301
|
Podlaska A, McIntyre J, Skoneczna A, Sledziewska-Gojska E. The link between 20S proteasome activity and post-replication DNA repair in Saccharomyces cerevisiae. Mol Microbiol 2003; 49:1321-32. [PMID: 12940990 DOI: 10.1046/j.1365-2958.2003.03635.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have shown previously that deletion of the Saccharomyces cerevisiae UMP1 gene encoding the 20S proteasome maturase causes sensitivity to UV radiation. In the current report, we have extended this finding to show that mutations specifically compromising chymotrypsin-like or trypsin-like activity of 20S proteasome peptidases also result in increased UV sensitivity. We have also established that mutations affecting proteasome activity, namely ump1Delta, pre2-K108R and pup1-T20A, result in spontaneous and UV-induced mutator phenotypes. To elucidate the origin of these DNA repair phenotypes of the proteasomal mutants, we performed epistasis analysis, with respect to UV sensitivity, using yeast strains with the UMP1 deletion in different DNA repair backgrounds. We show that UMP1 is not epistatic to RAD23 and RAD2, which are involved in the nucleotide excision repair (NER) pathway. Instead, our results indicate that UMP1 as well as PUP1 and PRE2 (encoding catalytic subunits of 20S proteasome) belong to an epistatic group of genes functioning in post-replication DNA repair (PRR) and are hypostatic to RAD18, which, in complex with RAD6, plays a central role in PRR. We also show that UMP1 is epistatic to REV3 and RAD30, although the relationship of UMP1 with these genes is different.
Collapse
Affiliation(s)
- Agnieszka Podlaska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
302
|
Singer T, Haefner S, Hoffmann M, Fischer M, Ilyina J, Hilt W. Sit4 phosphatase is functionally linked to the ubiquitin-proteasome system. Genetics 2003; 164:1305-21. [PMID: 12930741 PMCID: PMC1462641 DOI: 10.1093/genetics/164.4.1305] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using a synthetic lethality screen we found that the Sit4 phosphatase is functionally linked to the ubiquitin-proteasome system. Yeast cells harboring sit4 mutations and an impaired proteasome (due to pre1-1 pre4-1 mutations) exhibited defective growth on minimal medium. Nearly identical synthetic effects were found when sit4 mutations were combined with defects of the Rad6/Ubc2- and Cdc34/Ubc3-dependent ubiquitination pathways. Under synthetic lethal conditions, sit4 pre or sit4 ubc mutants formed strongly enlarged unbudded cells with a DNA content of 1N, indicating a defect in the maintenance of cell integrity during starvation-induced G(1) arrest. Sit4-related synthetic effects could be cured by high osmotic pressure or by the addition of certain amino acids to the growth medium. These results suggest a concerted function of the Sit4 phosphatase and the ubiquitin-proteasome system in osmoregulation and in the sensing of nutrients. Further analysis showed that Sit4 is not a target of proteasome-dependent protein degradation. We could also show that Sit4 does not contribute to regulation of proteasome activity. These data suggest that both Sit4 phosphatase and the proteasome act on a common target protein.
Collapse
Affiliation(s)
- Thorsten Singer
- Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
303
|
Abstract
Prostate cancer (PCa) is the most frequently diagnosed malignancy and the second leading cause of cancer-related deaths in American males. For these reasons, it is necessary to intensify our efforts for better understanding and development of novel treatment and chemopreventive approaches for this disease. In recent years, green tea has gained considerable attention as an agent that could reduce the risk of several cancer types. The cancer-chemopreventive effects of green tea appear to be mediated by the polyphenolic constituents present therein. Based on geographical observations that suggest that the incidence of PCa is lower in Japanese and Chinese populations that consume green tea on a regular basis, we hypothesized that green tea and/or its constituents could be effective for chemoprevention of PCa. To investigate this hypothesis, we initiated a program for the chemoprevention of PCa by green tea. In cell-culture systems that employ human PCa cells DU145 (androgen insensitive) and LNCaP (androgen sensitive), we found that the major polyphenolic constituent (-)-epigallocatechin-3-gallate (EGCG) of green tea induces 1) apoptosis, 2) cell-growth inhibition, and 3) cyclin kinase inhibitor WAF-1/p21-mediated cell-cycle dysregulation. More recently, using a cDNA microarray, we found that EGCG treatment of LNCaP cells results in 1) induction of genes that functionally exhibit growth-inhibitory effects, and 2) repression of genes that belong to the G-protein signaling network. In animal studies that employ a transgenic adenocarcinoma of the mouse prostate (TRAMP), which is a model that mimics progressive forms of human prostatic disease, we observed that oral infusion of a polyphenolic fraction isolated from green tea (GTP) at a human achievable dose (equivalent to 6 cups of green tea/d) significantly inhibits PCa development and metastasis. We extended these studies and more recently observed increased expression of genes related to angiogenesis such as vascular endothelial growth factor (VEGF) and those related to metastasis such as matrix metalloproteinases (MMP)-2 and MMP-9 in prostate cancer of TRAMP mice. Oral feeding of GTP as the sole source of drinking fluid to TRAMP mice results in significant inhibition of VEGF, MMP-2 and MMP-9. These data suggest that there are multiple targets for PCa chemoprevention by green tea and highlight the need for further studies to identify novel pathways that may be modulated by green tea or its polyphenolic constituents that could be further exploited for prevention and/or treatment of PCa.
Collapse
Affiliation(s)
- Vaqar M Adhami
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
304
|
Meiners S, Heyken D, Weller A, Ludwig A, Stangl K, Kloetzel PM, Krüger E. Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of Mammalian proteasomes. J Biol Chem 2003; 278:21517-25. [PMID: 12676932 DOI: 10.1074/jbc.m301032200] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 26 S proteasome is a high molecular mass proteinase complex that is built by at least 32 different protein subunits. Such protease complexes in bacteria and yeast are systems that undergo a highly sophisticated network of gene expression regulation. However, regulation of mammalian proteasome gene expression has been neglected so far as a possible control mechanism for the amount of proteasomes in the cell. Here, we show that treatment of cells with proteasome inhibitors and the concomitant impairment of proteasomal enzyme activity induce a transient and concerted up-regulation of all mammalian 26 S proteasome subunit mRNAs. Proteasome inhibition in combination with inhibition of transcription revealed that the observed up-regulation is mediated by coordinated transcriptional activation of the proteasome genes and not by post-transcriptional events. Our experiments also demonstrate that inhibitor-induced proteasome gene activation results in enhanced de novo protein synthesis of all subunits and in increased de novo formation of proteasomes. This phenomenon is accompanied by enhanced expression of the proteasome maturation factor POMP. Thus, our experiments present the first evidence that the amount of proteasomes in mammalia is regulated at the transcriptional level and that there exists an autoregulatory feedback mechanism that allows the compensation of reduced proteasome activity.
Collapse
Affiliation(s)
- Silke Meiners
- Humboldt Universität zu Berlin, Universitätsklinikum Charité, Institut für Biochemie, Monbijoustrasse 2, 10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
305
|
Yang ZQ, Kwok BHB, Lin S, Koldobskiy MA, Crews CM, Danishefsky SJ. Simplified synthetic TMC-95A/B analogues retain the potency of proteasome inhibitory activity. Chembiochem 2003; 4:508-13. [PMID: 12794861 PMCID: PMC2556569 DOI: 10.1002/cbic.200300560] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Indexed: 12/21/2022]
Abstract
The proteasome regulates diverse intracellular processes, including cell-cycle progression, antigen presentation, and inflammatory response. Selective inhibitors of the proteasome have great therapeutic potential for the treatment of cancer and inflammatory disorders. Natural cyclic peptides TMC-95A and B represent a new class of noncovalent, selective proteasome inhibitors. To explore the structure-activity relationship of this class of proteasome inhibitors, a series of TMC-95A/B analogues were prepared and analyzed. We found that the unique enamide functionality at the C8 position of TMC-95s can be replaced with a simple allylamide. The asymmetric center at C36 that distinguishes TMC-95A from TMC-95B but which necessitates a complicated separation of the two compounds can be eliminated. Therefore, these findings could lead to the development of more accessible simple analogues as potential therapeutic agents.
Collapse
Affiliation(s)
- Zhi-Qiang Yang
- Laboratory of Bioorganic Chemistry, Sloan Kettering Institute for Cancer Research, 1275 York Avenue, New York 10021 (USA), Fax: (+1) 212-772-8691
| | - Benjamin H. B. Kwok
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06520-8103 (USA)
| | - Songnian Lin
- Laboratory of Bioorganic Chemistry, Sloan Kettering Institute for Cancer Research, 1275 York Avenue, New York 10021 (USA), Fax: (+1) 212-772-8691
| | - Michael A. Koldobskiy
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06520-8103 (USA)
| | - Craig M. Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06520-8103 (USA)
- Department of Pharmacology, Yale University, New Haven, CT 06520 (USA)
- Department of Chemistry, Yale University, New Haven, CT 06520 (USA)
| | - Samuel J. Danishefsky
- Laboratory of Bioorganic Chemistry, Sloan Kettering Institute for Cancer Research, 1275 York Avenue, New York 10021 (USA), Fax: (+1) 212-772-8691
- Department of Chemistry, Havemeyer Hall, Columbia University, New York 10027 (USA)
| |
Collapse
|
306
|
Tanahashi-Hori T, Tanahashi N, Tanaka K, Chiba T. Conditional knockdown of proteasomes results in cell-cycle arrest and enhanced expression of molecular chaperones Hsp70 and Hsp40 in chicken DT40 cells. J Biol Chem 2003; 278:16237-43. [PMID: 12594202 DOI: 10.1074/jbc.m301331200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 26 S proteasome is an evolutionarily conserved ATP-dependent protease complex that degrades poly-ubiquitinated proteins and plays essential roles in a critical part of cellular regulation. In vertebrates, the roles of the proteasome have been widely studied by use of specific inhibitors, but not genetically. Here, we generated a cell line Z(-/-/-)/Z-HA, in which the expression of the catalytic subunit of the proteasome, Z (beta2) could be manipulated. This cell line expresses exogenous Z protein under the control of a tetracycline-repressible promoter in a Z-nullizygous genetic background. Treatment of these cells with doxycycline inhibited Z expression and, hence, the function of the proteasome. The latter resulted in accumulation of poly-ubiquitinated proteins and concomitant induction of molecular chaperones Hsp70 and Hsp40. These results suggest a synergistic role for the proteasome with these molecular chaperones to eliminate misfolded or damaged proteins in vivo. Furthermore, knockdown of the proteasome induced apoptotic cell death following cell-cycle arrest at G(2)/M phase. Our Z(-/-/-)/Z-HA cell line would be useful for evaluating proteolytic processes catalyzed by the proteasome in many biological events in vertebrate cells.
Collapse
Affiliation(s)
- Tomoko Tanahashi-Hori
- Department of Molecular Oncology, The Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | | | | | | |
Collapse
|
307
|
Wang CC, Bozdech Z, Liu CL, Shipway A, Backes BJ, Harris JL, Bogyo M. Biochemical analysis of the 20 S proteasome of Trypanosoma brucei. J Biol Chem 2003; 278:15800-8. [PMID: 12600991 DOI: 10.1074/jbc.m300195200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe here biochemical characterization of the 20 S proteasome from the parasitic protozoan Trypanosoma brucei. Similar to the mammalian proteasome, the T. brucei proteasome is made up of seven alpha- and seven beta-subunits. Of the seven beta-type subunits, five contain pro-sequences that are proteolytically removed during assembly, and three of them are predicted to be catalytic based on primary sequence. Affinity labeling studies revealed that, unlike the mammalian proteasome where three beta-subunits were labeled by the affinity reagents, only two beta-subunits of the T. brucei proteasome were labeled in the complex. These two subunits corresponded to beta2 and beta5 subunits responsible for the trypsin-like and chymotrypsin-like proteolytic activities, respectively. Screening of a library of 137,180 tetrapeptide fluorogenic substrates against the T. brucei 20 S proteasome confirmed the nominal beta1-subunit (caspase-like or PGPH) activity and identified an overall substrate preference for hydrophobic residues at the P1 to P4 positions in a substrate. This overall stringency is relaxed in the 11 S regulator (PA26)-20 S proteasome complex, which shows both appreciable activities for cleavage after acidic amino acids and a broadened activity for cleavage after basic amino acids. The 20 S proteasome from T. brucei also shows appreciable activity for cleavage after P1-Gln that is minimally observed in the human counterpart. These results demonstrate the importance of substrate sequence specificity of the T. brucei proteasome and highlight its biochemical divergence from the human enzyme.
Collapse
Affiliation(s)
- Ching C Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0446, USA.
| | | | | | | | | | | | | |
Collapse
|
308
|
Abstract
Intracellular proteolysis is an essential process. In eukaryotes, most proteins in the cytosol and nucleus are degraded by the ubiquitin (Ub)-proteasome pathway. A major component within this system is the 26S proteasome, a 2.5MDa molecular machine, built from more than 31 different subunits. This complex is formed by a cylinder-shaped multimeric complex referred to as the proteolytic 20S proteasome (core particle, CP) capped at each end by another multimeric component called the 19S complex (regulatory particle, RP) or PA700. Structure, assembly and enzymatic mechanism have been elucidated only for the CP, whereas the organization of the RP is less well understood. The CP is composed of 28 subunits, which are arranged as an alpha7beta7beta7alpha7-complex in four stacked rings. The interior of the free core particle, which harbors the active sites, is inaccessible for folded and unfolded substrates and represents a latent state. This inhibition is relieved upon binding of the RP to the CP by formation of the 26S proteasome holoenzyme. This review summarizes the current knowledge of the structural features of 20S proteasomes.
Collapse
|
309
|
Gille C, Goede A, Schlöetelburg C, Preissner R, Kloetzel PM, Göbel UB, Frömmel C. A comprehensive view on proteasomal sequences: implications for the evolution of the proteasome. J Mol Biol 2003; 326:1437-48. [PMID: 12595256 DOI: 10.1016/s0022-2836(02)01470-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteasomes are large multimeric self-compartmentizing proteases, which play a crucial role in the clearance of misfolded proteins, breakdown of regulatory proteins, processing of proteins by specific partial proteolysis, cell cycle control as well as preparation of peptides for immune presentation. Two main types can be distinguished by their different tertiary structure: the 20S proteasome and the proteasome-like heat shock protein encoded by heat shock locus V, hslV. Usually, each biological kingdom is characterized by its specific type of proteasome. The 20S proteasomes occur in eukarya and archaea whereas hslV protease is prevalent in bacteria. To verify this rule we applied a genome-wide sequence search to identify proteasomal sequences in data of finished and yet unfinished genome projects. We found several exceptions to this paradigm: (1) Protista: in addition to the 20S proteasome, Leishmania, Trypanosoma and Plasmodium contained hslV, which may have been acquired from an alpha-proteobacterial progenitor of mitochondria. (2) Bacteria: for Magnetospirillum magnetotacticum and Enterococcus faecium we found that each contained two distinct hslVs due to gene duplication or horizontal transfer. Including unassembled data into the analyses we confirmed that a number of bacterial genomes do not contain any proteasomal sequence due to gene loss. (3) High G+C Gram-positives: we confirmed that high G+C Gram-positives possess 20S proteasomes rather than hslV proteases. The core of the 20S proteasome consists of two distinct main types of homologous monomers, alpha and beta, which differentiated into seven subtypes by further gene duplications. By looking at the genome of the intracellular pathogen Encephalitozoon cuniculi we were able to show that differentiation of beta-type subunits into different subtypes occurred earlier than that of alpha-subunits. Additionally, our search strategy had an important methodological consequence: a comprehensive sequence search for a particular protein should also include the raw sequence data when possible because proteins might be missed in the completed assembled genome. The structure-based multiple proteasomal alignment of 433 sequences from 143 organisms can be downloaded from the URL dagger and will be updated regularly.
Collapse
Affiliation(s)
- Christoph Gille
- Institute of Biochemistry, Medical Faculty Charité, Humboldt-University, D-10117, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
310
|
Lu M, Kitson RP, Xue Y, Goldfarb RH. Activation of multiple caspases and modification of cell surface fas (CD95) in proteasome inhibitor-induced apoptosis of rat natural killer cells. J Cell Biochem 2003; 88:482-92. [PMID: 12532325 DOI: 10.1002/jcb.10296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The proteasome is a multi-subunit protease complex that is involved in intracellular protein degradation in eukaryotes. Previously, we have reported that selective, synthetic chymotryptic proteasome inhibitors inhibit A-NK cell-mediated cytotoxicity by approximately 50%; however, the exact role of the proteasome in NK cell-mediated cytotoxicity remains unknown. Herein, we report that proteasome inhibitors, MG115 and MG132, decreased the proteasome chymotrypsin-like activity in the rat natural killer cell line RNK16 by 85% at a concentration of 5 microM. The viability of RNK16 cells was also reduced in the presence of these inhibitors. Both inhibitors induced the apoptosis of RNK16 cells, as shown by DNA fragmentation, caspase-3 activation and the appearance of sub-G-cell populations. An increase in the fraction of apoptotic cells was observed in a dose- and time-dependent manner in our studies. In addition, the activity of caspase-1, -2, -6, -7, -8, and -9, was increased following the treatment of RNK16 cells with these inhibitors. Further investigation revealed that the expression of Fas (CD95) protein on the RNK16 cell surface was increased after the treatment by MG115 or MG132, indicating that apoptosis induced by proteasome inhibitors in RNK16 cells might be mediated through the Fas (CD95)-mediated death pathway as well. Our studies indicate, for the first time, that proteasomal chymotryptic inhibitors can reduce natural killer cell viability and therefore indirectly inhibit cell-mediated cytotoxicity via the apoptosis-inducing properties of these agents.
Collapse
Affiliation(s)
- Min Lu
- Department of Molecular Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth 76107, USA
| | | | | | | |
Collapse
|
311
|
Farout L, Lamare M, Clavel S, Briand M, Briand Y. Differential expression of ubiquitin and proteasome-dependent pathway components in rat tissues. Comp Biochem Physiol B Biochem Mol Biol 2003; 134:297-305. [PMID: 12568808 DOI: 10.1016/s1096-4959(02)00266-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The ATP-ubiquitin-dependent pathway in eukaryotes is a complex system, which plays an essential role in selective protein degradation. The functional diversity of this system must be matched to the specific protein metabolism related to the physiology of each cell types. The aim of our work was to study the expression of different components of the proteasome-dependent pathway in various rat tissues. Therefore we quantified the 20S proteasome and the 19S and 11S regulators by Western blot, and measured the expression of the mRNAs of certain subunits, which are markers of these components. We compared the peptidase activities of the purified 20S proteasomes, and also mapped its components by 2D electrophoresis. Our results show that the components of the ATP-ubiquitin-dependent pathway vary considerably both in abundance and activity from one tissue to another. This diversity allows the cells to respond appropriately to tissue-specific protein metabolism in the rat.
Collapse
Affiliation(s)
- Luc Farout
- Laboratoire de Biochimie Appliquée--Associé INRA, Université Blaise Pascal--CUST, F63174 Aubiere Cedex, France
| | | | | | | | | |
Collapse
|
312
|
Andréasson C, Ljungdahl PO. Receptor-mediated endoproteolytic activation of two transcription factors in yeast. Genes Dev 2002; 16:3158-72. [PMID: 12502738 PMCID: PMC187503 DOI: 10.1101/gad.239202] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Yeast possess a plasma membrane sensor of external amino acids that functions as a ligand-activated receptor. This multimeric sensor, dubbed the SPS sensor, initiates signals that regulate the expression of genes required for proper amino acid uptake. Stp1p and Stp2p are transcription factors that bind to specific sequences within the promoters of SPS-sensor-regulated genes. These factors exhibit redundant and overlapping abilities to activate transcription. We have found that Stp1p and Stp2p are synthesized as latent cytoplasmic precursors. In response to extracellular amino acids, the SPS sensor induces the rapid endoproteolytic processing of Stp1p and Stp2p. The processing of Stp1p/Stp2p occurs independently of proteasome function and without the apparent involvement of additional components. The shorter forms of these transcription factors, lacking N-terminal inhibitory domains, are targeted to the nucleus, where they transactivate SPS-sensor target genes. These results define a completely unique and streamline metabolic control pathway that directly routes environmental signals initiated at the plasma membrane to transcriptional activation in the nucleus of yeast.
Collapse
Affiliation(s)
- Claes Andréasson
- Ludwig Institute for Cancer Research, S-171 77 Stockholm, Sweden
| | | |
Collapse
|
313
|
Tone Y, Toh-E A. Nob1p is required for biogenesis of the 26S proteasome and degraded upon its maturation in Saccharomyces cerevisiae. Genes Dev 2002; 16:3142-57. [PMID: 12502737 PMCID: PMC187499 DOI: 10.1101/gad.1025602] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nob1p is a nuclear protein that forms a complex with the 19S regulatory particle of the 26S proteasome and with uncharacterized nuclear protein Pno1p. Overexpression of NOB1 overrode the defects in maturation of the 20S proteasome of ump1Delta cells, and temperature-sensitive nob1 and pno1 mutants exhibited defects in the processing of the beta subunits and in the assembly of the 20S and the 26S proteasomes. A defect in either NOB1 or PNO1 caused accumulation of newly formed Pre6p in the cytoplasm, whereas Pre6p of the ump1Delta strain accumulated in the nucleus irrespective of the temperature. Here we present a model proposing that (1) Nob1p serves as a chaperone to join the 20S proteasome with the 19S regulatory particle in the nucleus and facilitates the maturation of the 20S proteasome and degradation of Ump1p, and (2) Nob1p is then internalized into the 26S proteasome and degraded to complete 26S proteasome biogenesis.
Collapse
Affiliation(s)
- Yoshiko Tone
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | | |
Collapse
|
314
|
Cardozo C, Michaud C. Proteasome-mediated degradation of tau proteins occurs independently of the chymotrypsin-like activity by a nonprocessive pathway. Arch Biochem Biophys 2002; 408:103-10. [PMID: 12485608 DOI: 10.1016/s0003-9861(02)00493-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
20S proteasomes form the proteolytic core of the 26S proteasome responsible for degradation of substrates of the ubiquitin-proteasome pathway. In addition, 20S proteasomes have themselves been linked to degradation of intracellular proteins. This multienzyme complex expresses three distinct catalytic sites, each with unique substrate specificity. The contribution of these sites to overall proteolysis remains unclear. Also unclear is the kinetic mechanism of degradation. Studies with denatured or covalently modified proteins suggest that degradation is nonprocessive in some cases and processive in others. We sought greater insight into these questions by analyzing degradation of tau proteins and beta-casein. Tau proteins were readily degraded by bovine pituitary proteasomes. Degradation yielded large quantities of intermediates, which were more abundant as tau concentration was increased, indicating that degradation occurred by a nonprocessive pathway. Similar findings were observed for degradation of beta-casein. Experiments with inhibitors demonstrated that degradation of both full-length tau and the intermediates derived from it was largely dependent on the trypsin-like activity. A combination of inhibitors against the trypsin-like and glutamyl activities almost completely blocked tau degradation, while inhibitors active toward the chymotrypsin-like activity had minimal effects on degradation of tau and intermediates derived from it. These findings are discussed with respect to the contribution of the three catalytic sites to overall intracellular proteolysis, the factors contributing to nonprocessive degradation, and the implications of this type of pathway for intracellular proteolysis.
Collapse
Affiliation(s)
- Christopher Cardozo
- Department of Medicine, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| | | |
Collapse
|
315
|
Abstract
gamma-Glutamyltranspeptidase is the key enzyme in glutathione metabolism, and we previously presented evidence suggesting that it belongs to the N-terminal nucleophile hydrolase superfamily. Enzymatically active gamma-glutamyltranspeptidase, which consists of one large subunit and one small subunit, is generated from an inactive common precursor through post-translational proteolytic processing. The processing mechanism for gamma-glutamyltranspeptidase of Escherichia coli K-12 has been analyzed by means of in vitro studies using purified precursors. Here we show that the processing of a precursor of gamma-glutamyltranspeptidase is an intramolecular autocatalytic event and that the catalytic nucleophile for the processing reaction is the oxygen atom of the side chain of Thr-391 (N-terminal residue of the small (beta) subunit), which is also the nucleophile for the enzymatic reaction.
Collapse
Affiliation(s)
- Hideyuki Suzuki
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan.
| | | |
Collapse
|
316
|
Affiliation(s)
- Olivier Coux
- CRBM-CNRS, IFR 24, 1919, Route de Mende, 34293 Montpellier, France
| |
Collapse
|
317
|
Zwickl P, Seemüller E, Kapelari B, Baumeister W. The proteasome: a supramolecular assembly designed for controlled proteolysis. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:187-222. [PMID: 11868272 DOI: 10.1016/s0065-3233(01)59006-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- P Zwickl
- Department of Molecular Structural Biology, Max-Planck Institute for Biochemistry, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
318
|
Cardozo C, Wu X, Pan M, Wang H, Fisher EA. The inhibition of microsomal triglyceride transfer protein activity in rat hepatoma cells promotes proteasomal and nonproteasomal degradation of apoprotein b100. Biochemistry 2002; 41:10105-14. [PMID: 12146975 DOI: 10.1021/bi025749w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the human hepatic cell line, HepG2, apolipoprotein B100 (apoB100) degradation is increased by inhibiting lipid transfer mediated by the microsomal triglyceride transfer protein (MTP) and is predominantly accomplished by the ubiquitin-proteasome pathway. In the current study, we determined whether this degradative pathway was restricted to HepG2 cells or was of more general importance in hepatic apoB100 metabolism. Rat hepatoma McArdle RH7777 cells (McA), compared to HepG2 cells, secrete a large fraction of apoB100 associated with VLDL particles, as does the normal mammalian liver. In McA cells studied under basal conditions, the proteasome inhibitor lactacystin (LAC) increased apoB100 recovery, indicating that the role of the proteasome in apoB100 metabolism is not restricted to HepG2 cells. When apoB100 lipidation was blocked by an inhibitor of MTP (MTPI), recovery of cellular apoB100 was markedly reduced, but LAC was only partially ( approximately 50%) effective in reversing the induced degradation. This partial effectiveness of LAC may have represented either (1) incomplete inhibition by LAC of its preferred target, the chymotrypsin-like activity of the proteasome, (2) the presence of an apoB100 proteolytic activity of the proteasome resistant to LAC, or (3) a nonproteasomal proteolytic pathway of apoB100 degradation. By studying immunoisolated proteasomes and McA cells treated with LAC and/or MTPI and a variety of protease inhibitors, we determined that the proteasomal component of apoB100 degradation was entirely attributable to the chymotrypsin-like catalytic activity, but only accounted for part of apoB100 degradation induced by MTPI. The nonproteasomal apoB100 degradative pathway was nonlysosomal and resistant to E64d, DTT, and peptide aldehydes such as MG132 or ALLN but was partially sensitive to the serine protease inhibitor APMSF. Furthermore, when the protein trafficking inhibitor, brefeldin A, was used to block endoplasmic reticulum (ER) to Golgi transport in MTPI-treated McA cells, degradative activity resistant to LAC was increased, suggesting that the nonproteasomal pathway is associated with the ER.
Collapse
Affiliation(s)
- Christopher Cardozo
- Department of Medicine, The Cardiovascular Institute, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
319
|
Abstract
In contrast to our detailed knowledge of prokaryotic proteasomes, we have only a limited understanding of the prokaryotic regulators and their functional interaction with the proteasome. Most probably, we will soon learn more about the molecular structure and the mechanism of action of the prokaryotic regulators. Nevertheless, it still remains to be unravelled which signals or/and modifications transform an endogenous prokaryotic protein into a substrate of the proteasomal degradation machinery.
Collapse
Affiliation(s)
- P Zwickl
- Department of Molecular Structural Biology, Max Planck Institute for Biochemistry, Am Klopferspitz 18a, 82152 Martinsried, Germany
| |
Collapse
|
320
|
Abstract
Proteasomes are highly abundant cytosolic and nuclear protease complexes that degrade most intracellular proteins in higher eukaryotes and appear to play a major role in the cytosolic steps of MHC class I antigen processing. This review summarizes the knowledge of the role of proteasomes in antigen processing and the impact of proteasomal proteolysis on T cell-mediated immunity.
Collapse
Affiliation(s)
- G Niedermann
- Max Planck Institute of Immunobiology, Stübeweg 51, 79108 Freiburg, Germany
| |
Collapse
|
321
|
Kisselev AF, Kaganovich D, Goldberg AL. Binding of hydrophobic peptides to several non-catalytic sites promotes peptide hydrolysis by all active sites of 20 S proteasomes. Evidence for peptide-induced channel opening in the alpha-rings. J Biol Chem 2002; 277:22260-70. [PMID: 11927581 DOI: 10.1074/jbc.m112360200] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The eukaryotic 20 S proteasome contains the following 6 active sites: 2 chymotrypsin-like, 2 trypsin-like, and 2 caspase-like. We previously showed that hydrophobic peptide substrates of the chymotrypsin-like sites allosterically stimulate peptide hydrolysis by the caspase-like sites and their own cleavage. More thorough analysis revealed that these peptides also stimulate peptide hydrolysis by the trypsin-like site. This general activation by hydrophobic peptides occurred even if the chymotrypsin-like sites were occupied by a covalent inhibitor and was highly cooperative, with an average Hill coefficient of 7. Therefore, this stimulation of peptide hydrolysis at all active sites occurs upon binding of hydrophobic peptides to several non-catalytic sites. The stimulation by hydrophobic peptides was not observed in the yeast Delta N alpha 3 mutant 20 S proteasomes, in 20 S-PA26 complexes, or SDS-activated proteasomes and was significantly lower in 26 S proteasomes, all of which appear to have the gated channel in the alpha-rings in an open conformation and hydrolyze peptides at much faster rates than 20 S proteasomes. Also the hydrophobic peptides altered K(m), V(max) of active sites in a similar fashion as PA26 and the Delta N alpha 3 mutation. The activation by hydrophobic peptides was decreased in K(+)-containing buffer, which favors the closed state of the channels. Therefore, hydrophobic peptides stimulate peptide hydrolysis most likely by promoting the opening of the channels in the alpha-rings. During protein breakdown, this peptide-induced channel opening may function to facilitate the release of products from the proteasome.
Collapse
Affiliation(s)
- Alexei F Kisselev
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
322
|
Keşmir C, Nussbaum AK, Schild H, Detours V, Brunak S. Prediction of proteasome cleavage motifs by neural networks. Protein Eng Des Sel 2002; 15:287-96. [PMID: 11983929 DOI: 10.1093/protein/15.4.287] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We present a predictive method that can simulate an essential step in the antigen presentation in higher vertebrates, namely the step involving the proteasomal degradation of polypeptides into fragments which have the potential to bind to MHC Class I molecules. Proteasomal cleavage prediction algorithms published so far were trained on data from in vitro digestion experiments with constitutive proteasomes. As a result, they did not take into account the characteristics of the structurally modified proteasomes--often called immunoproteasomes--found in cells stimulated by gamma-interferon under physiological conditions. Our algorithm has been trained not only on in vitro data, but also on MHC Class I ligand data, which reflect a combination of immunoproteasome and constitutive proteasome specificity. This feature, together with the use of neural networks, a non-linear classification technique, make the prediction of MHC Class I ligand boundaries more accurate: 65% of the cleavage sites and 85% of the non-cleavage sites are correctly determined. Moreover, we show that the neural networks trained on the constitutive proteasome data learns a specificity that differs from that of the networks trained on MHC Class I ligands, i.e. the specificity of the immunoproteasome is different than the constitutive proteasome. The tools developed in this study in combination with a predictor of MHC and TAP binding capacity should give a more complete prediction of the generation and presentation of peptides on MHC Class I molecules. Here we demonstrate that such an approach produces an accurate prediction of the CTL the epitopes in HIV Nef. The method is available at www.cbs.dtu.dk/services/NetChop/.
Collapse
Affiliation(s)
- Can Keşmir
- Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, Denmark.
| | | | | | | | | |
Collapse
|
323
|
Lehmann A, Janek K, Braun B, Kloetzel PM, Enenkel C. 20 S proteasomes are imported as precursor complexes into the nucleus of yeast. J Mol Biol 2002; 317:401-13. [PMID: 11922673 DOI: 10.1006/jmbi.2002.5443] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism by which yeast 20 S proteasomes are imported into the nucleus is still unresolved. Here, we provide the first evidence that 20 S proteasomes are imported as precursor complexes into the nucleus. By using the srp1-49 mutant which is deficient in nuclear import of cargos with classical nuclear localization sequences (cNLS), we show that proteasome precursor complexes associate with importin/karyopherin alphabeta, the cNLS receptor, and that they accumulate inside the cytoplasm. Reconstitution assays revealed that only precursor complexes are targeted to the nuclear envelope (NE) by karyopherin alphabeta. In support, the green fluorescent protein (GFP)-labelled maturation factor Ump1, marking precursor complexes, mainly localizes to the nucleus and around the NE. Our data suggest that nuclear 20 S proteasomes are finally matured inside the nucleus.
Collapse
Affiliation(s)
- Andrea Lehmann
- Institut für Biochemie, Humboldt Universität zu Berlin, Universitätsklinikum Charité, Monbijoustr. 2, Berlin, D-10117, Germany
| | | | | | | | | |
Collapse
|
324
|
Jarosch E, Taxis C, Volkwein C, Bordallo J, Finley D, Wolf DH, Sommer T. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol 2002; 4:134-9. [PMID: 11813000 DOI: 10.1038/ncb746] [Citation(s) in RCA: 423] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endoplasmic reticulum (ER)-associated protein degradation by the ubiquitin-proteasome system requires the dislocation of substrates from the ER into the cytosol. It has been speculated that a functional ubiquitin proteasome pathway is not only essential for proteolysis, but also for the preceding export step. Here, we show that short ubiquitin chains synthesized on proteolytic substrates are not sufficient to complete dislocation; the size of the chain seems to be a critical determinant. Moreover, our results suggest that the AAA proteins of the 26S proteasome are not directly involved in substrate export. Instead, a related AAA complex Cdc48, is required for ER-associated protein degradation upstream of the proteasome.
Collapse
Affiliation(s)
- Ernst Jarosch
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle Strasse 10, 13092 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
325
|
Self-Processing of Subunits of the Proteasome. CO- AND POSTTRANSLATIONAL PROTEOLYSIS OF PROTEINS 2002. [DOI: 10.1016/s1874-6047(02)80013-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
326
|
Abstract
The 26S proteasome complex, consisting of two multisubunit complexes, a 20S proteasome and a pair of 19S regulatory particles, plays a major role in the nonlysosomal degradation of intracellular proteins. The 20S proteasome was purified from yeast and separated by two-dimensional gel electrophoresis (2-DE). A total of 18 spots separated by 2-DE were identified as the 20S proteasome subunits by peptide mass fingerprinting with matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). The alpha2-, alpha4- and alpha7-subunits gave multiple spots, which converged into one spot for each subunit when treated with alkaline phosphatase. The difference of pI between phosphorylated and dephosphorylated spots and their reaction against anti-phosphotyrosine antibody suggested that the alpha2- and alpha4-subunits are phosphorylated either at Ser or at Thr residue, and the alpha7-subunit is phosphorylated at Tyr residue(s). These phosphorylated subunits were analyzed by electrospray ionization-quadrupole time of flight-tandem MS (ESI-QTOF-MS/MS) to deduce the phosphorylation sites. The 20S proteasome has three different protease activities: chymotrypsin-like, trypsin-like and peptidylglutamyl peptide-hydrolyzing activities. The phosphatase treatment increased K(m) value for chymotrypsin-like activity of the 20S proteasome, indicating that phosphorylation may play an important role in regulating the proteasome activity.
Collapse
Affiliation(s)
- Yuko Iwafune
- Yokohama City University, Kihara Institute for Biological Research, Graduate School of Integrated Science, Yokohama, Japan
| | | | | |
Collapse
|
327
|
Oberdorf J, Carlson EJ, Skach WR. Redundancy of mammalian proteasome beta subunit function during endoplasmic reticulum associated degradation. Biochemistry 2001; 40:13397-405. [PMID: 11683650 DOI: 10.1021/bi011322y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Misfolded proteins in the endoplasmic reticulum (ER) are degraded by N-terminal threonine proteases within the 26S proteasome. Each protease is formed by an activated beta subunit, beta5/X, beta1/Y, or beta2/Z, that exhibits chymotrypsin-like, peptidylglutamyl-peptide hydrolyzing, or trypsin-like activity, respectively. Little is known about the relative contribution of specific beta subunits in the degradation of endogenous protein substrates. Using active site proteasome inhibitors and a reconstituted degradation system, we now show that all three active beta subunits can independently contribute to ER-associated degradation of the cystic fibrosis transmembrane conductance regulator (CFTR). Complete inactivation (>99.5%) of the beta5/X subunit decreased the rate of ATP-dependent conversion of CFTR to trichloroacetic acid soluble fragments by only 40%. Similarly, proteasomes containing only active beta1/Y or beta2/Z subunits degraded CFTR at approximately 50% of the rate observed for fully functional proteasomes. Simultaneous inhibition (>93%) of all three beta subunits blocked CFTR degradation by approximately 90%, and inhibition of both protease and ATPase activities was required to completely prevent generation of small peptide fragments. Our results demonstrate both a conserved hierarchy (ChT-L > PGPH > or = T-L) as well as a redundancy of beta subunit function and provide insight into the mechanism by which active site proteasome inhibitors influence degradation of endogenous protein substrates at the ER membrane.
Collapse
Affiliation(s)
- J Oberdorf
- Molecular Medicine Division, Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
328
|
Alvarez I, Sesma L, Marcilla M, Ramos M, Marti M, Camafeita E, de Castro JA. Identification of novel HLA-B27 ligands derived from polymorphic regions of its own or other class I molecules based on direct generation by 20 S proteasome. J Biol Chem 2001; 276:32729-37. [PMID: 11435436 DOI: 10.1074/jbc.m104663200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HLA-B27 is strongly associated with ankylosing spondylitis. Natural HLA-B27 ligands derived from polymorphic regions of its own or other class I HLA molecules might be involved in autoimmunity or provide diversity among HLA-B27-bound peptide repertoires from individuals. In particular, an 11-mer spanning HLA-B27 residues 169-179 is a natural HLA-B27 ligand with homology to proteins from Gram-negative bacteria. Proteasomal digestion of synthetic substrates demonstrated direct generation of the B27-(169-179) ligand. Cleavage after residue 181 generated a B27-(169-181) 13-mer that was subsequently found as a natural ligand of B*2705 and B*2704. Its binding to HLA-B27 subtypes in vivo correlated better than B27-(169-179) with association to spondyloarthropathy. Proteasomal cleavage generated also a peptide spanning B*2705 residues 150-158. This region is polymorphic among HLA-B27 subtypes and class I HLA antigens. The peptide was a natural B*2704 ligand. Since this subtype differs from B*2705 at residue 152, it was concluded that the ligand arose from HLA-B*3503, synthesized in the cells used as a source for B*2704-bound peptides. Thus, polymorphic HLA-B27 ligands derived from HLA-B27 or other class I molecules are directly produced by the 20 S proteasome in vitro, and this can be used for identification of such ligands in the constitutive HLA-B27-bound peptide pool.
Collapse
Affiliation(s)
- I Alvarez
- Centro de Biologia Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Facultad de Ciencias, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
329
|
Groll M, Koguchi Y, Huber R, Kohno J. Crystal structure of the 20 S proteasome:TMC-95A complex: a non-covalent proteasome inhibitor. J Mol Biol 2001; 311:543-8. [PMID: 11493007 DOI: 10.1006/jmbi.2001.4869] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 20 S proteasome core particle (CP), a multicatalytic protease, is involved in a variety of biologically important processes, including immune response, cell-cycle control, metabolic adaptation, stress response and cell differentiation. Therefore, selective inhibition of the CP will be one possible way to influence these essential pathways. Recently, a new class of specific proteasome inhibitors, TMC-95s, was investigated and we now present a biochemical and crystallographic characterisation of the yeast proteasome core particle in complex with the natural product TMC-95A. This unusual heterocyclic compound specifically blocks the active sites of CPs non-covalently, without modifying the nucleophilic Thr1 residue. The inhibitor is bound to the CP by specific hydrogen bonds with the main-chain atoms of the protein. Analysis of the crystal structure of the complex has revealed which portions of TMC-95s are essential for binding to the proteasome. This will form the basis for the development of synthetic selective proteasome inhibitors as promising candidates for anti-tumoral or anti-inflammatory drugs.
Collapse
Affiliation(s)
- M Groll
- Max-Planck-Institut für Biochemie, Martinsried, D-82152, Germany.
| | | | | | | |
Collapse
|
330
|
Jäger S, Strayle J, Heinemeyer W, Wolf DH. Cic1, an adaptor protein specifically linking the 26S proteasome to its substrate, the SCF component Cdc4. EMBO J 2001; 20:4423-31. [PMID: 11500370 PMCID: PMC125261 DOI: 10.1093/emboj/20.16.4423] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2001] [Revised: 06/21/2001] [Accepted: 06/21/2001] [Indexed: 11/14/2022] Open
Abstract
In eukaryotes, the ubiquitin-proteasome system plays a major role in selective protein breakdown for cellular regulation. Here we report the discovery of a new essential component of this degradation machinery. We found the Saccharomyces cerevisiae protein Cic1 attached to 26S proteasomes playing a crucial role in substrate specificity for proteasomal destruction. Whereas degradation of short-lived test proteins is not affected, cic1 mutants stabilize the F-box proteins Cdc4 and Grr1, substrate recognition subunits of the SCF complex. Cic1 interacts in vitro and in vivo with Cdc4, suggesting a function as a new kind of substrate recruiting factor or adaptor associated with the proteasome.
Collapse
Affiliation(s)
- Sibylle Jäger
- Institut für Biochemie der Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
Present address: MPI of Neurobiology, Am Klopferspitz 18A, D-82152 Martinsried, Germany Present address: Pharma Research Center, Bayer AG, Aprather Weg 18A, D-42096 Wuppertal, Germany Corresponding author e-mail:
S.Jäger and J.Strayle contributed equally to this work
| | - Jochen Strayle
- Institut für Biochemie der Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
Present address: MPI of Neurobiology, Am Klopferspitz 18A, D-82152 Martinsried, Germany Present address: Pharma Research Center, Bayer AG, Aprather Weg 18A, D-42096 Wuppertal, Germany Corresponding author e-mail:
S.Jäger and J.Strayle contributed equally to this work
| | | | - Dieter H. Wolf
- Institut für Biochemie der Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
Present address: MPI of Neurobiology, Am Klopferspitz 18A, D-82152 Martinsried, Germany Present address: Pharma Research Center, Bayer AG, Aprather Weg 18A, D-42096 Wuppertal, Germany Corresponding author e-mail:
S.Jäger and J.Strayle contributed equally to this work
| |
Collapse
|
331
|
Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. CHEMISTRY & BIOLOGY 2001; 8:739-58. [PMID: 11514224 DOI: 10.1016/s1074-5521(01)00056-4] [Citation(s) in RCA: 886] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The 26S proteasome is a 2.4 MDa multifunctional ATP-dependent proteolytic complex, which degrades the majority of cellular polypeptides by an unusual enzyme mechanism. Several groups of proteasome inhibitors have been developed and are now widely used as research tools to study the role of the ubiquitin-proteasome pathway in various cellular processes, and two inhibitors are now in clinical trials for treatment of multiple cancers and stroke.
Collapse
Affiliation(s)
- A F Kisselev
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA.
| | | |
Collapse
|
332
|
Toes R, Nussbaum A, Degermann S, Schirle M, Emmerich N, Kraft M, Laplace C, Zwinderman A, Dick T, Müller J, Schönfisch B, Schmid C, Fehling HJ, Stevanovic S, Rammensee H, Schild H. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J Exp Med 2001; 194:1-12. [PMID: 11435468 PMCID: PMC2193442 DOI: 10.1084/jem.194.1.1] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proteasomes are the main proteases responsible for cytosolic protein degradation and the production of major histocompatibility complex class I ligands. Incorporation of the interferon gamma--inducible subunits low molecular weight protein (LMP)-2, LMP-7, and multicatalytic endopeptidase complex--like (MECL)-1 leads to the formation of immunoproteasomes which have been associated with more efficient class I antigen processing. Although differences in cleavage specificities of constitutive and immunoproteasomes have been observed frequently, cleavage motifs have not been described previously. We now report that cells expressing immunoproteasomes display a different peptide repertoire changing the overall cytotoxic T cell--specificity as indicated by the observation that LMP-7(-/-) mice react against cells of LMP-7 wild-type mice. Moreover, using the 436 amino acid protein enolase-1 as an unmodified model substrate in combination with a quantitative approach, we analyzed a large collection of peptides generated by either set of proteasomes. Inspection of the amino acids flanking proteasomal cleavage sites allowed the description of two different cleavage motifs. These motifs finally explain recent findings describing differential processing of epitopes by constitutive and immunoproteasomes and are important to the understanding of peripheral T cell tolerization/activation as well as for effective vaccine development.
Collapse
Affiliation(s)
- R.E.M. Toes
- Department of Immunohematology and Blood Transfusion, Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - A.K. Nussbaum
- Institute for Cell Biology, Department of Immunology
| | - S. Degermann
- Basel Institute for Immunology, CH-4005 Basel, Switzerland
| | - M. Schirle
- Institute for Cell Biology, Department of Immunology
| | | | - M. Kraft
- Institute for Cell Biology, Department of Immunology
| | - C. Laplace
- Basel Institute for Immunology, CH-4005 Basel, Switzerland
| | - A. Zwinderman
- Department of Immunohematology and Blood Transfusion, Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - T.P. Dick
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520
| | - J. Müller
- Biomathematik, University of Tübingen, D-72076 Tübingen, Germany
| | - B. Schönfisch
- Biomathematik, University of Tübingen, D-72076 Tübingen, Germany
| | - C. Schmid
- Institute for Cell Biology, Department of Immunology
| | - H.-J. Fehling
- Department of Immunology, Medical Faculty/University Clinics Ulm, D-89070 Ulm, Germany
| | - S. Stevanovic
- Institute for Cell Biology, Department of Immunology
| | | | - H. Schild
- Institute for Cell Biology, Department of Immunology
| |
Collapse
|
333
|
Walter J, Urban J, Volkwein C, Sommer T. Sec61p-independent degradation of the tail-anchored ER membrane protein Ubc6p. EMBO J 2001; 20:3124-31. [PMID: 11406589 PMCID: PMC150204 DOI: 10.1093/emboj/20.12.3124] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Tail-anchored proteins are distinct from other membrane proteins as they are thought to insert into the endoplasmic reticulum (ER) membrane independently of Sec61p translocation pores. These pores not only mediate import but are also assumed to catalyze export of proteins in a process called ER-associated protein degradation (ERAD). In order to examine the Sec61p dependence of the export of tail-anchored proteins, we analyzed the degradation pathway of a tail-anchored ER membrane protein, the ubiquitin-conjugating enzyme 6 (Ubc6p). In contrast to other ubiquitin conjugating enzymes (Ubcs), Ubc6p is naturally short-lived. Its proteolysis is mediated specifically by the unique Ubc6p tail region. Degradation further requires the activity of Cue1p-assembled Ubc7p, and its own catalytic site cysteine. However, it occurs independently of the other ERAD components Ubc1p, Hrd1p/Der3p, Hrd3p and Der1p. In contrast to other natural ERAD substrates, proteasomal mutants accumulate a membrane-bound degradation intermediate of Ubc6p. Most interestingly, mutations in SEC61 do not reduce the turnover of full-length Ubc6p nor cause a detectable accumulation of degradation intermediates. These data are in accordance with a model in which tail-anchored proteins can be extracted from membranes independently of Sec61p.
Collapse
Affiliation(s)
| | | | | | - Thomas Sommer
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany
Corresponding author e-mail:
| |
Collapse
|
334
|
Lu X, Michaud C, Orlowski M. Heat shock protein-90 and the catalytic activities of the 20 S proteasome (multicatalytic proteinase complex). Arch Biochem Biophys 2001; 387:163-71. [PMID: 11368178 DOI: 10.1006/abbi.2001.2270] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of heat shock protein 90 (Hsp-90) and several other proteins on the catalytic activities of the 20 S proteasome (MPC) was examined. The chymotrypsin-like (ChT-L) and peptidylglutamyl-peptide hydrolyzing (PGPH) activities of the pituitary MPC were inhibited by Hsp-90 with IC50 values of 8 and 28 nM, respectively. Bovine serum albumin and two other proteins tested inhibited the same activities with much higher IC50 values. The trypsin-like and branched-chain amino-acid-preferring activities were not affected by any of the proteins. None of the activities of the bovine spleen MPC, an enzyme form in which the X, Y, and Z subunits are virtually completely replaced by the LMP2, LMP7, and LMP10 subunits, was affected by either Hsp-90 or the other proteins tested. Hsp-90 inhibited the degradation of the oxidized B-chain of insulin by the pituitary MPC but not by its spleen counterpart. The PA28 activator (11 S regulator; REG) of the proteasome abolished the inhibitory effect of Hsp-90 and other proteins on the ChT-L and PGPH activities of the pituitary MPC. It is suggested that Hsp-90 induces conformational changes that affect the ChT-L and PGPH activities expressed by the X and Y subunits, respectively, but does not affect the activities expressed by LMP subunits.
Collapse
Affiliation(s)
- X Lu
- Department of Pharmacology, Mount Sinai School of Medicine of the City, University of New York, New York 10029, USA
| | | | | |
Collapse
|
335
|
Abstract
26S proteasomes are multi-subunit protease complexes responsible for the turnover of short-lived proteins. Proteasomal degradation starts with the autocatalytic maturation of the 20S core particle. Here, we summarize different models of proteasome assembly. 20S proteasomes are assembled as precursor complexes containing alpha and unprocessed beta subunits. The propeptides of the beta subunits are thought to prevent premature conversion of the precursor complexes into matured particles and are needed for efficient beta subunit incorporation. The complex biogenesis is tightly regulated which requires additional components such as the maturation factor Ump1/POMP, an ubiquitous protein in eukaryotic cells. Ump1/POMP is associated with precursor intermediates and degraded upon final maturation. Mammalian proteasomes are localized all over the cell, while yeast proteasomes mainly localize to the nuclear envelope/endoplasmic reticulum (ER) membrane network. The major localization of yeast proteasomes may point to the subcellular place of proteasome biogenesis.
Collapse
Affiliation(s)
- E Krüger
- Institut für Biochemie, Humboldt Universität zu Berlin, Universitätsklinikum Charité, Monbijoustr. 2, 10117, Berlin, Germany
| | | | | |
Collapse
|
336
|
Groettrup M, Khan S, Schwarz K, Schmidtke G. Interferon-gamma inducible exchanges of 20S proteasome active site subunits: why? Biochimie 2001; 83:367-72. [PMID: 11295499 DOI: 10.1016/s0300-9084(01)01251-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
When cells are stimulated with the cytokines IFN-gamma or TNF-alpha, the synthesis of three proteasome subunits LMP2 (beta1i), LMP7 (beta5i), and MECL-1 (beta2i) is induced. These subunits replace the three subunits delta (beta1), MB1 (beta5), and Z (beta2), which bear the catalytically active sites of the proteasome, during proteasome neosynthesis. The cytokine-induced exchanges of three active site subunits of a complex protease is unprecedented in biology and one may expect a strong functional driving force for this system to evolve. These cytokine-induced replacements of proteasome subunits are believed to favour the production of peptide ligands of major histocompatibility complex (MHC) class I molecules for the stimulation of cytotoxic T cells. Although the peptide production by constitutive proteasomes is able to maintain peptide-dependent MHC class I cell surface expression in the absence of LMP2 and LMP7, these subunits were recently shown to be pivotal for the generation or destruction of several unique epitopes. In this review we discuss the recent data on LMP2/LMP7/MECL-1-dependent epitope generation and the functions of each of these subunit exchanges. We propose that these subunit exchanges have evolved not only to optimize class I peptide loading but also to generate LMP2/LMP7/MECL-1-dependent epitopes in inflammatory sites which are not proteolytically generated in uninflamed tissues. This difference in epitope generation may serve to better stimulate T cells in the sites of an ongoing immune response and to avoid autoimmunity in uninflamed tissues.
Collapse
Affiliation(s)
- M Groettrup
- Research Department, Cantonal Hospital St. Gall, 9007, St. Gallen, Switzerland.
| | | | | | | |
Collapse
|
337
|
Myung J, Kim KB, Lindsten K, Dantuma NP, Crews CM. Lack of proteasome active site allostery as revealed by subunit-specific inhibitors. Mol Cell 2001; 7:411-20. [PMID: 11239469 DOI: 10.1016/s1097-2765(01)00188-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The chymotrypsin-like (CT-L) activity of the proteasome is downregulated by substrates of the peptidyl-glutamyl peptide hydrolyzing (PGPH) activity. To investigate the nature of such interactions, we synthesized selective alpha',beta'-epoxyketone inhibitors of the PGPH activity. In cellular proliferation and protein degradation assays, these inhibitors revealed that selective PGPH inhibition was insufficient to inhibit protein degradation, indicating that the CT-L and PGPH sites function independently. We also demonstrated that CT-L inhibition by a PGPH substrate does not require the occupancy of the PGPH site or hydrolysis of the PGPH substrate. Thus, these results support a model in which a substrate of one subunit regulates the activity of another via binding to a noncatalytic site(s) rather than through binding to an active site.
Collapse
Affiliation(s)
- J Myung
- Department of Molecular, Cellular, and Developmental Biology, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
338
|
Metzler DE, Metzler CM, Sauke DJ. Transferring Groups by Displacement Reactions. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
339
|
Orlowski M, Wilk S. Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex. Arch Biochem Biophys 2000; 383:1-16. [PMID: 11097171 DOI: 10.1006/abbi.2000.2036] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proteasome, a multisubunit, multicatalytic proteinase complex, is attracting growing attention as the main intracellular, extralysosomal, proteolytic system involved in ubiquitin-(Ub) dependent and Ub-independent intracellular proteolysis. Its involvement in the mitotic cycle, and control of the half-life of most cellular proteins, functions absolutely necessary for cell growth and viability, make it an attractive target for researchers of intracellular metabolism and an important target for pharmacological intervention. The proteasome belongs to a new mechanistic class of proteases, the N-terminal nucleophile hydrolases, where the N-terminal threonine residue functions as the nucleophile. This minireview focuses on the three classical catalytic activities of the proteasome, designated chymotrypsin-like, trypsin-like, and peptidyl-glutamyl-peptide hydrolyzing in eukaryotes and also the activities of the more simple Archaebacteria and Eubacteria proteasomes. Other catalytic activities of the proteasome and their possible origin are also examined. The specificity of the catalytic components toward synthetic substrates, natural peptides, and proteins and their relationship to the catalytic centers are reviewed. Some unanswered questions and future research directions are suggested.
Collapse
Affiliation(s)
- M Orlowski
- Department of Pharmacology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
340
|
Loukissa A, Cardozo C, Altschuller-Felberg C, Nelson JE. Control of LMP7 expression in human endothelial cells by cytokines regulating cellular and humoral immunity. Cytokine 2000; 12:1326-30. [PMID: 10975991 DOI: 10.1006/cyto.2000.0717] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Formation of antigenic peptides by the multicatalytic proteinase complex (MPC, proteasome) is facilitated by incorporation of three subunits (LMP2, LMP7 and LMP10) that are inducible by IFN-gamma and TNF-alpha. These cytokines, or their functional homologues (e.g. TNF-beta), are released from many cells including Th(1)lymphocytes. To learn more about the relationship between control of cellular immunity and expression of LMP subunits, we measured LMP7 levels in human umbilical vein endothelial cells of cytokines promoting cellular immunity (IL-12, IFN-gamma, TNF-alpha) or humoral immunity (IL-10, IL-6). Little or no effect was seen when cells were exposed to IL-6, IL-10 or IL-12 alone. IFN-gamma upregulated LMP7 levels, as did TNF-alpha to a lesser extent. IL-10 downregulated IFN-gamma-induced increases in LMP7 levels, as did IL-12. The findings indicate that regulation of levels of LMP7 is similar to and may be coupled with that of other molecules required for MHC class I-dependent immunity, and depends primarily on cytokines released by Th(1)helper lymphocytes.
Collapse
Affiliation(s)
- A Loukissa
- Department of Medicine, The Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
341
|
Miconnet I, Servis C, Cerottini JC, Romero P, Lévy F. Amino Acid Identity and/or Position Determines the Proteasomal Cleavage of the HLA-A*0201-restricted Peptide Tumor Antigen MAGE-3271–279. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61458-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
342
|
Witt E, Zantopf D, Schmidt M, Kraft R, Kloetzel PM, Krüger E. Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7(beta 5i) incorporation into 20 S proteasomes. J Mol Biol 2000; 301:1-9. [PMID: 10926487 DOI: 10.1006/jmbi.2000.3959] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biogenesis of mammalian 20 S proteasomes occurs via precursor complexes containing alpha and unprocessed beta subunits. A human homologue of the yeast proteasome maturation factor Ump1 was identified in 2D gels of 16 S precursor preparations and designated as POMP (proteasome maturation protein). We show that POMP is detected only in precursor fractions and not in fractions containing mature 20 S proteasome. Northern blot experiments revealed that expression of POMP is induced after treatment with interferon gamma. To analyse the role of the beta 5 propeptide for proper maturation and incorporation of the beta 5 subunit into the complex, human T2 cells, which highly express derivatives of the beta 5i subunit (LMP7), were studied. In contrast to yeast, the presence of the beta 5 propeptide is not essential for incorporation of LMP7 into the proteasome complex. Mutated LMP7 subunits either carrying the prosequence of beta 2i (LMP2) or containing a mutation in the active threonine site are incorporated like wild-type LMP7, while a LMP7 derivative lacking the prosequence completely is incorporated to a lesser extent. Although the absence of the prosequence does not affect incorporation of LMP7, its deletion leads to delayed proteasome maturation and thereby to an accumulation of precursor complexes. As a result of the precursor accumulation, an increased amount of the POMP protein can be detected in these cells.
Collapse
Affiliation(s)
- E Witt
- Institut für Biochemie, Charité-Humboldt University Medical School, Monbijoustr.2, Berlin, 10117, Germany
| | | | | | | | | | | |
Collapse
|
343
|
Schmidtke G, Emch S, Groettrup M, Holzhutter HG. Evidence for the existence of a non-catalytic modifier site of peptide hydrolysis by the 20 S proteasome. J Biol Chem 2000; 275:22056-63. [PMID: 10806206 DOI: 10.1074/jbc.m002513200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 20 S proteasome is an endoprotease complex that preferentially cleaves peptides C-terminal of hydrophobic, basic, and acidic residues. Recently, we showed that these specific activities, classified as chymotrypsin-like, trypsin-like, and peptidylglutamyl peptide-hydrolyzing (PGPH) activity, are differently affected by Ritonavir, an inhibitor of human immunodeficiency virus-1 protease. Ritonavir competitively inhibited the chymotrypsin-like activity, whereas the trypsin-like activity was enhanced. Here we demonstrate that the Ritonavir-mediated up-regulation of the trypsin-like activity is not affected by specific active site inhibitors of the chymo-trypsin-like and PGPH activity. Moreover, we show that the mutual regulation of chymotrypsin-like and PGPH activities by their substrates as described previously by a "cyclical bite-chew" model is not affected by selective inhibitors of the respective active sites. These data challenge the bite-chew model and suggest that effectors of proteasome activity can act by binding to non-catalytic sites. Accordingly, we propose a kinetic "two-site modifier" model that assumes that the substrate (or effector) may bind to an active site as well as to a second non-catalytic modifier site. This model appears to be valid as it describes the complex kinetic effects of Ritonavir very well. Since Ritonavir partially inhibits major histocompatibility complex class I restricted antigen presentation, the postulated modifier site may be required to coordinate the active centers of the proteasome for the production of class I peptide ligands.
Collapse
Affiliation(s)
- G Schmidtke
- Research Department, Cantonal Hospital St. Gall, CH-9007 St. Gallen, Switzerland
| | | | | | | |
Collapse
|
344
|
Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 2000; 68:1015-68. [PMID: 10872471 DOI: 10.1146/annurev.biochem.68.1.1015] [Citation(s) in RCA: 1396] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotic cells, most proteins in the cytosol and nucleus are degraded via the ubiquitin-proteasome pathway. The 26S proteasome is a 2.5-MDa molecular machine built from approximately 31 different subunits, which catalyzes protein degradation. It contains a barrel-shaped proteolytic core complex (the 20S proteasome), capped at one or both ends by 19S regulatory complexes, which recognize ubiquitinated proteins. The regulatory complexes are also implicated in unfolding and translocation of ubiquitinated targets into the interior of the 20S complex, where they are degraded to oligopeptides. Structure, assembly and enzymatic mechanism of the 20S complex have been elucidated, but the functional organization of the 19S complex is less well understood. Most subunits of the 19S complex have been identified, however, specific functions have been assigned to only a few. A low-resolution structure of the 26S proteasome has been obtained by electron microscopy, but the precise arrangement of subunits in the 19S complex is unclear.
Collapse
Affiliation(s)
- D Voges
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | |
Collapse
|
345
|
Schwarz K, van Den Broek M, Kostka S, Kraft R, Soza A, Schmidtke G, Kloetzel PM, Groettrup M. Overexpression of the proteasome subunits LMP2, LMP7, and MECL-1, but not PA28 alpha/beta, enhances the presentation of an immunodominant lymphocytic choriomeningitis virus T cell epitope. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:768-78. [PMID: 10878350 DOI: 10.4049/jimmunol.165.2.768] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The proteasome is a large protease complex that generates most of the peptide ligands of MHC class I molecules either in their final form or in the form of N-terminally extended precursors. Upon the stimulation of cells with IFN-gamma, three constitutively expressed subunits of the 20S proteasome are replaced by the inducible subunits LMP2 (low-molecular mass polypeptide 2), LMP7, and MECL-1 (multicatalytic endopeptidase complex-like-1) to form so-called immunoproteasomes. We show in this study that overexpression of these three subunits in triple transfectants led to a marked enhancement in the H-2Ld-restricted presentation of the immunodominant nonameric epitope NP118, which is derived from the nucleoprotein (NP) of lymphocytic choriomeningitis virus. Overexpression of the alpha and beta subunits of the IFN-gamma-inducible proteasome regulator PA28, in contrast, did not have a comparable effect. In vitro, immunoproteasomes as compared with constitutive proteasomes generated higher amounts of 11- and 12-mer fragments containing the NP118 epitope. These are likely to be cytosolic precursors of NP118, as a proline anchor residue in the second position of NP118 may interfere with TAP-mediated transport of the nonameric epitope itself. In conclusion, we provide evidence that up-regulation of the three inducible subunits, LMP2, LMP7, and MECL-1, can result in a marked improvement of Ag presentation and that, depending on the epitope, PA28 and immunoproteasomes may differentially affect Ag processing.
Collapse
Affiliation(s)
- K Schwarz
- Research Department, Cantonal Hospital St. Gall, St. Gallen, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
346
|
Schwarz K, Giuli RD, Schmidtke G, Kostka S, van den Broek M, Bo Kim K, Crews CM, Kraft R, Groettrup M. The selective proteasome inhibitors lactacystin and epoxomicin can be used to either up- or down-regulate antigen presentation at nontoxic doses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:6147-57. [PMID: 10843664 PMCID: PMC2507740 DOI: 10.4049/jimmunol.164.12.6147] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The complete inhibition of proteasome activities interferes with the production of most MHC class I peptide ligands as well as with cellular proliferation and survival. In this study we have investigated how partial and selective inhibition of the chymotrypsin-like activity of the proteasome by the proteasome inhibitors lactacystin or epoxomicin would affect Ag presentation. At 0.5-1 microM lactacystin, the presentation of the lymphocytic choriomeningitis virus-derived epitopes NP118 and GP33 and the mouse CMV epitope pp89-168 were reduced and were further diminished in a dose-dependent manner with increasing concentrations. Presentation of the lymphocytic choriomeningitis virus-derived epitope GP276, in contrast, was markedly enhanced at low, but abrogated at higher, concentrations of either lactacystin or epoxomicin. The inhibitor-mediated effects were thus epitope specific and did not correlate with the degradation rates of the involved viral proteins. Although neither apoptosis induction nor interference with cellular proliferation was observed at 0.5-1 microM lactacystin in vivo, this concentration was sufficient to alter the fragmentation of polypeptides by the 20S proteasome in vitro. Our results indicate that partial and selective inhibition of proteasome activity in vivo is a valid approach to modulate Ag presentation, with potential applications for the treatment of autoimmune diseases and the prevention of transplant rejection.
Collapse
Affiliation(s)
- Katrin Schwarz
- Research Department, Cantonal Hospital St. Gall, St. Gallen, Switzerland
| | - Rita de Giuli
- Research Department, Cantonal Hospital St. Gall, St. Gallen, Switzerland
| | - Gunter Schmidtke
- Research Department, Cantonal Hospital St. Gall, St. Gallen, Switzerland
| | - Susanne Kostka
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Maries van den Broek
- Institute of Experimental Immunology, Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Kyung Bo Kim
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| | - Craig M. Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520
| | - Regine Kraft
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Marcus Groettrup
- Research Department, Cantonal Hospital St. Gall, St. Gallen, Switzerland
- Address correspondence and reprint requests to Dr. Marcus Groettrup, Kantonsspital St. Gallen, Laborforschungsabteilung, Haus 09, CH-9007 St. Gallen, Switzerland. E-mail address:
| |
Collapse
|
347
|
Murray BW, Sültmann H, Klein J. Identification and linkage of the proteasome activator complex PA28 subunit genes in zebrafish. Scand J Immunol 2000; 51:571-6. [PMID: 10849367 DOI: 10.1046/j.1365-3083.2000.00728.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PA28 is an activator of the latent 20S proteasome, a large multisubunit complex involved in intracellular proteolysis. Two forms of hexameric PA28 have been identified, PA28-(alphabeta)3 and PA28-(gamma)6, of which the former is of immunological importance. Both the PA28-alpha and PA28-beta subunits are inducible by interferon-gamma (IFN-gamma) and the PA28-(alphabeta)3 complex enhances the ability of the 20S proteasome to produce peptides suited for binding to major histocompatibility complex (Mhc) class I molecules. To identify the homologues of the PA28 subunits in zebrafish we screened a cDNA library and obtained full-length cDNA sequences of the genes PSME1, PSME2 and PSME3 coding for the PA28-alpha, PA28-beta and PA28-gamma subunits, respectively. Phylogenetic analysis indicates the existence of the ancestors of all three genes prior to the divergence of tetrapods and bony fishes. The IFN-gamma-inducible subunits, PA28-alpha and PA28-beta, evolve faster than the presumably older PA28-gamma subunit. Using zebrafish radiation hybrid panels, the genes PSME2 and PSME3 were mapped to linkage group 12 and shown to be separated by a distance of less than 2.4 cM. This observation suggests that an intrachromosomal duplication event created the precursor of the IFN-gamma-inducible genes from a PA28-gamma-like ancestor prior to their recruitment into the Mhc class I peptide presentation pathway.
Collapse
Affiliation(s)
- B W Murray
- Max-Planck-Institut für Biologie, Abteilung Immungenetik, Corrensstrasse 42, 72076 Tübingen, Germany
| | | | | |
Collapse
|
348
|
Kisselev AF, Songyang Z, Goldberg AL. Why does threonine, and not serine, function as the active site nucleophile in proteasomes? J Biol Chem 2000; 275:14831-7. [PMID: 10809725 DOI: 10.1074/jbc.275.20.14831] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteasomes belong to the N-terminal nucleophile group of amidases and function through a novel proteolytic mechanism, in which the hydroxyl group of the N-terminal threonines is the catalytic nucleophile. However, it is unclear why threonine has been conserved in all proteasomal active sites, because its replacement by a serine in proteasomes from the archaeon Thermoplasma acidophilum (T1S mutant) does not alter the rates of hydrolysis of Suc-LLVY-amc (Seemüller, E., Lupas, A., Stock, D., Lowe, J., Huber, R., and Baumeister, W. (1995) Science 268, 579-582) and other standard peptide amide substrates. However, we found that true peptide bonds in decapeptide libraries were cleaved by the T1S mutant 10-fold slower than by wild type (wt) proteasomes. In degrading proteins, the T1S proteasome was 3.5- to 6-fold slower than the wt, and this difference increased when proteolysis was stimulated using the proteasome-activating nucleotidase (PAN) ATPase complex. With mutant proteasomes, peptide bond cleavage appeared to be rate-limiting in protein breakdown, unlike with wt. Surprisingly, a peptide ester was hydrolyzed by both particles much faster than the corresponding amide, and the T1S mutant cleaved it faster than the wt. Moreover, the T1S mutant was inactivated by the ester inhibitor clasto-lactacystin-beta-lactone severalfold faster than the wt, but reacted with nonester irreversible inhibitors at similar rates. T1A and T1C mutants were completely inactive in all these assays. Thus, proteasomes lack additional active sites, and the N-terminal threonine evolved because it allows more efficient protein breakdown than serine.
Collapse
Affiliation(s)
- A F Kisselev
- Department of Cell Biology, Harvard Medical School, Beth Israel Deaconess Medical Centre, Harvard's Institutes of Medicine, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
349
|
Kuttler C, Nussbaum AK, Dick TP, Rammensee HG, Schild H, Hadeler KP. An algorithm for the prediction of proteasomal cleavages. J Mol Biol 2000; 298:417-29. [PMID: 10772860 DOI: 10.1006/jmbi.2000.3683] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteasomes, major proteolytic sites in eukaryotic cells, play an important part in major histocompatibility class I (MHC I) ligand generation and thus in the regulation of specific immune responses. Their cleavage specificity is of outstanding interest for this process. In order to generalize previously determined cleavage motifs of 20 S proteasomes, we developed network-based model proteasomes trained by an evolutionary algorithm with experimental cleavage data of yeast and human 20 S proteasomes. A window of ten flanking amino acid residues proved sufficient for the model proteasomes to reproduce the experimental results with 98-100 % accuracy. Actual experimental data were reproduced significantly better than randomly selected cleavage sites, suggesting that our model proteasomes were able to extract rules inherent to proteasomal cleavage data. The affinity parameters of the model, which decide for or against cleavage, correspond with the cleavage motifs determined experimentally. The predictive power of the model was verified for unknown (to the program) test conditions: the prediction of cleavage numbers in proteins and the generation of MHC I ligands from short peptides. In summary, our model proteasomes reproduce and predict proteasomal cleavages with high degree of accuracy. They present a promising approach for predicting proteasomal cleavage products in future attempts and, in combination with existing algorithms for MHC I ligand prediction, will be tested to improve cytotoxic T lymphocyte epitope prediction.
Collapse
Affiliation(s)
- C Kuttler
- Biomathematik, University of Tübingen, Auf der Morgenstelle 10, Tübingen, D-72076, Germany
| | | | | | | | | | | |
Collapse
|
350
|
Fernández Murray P, Biscoglio MJ, Passeron S. Purification and characterization of Candida albicans 20S proteasome: identification of four proteasomal subunits. Arch Biochem Biophys 2000; 375:211-9. [PMID: 10700377 DOI: 10.1006/abbi.1999.1591] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 20S proteasome from yeast cells of Candida albicans was purified by successive chromatographic steps to apparent homogeneity, as judged by nondenaturing and denaturing polyacrylamide gel electrophoresis. Its molecular mass was estimated to be 640 kDa by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate gave at least 10 bands in the range 20-32 kDa. Two-dimensional electrophoresis revealed the presence of at least 14 polypeptides. By electron microscopy after negative staining, the proteasome preparation appeared as typical symmetrical barrel-shaped particles. The enzyme cleaved the peptidyl-arylamide bonds in the model synthetic substrates Cbz-G-G-L-p-nitroanilide, Cbz-G-G-R-beta-naphthylamide, and Cbz-L-L-E-beta-naphthylamide (chymotrypsin-like, trypsin-like, and peptidylglutamyl-peptide-hydrolyzing activities). The differential sensitivity of these activities to aldehyde peptides and sodium dodecyl sulfate supported the multicatalytic nature of this enzyme. Three proteasomal subunits were identified as alpha6/Pre5, alpha3/Y13, and alpha5/Pup2 by internal sequencing of tryptic fragments. Their sequences perfectly matched the corresponding deduced amino acid sequences of the C. albicans genes. A fourth subunit was identified as alpha7/Prs1 by immunorecognition with a monoclonal antibody specific for C8, the human proteasome subunit homologue. Treatment of the intact isolated 20S proteasome with acid phosphatase and Western blot analysis of the separated components indicated that the alpha7/Prs1 subunit is obtained as a multiply phosphorylated protein.
Collapse
Affiliation(s)
- P Fernández Murray
- Cátedra de Microbiología, Facultad de Agronomía, Universidad de Buenos Aires, CIBYF-CONICET, Avda. San Martín 4453, Buenos Aires, 1417, Argentina.
| | | | | |
Collapse
|