among cells during inflammatory and oxidative stress, suggesting possible biomarkers and therapeutic avenues? We postulated a unique molecular signature of dysfunctional activity profiles in AD-relevant signaling pathways in peripheral tissues, based on a gain of function in G-protein-coupled bradykinin B2 receptor (BKB2R) inflammatory stress signaling in skin fibroblasts from AD patients that results in tau protein Ser hyperphosphorylation. Such a signaling profile, routed through both phosphorylation and proteolytic cascades activated by inflammatory and oxidative stresses in highly penetrant familial monogenic forms of AD, could be informative for pathogenesis of the complex multigenic sporadic form of AD. Comparing stimulus-specific cascades of signal transduction revealed a striking diversity of molecular signaling profiles in AD human skin fibroblasts that express endogenous levels of mutant presenilins PS-1 or PS-2 or the Trisomy 21 proteome. AD fibroblasts bearing the PS-1 M146L mutation associated with highly aggressive AD displayed persistent BKB2R signaling plus decreased ERK activation by BK, correctible by gamma-secretase inhibitor Compound E. Lack of these effects in the homologous PS-2 mutant cells indicates specificity of presenilin gamma-secretase catalytic components in BK signaling biology directed toward MAPK activation. Oxidative stress revealed a JNK-dependent survival pathway in normal fibroblasts lost in PS-1 M146L fibroblasts. Complex molecular profiles of signaling dysfunction in the most putatively straightforward human cellular models of AD suggest that risk ascertainment and therapeutic interventions in AD as a whole will likely demand complex solutions.
Collapse
Affiliation(s)
- Graziella Mendonsa
- Department of Anatomy and Neurobiology, Program in Molecular Cell Biology, Division of Biology and Biomedical Sciences, Washington University, St.Louis, Missouri, United States of America
| | - Justyna Dobrowolska
- Department of Anatomy and Neurobiology, Program in Molecular Cell Biology, Division of Biology and Biomedical Sciences, Washington University, St.Louis, Missouri, United States of America
| | - Angela Lin
- Department of Anatomy and Neurobiology, Program in Molecular Cell Biology, Division of Biology and Biomedical Sciences, Washington University, St.Louis, Missouri, United States of America
| | - Pooja Vijairania
- Department of Anatomy and Neurobiology, Program in Molecular Cell Biology, Division of Biology and Biomedical Sciences, Washington University, St.Louis, Missouri, United States of America
| | - Y.-J. I. Jong
- Department of Anatomy and Neurobiology, Program in Molecular Cell Biology, Division of Biology and Biomedical Sciences, Washington University, St.Louis, Missouri, United States of America
| | - Nancy L. Baenziger
- Department of Anatomy and Neurobiology, Program in Molecular Cell Biology, Division of Biology and Biomedical Sciences, Washington University, St.Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
319
|
Pimplikar SW. Reassessing the amyloid cascade hypothesis of Alzheimer's disease. Int J Biochem Cell Biol 2008; 41:1261-8. [PMID: 19124085 DOI: 10.1016/j.biocel.2008.12.015] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 12/11/2008] [Accepted: 12/21/2008] [Indexed: 12/13/2022]
Abstract
Since its inception, the amyloid cascade hypothesis has dominated the field of Alzheimer's disease (AD) research and has provided the intellectual framework for therapeutic intervention. Although the details of the hypothesis continue to evolve, its core principle has remained essentially unaltered. It posits that the amyloid-beta peptides, derived from amyloid precursor protein (APP), are the root cause of AD. Substantial genetic and biochemical data support this view, and yet a number of findings also run contrary to its tenets. The presence of familial AD mutations in APP and presenilins, demonstration of Abeta toxicity, and studies in mouse models of AD all support the hypothesis, whereas the presence of Abeta plaques in normal individuals, the uncertain nature of the pathogenic Abeta species, and repeated disappointments with Abeta-centered therapeutic trials are inconsistent with the hypothesis. The current state of knowledge does not prove nor disprove the amyloid hypothesis, but rather points to the need for its reassessment. A view that Abeta is one of the factors, as opposed to the factor, that causes AD is more consistent with the present knowledge, and is more likely to promote comprehensive and effective therapeutic strategies.
Collapse
Affiliation(s)
- Sanjay W Pimplikar
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States.
| |
Collapse
|
320
|
Abstract
It is lay knowledge now that Alzheimer's dementia (AD) is one of the most devastating diseases afflicting our societies. A major thrust in search for a cure has relied in the development of animal models of the disease. Thanks to progress in the genetics of the rare inherited forms of AD, various transgenic mouse models harboring human mutated proteins were developed, yielding very significant advancements in the understanding of pathological pathways. Although these models led to testing many different new therapies, none of the preclinical successes have translated yet into much needed therapeutic improvements. Further insight into the metabolic disturbances that are probably associated with the onset of the disease may also rely on new animal models of AD involving insulin/IGF-I signaling that could mimic the far most common sporadic forms of AD associated with old age. Combination of models of familial AD that develop severe amyloidosis with those displaying defects in insulin/IGF-I signaling may help clarify the link between putative initial metabolic disturbances and mechanisms of pathological progression.
Collapse
|
321
|
Hass MR, Sato C, Kopan R, Zhao G. Presenilin: RIP and beyond. Semin Cell Dev Biol 2008; 20:201-10. [PMID: 19073272 DOI: 10.1016/j.semcdb.2008.11.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/19/2008] [Accepted: 11/19/2008] [Indexed: 12/22/2022]
Abstract
Over the years the presenilins (PSENs), a family of multi-transmembrane domain proteins, have been ascribed a number of diverse potential functions. Recent in vivo evidence has supported the existence of PSEN functions beyond its well-established role in regulated intramembrane proteolysis. In this review, we will briefly discuss the ability of PSEN to modulate cellular signaling pathways through gamma-secretase cleavage of transmembrane proteins. Additionally, we will critically examine the proposed roles of PSEN in the regulation of beta-catenin function, protein trafficking, calcium regulation, and apoptosis.
Collapse
Affiliation(s)
- Matthew R Hass
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, United States
| | | | | | | |
Collapse
|
322
|
Uemura K, Lill CM, Banks M, Asada M, Aoyagi N, Ando K, Kubota M, Kihara T, Nishimoto T, Sugimoto H, Takahashi R, Hyman BT, Shimohama S, Berezovska O, Kinoshita A. N-cadherin-based adhesion enhances Abeta release and decreases Abeta42/40 ratio. J Neurochem 2008; 108:350-60. [PMID: 19046403 DOI: 10.1111/j.1471-4159.2008.05760.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In neurons, Presenilin 1(PS1)/gamma-secretase is located at the synapses, bound to N-cadherin. We have previously reported that N-cadherin-mediated cell-cell contact promotes cell-surface expression of PS1/gamma-secretase. We postulated that N-cadherin-mediated trafficking of PS1 might impact synaptic PS1-amyloid precursor protein interactions and Abeta generation. In the present report, we evaluate the effect of N-cadherin-based contacts on Abeta production. We demonstrate that stable expression of N-cadherin in Chinese hamster ovary cells, expressing the Swedish mutant of human amyloid precursor protein leads to enhanced secretion of Abeta in the medium. Moreover, N-cadherin expression decreased Abeta(42/40) ratio. The effect of N-cadherin expression on Abeta production was accompanied by the enhanced accessibility of PS1/gamma-secretase to amyloid precursor protein as well as a conformational change of PS1, as demonstrated by the fluorescence lifetime imaging technique. These results indicate that N-cadherin-mediated synaptic adhesion may modulate Abeta secretion as well as the Abeta(42/40) ratio via PS1/N-cadherin interactions.
Collapse
Affiliation(s)
- Kengo Uemura
- Department of Neurology, Graduate School of Medicine, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Placanica L, Tarassishin L, Yang G, Peethumnongsin E, Kim SH, Zheng H, Sisodia SS, Li YM. Pen2 and presenilin-1 modulate the dynamic equilibrium of presenilin-1 and presenilin-2 gamma-secretase complexes. J Biol Chem 2008; 284:2967-2977. [PMID: 19036728 DOI: 10.1074/jbc.m807269200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
gamma-Secretase is known to play a pivotal role in the pathogenesis of Alzheimer disease through production of amyloidogenic Abeta42 peptides. Early onset familial Alzheimer disease mutations in presenilin (PS), the catalytic core of gamma-secretase, invariably increase the Abeta42:Abeta40 ratio. However, the mechanism by which these mutations affect gamma-secretase complex formation and cleavage specificity is poorly understood. We show that our in vitro assay system recapitulates the effect of PS1 mutations on the Abeta42:Abeta40 ratio observed in cell and animal models. We have developed a series of small molecule affinity probes that allow us to characterize active gamma-secretase complexes. Furthermore we reveal that the equilibrium of PS1- and PS2-containing active complexes is dynamic and altered by overexpression of Pen2 or PS1 mutants and that formation of PS2 complexes is positively correlated with increased Abeta42:Abeta40 ratios. These data suggest that perturbations to gamma-secretase complex equilibrium can have a profound effect on enzyme activity and that increased PS2 complexes along with mutated PS1 complexes contribute to an increased Abeta42:Abeta40 ratio.
Collapse
Affiliation(s)
- Lisa Placanica
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065; Department of Pharmacology, Weill Graduate School of Medical Science of Cornell University, New York, New York 10065
| | - Leonid Tarassishin
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Guangli Yang
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Erica Peethumnongsin
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Seong-Hun Kim
- The Center for Molecular Neurobiology, The University of Chicago, Chicago, Illinois 60637
| | - Hui Zheng
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Sangram S Sisodia
- The Center for Molecular Neurobiology, The University of Chicago, Chicago, Illinois 60637
| | - Yue-Ming Li
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065; Department of Pharmacology, Weill Graduate School of Medical Science of Cornell University, New York, New York 10065.
| |
Collapse
|
324
|
Maarouf CL, Daugs ID, Spina S, Vidal R, Kokjohn TA, Patton RL, Kalback WM, Luehrs DC, Walker DG, Castaño EM, Beach TG, Ghetti B, Roher AE. Histopathological and molecular heterogeneity among individuals with dementia associated with Presenilin mutations. Mol Neurodegener 2008; 3:20. [PMID: 19021905 PMCID: PMC2600784 DOI: 10.1186/1750-1326-3-20] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 11/20/2008] [Indexed: 01/19/2023] Open
Abstract
Background Mutations in the presenilin (PSEN) genes are associated with early-onset familial Alzheimer's disease (FAD). Biochemical characterizations and comparisons have revealed that many PSEN mutations alter γ-secretase activity to promote accumulation of toxic Aβ42 peptides. In this study, we compared the histopathologic and biochemical profiles of ten FAD cases expressing independent PSEN mutations and determined the degradation patterns of amyloid-β precursor protein (AβPP), Notch, N-cadherin and Erb-B4 by γ-secretase. In addition, the levels of Aβ40/42 peptides were quantified by ELISA. Results We observed a wide variation in type, number and distribution of amyloid deposits and neurofibrillary tangles. Four of the ten cases examined exhibited a substantial enrichment in the relative proportions of Aβ40 over Aβ42. The AβPP N-terminal and C-terminal fragments and Tau species, assessed by Western blots and scanning densitometry, also demonstrated a wide variation. The Notch-1 intracellular domain was negligible by Western blotting in seven PSEN cases. There was significant N-cadherin and Erb-B4 peptide heterogeneity among the different PSEN mutations. Conclusion These observations imply that missense mutations in PSEN genes can alter a range of key γ-secretase activities to produce an array of subtly different biochemical, neuropathological and clinical manifestations. Beyond the broad common features of dementia, plaques and tangles, the various PSEN mutations resulted in a wide heterogeneity and complexity and differed from sporadic AD.
Collapse
Affiliation(s)
- Chera L Maarouf
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, AZ 85351, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
325
|
Zhu M, Gu F, Shi J, Hu J, Hu Y, Zhao Z. Increased oxidative stress and astrogliosis responses in conditional double-knockout mice of Alzheimer-like presenilin-1 and presenilin-2. Free Radic Biol Med 2008; 45:1493-9. [PMID: 18822370 DOI: 10.1016/j.freeradbiomed.2008.08.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 08/28/2008] [Accepted: 08/29/2008] [Indexed: 10/21/2022]
Abstract
Conditional presenilin 1 and presenilin 2 double knockout causes memory dysfunction and reproduces neurodegenerative phenotypes of Alzheimer disease (AD) in mice. Oxidative stress has been long implicated predominantly in amyloidosis-mediated AD pathologies; however, its role in response to the loss-of-function pathogenic mechanism of AD remains unclear. In this study, we examined the oxidative stress status in PS1 and PS2 double-knockout (PS cDKO) mice using F(2)-isoprostanes (iPF(2alpha)-III) as the marker of lipid peroxidation. Lipid peroxidation was enhanced in a gender- and age-related manner in the PS cDKO mice independent of brain Abeta deposition. Such oxidative abnormalities predominantly in cerebral cortex at 2-4 months of age preceded the onset of many pronounced AD neuropathologies, suggesting that increased lipid peroxidation is not only an early pathophysiological response to PS inactivation, but also a potential culprit responsible for the AD-like neurodegenerative pathologies in the PS cDKO mice. Western blot analysis of cortical glial fibrillary acidic protein demonstrated an increased astrogliosis response to PS inactivation, in particular in the PS cDKO mice at as young as 2 months of age, suggesting that lipid peroxidation and neuronal injury may be closely associated with the loss-of-function neuropathogenic mechanism of AD.
Collapse
Affiliation(s)
- Manjie Zhu
- Key Laboratory of Brain Functional Genomics, Ministry of Education of China and the Science and Technology Commission of Shanghai Municipality, Shanghai Institute of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | | | | | | | | | | |
Collapse
|
326
|
Kallhoff-Munoz V, Hu L, Chen X, Pautler RG, Zheng H. Genetic dissection of gamma-secretase-dependent and -independent functions of presenilin in regulating neuronal cell cycle and cell death. J Neurosci 2008; 28:11421-31. [PMID: 18971484 PMCID: PMC2615184 DOI: 10.1523/jneurosci.2873-08.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 09/24/2008] [Indexed: 01/25/2023] Open
Abstract
Cell cycle markers have been shown to be upregulated and proposed to lead to apoptosis of postmitotic neurons in Alzheimer's disease (AD). Presenilin (PS) plays a critical role in AD pathogenesis, and loss-of-function studies in mice established a potent effect of PS in cell proliferation in peripheral tissues. Whether PS has a similar activity in the neuronal cell cycle has not been investigated. PS exhibits gamma-secretase-dependent and -independent functions; the former requires aspartate 257 (D257) as part of the active site, and the latter involves the hydrophilic loop domain encoded by exon 10. We used two novel mouse models, one expressing the PS1 D257A mutation on a postnatal PS conditional knock-out background and the other deleting exon 10 of PS1, to dissect the gamma-secretase-dependent and -independent activities of PS in the adult CNS. Whereas gamma-secretase plays a dominant role in neuronal survival, our studies reveal potent neuronal cell cycle regulation mediated by the PS1 hydrophilic loop. Although neurons expressing cell cycle markers do not directly succumb to apoptosis, they are more vulnerable under stress conditions. Importantly, our data identify a novel pool of cytoplasmic p53 as a downstream mediator of this cellular vulnerability. These results support a model whereby the PS gamma-secretase activity is essential in maintaining neuronal viability, and the PS1 loop domain modulates neuronal homeostasis through cell cycle and cytoplasmic p53 control.
Collapse
Affiliation(s)
| | - Lingyun Hu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030
| | | | - Robia G. Pautler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030
| | - Hui Zheng
- Department of Molecular and Human Genetics
- Huffington Center on Aging, and
| |
Collapse
|
327
|
Mirnics K, Norstrom EM, Garbett K, Choi SH, Zhang X, Ebert P, Sisodia SS. Molecular signatures of neurodegeneration in the cortex of PS1/PS2 double knockout mice. Mol Neurodegener 2008; 3:14. [PMID: 18834536 PMCID: PMC2569036 DOI: 10.1186/1750-1326-3-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 10/03/2008] [Indexed: 11/10/2022] Open
Abstract
Background Familial Alzheimer's disease-linked variants of presenilin (PSEN1 and PSEN2) contribute to the pathophysiology of disease by both gain-of-function and loss-of-function mechanisms. Deletions of PSEN1 and PSEN2 in the mouse forebrain result in a strong and progressive neurodegenerative phenotype which is characterized by both anatomical and behavioral changes. Results To better understand the molecular changes associated with these morphological and behavioral phenotypes, we performed a DNA microarray transcriptome profiling of the hippocampus and the frontal cortex of the PSEN1/PSEN2 double knock-out mice and littermate controls at five different ages ranging from 2–8 months. Our data suggest that combined deficiencies of PSEN1 and PSEN2 results in a progressive, age-dependent transcriptome signature related to neurodegeneration and neuroinflammation. While these events may progress differently in the hippocampus and frontal cortex, the most critical expression signatures are common across the two brain regions, and involve a strong upregulation of cathepsin and complement system transcripts. Conclusion The observed neuroinflammatory expression changes are likely to be causally linked to the neurodegenerative phenotype observed in mice with compound deletions of PSEN1 and PSEN2. Furthermore, our results suggest that the evaluation of inhibitors of PS/γ-secretase activity for treatment of Alzheimer's Disease must include close monitoring for signs of calpain-cathepsin system activation.
Collapse
Affiliation(s)
- Károly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, TN37232, USA.
| | | | | | | | | | | | | |
Collapse
|
328
|
BRI2 inhibits amyloid beta-peptide precursor protein processing by interfering with the docking of secretases to the substrate. J Neurosci 2008; 28:8668-76. [PMID: 18753367 DOI: 10.1523/jneurosci.2094-08.2008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genetic alterations of amyloid beta-peptide (Abeta) production caused by mutations in the Abeta precursor protein (APP) cause familial Alzheimer's disease (AD). Mutations in BRI2, a gene of undefined function, are linked to familial British and Danish dementias, which are pathologically and clinically similar to Alzheimer's disease. We report that BRI2 is a physiological suppressor of Abeta production. BRI2 restrict docking of gamma-secretase to APP and access of alpha- and beta-secretases to their cleavage APP sequences. Alterations of BRI2 by gene targeting or transgenic expression regulate Abeta levels and AD pathology in mouse models of AD. Competitive inhibition of APP processing by BRI2 may provide a new approach to AD therapy and prevention.
Collapse
|
329
|
Fluhrer R, Fukumori A, Martin L, Grammer G, Haug-Kröper M, Klier B, Winkler E, Kremmer E, Condron MM, Teplow DB, Steiner H, Haass C. Intramembrane proteolysis of GXGD-type aspartyl proteases is slowed by a familial Alzheimer disease-like mutation. J Biol Chem 2008; 283:30121-8. [PMID: 18768471 DOI: 10.1074/jbc.m806092200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
More than 150 familial Alzheimer disease (FAD)-associated missense mutations in presenilins (PS1 and PS2), the catalytic subunit of the gamma-secretase complex, cause aberrant amyloid beta-peptide (Abeta) production, by increasing the relative production of the highly amyloidogenic 42-amino acid variant. The molecular mechanism behind this pathological activity is unclear, and different possibilities ranging from a gain of function to a loss of function have been discussed. gamma-Secretase, signal peptide peptidase (SPP) and SPP-like proteases (SPPLs) belong to the same family of GXGD-type intramembrane cleaving aspartyl proteases and share several functional similarities. We have introduced the FAD-associated PS1 G384A mutation, which occurs within the highly conserved GXGD motif of PS1 right next to the catalytically critical aspartate residue, into the corresponding GXGD motif of the signal peptide peptidase-like 2b (SPPL2b). Compared with wild-type SPPL2b, mutant SPPL2b slowed intramembrane proteolysis of tumor necrosis factor alpha and caused a relative increase of longer intracellular cleavage products. Because the N termini of the secreted counterparts remain unchanged, the mutation selectively affects the liberation of the intracellular processing products. In vitro experiments demonstrate that the apparent accumulation of longer intracellular cleavage products is the result of slowed sequential intramembrane cleavage. The longer cleavage products are still converted to shorter peptides, however only after prolonged incubation time. This suggests that FAD-associated PS mutation may also result in reduced intramembrane cleavage of beta-amyloid precursor protein (betaAPP). Indeed, in vitro experiments demonstrate slowed intramembrane proteolysis by gamma-secretase containing PS1 with the G384A mutation. As compared with wild-type PS1, the mutation selectively slowed Abeta40 production, whereas Abeta42 generation remained unaffected. Thus, the PS1 G384A mutation causes a selective loss of function by slowing the processing pathway leading to the benign Abeta40.
Collapse
Affiliation(s)
- Regina Fluhrer
- Center for Integrated Protein Science Munich and Adolf-Butenandt-Institute, Department of Biochemistry, Laboratory for Neurodegenerative Disease Research, Ludwig-Maximilians-University, Munich 80336, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
330
|
LeBlanc AC. Introspective analysis of amyloid as the cause of Alzheimer’s disease: alternative model proposed. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.5.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As the lifespan of the population of developed countries increases, we are faced with managing a disease that is taking almost epidemic proportions and has a high social and economical cost; Alzheimer’s disease (AD). As everyone knows, AD robs the person not only of their memories but also their personalities and leaves only the shell of a once vibrant and functional human being that now requires care 24-h a day. Similar to the race to prevent, treat or cure cancer and heart diseases, it is essential and of extreme urgency to spearhead efforts against AD. To date, there are no effective treatments against AD. Amyloid is largely favored as the cause of the disease. Immense resources and efforts have been dedicated to anti-amyloid therapies and we are at the cusp of finding out if these will work of not. However, the arguments supporting the amyloid hypothesis can be challenged and an alternate model is presented herein.
Collapse
Affiliation(s)
- Andréa C LeBlanc
- The Sir Mortimer B Davis Jewish General Hospital, The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, 3755 Ch. Côte Ste-Catherine, Montréal, Québec H3T 1E2, Canada and, Department of Neurology & Neurosurgery, McGill University, Montréal, Québec, Canada
| |
Collapse
|
331
|
Spasic D, Annaert W. Building gamma-secretase: the bits and pieces. J Cell Sci 2008; 121:413-20. [PMID: 18256384 DOI: 10.1242/jcs.015255] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
gamma-Secretase is a promiscuous aspartyl protease responsible for the final intramembrane cleavage of various type I transmembrane proteins after their large ectodomains are shed. The vast functional diversity of its substrates, which are involved in cell fate decisions, adhesion, neurite outgrowth and synapse formation, highlights the important role gamma-secretase plays in development and neurogenesis. The most renowned substrates are the amyloid precursor protein and Notch, from which gamma-secretase liberates amyloid beta peptides and induces downstream signalling, respectively. gamma-Secretase is a multiprotein complex containing presenilin (which harbours the catalytic site), nicastrin, APH1 and PEN2. Its assembly occurs under tight control of ER-Golgi recycling regulators, which allows defined quantities of complexes to reach post-Golgi compartments, where gamma-secretase activity is regulated by multiple other factors. 3D-EM rendering reveals a complex with a translucent inner space, suggesting the presence of a water-filled cavity required for intramembrane proteolysis. Despite huge efforts, we are now only beginning to unravel the assembly, stoichiometry, activation and subcellular location of gamma-secretase.
Collapse
Affiliation(s)
- Dragana Spasic
- Laboratory for Membrane Trafficking, Center for Human Genetics (KULeuven) and Department of Molecular and Developmental Genetics (VIB), O&N1, Gasthuisberg, Herestraat 49, Leuven, Belgium
| | | |
Collapse
|
332
|
Cheung KH, Shineman D, Müller M, Cárdenas C, Mei L, Yang J, Tomita T, Iwatsubo T, Lee VMY, Foskett JK. Mechanism of Ca2+ disruption in Alzheimer's disease by presenilin regulation of InsP3 receptor channel gating. Neuron 2008; 58:871-83. [PMID: 18579078 DOI: 10.1016/j.neuron.2008.04.015] [Citation(s) in RCA: 359] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 02/05/2008] [Accepted: 04/16/2008] [Indexed: 01/24/2023]
Abstract
Mutations in presenilins (PS) are the major cause of familial Alzheimer's disease (FAD) and have been associated with calcium (Ca2+) signaling abnormalities. Here, we demonstrate that FAD mutant PS1 (M146L)and PS2 (N141I) interact with the inositol 1,4,5-trisphosphate receptor (InsP3R) Ca2+ release channel and exert profound stimulatory effects on its gating activity in response to saturating and suboptimal levels of InsP3. These interactions result in exaggerated cellular Ca2+ signaling in response to agonist stimulation as well as enhanced low-level Ca2+signaling in unstimulated cells. Parallel studies in InsP3R-expressing and -deficient cells revealed that enhanced Ca2+ release from the endoplasmic reticulum as a result of the specific interaction of PS1-M146L with the InsP3R stimulates amyloid beta processing,an important feature of AD pathology. These observations provide molecular insights into the "Ca2+ dysregulation" hypothesis of AD pathogenesis and suggest novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- King-Ho Cheung
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
333
|
Portelius E, Zetterberg H, Gobom J, Andreasson U, Blennow K. Targeted proteomics in Alzheimer's disease: focus on amyloid-beta. Expert Rev Proteomics 2008; 5:225-37. [PMID: 18466053 DOI: 10.1586/14789450.5.2.225] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diagnosis and monitoring of sporadic Alzheimer's disease (AD) have long depended on clinical examination of individuals with end-stage disease. However, upcoming anti-AD therapies are optimally initiated when individuals show very mild signs of neurodegeneration. There is a developing consensus for cerebrospinal fluid amyloid-beta (Abeta) as a core biomarker for the mild cognitive impairment stage of AD. Abeta is directly involved in the pathogenesis of AD or tightly correlated with other primary pathogenic factors. It is produced from amyloid precursor protein (APP) by proteolytic processing that depends on the beta-site APP-cleaving enzyme 1 and the gamma-secretase complex, and is degraded by a broad range of proteases. This review summarizes targeted proteomic studies of Abeta in biological fluids and identifies clinically useful markers of disrupted Abeta homeostasis in AD. The next 5 years will see a range of novel assays developed on the basis of these results. From a longer perspective, establishment of the most effective combinations of different biomarkers and other diagnostic modalities may be foreseen.
Collapse
Affiliation(s)
- Erik Portelius
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, The Sahlgrenska Academy at Göteborg University, Mölndal, Sweden.
| | | | | | | | | |
Collapse
|
334
|
Chen Q, Nakajima A, Choi SH, Xiong X, Tang YP. Loss of presenilin function causes Alzheimer's disease-like neurodegeneration in the mouse. J Neurosci Res 2008; 86:1615-25. [PMID: 18189321 DOI: 10.1002/jnr.21601] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Accumulating evidence has indicated that gain-of-function in beta-amyloid production may be not the necessary mechanism for mutant presenilin-1 (PS1) or PS2 to cause familial Alzheimer's disease (AD). In the present article, we show that conditional knockout of PS1 from the adult stage in the forebrain of mice with the PS2 null mutation triggers robust AD-like neurodegeneration including brain shrinkage, cortical and hippocampal atrophy,ventricular enlargement, severe neuronal loss, gliosis, tau hyperphosphorylation, neurofillament tangle-like structures, and intracellular filaments. Learning and memory functions in these mice are almost completely lost. Notably, there is no beta-amyloid deposition, indicating that presenilin dysfunction can directly cause neurodegeneration without the involvement of beta-amyloid. Furthermore, neurodegeneration occurs in a progressive manner following aging, suggesting that an accumulating effect of presenilin dysfunction over time might be a pathogenic mechanism for the involvement of mutant PS1/PS2 in causing AD. These results validate a mouse model characterized by the presence of many features of AD pathology. Furthermore, the demonstration of AD-like neurodegeneration in the absence of beta-amyloid deposition challenges the long-standing beta-amyloid cascade hypothesis and encourages an open debate on the role of beta-amyloid in causing AD. Most important, our results strongly suggest that to develop gamma-secretase inhibitors for the pharmacological treatment of AD may be not a reasonable strategy because antagonism of presenilin function may worsen neurodegeneration.
Collapse
Affiliation(s)
- Qian Chen
- Department of Psychiatry, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
335
|
The Genetics of Alzheimer’s Disease in Brazil: 10 Years of Analysis in a Unique Population. J Mol Neurosci 2008; 37:74-9. [DOI: 10.1007/s12031-008-9124-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 06/11/2008] [Indexed: 10/21/2022]
|
336
|
Chen Y, Dong C. Abeta40 promotes neuronal cell fate in neural progenitor cells. Cell Death Differ 2008; 16:386-94. [PMID: 18566600 DOI: 10.1038/cdd.2008.94] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Sequential cleavage of the amyloid precursor protein (APP) by beta- and then gamma- secretase gives rise to Abeta(1-40) (Abeta40), a major species of Abeta (beta-amyloid) produced by neurons under physiological conditions. Abeta(1-42) (Abeta42), a minor species of Abeta, is also produced by a similar but less understood mechanism of the gamma-secretase. The physiological functions of these Abeta species remain to be defined. In this report, we demonstrate that freshly prepared soluble Abeta40 significantly promotes neurogenesis in primary neural progenitor cells (NPCs). First, Abeta40 increases neuronal markers as determined by NeuN expression and Tuj1 promoter activity, differing from Abeta42, which induces astrocyte markers in NPCs. Second, Abeta40 induces neuronal differentiation at the end of S-phase in the cell cycle. Third, Abeta40 promotes NPC entry into S-phase, playing a role in NPC self-renewal. Interestingly, Abeta40 does not significantly increase apoptotic indexes such as DNA condensation and DNA fragmentation. In addition, Abeta40 does not augment caspase-3 activation in NeuN(+) or nestin(+) cells. Collectively, this report provides strong evidence that Abeta40 is a neurogenic factor and suggests that the debilitated function of Abeta40 in neurogenesis may account for the shortage of neurons in Alzheimer's disease.
Collapse
Affiliation(s)
- Y Chen
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|
337
|
Cotel MC, Bayer TA, Wirths O. Age-dependent loss of dentate gyrus granule cells in APP/PS1KI mice. Brain Res 2008; 1222:207-13. [PMID: 18585693 DOI: 10.1016/j.brainres.2008.05.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/14/2008] [Accepted: 05/17/2008] [Indexed: 12/16/2022]
Abstract
Loss of neurons in the hippocampus and other brain regions is, besides the occurrence of plaques and tangles, a neuropathological feature of Alzheimer's disease (AD). In recent years a plethora of transgenic mouse models overexpressing mutant amyloid precursor protein (APP) has been developed, which represent valuable research tools. Whereas extracellular plaque pathology is a common feature of these models, neuronal loss is a rather rare characteristic. In the present study, we quantified the number of neurons in the dentate gyrus granule layer (GCL) in 2- and 12-month-old APP/PS1KI mice, a mouse model that has been previously shown to have significant loss of neurons in the CA1 layer of the hippocampus. Stereological analysis revealed a strongly significant decrease of GCLs in aged APP/PS1KI mice, compared to age-matched PS1KI control animals (-44%), however, the volume of the GCL was not different.
Collapse
Affiliation(s)
- Marie-Caroline Cotel
- Division of Molecular Psychiatry and Alzheimer Ph.D. Graduate School, Department of Psychiatry, University of Goettingen, von-Siebold-Strasse 5, Goettingen, Germany
| | | | | |
Collapse
|
338
|
Drzezga A. Basic pathologies of neurodegenerative dementias and their relevance for state-of-the-art molecular imaging studies. Eur J Nucl Med Mol Imaging 2008; 35 Suppl 1:S4-11. [PMID: 18197407 DOI: 10.1007/s00259-007-0697-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Rising life-expectancy in the modern society has resulted in a rapidly growing prevalence of dementia, particularly of Alzheimer's disease (AD). Dementia turns into one of the most common age-related disorders with deleterious consequences for the concerned patients and their relatives, as well as worrying effects on the socio-economic systems. These facts justify strengthened scientific efforts to identify the pathologic origin of dementing disorders, to improve diagnosis, and to interfere therapeutically with the disease progression. BASIC PATHOLOGIES In the recent years, remarkable progress has been made concerning the identification of molecular mechanisms underlying the pathology of neurodegenerative disorders. Growing evidence indicates that a common basis of many neurodegenerative dementias can be found in increased production, misfolding and pathological aggregation of proteins, such as beta-amyloid, tau protein, a-synuclein, or the recently described ubiquitinated TDP-43. This progressive insight in pathological processes is paralleled by the development of new therapeutic approaches. However, the exact contribution or mechanism of different pathologies with regard to the development of disease is not yet sufficiently clear. Considerable overlap of pathologies has been documented in different types of clinically defined dementias post mortem, and it has been difficult to correlate post mortem histopathology data with disease-expression during life. Molecular imaging procedures may play a valuable role to circumvent this limitation. RELEVANCE FOR IMAGING STUDIES In general, methods of molecular imaging have recently experienced an impressive advance, with numerous new and improved technologies emerging. These exciting tools may play a key role in the future regarding the evaluation of pathomechanisms, preclinical evaluation of new diagnostic procedures in animal models, selection of patients for clinical trials, and therapy monitoring. In this overview, molecular key pathologies, which are currently regarded to be strongly associated with the development of different dementias, will be shortly summarized; it will also be discussed how state-of-the-art imaging technology can assist to visualize these processes now and in the future.
Collapse
Affiliation(s)
- Alexander Drzezga
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, Munich, Germany.
| |
Collapse
|
339
|
|
340
|
Gosney R, Liau WS, Lamunyon CW. A novel function for the presenilin family member spe-4: inhibition of spermatid activation in Caenorhabditis elegans. BMC DEVELOPMENTAL BIOLOGY 2008; 8:44. [PMID: 18430247 PMCID: PMC2383881 DOI: 10.1186/1471-213x-8-44] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 04/22/2008] [Indexed: 11/23/2022]
Abstract
Background Sperm cells must regulate the timing and location of activation to maximize the likelihood of fertilization. Sperm from most species, including the nematode Caenorhabditis elegans, activate upon encountering an external signal. Activation for C. elegans sperm occurs as spermatids undergo spermiogenesis, a profound cellular reorganization that produces a pseudopod. Spermiogenesis is initiated by an activation signal that is transduced through a series of gene products. It is now clear that an inhibitory pathway also operates in spermatids, preventing their premature progression to spermatozoa and resulting in fine-scale control over the timing of activation. Here, we describe the involvement of a newly assigned member of the inhibitory pathway: spe-4, a homolog of the human presenilin gene PS1. The spe-4(hc196) allele investigated here was isolated as a suppressor of sterility of mutations in the spermiogenesis signal transduction gene spe-27. Results Through mapping, complementation tests, DNA sequencing, and transformation rescue, we determined that allele hc196 is a mutation in the spe-4 gene. Our data show that spe-4(hc196) is a bypass suppressor that eliminates the need for the spermiogenesis signal transduction. On its own, spe-4(hc196) has a recessive, temperature sensitive spermatogenesis-defective phenotype, with mutants exhibiting (i) defective spermatocytes, (ii) defective spermatids, (iii) premature spermatid activation, and (iv) spermatozoa defective in fertilization, in addition to a small number of functional sperm which appear normal microscopically. Conclusion A fraction of the sperm from spe-4(hc196) mutant males progress directly to functional spermatozoa without the need for an activation signal, suggesting that spe-4 plays a role in preventing spermatid activation. Another fraction of spermatozoa from spe-4(hc196) mutants are defective in fertilization. Therefore, prematurely activated spermatozoa may have several defects: we show that they may be defective in fertilization, and earlier work showed that they obstruct sperm transfer from males at mating. hc196 is a hypomorphic allele of spe-4, and its newly-discovered role inhibiting spermiogenesis may involve known proteolytic and/or calcium regulatory aspects of presenilin function, or it may involve yet-to-be discovered functions.
Collapse
Affiliation(s)
- Ryoko Gosney
- Department of Biological Science, California State Polytechnic University, Pomona, CA, USA.
| | | | | |
Collapse
|
341
|
High content analysis of gamma-secretase activity reveals variable dominance of presenilin mutations linked to familial Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1551-60. [PMID: 18424271 DOI: 10.1016/j.bbamcr.2008.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 12/19/2022]
Abstract
gamma-Secretase mediates the intramembranous proteolysis of amyloid precursor protein (APP), Notch and other cellular substrates and is considered a prime pharmacological target in the development of therapeutics for Alzheimer's disease (AD). We describe here an efficient, new, simple, sensitive and rapid assay to quantify gamma-secretase activity in living cells by flow cytometry using two membrane-bound fluorescent probes, APP-GFP or C99-GFP, as substrates for gamma-secretase. The principle of the assay is based on the fact that the soluble intracellular domain of GFP-tagged APP (AICD-GFP) is released from the membrane into the cytosol following gamma-secretase cleavage. Using this feature, enzymatic activity of gamma-secretase could be deduced from the extent of the membrane retention of the probe observed after plasma membrane permeabilization and washout of the cleaved fraction. By applying two well-known gamma-secretase inhibitors (DAPT and L-685,458), we validated our assay showing that the positional GFP-based probes for gamma-secretase activity behave properly when expressed in different cell lines, providing the basis for the further development of a high-throughput and high content screening for AD targeted drug discovery. Moreover, by co-expression of different familial AD-linked mutated forms of presenilin--the key component of the gamma-secretase complex--in cells devoid of any endogenous gamma-secretase, our method allowed us to evaluate in situ the contribution of different presenilin variants to the modulation of the enzyme.
Collapse
|
342
|
Early-Onset Alzheimer Disease in an Italian Family With Presenilin-1 Double Mutation E318G and G394V. Alzheimer Dis Assoc Disord 2008; 22:184-7. [DOI: 10.1097/wad.0b013e31815a9dec] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
343
|
Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature 2008; 452:713-8. [PMID: 18337722 PMCID: PMC2377396 DOI: 10.1038/nature06731] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Accepted: 01/21/2008] [Indexed: 01/11/2023]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by expansion of a glutamine-encoding repeat in ataxin 1 (ATXN1). In all known polyglutamine diseases, the glutamine expansion confers toxic functions onto the protein; however, the mechanism by which this occurs remains enigmatic, in light of the fact that the mutant protein apparently maintains interactions with its usual partners. Here we show that the expanded polyglutamine tract differentially affects the function of the host protein in the context of different endogenous protein complexes. Polyglutamine expansion in ATXN1 favours the formation of a particular protein complex containing RBM17, contributing to SCA1 neuropathology by means of a gain-of-function mechanism. Concomitantly, polyglutamine expansion attenuates the formation and function of another protein complex containing ATXN1 and capicua, contributing to SCA1 through a partial loss-of-function mechanism. This model provides mechanistic insight into the molecular pathogenesis of SCA1 as well as other polyglutamine diseases.
Collapse
|
344
|
West MJ, Bach G, Søderman A, Jensen JL. Synaptic contact number and size in stratum radiatum CA1 of APP/PS1DeltaE9 transgenic mice. Neurobiol Aging 2008; 30:1756-76. [PMID: 18336954 DOI: 10.1016/j.neurobiolaging.2008.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 01/11/2008] [Accepted: 01/18/2008] [Indexed: 10/22/2022]
Abstract
Synaptic changes occur early in the course of Alzheimer's disease and are key to understanding the initial events in associated neurodegenerative processes. The quantitative analysis of synaptic morphology in transgenic mouse models of Alzheimer's disease can provide important insights into these processes. To this end, the total number and the distribution of the diameters of synaptic contacts in the stratum radiatum of the CA1 region of the hippocampus of 12-month-old APP/PS1DeltaE9 transgenic mice and wild type littermates have been evaluated by applying design-based stereological methods to material prepared for electron microscopy. Although there were no differences in the size of the synaptic contacts, the total number of synaptic contacts was significantly larger in the transgenic mice, suggesting that the transgenic effect at this age is synaptotrophic and that the presence of amyloid plaques and an elevated Abeta42/40 ratio are not necessarily detrimental to populations of synapses. The potential of this type of data in evaluating synaptic changes related to Alzheimer's disease is discussed and the methodology described in detail.
Collapse
Affiliation(s)
- Mark J West
- Anatomical Institute, University of Aarhus, Aarhus, Denmark.
| | | | | | | |
Collapse
|
345
|
Wang Y, Greig NH, Yu QS, Mattson MP. Presenilin-1 mutation impairs cholinergic modulation of synaptic plasticity and suppresses NMDA currents in hippocampus slices. Neurobiol Aging 2008; 30:1061-8. [PMID: 18068871 DOI: 10.1016/j.neurobiolaging.2007.10.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/10/2007] [Accepted: 10/18/2007] [Indexed: 11/25/2022]
Abstract
Presenilin-1 (PS1) mutations cause many cases of early-onset inherited Alzheimer's disease, in part, by increasing the production of neurotoxic forms of amyloid beta-peptide (Abeta). However, Abeta-independent effects of mutant PS1 on neuronal Ca(2+) homeostasis and sensitivity to excitatory neurotransmitters have been reported. Here we show that cholinergic modulation of hippocampal synaptic plasticity is impaired in PS1 mutant knockin (PS1KI) mice. Whereas activation of muscarinic receptors enhances LTP at CA1 synapses of normal mice, it impairs LTP in PS1KI mice. Similarly, mutant PS1 impairs the ability of the cholinesterase inhibitor phenserine to enhance LTP. The NMDA current is decreased in CA1 neurons of PS1KI mice and is restored by intracellular Ca(2+)chelation. Similar alterations in acetylcholine and NMDA receptor-mediated components of synaptic plasticity are evident in 3xTgAD mice with PS1, amyloid precursor protein and tau mutations, suggesting that the adverse effects of mutant PS1 on synaptic plasticity can occur in the absence or presence of amyloid and tau pathologies.
Collapse
Affiliation(s)
- Yue Wang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Gerontology Research Center, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
346
|
Liu Q, Zerbinatti CV, Zhang J, Hoe HS, Wang B, Cole SL, Herz J, Muglia L, Bu G. Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1. Neuron 2008; 56:66-78. [PMID: 17920016 DOI: 10.1016/j.neuron.2007.08.008] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 07/06/2007] [Accepted: 08/13/2007] [Indexed: 12/13/2022]
Abstract
Mutations in the amyloid precursor protein (APP) cause early-onset Alzheimer's disease (AD), but the only genetic risk factor for late-onset AD is the varepsilon4 allele of apolipoprotein E (apoE), a major cholesterol carrier. Using Cre-lox conditional knockout mice, we demonstrate that lipoprotein receptor LRP1 expression regulates apoE and cholesterol levels within the CNS. We also found that deletion of APP and its homolog APLP2, or components of the gamma-secretase complex, significantly enhanced the expression and function of LRP1, which was reversed by forced expression of the APP intracellular domain (AICD). We further show that AICD, together with Fe65 and Tip60, interacts with the LRP1 promoter and suppresses its transcription. Together, our findings support that the gamma-secretase cleavage of APP plays a central role in regulating apoE and cholesterol metabolism in the CNS via LRP1 and establish a biological linkage between APP and apoE, the two major genetic determinants of AD.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
347
|
Aoki C, Mahadomrongkul V, Fujisawa S, Habersat R, Shirao T. Chemical and morphological alterations of spines within the hippocampus and entorhinal cortex precede the onset of Alzheimer's disease pathology in double knock-in mice. J Comp Neurol 2007; 505:352-62. [PMID: 17912741 PMCID: PMC2844449 DOI: 10.1002/cne.21485] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mice with knock-in of two mutations that affect beta amyloid processing and levels (2xKI) exhibit impaired spatial memory by 9-12 months of age, together with synaptic plasticity dysfunction in the hippocampus. The goal of this study was to identify changes in the molecular and structural characteristics of synapses that precede and thus could exert constraints upon cellular mechanisms underlying synaptic plasticity. Drebrin A is one protein reported to modulate spine sizes and trafficking of proteins to and from excitatory synapses. Thus, we examined levels of drebrin A within postsynaptic spines in the hippocampus and entorhinal cortex. Our electron microscopic immunocytochemical analyses reveal that, by 6 months, the proportion of hippocampal spines containing drebrin A is reduced and this change is accompanied by an increase in the mean size of spines and decreased density of spines. In the entorhinal cortex of 2xKI brains, we detected no decrement in the proportion of spines labeled for drebrin A and no significant change in spine density at 6 months, but rather a highly significant reduction in the level of drebrin A immunoreactivity within each spine. These changes are unlike those observed for the somatosensory cortex of 2xKI mice, in which synapse density and drebrin A immunoreactivity levels remain unchanged at 6 months and older. These results indicate that brains of 2xKI mice, like those of humans, exhibit regional differences of vulnerability, with the hippocampus exhibiting the first signatures of structural changes that, in turn, may underlie the emergent inability to update spatial memory in later months.
Collapse
Affiliation(s)
- Chiye Aoki
- Center for Neural Science, New York University, New York, NY 10003, USA.
| | | | | | | | | |
Collapse
|
348
|
Ganguly A, Feldman RR, Guo M. ubiquilin antagonizes presenilin and promotes neurodegeneration in Drosophila. Hum Mol Genet 2007; 17:293-302. [DOI: 10.1093/hmg/ddm305] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
349
|
Zhou JY, Hanfelt J, Peng J. Clinical proteomics in neurodegenerative diseases. Proteomics Clin Appl 2007; 1:1342-50. [PMID: 21136634 DOI: 10.1002/prca.200700378] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Indexed: 11/10/2022]
Abstract
Investigation of the human specimens is an essential element for understanding the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. The studies hold promise for identifying biomarkers for diagnosis and prognosis, elucidating disease mechanisms, and accelerating the development of new strategies for therapeutic intervention. Here, we review proteomics studies of human brain samples in light of recent advances of mass spectrometry, focusing on the general strategies for experimental design and analysis (e.g., sample pooling and replication, selection of proteomics platforms, and false discovery rate in data processing), because quantitative analysis of clinical samples is confounded by a number of variables, including genetic differences, antemortem and postmortem factors, and experimental errors. Diverse proteomics platforms are also discussed with respect to sensitivity, throughput, and accuracy. Regarding the enormous complexity of the human brain and the limitation of current proteomics technologies, it may be more practical to analyze a subset of proteome in a functional context, in order to facilitate the identification of important disease-related proteins in the substantial noise reflecting biological and technical variances.
Collapse
Affiliation(s)
- Jian-Ying Zhou
- Department of Human Genetics, Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
350
|
|