301
|
Miyamoto R, Otsuguro KI, Yamaguchi S, Ito S. Contribution of cysteine aminotransferase and mercaptopyruvate sulfurtransferase to hydrogen sulfide production in peripheral neurons. J Neurochem 2014; 130:29-40. [DOI: 10.1111/jnc.12698] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Ryo Miyamoto
- Laboratory of Pharmacology; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Japan
| | - Ken-ichi Otsuguro
- Laboratory of Pharmacology; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Japan
| | - Soichiro Yamaguchi
- Laboratory of Pharmacology; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Japan
| | - Shigeo Ito
- Laboratory of Pharmacology; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Japan
| |
Collapse
|
302
|
Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington's disease. Nature 2014; 509:96-100. [PMID: 24670645 DOI: 10.1038/nature13136] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 02/10/2014] [Indexed: 12/13/2022]
Abstract
Huntington's disease is an autosomal dominant disease associated with a mutation in the gene encoding huntingtin (Htt) leading to expanded polyglutamine repeats of mutant Htt (mHtt) that elicit oxidative stress, neurotoxicity, and motor and behavioural changes. Huntington's disease is characterized by highly selective and profound damage to the corpus striatum, which regulates motor function. Striatal selectivity of Huntington's disease may reflect the striatally selective small G protein Rhes binding to mHtt and enhancing its neurotoxicity. Specific molecular mechanisms by which mHtt elicits neurodegeneration have been hard to determine. Here we show a major depletion of cystathionine γ-lyase (CSE), the biosynthetic enzyme for cysteine, in Huntington's disease tissues, which may mediate Huntington's disease pathophysiology. The defect occurs at the transcriptional level and seems to reflect influences of mHtt on specificity protein 1, a transcriptional activator for CSE. Consistent with the notion of loss of CSE as a pathogenic mechanism, supplementation with cysteine reverses abnormalities in cultures of Huntington's disease tissues and in intact mouse models of Huntington's disease, suggesting therapeutic potential.
Collapse
|
303
|
Mani S, Cao W, Wu L, Wang R. Hydrogen sulfide and the liver. Nitric Oxide 2014; 41:62-71. [PMID: 24582857 DOI: 10.1016/j.niox.2014.02.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/11/2014] [Accepted: 02/17/2014] [Indexed: 12/16/2022]
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter that regulates numerous physiological and pathophysiological processes in our body. Enzymatic production of H2S is catalyzed by cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (MST). All these three enzymes present in the liver and via H2S production regulate liver functions. The liver is the hub for metabolism of glucose and lipids, and maintains the level of circulatory lipids through lipoprotein metabolism. Hepatic H2S metabolism affects glucose metabolism, insulin sensitivity, lipoprotein synthesis, mitochondrial biogenetics and biogenesis. Malfunction of hepatic H2S metabolism may be involved in many liver diseases, such as hepatic fibrosis and hepatic cirrhosis.
Collapse
Affiliation(s)
- Sarathi Mani
- Department of Biology, Lakehead University, Thunder Bay, Canada; Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, Canada
| | - Wei Cao
- Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, Canada; Thunder Bay Regional Research Institute, Thunder Bay, Canada; Department of Natural Medicine & Institute of Materia Medica, Fourth Military Medical University, Xi'an, China
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, Canada; Thunder Bay Regional Research Institute, Thunder Bay, Canada; Department of Health Sciences, Lakehead University, Thunder Bay, Canada
| | - Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, Canada; Cardiovascular and Metabolic Research Unit, Lakehead University, Thunder Bay, Canada.
| |
Collapse
|
304
|
Goswami S, Manna A, Mondal M, Sarkar D. Cascade reaction-based rapid and ratiometric detection of H2S/S2− in the presence of bio-thiols with live cell imaging: demasking of ESIPT approach. RSC Adv 2014. [DOI: 10.1039/c4ra12537a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For the rapid, ratiometric, fluorogenic and “naked eye” detection of H2S/S2−, a pro-excited state intramolecular proton transfer (ESIPT)-based receptor, 2-formyl-benzoic acid 2-benzothiazol-2-yl-phenyl ester (FBBP), has been designed.
Collapse
Affiliation(s)
- Shyamaprosad Goswami
- Indian Institute of Engineering Science and Technology (formerly Bengal Engineering and Science University)
- Howrah 711103, India
| | - Abhishek Manna
- Indian Institute of Engineering Science and Technology (formerly Bengal Engineering and Science University)
- Howrah 711103, India
| | - Monalisa Mondal
- Indian Institute of Engineering Science and Technology (formerly Bengal Engineering and Science University)
- Howrah 711103, India
| | - Debasish Sarkar
- Department of Life Science and Biotechnology
- Jadavpur University
- Kolkata, India
| |
Collapse
|
305
|
Le Trionnaire S, Perry A, Szczesny B, Szabo C, Winyard PG, Whatmore JL, Wood ME, Whiteman M. The synthesis and functional evaluation of a mitochondria-targeted hydrogen sulfide donor, (10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5-yl)phenoxy)decyl)triphenylphosphonium bromide (AP39). MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00323j] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction is observed in many diseases. Targeting H2S generation to mitochondria may be cytoprotective.
Collapse
Affiliation(s)
| | - Alexis Perry
- Biosciences
- College of Environmental and Life Sciences
- University of Exeter
- Exeter EX4 4QD, UK
| | - Bartosz Szczesny
- Department of Anesthesiology
- University of Texas Medical Branch
- Galveston, USA
| | - Csaba Szabo
- Department of Anesthesiology
- University of Texas Medical Branch
- Galveston, USA
| | - Paul G. Winyard
- University of Exeter Medical School
- St. Luke's Campus
- Exeter EX1 2LU, UK
| | | | - Mark E. Wood
- Biosciences
- College of Environmental and Life Sciences
- University of Exeter
- Exeter EX4 4QD, UK
| | - Matthew Whiteman
- University of Exeter Medical School
- St. Luke's Campus
- Exeter EX1 2LU, UK
| |
Collapse
|
306
|
Abstract
Hydrogen sulfide (H2S), a gas characterized by the odor of rotten eggs, is produced by many cells in the airways and lungs, and may regulate physiologic and pathophysiologic processes. It plays a role in cellular signaling, and represents the third gasotransmitter after nitric oxide and carbon monoxide. Endogenous and exogenous H₂S have anti-inflammatory and anti-proliferative effects, with inhibitory effects in models of lung inflammation and fibrosis. Under certain conditions, H₂S may also be proinflammatory. It is generally a vasodilator and relaxant of airway and vascular smooth muscle cells. It acts as a reducing agent, being able to scavenge superoxide and peroxynitrite. H₂S is detectable in serum and in sputum supernatants with raised levels observed in asthmatics. The sputum levels correlated inversely with lung function. H₂S may play a role in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Kian F Chung
- National Heart & Lung Institute, Imperial College & NIHR Respiratory Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, UK +44 207 352 8121
| |
Collapse
|
307
|
Abstract
Hydrogen sulphide (H(2)S) is the most recently discovered gasotransmitter. It is endogenously generated in mammalian vascular cells and attracts substantial interest by its function as physiological relevant signalling mediator, and by its dysfunction in metabolic diseases like obesity, type 2 diabetes and their associated complications. The purpose of this review is to highlight the novel findings on vascular H(2)S homeostasis, pathology-associated dysregulation, cell signalling, and therapeutic potential. The data bases searched were Medline and PubMed, from 2008 to 2012 (terms: hydrogen sulphide, sulfhydration). The new reports definitely assess the vasculoprotectant role of H(2)S in health, and its reduced biosynthesis/systemic levels in obesity, diabetes, atherosclerosis and hypertension. One of the mechanisms of H(2)S signalling discussed here is S-sulfhydration of catalytic cysteine residue of PTP1B, a negative regulator of insulin and leptin signalling. Finally, the review critically evaluates the compounds able to regulate vascular H(2)S bioavailability, and with potential in therapeutic exploitation.
Collapse
Affiliation(s)
- Doina Popov
- Institute of Cellular Biology and Pathology ''N. Simionescu'' of the Romanian Academy 8 , B.P. Hasdeu Street, Bucharest 050568 , Romania
| |
Collapse
|
308
|
Wang JF, Li Y, Song JN, Pang HG. Role of hydrogen sulfide in secondary neuronal injury. Neurochem Int 2013; 64:37-47. [PMID: 24239876 DOI: 10.1016/j.neuint.2013.11.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/10/2013] [Accepted: 11/05/2013] [Indexed: 11/24/2022]
Abstract
In acute neuronal insult events, such as stroke, traumatic brain injury, and spinal cord injury, pathological processes of secondary neuronal injury play a key role in the severity of insult and clinical prognosis. Along with nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2S) is regarded as the third gasotransmitter and endogenous neuromodulator and plays multiple roles in the central nervous system under physiological and pathological states, especially in secondary neuronal injury. The endogenous level of H2S in the brain is significantly higher than that in peripheral tissues, and is mainly formed by cystathionine β-synthase (CBS) in astrocytes and released in response to neuronal excitation. The mechanism of secondary neuronal injury exacerbating the damage caused by the initial insult includes microcirculation failure, glutamate-mediated excitotoxicity, oxidative stress, inflammatory responses, neuronal apoptosis and calcium overload. H2S dilates cerebral vessels by activating smooth muscle cell plasma membrane ATP-sensitive K channels (KATP channels). This modification occurs on specific cysteine residues of the KATP channel proteins which are S-sulfhydrated. H2S counteracts glutamate-mediated excitotoxicity by inducing astrocytes to intake more glutamate from the extracellular space and thus increasing glutathione in neurons. In addition, H2S protects neurons from secondary neuronal injury by functioning as an anti-oxidant, anti-inflammatory and anti-apoptotic mediator. However, there are still some reports suggest that H2S elevates neuronal Ca(2+) concentration and may contribute to the formation of calcium overload in secondary neuronal injury. H2S also elicits calcium waves in primary cultures of astrocytes and may mediate signals between neurons and glia. Consequently, further exploration of the molecular mechanisms of H2S in secondary neuronal injury will provide important insights into its potential therapeutic uses for the treatment of acute neuronal insult events.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Department of Neurosurgery, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yu Li
- Department of Neurosurgery, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Jin-Ning Song
- Department of Neurosurgery, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Hong-Gang Pang
- Department of Neurosurgery, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an 710061, PR China
| |
Collapse
|
309
|
Bhattacharyya S, Saha S, Giri K, Lanza IR, Nair KS, Jennings NB, Rodriguez-Aguayo C, Lopez-Berestein G, Basal E, Weaver AL, Visscher DW, Cliby W, Sood AK, Bhattacharya R, Mukherjee P. Cystathionine beta-synthase (CBS) contributes to advanced ovarian cancer progression and drug resistance. PLoS One 2013; 8:e79167. [PMID: 24236104 PMCID: PMC3827285 DOI: 10.1371/journal.pone.0079167] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/18/2013] [Indexed: 12/31/2022] Open
Abstract
Background Epithelial ovarian cancer is the leading cause of gynecologic cancer deaths. Most patients respond initially to platinum-based chemotherapy after surgical debulking, however relapse is very common and ultimately platinum resistance emerges. Understanding the mechanism of tumor growth, metastasis and drug resistant relapse will profoundly impact the therapeutic management of ovarian cancer. Methods/Principal Findings Using patient tissue microarray (TMA), in vitro and in vivo studies we report a role of of cystathionine-beta-synthase (CBS), a sulfur metabolism enzyme in ovarian carcinoma. We report here that the expression of cystathionine-beta-synthase (CBS), a sulfur metabolism enzyme, is common in primary serous ovarian carcinoma. The in vitro effects of CBS silencing can be reversed by exogenous supplementation with the GSH and H2S producing chemical Na2S. Silencing CBS in a cisplatin resistant orthotopic model in vivo by nanoliposomal delivery of CBS siRNA inhibits tumor growth, reduces nodule formation and sensitizes ovarian cancer cells to cisplatin. The effects were further corroborated by immunohistochemistry that demonstrates a reduction of H&E, Ki-67 and CD31 positive cells in si-RNA treated as compared to scrambled-RNA treated animals. Furthermore, CBS also regulates bioenergetics of ovarian cancer cells by regulating mitochondrial ROS production, oxygen consumption and ATP generation. This study reports an important role of CBS in promoting ovarian tumor growth and maintaining drug resistant phenotype by controlling cellular redox behavior and regulating mitochondrial bioenergetics. Conclusion The present investigation highlights CBS as a potential therapeutic target in relapsed and platinum resistant ovarian cancer.
Collapse
Affiliation(s)
- Sanjib Bhattacharyya
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic Rochester, Minnesota, United States of America
| | - Sounik Saha
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, United States of America
| | - Karuna Giri
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic Rochester, Minnesota, United States of America
| | - Ian R. Lanza
- Division of Endocrinology, College of Medicine, Mayo Clinic Rochester, Minnesota, United States of America
| | - K. Sreekumar Nair
- Division of Endocrinology, College of Medicine, Mayo Clinic Rochester, Minnesota, United States of America
| | - Nicholas B. Jennings
- Department of Gynecologic Oncology, M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Cristian Rodriguez-Aguayo
- Department of Cancer Biology, M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Gabriel Lopez-Berestein
- Department of Cancer Biology, M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Center for RNA Interference and Non-Coding RNA, M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Eati Basal
- Department of Obstetrics and Gynecology, College of Medicine, Mayo Clinic Rochester, Minnesota, United States of America
| | - Amy L. Weaver
- Department of Biostatistics and Bioinformatics, College of Medicine, Mayo Clinic Rochester, Minnesota, United States of America
| | - Daniel W. Visscher
- Department of Pathology, College of Medicine, Mayo Clinic Rochester, Minnesota, United States of America
| | - William Cliby
- Department of Obstetrics and Gynecology, College of Medicine, Mayo Clinic Rochester, Minnesota, United States of America
| | - Anil K. Sood
- Department of Gynecologic Oncology, M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Cancer Biology, M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Center for RNA Interference and Non-Coding RNA, M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, United States of America
- * E-mail: (RB); (PM)
| | - Priyabrata Mukherjee
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, United States of America
- * E-mail: (RB); (PM)
| |
Collapse
|
310
|
Castro-Piedras I, Perez-Zoghbi JF. Hydrogen sulphide inhibits Ca2+ release through InsP3 receptors and relaxes airway smooth muscle. J Physiol 2013; 591:5999-6015. [PMID: 24144878 DOI: 10.1113/jphysiol.2013.257790] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hydrogen sulphide (H2S) is a signalling molecule that appears to regulate diverse cell physiological process in several organs and systems including vascular and airway smooth muscle cell (SMC) contraction. Decreases in endogenous H2S synthesis have been associated with the development of cardiovascular diseases and asthma. Here we investigated the mechanism of airway SMC relaxation induced by H2S in small intrapulmonary airways using mouse lung slices and confocal and phase-contrast video microscopy. Exogenous H2S donor Na2S (100 μm) reversibly inhibited Ca(2+) release and airway contraction evoked by inositol-1,4,5-trisphosphate (InsP3) uncaging in airway SMCs. Similarly, InsP3-evoked Ca(2+) release and contraction was inhibited by endogenous H2S precursor l-cysteine (10 mm) but not by l-serine (10 mm) or either amino acid in the presence of dl-propargylglycine (PPG). Consistent with the inhibition of Ca(2+) release through InsP3 receptors (InsP3Rs), Na2S reversibly inhibited acetylcholine (ACh)-induced Ca(2+) oscillations in airway SMCs. In addition, Na2S, the H2S donor GYY-4137, and l-cysteine caused relaxation of airways pre-contracted with either ACh or 5-hydroxytryptamine (5-HT). Na2S-induced airway relaxation was resistant to a guanylyl cyclase inhibitor (ODQ) and a protein kinase G inhibitor (Rp-8-pCPT-cGMPS). The effects of H2S on InsP3-evoked Ca(2+) release and contraction as well as on the relaxation of agonist-contracted airways were mimicked by the thiol-reducing agent dithiothreitol (DTT, 10 mm) and inhibited by the oxidizing agent diamide (30 μm). These studies indicate that H2S causes airway SMC relaxation by inhibiting Ca(2+) release through InsP3Rs and consequent reduction of agonist-induced Ca(2+) oscillations in SMCs. The results suggest a novel role for endogenously produced H2S that involves the modulation of InsP3-evoked Ca(2+) release - a cell-signalling system of critical importance for many physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Isabel Castro-Piedras
- J. F. Perez-Zoghbi: Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79423, USA.
| | | |
Collapse
|
311
|
Castro-Piedras I, Perez-Zoghbi JF. Hydrogen sulphide inhibits Ca2+ release through InsP3 receptors and relaxes airway smooth muscle. J Physiol 2013. [PMID: 24144878 DOI: 10.1113/jphysiol.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hydrogen sulphide (H2S) is a signalling molecule that appears to regulate diverse cell physiological process in several organs and systems including vascular and airway smooth muscle cell (SMC) contraction. Decreases in endogenous H2S synthesis have been associated with the development of cardiovascular diseases and asthma. Here we investigated the mechanism of airway SMC relaxation induced by H2S in small intrapulmonary airways using mouse lung slices and confocal and phase-contrast video microscopy. Exogenous H2S donor Na2S (100 μm) reversibly inhibited Ca(2+) release and airway contraction evoked by inositol-1,4,5-trisphosphate (InsP3) uncaging in airway SMCs. Similarly, InsP3-evoked Ca(2+) release and contraction was inhibited by endogenous H2S precursor l-cysteine (10 mm) but not by l-serine (10 mm) or either amino acid in the presence of dl-propargylglycine (PPG). Consistent with the inhibition of Ca(2+) release through InsP3 receptors (InsP3Rs), Na2S reversibly inhibited acetylcholine (ACh)-induced Ca(2+) oscillations in airway SMCs. In addition, Na2S, the H2S donor GYY-4137, and l-cysteine caused relaxation of airways pre-contracted with either ACh or 5-hydroxytryptamine (5-HT). Na2S-induced airway relaxation was resistant to a guanylyl cyclase inhibitor (ODQ) and a protein kinase G inhibitor (Rp-8-pCPT-cGMPS). The effects of H2S on InsP3-evoked Ca(2+) release and contraction as well as on the relaxation of agonist-contracted airways were mimicked by the thiol-reducing agent dithiothreitol (DTT, 10 mm) and inhibited by the oxidizing agent diamide (30 μm). These studies indicate that H2S causes airway SMC relaxation by inhibiting Ca(2+) release through InsP3Rs and consequent reduction of agonist-induced Ca(2+) oscillations in SMCs. The results suggest a novel role for endogenously produced H2S that involves the modulation of InsP3-evoked Ca(2+) release - a cell-signalling system of critical importance for many physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Isabel Castro-Piedras
- J. F. Perez-Zoghbi: Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79423, USA.
| | | |
Collapse
|
312
|
Chen X, Wu S, Han J, Han S. Rhodamine–propargylic esters for detection of mitochondrial hydrogen sulfide in living cells. Bioorg Med Chem Lett 2013; 23:5295-9. [DOI: 10.1016/j.bmcl.2013.07.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 12/29/2022]
|
313
|
Módis K, Panopoulos P, Coletta C, Papapetropoulos A, Szabo C. Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A. Biochem Pharmacol 2013; 86:1311-9. [PMID: 24012591 DOI: 10.1016/j.bcp.2013.08.064] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 01/11/2023]
Abstract
Although hydrogen sulfide (H₂S) is generally known as a mitochondrial poison, recent studies show that lower concentrations of H₂S play a physiological role in the stimulation of mitochondrial electron transport and cellular bioenergetics. This effect involves electron donation at Complex II. Other lines of recent studies demonstrated that one of the biological actions of H₂S involves inhibition of cAMP and cGMP phosphodiesterases (PDEs). Given the emerging functional role of the mitochondrial isoform of cAMP PDE (PDE2A) in the regulation of mitochondrial function the current study investigated whether cAMP-dependent mechanisms participate in the stimulatory effect of NaHS on mitochondrial function. In isolated rat liver mitochondria, partial digestion studies localized PDE2A into the mitochondrial matrix. NaHS exerted a concentration-dependent inhibitory effect on recombinant PDE2A enzyme in vitro. Moreover, NaHS induced an elevation of cAMP levels when added to isolated mitochondria and stimulated the mitochondrial electron transport. The latter effect was inhibited by Rp-cAMP, an inhibitor of the cAMP-dependent protein kinase (PKA). The current findings suggest that the direct electron donating effect of NaHS is amplified by an intramitochondrial cAMP system, which may involve the inhibition of PDE2A and subsequent, cAMP-mediated stimulation of PKA.
Collapse
Affiliation(s)
- Katalin Módis
- Department of Anesthesiology, University of Texas Medical Branch, and Shriners Burns Hospital for Children, 601 Harborside Drive, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
314
|
Flannigan KL, Ferraz JGP, Wang R, Wallace JL. Enhanced synthesis and diminished degradation of hydrogen sulfide in experimental colitis: a site-specific, pro-resolution mechanism. PLoS One 2013; 8:e71962. [PMID: 23940796 PMCID: PMC3733965 DOI: 10.1371/journal.pone.0071962] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/06/2013] [Indexed: 11/18/2022] Open
Abstract
Hydrogen sulfide (H2S) is produced throughout the gastrointestinal tract, and it contributes to maintenance of mucosal integrity, resolution of inflammation, and repair of damaged tissue. H2S synthesis is elevated in inflamed and damaged colonic tissue, but the enzymatic sources of that synthesis are not completely understood. In the present study, the contributions of three enzymatic pathways to colonic H2S synthesis were determined, with tissues taken from healthy rats and rats with colitis. The ability of the colonic tissue to inactivate H2S was also determined. Colonic tissue from rats with hapten-induced colitis produced significantly more H2S than tissue from healthy controls. The largest source of the H2S synthesis was the pathway involving cysteine amino transferase and 3-mercaptopyruvate sulfurtransferase (an α-ketoglutarate-dependent pathway). Elevated H2S synthesis occurred specifically at sites of mucosal ulceration, and was not related to the extent of granulocyte infiltration into the tissue. Inactivation of H2S by colonic tissue occurred rapidly, and was significantly reduced at sites of mucosal ulceration. This correlated with a marked decrease in the expression of sulfide quinone reductase in these regions. Together, the increased production and decreased inactivation of H2S at sites of mucosal ulceration would result in higher H2S levels at these sites, which promotes of resolution of inflammation and repair of damaged tissue.
Collapse
Affiliation(s)
- Kyle L. Flannigan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jose G. P. Ferraz
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
| | - Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - John L. Wallace
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
315
|
Kim JY, Park KJ, Kim GH, Jeong EA, Lee DY, Lee SS, Kim DJ, Roh GS, Song J, Ki SH, Kim WH. In vivo activating transcription factor 3 silencing ameliorates the AMPK compensatory effects for ER stress-mediated β-cell dysfunction during the progression of type-2 diabetes. Cell Signal 2013; 25:2348-61. [PMID: 23916985 DOI: 10.1016/j.cellsig.2013.07.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/15/2013] [Accepted: 07/29/2013] [Indexed: 12/25/2022]
Abstract
In obese Zucker diabetic fatty (ZDF) rats, ER stress is associated with insulin resistance and pancreatic β-cell dysfunction; however the exact mechanisms by which ER stress drives type-2 diabetes remain uncertain. Here, we investigated the role of ATF3 on the preventive regulation of AMPK against ER stress-mediated β-cell dysfunction during the end-stage progression of hyperglycemia in ZDF rats. The impaired glucose metabolism and β-cell dysfunction were significantly increased in late-diabetic phase 19-week-old ZDF rats. Although AMPK phosphorylation reduced in 6- and 12-week-old ZDF rats was remarkably increased at 19weeks, the increases of lipogenice genes, ATF3, and ER stress or ROS-mediated β-cell dysfunction were still remained, which were attenuated by in vivo-injection of chemical chaperon tauroursodeoxycholate (TUDCA), chronic AICAR, or antioxidants. ATF3 did not directly affect AMPK phosphorylation, but counteracts the preventive effects of AMPK for high glucose-induced β-cell dysfunction. Moreover, knockdown of ATF3 by delivery of in vivo-jetPEI ATF3 siRNA attenuated ER stress-mediated β-cell dysfunction and enhanced the beneficial effect of AICAR. Our data suggest that ATF3 may play as a counteracting regulator of AMPK and thus promote β-cell dysfunction and the development of type-2 diabetes and could be a potential therapeutic target in treating type-2 diabetes.
Collapse
Affiliation(s)
- Ji Yeon Kim
- Division of Metabolic Disease, Center for Biomedical Science, National Institutes of Health, #187 Osong Saengmyeong2-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
316
|
Teng H, Wu B, Zhao K, Yang G, Wu L, Wang R. Oxygen-sensitive mitochondrial accumulation of cystathionine β-synthase mediated by Lon protease. Proc Natl Acad Sci U S A 2013; 110:12679-84. [PMID: 23858469 PMCID: PMC3732959 DOI: 10.1073/pnas.1308487110] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxygen-sensitive accumulation and degradation, two opposite but intrinsically linked events, of heme proteins in mitochondria affect mitochondrial functions, including bioenergetics and oxygen-sensing processes. Cystathionine β-synthase (CBS) contains a prosthetic heme group and catalyzes the production of hydrogen sulfide in mammalian cells. Here we show that CBS proteins were present in liver mitochondria at a low level under normoxia conditions. Ischemia/hypoxia increased the accumulation of CBS proteins in mitochondria. The normalization of oxygen partial pressure accelerated the degradation of CBS proteins. Lon protease, a major degradation enzyme in mitochondrial matrix, recognized and degraded mitochondrial CBS by specifically targeting at the oxygenated heme group of CBS proteins. The accumulation of CBS in mitochondria increased hydrogen sulfide production, which prevented Ca(2+)-mediated cytochrome c release from mitochondria and decreased reactive oxygen species generation. Mitochondrial accumulation of heme oxygenase-1, another heme protein, was also regulated by oxygen level and Lon protease in the same mechanism as for CBS. Our findings provide a fundamental and general mechanism for oxygen-sensitive regulation of mitochondrial functions by linking oxygenation level to the accumulation/degradation of mitochondrial heme proteins.
Collapse
Affiliation(s)
- Huajian Teng
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada P7B 5E1
| | - Bo Wu
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada P7B 5E1
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China
| | - Kexin Zhao
- School of Kinesiology, Lakehead University, Thunder Bay, ON, Canada P7B 5E1
| | - Guangdong Yang
- School of Kinesiology, Lakehead University, Thunder Bay, ON, Canada P7B 5E1
| | - Lingyun Wu
- Department of Health Sciences, Lakehead University, Thunder Bay, ON, Canada P7B 5E1; and
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada P7A 7T1
| | - Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada P7B 5E1
| |
Collapse
|
317
|
Olson KR, Deleon ER, Gao Y, Hurley K, Sadauskas V, Batz C, Stoy GF. Thiosulfate: a readily accessible source of hydrogen sulfide in oxygen sensing. Am J Physiol Regul Integr Comp Physiol 2013; 305:R592-603. [PMID: 23804280 DOI: 10.1152/ajpregu.00421.2012] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
H2S derived from organic thiol metabolism has been proposed serve as an oxygen sensor in a variety of systems because of its susceptibility to oxidation and its ability to mimic hypoxic responses in numerous oxygen-sensing tissues. Thiosulfate, an intermediate in oxidative H2S metabolism can alternatively be reduced and regenerate H2S. We propose that this contributes to the H2S-mediated oxygen-sensing mechanism. H2S formation from thiosulfate in buffers and in a variety of mammalian tissues and in lamprey dorsal aorta was examined in real time using a polarographic H2S sensor. Inferences of intracellular H2S production were made by examining hypoxic pulmonary vasoconstriction (HPV) in bovine pulmonary arteries under conditions in which increased H2S production would be expected and in mouse and rat aortas, where reducing conditions should mediate vasorelaxation. In Krebs-Henseleit (mammalian) and Cortland (lamprey) buffers, H2S was generated from thiosulfate in the presence of the exogenous reducing agent, DTT, or the endogenous reductant dihydrolipoic acid (DHLA). Both the magnitude and rate of H2S production were greatly increased by these reductants in the presence of tissue, with the most notable effects occurring in the liver. H2S production was only observed when tissues were hypoxic; exposure to room air, or injecting oxygen inhibited H2S production and resulted in net H2S consumption. Both DTT and DHLA augmented HPV, and DHLA dose-dependently relaxed precontracted mouse and rat aortas. These results indicate that thiosulfate can contribute to H2S signaling under hypoxic conditions and that this is not only a ready source of H2S production but also serves as a means of recycling sulfur and thereby conserving biologically relevant thiols.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend Center, South Bend, Indiana; and
| | | | | | | | | | | | | |
Collapse
|
318
|
Shen Y, Guo W, Wang Z, Zhang Y, Zhong L, Zhu Y. Protective effects of hydrogen sulfide in hypoxic human umbilical vein endothelial cells: a possible mitochondria-dependent pathway. Int J Mol Sci 2013; 14:13093-108. [PMID: 23799362 PMCID: PMC3742176 DOI: 10.3390/ijms140713093] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/29/2013] [Accepted: 06/03/2013] [Indexed: 01/23/2023] Open
Abstract
The aim of the study was to investigate the protective effects of sodium hydrosulfide (NaHS), a H2S donor, against hypoxia-induced injury in human umbilical vein endothelial cells (HUVECs) and also to look into the possible mechanisms by which H2S exerts this protective effect. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and scratch wound healing assay were chosen to measure the cell viability and migration-promoting effects. The fluorescent probe, DCFH-DA and 5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide (JC-1) were applied to detect the reactive oxygen species (ROS) level and mitochondrial membrane potential (ΔΨm). Furthermore, western blots were used to measure the expressions of the apoptosis-related proteins. Under hypoxic conditions, 300 μM and 600 μM of H2S could protect HUVECs against hypoxia-induced injury, as determined by MTT assay. Following the treatment of 60 μM NaHS for 18 h, scratch wound healing assays indicated that the scratch became much narrower than control group. After treatment with 60 μM, 120 μM, and 600 μM NaHS, and hypoxia for 30 min, flow cytometry demonstrated that the ROS concentrations decreased to 95.08% ± 5.52%, 73.14% ± 3.36%, and 73.51% ± 3.05%, respectively, compared with the control group. In addition, the JC-1 assay showed NaHS had a protective effect on mitochondria damage. Additionally, NaHS increased Bcl-2 expression and decreased the expression of Bax, Caspase-3 and Caspase-9 in a dose-dependent way. Our results suggest that H2S can protect endothelial cells and promote migration under hypoxic condition in HUVECs. These effects are partially associated with the preservation of mitochondrial function mediated by regulating the mitochondrial-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Yaqi Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; E-Mails: (Y.S.); (W.G.); (Z.W.); (Y.Z.); (L.Z.)
| | - Wei Guo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; E-Mails: (Y.S.); (W.G.); (Z.W.); (Y.Z.); (L.Z.)
| | - Zhijun Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; E-Mails: (Y.S.); (W.G.); (Z.W.); (Y.Z.); (L.Z.)
| | - Yuchen Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; E-Mails: (Y.S.); (W.G.); (Z.W.); (Y.Z.); (L.Z.)
| | - Liangjie Zhong
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; E-Mails: (Y.S.); (W.G.); (Z.W.); (Y.Z.); (L.Z.)
| | - Yizhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; E-Mails: (Y.S.); (W.G.); (Z.W.); (Y.Z.); (L.Z.)
- Institute of Biomedical Sciences, Fudan University, Shanghai 201203, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +862-151-980-018; Fax: +862-151-980-008
| |
Collapse
|
319
|
Bae SK, Heo CH, Choi DJ, Sen D, Joe EH, Cho BR, Kim HM. A Ratiometric Two-Photon Fluorescent Probe Reveals Reduction in Mitochondrial H2S Production in Parkinson’s Disease Gene Knockout Astrocytes. J Am Chem Soc 2013; 135:9915-23. [DOI: 10.1021/ja404004v] [Citation(s) in RCA: 340] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sung Keun Bae
- Division of Energy Systems Research,
Ajou University, Suwon 443-749, Korea
| | - Cheol Ho Heo
- Division of Energy Systems Research,
Ajou University, Suwon 443-749, Korea
| | - Dong Joo Choi
- Department of Pharmacology/Neuroscience
Graduate Program, Ajou University School of Medicine, Suwon 443-721,
Korea
| | - Debabrata Sen
- Division of Energy Systems Research,
Ajou University, Suwon 443-749, Korea
| | - Eun-Hye Joe
- Department of Pharmacology/Neuroscience
Graduate Program, Ajou University School of Medicine, Suwon 443-721,
Korea
| | - Bong Rae Cho
- Department of Chemistry,
Korea
University, Seoul 136-701, Korea
| | - Hwan Myung Kim
- Division of Energy Systems Research,
Ajou University, Suwon 443-749, Korea
| |
Collapse
|
320
|
Nagy P, Pálinkás Z, Nagy A, Budai B, Tóth I, Vasas A. Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochim Biophys Acta Gen Subj 2013; 1840:876-91. [PMID: 23769856 DOI: 10.1016/j.bbagen.2013.05.037] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/23/2013] [Accepted: 05/26/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Owing to recent discoveries of many hydrogen sulfide-mediated physiological processes, sulfide biology is in the focus of scientific research. However, the promiscuous chemical properties of sulfide pose complications for biological studies, which led to accumulation of controversial observations in the literature. SCOPE OF REVIEW We intend to provide an overview of fundamental thermodynamic and kinetic features of sulfide redox- and coordination-chemical reactions and protonation equilibria in relation to its biological functions. In light of these chemical properties we review the strengths and limitations of the most commonly used sulfide detection methods and recently developed fluorescent probes. We also give a personal perspective on blood and tissue sulfide measurements based on proposed biomolecule-sulfide interactions and point out important chemical aspects of handling sulfide reagent solutions. MAJOR CONCLUSIONS The diverse chemistries of sulfide detection methods resulted in orders of magnitude differences in measured physiological sulfide levels. Investigations that were aimed to dissect the underlying molecular reasons responsible for these controversies made the important recognition that there are large sulfide reserves in biological systems. These sulfide pools are tightly regulated in a dynamic manner and they are likely to play a major role in regulation of endogenous-sulfide-mediated biological functions and avoiding toxic side effects. GENERAL SIGNIFICANCE Working with sulfide is challenging, because it requires considerable amounts of chemical knowledge to adequately handle reagent sulfide solutions and interpret biological observations. Therefore, we propose that a rigorous chemical approach could aid the reconciliation of the increasing number of controversies in sulfide biology. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Ráth György utca 7-9, Budapest 1122, Hungary.
| | | | | | | | | | | |
Collapse
|
321
|
Selective detection of cysteine over homocysteine and glutathione by a bis(bromoacetyl)fluorescein probe. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.03.119] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
322
|
Aslami H, Pulskens WP, Kuipers MT, Bos AP, van Kuilenburg ABP, Wanders RJA, Roelofsen J, Roelofs JJTH, Kerindongo RP, Beurskens CJP, Schultz MJ, Kulik W, Weber NC, Juffermans NP. Hydrogen sulfide donor NaHS reduces organ injury in a rat model of pneumococcal pneumosepsis, associated with improved bio-energetic status. PLoS One 2013; 8:e63497. [PMID: 23717435 PMCID: PMC3662774 DOI: 10.1371/journal.pone.0063497] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/03/2013] [Indexed: 01/04/2023] Open
Abstract
Sepsis is characterized by a generalized inflammatory response and organ failure, associated with mitochondrial dysfunction. Hydrogen sulfide donor NaHS has anti-inflammatory properties, is able to reduce metabolism and can preserve mitochondrial morphology and function. Rats were challenged with live Streptococcus pneumonia or saline and infused with NaHS (36 µmol/kg/h) or vehicle. Lung and kidney injury markers were measured as well as mitochondrial function, viability and biogenesis. Infusion of NaHS reduced heart rate and body temperature, indicative of a hypo-metabolic state. NaHS infusion reduced sepsis-related lung and kidney injury, while host defense remained intact, as reflected by unchanged bacterial outgrowth. The reduction in organ injury was associated with a reversal of a fall in active oxidative phosphorylation with a concomitant decrease in ATP levels and ATP/ADP ratio. Preservation of mitochondrial respiration was associated with increased mitochondrial expression of α-tubulin and protein kinase C-ε, which acts as regulators of respiration. Mitochondrial damage was decreased by NaHS, as suggested by a reduction in mitochondrial DNA leakage in the lung. Also, NaHS treatment was associated with upregulation of peroxisome proliferator-activated receptor-γ coactivator 1α, with a subsequent increase in transcription of mitochondrial respiratory subunits. These findings indicate that NaHS reduces organ injury in pneumosepsis, possibly via preservation of oxidative phosphorylation and thereby ATP synthesis as well as by promoting mitochondrial biogenesis. Further studies on the involvement of mitochondria in sepsis are required.
Collapse
Affiliation(s)
- Hamid Aslami
- Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Yang G, Zhao K, Ju Y, Mani S, Cao Q, Puukila S, Khaper N, Wu L, Wang R. Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 2013; 18:1906-19. [PMID: 23176571 DOI: 10.1089/ars.2012.4645] [Citation(s) in RCA: 449] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIMS H2S, a third member of gasotransmitter family along with nitric oxide and carbon monoxide, exerts a wide range of cellular and molecular actions in our body. Cystathionine gamma-lyase (CSE) is a major H2S-generating enzyme in our body. Aging at the cellular level, known as cellular senescence, can result from increases in oxidative stress. The aim of this study was to investigate how H2S attenuates oxidative stress and delays cellular senescence. RESULTS Here we showed that mouse embryonic fibroblasts isolated from CSE knockout mice (CSE KO-MEFs) display increased oxidative stress and accelerated cellular senescence in comparison with MEFs from wild-type mice (WT-MEFs). The protein expression of p53 and p21 was significantly increased in KO-MEFs, and knockdown of p53 or p21 reversed CSE deficiency-induced senescence. Incubation of the cells with NaHS (a H2S donor) significantly increased the glutathione (GSH) level and rescued KO-MEFs from senescence. Nrf2 is a master regulator of the antioxidant response, and Keap1 acts as a negative regulator of Nrf2. NaHS S-sulfhydrated Keap1 at cysteine-151, induced Nrf2 dissociation from Keap1, enhanced Nrf2 nuclear translocation, and stimulated mRNA expression of Nrf2-targeted downstream genes, such as glutamate-cysteine ligase and GSH reductase. INNOVATION These results provide a mechanistic insight into how H2S signaling mediates cellular senescence induced by oxidative stress. CONCLUSION H2S protects against cellular aging via S-sulfhydration of Keap1 and Nrf2 activation in association with oxidative stress.
Collapse
Affiliation(s)
- Guangdong Yang
- Cardiovascular and Metabolic Research Unit, Lakehead University, Ontario P7B 5E1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
324
|
Jin HF, Wang Y, Wang XB, Sun Y, Tang CS, Du JB. Sulfur dioxide preconditioning increases antioxidative capacity in rat with myocardial ischemia reperfusion (I/R) injury. Nitric Oxide 2013; 32:56-61. [PMID: 23629152 DOI: 10.1016/j.niox.2013.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/23/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND The study was designed to explore if sulfur dioxide (SO2) preconditioning increased antioxidative capacity in rat with myocardial ischemia reperfusion (I/R) injury. METHODS The myocardial I/R model was made by left coronary artery ligation for 30min and reperfusion for 120min in rats. Myocardial infarct size and plasma lactate dehydrogenase (LDH) and creatine kinase (CK) activities, plasma superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px) and glutathione (GSH) changes were detected for the rats. The contents of myocardial hydrogen sulfide (H2S) and nitric oxide (NO) were measured. Myocardial protein expressions of SOD1, SOD2, cystathionine γ-lyase (CSE) and iNOS were tested using Western blot. RESULTS Myocardial infarction developed and plasma CK and LDH activities were significantly increased in I/R group compared with those in control group, but SO2 preconditioning significantly reduced myocardial infarct size, and plasma CK and LDH activities. SO2 preconditioning successfully increased plasma SOD, GSH and GSH-Px levels and myocardial SOD1 protein expression, but decreased MDA level in rats of I/R group. Compared with controls, the myocardial H2S level and CSE expression were decreased after I/R, but myocardial NO level and iNOS expression were increased. With the treatment of SO2, myocardial H2S level and CSE expression were increased, but myocardial NO level and iNOS expression were decreased compared with those in I/R group. CONCLUSIONS SO2 preconditioning could significantly reduce I/R-induced myocardial injury in vivo in association with increased myocardial antioxidative capacity, upregulated myocardial H2S/CSE pathway but downregulated NO/iNOS pathway.
Collapse
Affiliation(s)
- Hong fang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, PR China
| | | | | | | | | | | |
Collapse
|
325
|
Cell-trappable fluorescent probes for endogenous hydrogen sulfide signaling and imaging H2O2-dependent H2S production. Proc Natl Acad Sci U S A 2013; 110:7131-5. [PMID: 23589874 DOI: 10.1073/pnas.1302193110] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydrogen sulfide (H2S) is a reactive small molecule generated in the body that can be beneficial or toxic owing to its potent redox activity. In living systems, disentangling the pathways responsible for H2S production and their physiological and pathological consequences remains a challenge in part due to a lack of methods for monitoring changes in endogenous H2S fluxes. The development of fluorescent probes with appropriate selectivity and sensitivity for monitoring production of H2S at biologically relevant signaling levels offers opportunities to explore its roles in a variety of systems. Here we report the design, synthesis, and application of a family of azide-based fluorescent H2S indicators, Sulfidefluor-4, Sulfidefluor-5 acetoxymethyl ester, and Sulfidefluor-7 acetoxymethyl ester, which offer the unique capability to image H2S generated at physiological signaling levels. These probes are optimized for cellular imaging and feature enhanced sensitivity and cellular retention compared with our previously reported molecules. In particular, Sulfidefluor-7 acetoxymethyl ester allows for direct, real-time visualization of endogenous H2S produced in live human umbilical vein endothelial cells upon stimulation with vascular endothelial growth factor (VEGF). Moreover, we show that H2S production is dependent on NADPH oxidase-derived hydrogen peroxide (H2O2), which attenuates VEGF receptor 2 phosphorylation and establishes a link for H2S/H2O2 crosstalk.
Collapse
|
326
|
Olson KR. A theoretical examination of hydrogen sulfide metabolism and its potential in autocrine/paracrine oxygen sensing. Respir Physiol Neurobiol 2013; 186:173-9. [DOI: 10.1016/j.resp.2013.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 12/20/2022]
|
327
|
Bos EM, Wang R, Snijder PM, Boersema M, Damman J, Fu M, Moser J, Hillebrands JL, Ploeg RJ, Yang G, Leuvenink HGD, van Goor H. Cystathionine γ-lyase protects against renal ischemia/reperfusion by modulating oxidative stress. J Am Soc Nephrol 2013; 24:759-70. [PMID: 23449534 DOI: 10.1681/asn.2012030268] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous gasotransmitter with physiologic functions similar to nitric oxide and carbon monoxide. Exogenous treatment with H2S can induce a reversible hypometabolic state, which can protect organs from ischemia/reperfusion injury, but whether cystathionine γ-lyase (CSE), which produces endogenous H2S, has similar protective effects is unknown. Here, human renal tissue revealed abundant expression of CSE, localized to glomeruli and the tubulointerstitium. Compared with wild-type mice, CSE knockout mice had markedly reduced renal production of H2S, and CSE deficiency associated with increased damage and mortality after renal ischemia/reperfusion injury. Treatment with exogenous H2S rescued CSE knockout mice from the injury and mortality associated with renal ischemia. In addition, overexpression of CSE in vitro reduced the amount of reactive oxygen species produced during stress. Last, the level of renal CSE mRNA at the time of organ procurement positively associated with GFR 14 days after transplantation. In summary, these results suggest that CSE protects against renal ischemia/reperfusion injury, likely by modulating oxidative stress through the production of H2S.
Collapse
Affiliation(s)
- Eelke M Bos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
328
|
Espey MG. Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free Radic Biol Med 2013; 55:130-40. [PMID: 23127782 DOI: 10.1016/j.freeradbiomed.2012.10.554] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/19/2012] [Accepted: 10/24/2012] [Indexed: 01/01/2023]
Abstract
The unique anatomy and physiology of the intestine in conjunction with its microbial content create the steepest oxygen gradients in the body, which plunge to near anoxia at the luminal midpoint. Far from static, intestinal oxygen gradients ebb and flow with every meal. This in turn governs the redox effectors nitric oxide, hydrogen sulfide, and reactive oxygen species of both host and bacterial origin. This review illustrates how the intestine and microbes utilize oxygen gradients as a backdrop for mechanistically shaping redox relationships and a functional coexistence.
Collapse
Affiliation(s)
- Michael Graham Espey
- Office of the Scientific Director, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
329
|
Wang X, Sun J, Zhang W, Ma X, Lv J, Tang B. A near-infrared ratiometric fluorescent probe for rapid and highly sensitive imaging of endogenous hydrogen sulfide in living cells. Chem Sci 2013. [DOI: 10.1039/c3sc50369k] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
330
|
Amat S, Olkowski AA, Atila M, O'Neill TJ. A review of polioencephalomalacia in ruminants: is the development of malacic lesions associated with excess sulfur intake independent of thiamine deficiency? ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2054-3425-1-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
331
|
Stein A, Bailey SM. Redox Biology of Hydrogen Sulfide: Implications for Physiology, Pathophysiology, and Pharmacology. Redox Biol 2013; 1:32-39. [PMID: 23795345 PMCID: PMC3685875 DOI: 10.1016/j.redox.2012.11.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hydrogen sulfide (H2S) has emerged as a critical mediator of multiple physiological processes in mammalian systems. The pathways involved in the production, consumption, and mechanism of action of H2S appear to be sensitive to alterations in the cellular redox state and O2 tension. Indeed, the catabolism of H2S through a putative oxidation pathway, the sulfide quinone oxido-reductase system, is highly dependent on O2 tension. Dysregulation of H2S homeostasis has also been implicated in numerous pathological conditions and diseases. In this review, the chemistry and the main physiological actions of H2S are presented. Some examples highlighting the cytoprotective actions of H2S within the context of cardiovascular disease are also reported. Elucidation of the redox biology of H2S will enable the development of new pharmacological agents based on this intriguing new redox cellular signal.
Collapse
Affiliation(s)
- Asaf Stein
- Departments of Environmental Health Sciences and Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL USA
| | | |
Collapse
|
332
|
Saha T, Kand D, Talukdar P. A colorimetric and fluorometric BODIPY probe for rapid, selective detection of H2S and its application in live cell imaging. Org Biomol Chem 2013; 11:8166-70. [DOI: 10.1039/c3ob41884g] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
333
|
Hydrogen sulfide as an endogenous modulator in mitochondria and mitochondria dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:878052. [PMID: 23304257 PMCID: PMC3523162 DOI: 10.1155/2012/878052] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/05/2012] [Accepted: 11/13/2012] [Indexed: 01/22/2023]
Abstract
Hydrogen sulfide (H2S) has historically been considered to be a toxic gas, an environmental and occupational hazard. However, with the discovery of its presence and enzymatic production through precursors of L-cysteine and homocysteine in mammalian tissues, H2S has recently received much interest as a physiological signaling molecule. H2S is a gaseous messenger molecule that has been implicated in various physiological and pathological processes in mammals, including vascular relaxation, angiogenesis, and the function of ion channels, ischemia/reperfusion (I/R), and heart injury. H2S is an endogenous neuromodulator and present studies show that physiological concentrations of H2S enhance NMDA receptor-mediated responses and aid in the induction of hippocampal long-term potentiation. Moreover, in the field of neuronal protection, physiological concentrations of H2S in mitochondria have many favorable effects on cytoprotection.
Collapse
|
334
|
Calzia E, Radermacher P, Olson KR. Endogenous H2S in hemorrhagic shock: innocent bystander or central player? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012. [PMID: 23194072 PMCID: PMC3672582 DOI: 10.1186/cc11833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The role of the gaseous mediator hydrogen sulfide (H2S) in hemorrhagic shock is still a matter of debate. This debate is emphasized by the fact that available literature data on blood and tissue H2S concentrations vary by three orders of magnitude, both under physiological conditions as well as during stress states. Therefore, in a rat model of unresuscitated, lethal hemorrhagic shock, Van de Louw and Haouzi tested the two hypotheses of whether blood and tissue H2S levels would increase due to the shock-related tissue hypoxia, and whether vitamin B12 would attenuate organ injury and improve survival as a result of enhanced H2S oxidation. Hemorrhage did not affect the blood and tissue H2S content, and, despite the increased capacity to oxidize H2S, vitamin B12 did not affect any parameter of shock severity. The authors concluded that H2S concentrations cannot be used as a marker of shock, most probably as a result of tissue's capacity to oxidize H2S even under conditions of severe oxygen debt. This research paper elegantly re-adjusts the currently available data on blood and tissue H2S levels, and thereby adds an important piece to the puzzle of whether H2S release should be enhanced or lowered during stress conditions associated with tissue hypoxia.
Collapse
|
335
|
Iranon NN, Miller DL. Interactions between oxygen homeostasis, food availability, and hydrogen sulfide signaling. Front Genet 2012; 3:257. [PMID: 23233860 PMCID: PMC3516179 DOI: 10.3389/fgene.2012.00257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/04/2012] [Indexed: 12/19/2022] Open
Abstract
The ability to sense and respond to stressful conditions is essential to maintain organismal homeostasis. It has long been recognized that stress response factors that improve survival in changing conditions can also influence longevity. In this review, we discuss different strategies used by animals in response to decreased O(2) (hypoxia) to maintain O(2) homeostasis, and consider interactions between hypoxia responses, nutritional status, and H(2)S signaling. O(2) is an essential environmental nutrient for almost all metazoans as it plays a fundamental role in development and cellular metabolism. However, the physiological response(s) to hypoxia depend greatly on the amount of O(2) available. Animals must sense declining O(2) availability to coordinate fundamental metabolic and signaling pathways. It is not surprising that factors involved in the response to hypoxia are also involved in responding to other key environmental signals, particularly food availability. Recent studies in mammals have also shown that the small gaseous signaling molecule hydrogen sulfide (H(2)S) protects against cellular damage and death in hypoxia. These results suggest that H(2)S signaling also integrates with hypoxia response(s). Many of the signaling pathways that mediate the effects of hypoxia, food deprivation, and H(2)S signaling have also been implicated in the control of lifespan. Understanding how these pathways are coordinated therefore has the potential to reveal new cellular and organismal homeostatic mechanisms that contribute to longevity assurance in animals.
Collapse
Affiliation(s)
- Nicole N Iranon
- Department of Biochemistry, University of Washington School of Medicine Seattle, WA, USA ; Molecular and Cellular Biology Graduate Program, University of Washington School of Medicine Seattle, WA, USA
| | | |
Collapse
|
336
|
Módis K, Coletta C, Erdélyi K, Papapetropoulos A, Szabo C. Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J 2012; 27:601-11. [PMID: 23104984 DOI: 10.1096/fj.12-216507] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is well established that exposure of mammalian cells to hydrogen sulfide (H(2)S) suppresses mitochondrial function by inhibiting cytochrome-c oxidase (CcOX; complex IV). However, recent experimental data show that administration of H(2)S to mammalian cells can serve as an electron donor and inorganic source of energy. The aim of our study was to investigate the role of endogenously produced H(2)S in the regulation of mitochondrial electron transport and oxidative phosphorylation in isolated liver mitochondria and in the cultured murine hepatoma cell line Hepa1c1c7. Low concentrations of H(2)S (0.1-1 μM) elicited a significant increase in mitochondrial function, while higher concentrations of H(2)S (3-30 μM) were inhibitory. The positive bioenergetic effect of H(2)S required a basal activity of the Krebs cycle and was most pronounced at intermediate concentrations of succinate. 3-mercaptopyruvate (3-MP), the substrate of the mitochondrial enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) stimulated mitochondrial H(2)S production and enhanced mitochondrial electron transport and cellular bioenergetics at low concentrations (10-100 nM), while at higher concentrations, it inhibited cellular bioenergetics. SiRNA silencing of 3-MST reduced basal bioenergetic parameters and prevented the stimulating effect of 3-MP on mitochondrial bioenergetics. Silencing of sulfide quinone oxidoreductase (SQR) also reduced basal and 3-MP-stimulated bioenergetic parameters. We conclude that an endogenous intramitochondrial H(2)S-producing pathway, governed by 3-MST, complements and balances the bioenergetic role of Krebs cycle-derived electron donors. This pathway may serve a physiological role in the maintenance of mitochondrial electron transport and cellular bioenergetics.
Collapse
Affiliation(s)
- Katalin Módis
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
337
|
Epelman S, Tang WW. H2S—The Newest Gaseous Messenger on the Block. J Card Fail 2012; 18:597-9. [DOI: 10.1016/j.cardfail.2012.06.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 11/17/2022]
|
338
|
Abstract
Hydrogen sulfide (H(2)S) has recently emerged as a mammalian gaseous messenger molecule, akin to nitric oxide and carbon monoxide. H(2)S is predominantly formed from Cys or its derivatives by the enzymes cystathionine β-synthase and cystathionine γ-lyase. One of the mechanisms by which H(2)S signals is by sulfhydration of reactive Cys residues in target proteins. Although analogous to protein nitrosylation, sulfhydration is substantially more prevalent and usually increases the catalytic activity of targeted proteins. Physiological actions of sulfhydration include the regulation of inflammation and endoplasmic reticulum stress signalling as well as of vascular tension.
Collapse
Affiliation(s)
- Bindu D Paul
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
339
|
Makarenko VV, Nanduri J, Raghuraman G, Fox AP, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR. Endogenous H2S is required for hypoxic sensing by carotid body glomus cells. Am J Physiol Cell Physiol 2012; 303:C916-23. [PMID: 22744006 DOI: 10.1152/ajpcell.00100.2012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
H(2)S generated by the enzyme cystathionine-γ-lyase (CSE) has been implicated in O(2) sensing by the carotid body. The objectives of the present study were to determine whether glomus cells, the primary site of hypoxic sensing in the carotid body, generate H(2)S in an O(2)-sensitive manner and whether endogenous H(2)S is required for O(2) sensing by glomus cells. Experiments were performed on glomus cells harvested from anesthetized adult rats as well as age and sex-matched CSE(+/+) and CSE(-/-) mice. Physiological levels of hypoxia (Po(2) ∼30 mmHg) increased H(2)S levels in glomus cells, and dl-propargylglycine (PAG), a CSE inhibitor, prevented this response in a dose-dependent manner. Catecholamine (CA) secretion from glomus cells was monitored by carbon-fiber amperometry. Hypoxia increased CA secretion from rat and mouse glomus cells, and this response was markedly attenuated by PAG and in cells from CSE(-/-) mice. CA secretion evoked by 40 mM KCl, however, was unaffected by PAG or CSE deletion. Exogenous application of a H(2)S donor (50 μM NaHS) increased cytosolic Ca(2+) concentration ([Ca(2+)](i)) in glomus cells, with a time course and magnitude that are similar to that produced by hypoxia. [Ca(2+)](i) responses to NaHS and hypoxia were markedly attenuated in the presence of Ca(2+)-free medium or cadmium chloride, a pan voltage-gated Ca(2+) channel blocker, or nifedipine, an L-type Ca(2+) channel inhibitor, suggesting that both hypoxia and H(2)S share common Ca(2+)-activating mechanisms. These results demonstrate that H(2)S generated by CSE is a physiologic mediator of the glomus cell's response to hypoxia.
Collapse
Affiliation(s)
- Vladislav V Makarenko
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
340
|
Kajimura M, Nakanishi T, Takenouchi T, Morikawa T, Hishiki T, Yukutake Y, Suematsu M. Gas biology: tiny molecules controlling metabolic systems. Respir Physiol Neurobiol 2012; 184:139-48. [PMID: 22516267 DOI: 10.1016/j.resp.2012.03.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 03/21/2012] [Accepted: 03/21/2012] [Indexed: 12/15/2022]
Abstract
It has been recognized that gaseous molecules and their signaling cascades play a vital role in alterations of metabolic systems in physiologic and pathologic conditions. Contrary to this awareness, detailed mechanisms whereby gases exert their actions, in particular in vivo, have been unclear because of several reasons. Gaseous signaling involves diverse reactions with metal centers of metalloproteins and thiol modification of cysteine residues of proteins. Both the multiplicity of gas targets and the technical limitations in accessing local gas concentrations make dissection of exact actions of any gas mediator a challenge. However, a series of advanced technologies now offer ways to explore gas-responsive regulatory processes in vivo. Imaging mass spectrometry combined with quantitative metabolomics by capillary-electrophoresis/mass spectrometry reveals spatio-temporal profiles of many metabolites. Comparing the metabolic footprinting of murine samples with a targeted deletion of a specific gas-producing enzyme makes it possible to determine sites of actions of the gas. In this review, we intend to elaborate on the ideas how small gaseous molecules interact with metabolic systems to control organ functions such as cerebral vascular tone and energy metabolism in vivo.
Collapse
Affiliation(s)
- Mayumi Kajimura
- Department of Biochemistry, School of Medicine, Keio University, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
341
|
Xuan W, Pan R, Cao Y, Liu K, Wang W. A fluorescent probe capable of detecting H2S at submicromolar concentrations in cells. Chem Commun (Camb) 2012; 48:10669-71. [DOI: 10.1039/c2cc35602c] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|