301
|
Sansen S, Yano JK, Reynald RL, Schoch GA, Griffin KJ, Stout CD, Johnson EF. Adaptations for the Oxidation of Polycyclic Aromatic Hydrocarbons Exhibited by the Structure of Human P450 1A2. J Biol Chem 2007; 282:14348-55. [PMID: 17311915 DOI: 10.1074/jbc.m611692200] [Citation(s) in RCA: 359] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microsomal cytochrome P450 family 1 enzymes play prominent roles in xenobiotic detoxication and procarcinogen activation. P450 1A2 is the principal cytochrome P450 family 1 enzyme expressed in human liver and participates extensively in drug oxidations. This enzyme is also of great importance in the bioactivation of mutagens, including the N-hydroxylation of arylamines. P450-catalyzed reactions involve a wide range of substrates, and this versatility is reflected in a structural diversity evident in the active sites of available P450 structures. Here, we present the structure of human P450 1A2 in complex with the inhibitor alpha-naphthoflavone, determined to a resolution of 1.95 A. alpha-Naphthoflavone is bound in the active site above the distal surface of the heme prosthetic group. The structure reveals a compact, closed active site cavity that is highly adapted for the positioning and oxidation of relatively large, planar substrates. This unique topology is clearly distinct from known active site architectures of P450 family 2 and 3 enzymes and demonstrates how P450 family 1 enzymes have evolved to catalyze efficiently polycyclic aromatic hydrocarbon oxidation. This report provides the first structure of a microsomal P450 from family 1 and offers a template to study further structure-function relationships of alternative substrates and other cytochrome P450 family 1 members.
Collapse
Affiliation(s)
- Stefaan Sansen
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
302
|
Klein K, Tatzel S, Raimundo S, Saussele T, Hustert E, Pleiss J, Eichelbaum M, Zanger UM. A Natural Variant of the Heme-Binding Signature (R441C) Resulting in Complete Loss of Function of CYP2D6. Drug Metab Dispos 2007; 35:1247-50. [PMID: 17460029 DOI: 10.1124/dmd.107.015149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A new variant allele CYP2D6*62 (g.4044C>T; R441C) of the drug-metabolizing cytochrome P450 (P450) CYP2D6 was identified in a person with reduced sparteine oxidation phenotype, which was unexpected based on a genetic CYP2D6*1A/*41 background. The recombinantly expressed variant protein had no activity toward propafenone as a result of missing heme incorporation. Sequence alignment revealed that the positively charged R441 residue is part of the heme-binding signature but not strictly conserved among all the P450s. A compilation of described P450 monooxygenase variants revealed that other enzymes can functionally tolerate even nonconservative amino acid changes at the corresponding position (i.e., the invariant cysteine 2). This suggests that heme binding in mammalian P450s depends not only on the integrity of the heme-binding signature but also on other family- and subfamily-specific sequence determinants.
Collapse
Affiliation(s)
- Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|
303
|
Shebley M, Hollenberg PF. Mutation of a single residue (K262R) in P450 2B6 leads to loss of mechanism-based inactivation by phencyclidine. Drug Metab Dispos 2007; 35:1365-71. [PMID: 17460030 DOI: 10.1124/dmd.107.014985] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human cytochrome P450 (P450) 2B6 plays an important role in the metabolism of many drugs used in the clinic, and it has been shown to be highly polymorphic and inducible by a variety of substrates. The metabolism of phencyclidine (PCP) by P450 2B6 results in mechanism-based inactivation of the enzyme. We investigated the effects of a naturally occurring mutation of P450 2B6 where a lysine 262 is changed to an arginine (K262R) on PCP metabolism and mechanism-based inactivation of 2B6 by PCP. The K262R mutant retained the 7-ethoxy-4-trifluoromethylcoumarin O-deethylation activity when it was incubated with PCP and NADPH in the reconstituted system, whereas the wild-type enzyme was readily inactivated by PCP. Spectral binding studies showed that PCP was reversibly bound in the active site of the K262R mutant with slightly higher affinity (156 muM) compared with the wild-type 2B6 (397 muM). In addition, all the metabolites of PCP (M1-M8) that were formed by the wild-type enzyme were also formed by the K262R mutant. Although the K262R mutant metabolized PCP to give similar metabolite profiles, the overall rate of metabolite formation was lower than the wild-type enzyme. A reactive intermediate of PCP was formed by wild-type P450 2B6 and trapped with glutathione (GSH). However, no GSH conjugates were detected from incubations with the K262R mutant. These data suggest that the lysine 262 residue plays an important role in the formation of a reactive intermediate of PCP that leads to the mechanism-based inactivation of P450 2B6.
Collapse
Affiliation(s)
- Mohamad Shebley
- Department of Pharmacology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0632, USA
| | | |
Collapse
|
304
|
LAFITE P, DIJOLS S, ZELDIN DC, DANSETTE PM, MANSUY D. Selective, competitive and mechanism-based inhibitors of human cytochrome P450 2J2. Arch Biochem Biophys 2007; 464:155-68. [PMID: 17470359 PMCID: PMC2761594 DOI: 10.1016/j.abb.2007.03.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/16/2007] [Accepted: 03/23/2007] [Indexed: 11/20/2022]
Abstract
Twenty five derivatives of the drugs terfenadine and ebastine have been designed, synthesized and evaluated as inhibitors of recombinant human CYP2J2. Compound 14, which has an imidazole substituent, is a good non-competitive inhibitor of CYP2J2 (IC(50)=400nM). It is not selective towards CYP2J2 as it also efficiently inhibits the other main vascular CYPs, such as CYP2B6, 2C8, 2C9 and 3A4; however, it could be an interesting tool to inhibit all these vascular CYPs. Compounds 4, 5 and 13, which have a propyl, allyl and benzo-1,3-dioxole terminal group, respectively, are selective CYP2J2 inhibitors. Compound 4 is a high-affinity, competitive inhibitor and alternative substrate of CYP2J2 (K(i)=160+/-50nM). Compounds 5 and 13 are efficient mechanism-based inhibitors of CYP2J2 (k(inact)/K(i) values approximately 3000Lmol(-1)s(-1)). Inactivation of CYP2J2 by 13 is due to the formation of a stable iron-carbene bond which occurs upon CYP2J2-catalyzed oxidation of 13 with a partition ratio of 18+/-3. These new selective inhibitors should be interesting tools to study the biological roles of CYP2J2.
Collapse
Affiliation(s)
- Pierre LAFITE
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques - UMR 8601 Université Paris Descartes, CNRS, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Sylvie DIJOLS
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques - UMR 8601 Université Paris Descartes, CNRS, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Darryl C. ZELDIN
- NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Patrick M. DANSETTE
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques - UMR 8601 Université Paris Descartes, CNRS, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Daniel MANSUY
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques - UMR 8601 Université Paris Descartes, CNRS, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
- To whom correspondence should be addressed Tel.: 33 (0)1 42 86 40 62; fax: 33 (0)1 42 86 83 87,
| |
Collapse
|
305
|
Mansuy D, Lafite P. Great adaptability of the heme-cysteinate monooxygenases family to very diverse substrates and sophisticated reactions. J PORPHYR PHTHALOCYA 2007. [DOI: 10.1142/s108842460700031x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heme-cysteinate proteins, such as cytochromes P 450( CYPs ) and nitric oxide synthases (NOSs), catalyze the monooxygenation of a huge number of substrates with very diverse structures. The ability of CYPs to oxidize a myriad of xenobiotics, in order to facilitate their elimination, plays a key role in the adaptation of aerobic organisms to their always changing chemical environment. Moreover, some members of the CYP superfamily and the NOSs are involved in the biosynthesis of key biological endogenous molecules, such as estrogens or NO, through the catalysis of highly sophisticated and regulated reactions. How can proteins using the same catalytic heme-cysteinate cofactor and mechanism of dioxygen activation oxidize such diverse and always changing substrates and catalyze different, sometimes very sophisticated reactions? Recent data on the first X-ray structures of mammalian cytochrome P 450-substrate complexes and on the mechanism of NO-synthases has permitted an understanding of this"double adaptation" of heme-cysteinate monooxygenases towards very diverse substrates and different reactions. These data show that cytochromes P 450 involved in the metabolism of xenobiotics are able to oxidize very different substrates by offering a great choice of very diverse and malleable active sites. They also show that heme-cysteinate monooxygenases are able to catalyze special, sophisticated reactions, such as the selective oxidation of L-arginine to NO, by using supplementary cofactors adapted for the required catalysis.
Collapse
Affiliation(s)
- Daniel Mansuy
- UMR 8601, Université René Descartes Paris 5, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Pierre Lafite
- UMR 8601, Université René Descartes Paris 5, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| |
Collapse
|
306
|
Kjellander B, Masimirembwa CM, Zamora I. Exploration of Enzyme−Ligand Interactions in CYP2D6 & 3A4 Homology Models and Crystal Structures Using a Novel Computational Approach. J Chem Inf Model 2007; 47:1234-47. [PMID: 17381082 DOI: 10.1021/ci600561v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New crystal structures of human CYP2D6 and CYP3A4 have recently been reported, and in this study, we wanted to compare them with previously used homology models with respect to predictions of site of metabolism and ligand-enzyme interactions. The data set consisted of a family of synthetic opioid analgesics with the aim to cover both CYP2D6 and CYP3A4, as most of these compounds are metabolized by both isoforms. The program MetaSite was used for the site of metabolism predictions, and the results were validated by experimental assessment of the major metabolites formed with recombinant CYP450s. This was made on a selection of 14 compounds in the data set. The prediction rates for MetaSite were 79-100% except for the CYP3A4 homology model, which picked the correct site in half of the cases. Despite differences in orientation of some important amino acids in the active sites, the MetaSite-predicted sites were the same for the different structures, with the exception of the CYP3A4 homology model. Further exploration of interactions with ligands was done by docking substrates/inhibitors in the different structures with the docking program GLUE. To address the challenge in interpreting patterns of enzyme-ligand interactions for the large number of different docking poses, a new computational tool to handle the results from the dockings was developed, in which the output highlights the relative importance of amino acids in CYP450-substrate/inhibitor interactions. The method is based on calculations of the interaction energies for each pose with the surrounding amino acids. For the CYP3A4 structures, this method was compared with consensus principal component analysis (CPCA), a commonly used method for structural comparison to evaluate the usefulness of the new method. The results from the two methods were comparable with each other, and the highlighted amino acids resemble those that were identified to have a different orientation in the compared structures. The new method has clear advantages over CPCA in that it is far simpler to interpret and there is no need for protein alignment. The methodology enables structural comparison but also gives insights on important amino acid substrate/inhibitor interactions and can therefore be very useful when suggesting modifications of new chemical entities to improve their metabolic profiles.
Collapse
Affiliation(s)
- Britta Kjellander
- Discovery DMPK & Bioanalytical Chemisty Department, AstraZeneca R&D Mölndal, SE-431 81, Sweden.
| | | | | |
Collapse
|
307
|
Thomas JH. Rapid birth-death evolution specific to xenobiotic cytochrome P450 genes in vertebrates. PLoS Genet 2007; 3:e67. [PMID: 17500592 PMCID: PMC1866355 DOI: 10.1371/journal.pgen.0030067] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 03/14/2007] [Indexed: 12/15/2022] Open
Abstract
Genes vary greatly in their long-term phylogenetic stability and there exists no general explanation for these differences. The cytochrome P450 (CYP450) gene superfamily is well suited to investigating this problem because it is large and well studied, and it includes both stable and unstable genes. CYP450 genes encode oxidase enzymes that function in metabolism of endogenous small molecules and in detoxification of xenobiotic compounds. Both types of enzymes have been intensively studied. My analysis of ten nearly complete vertebrate genomes indicates that each genome contains 50-80 CYP450 genes, which are about evenly divided between phylogenetically stable and unstable genes. The stable genes are characterized by few or no gene duplications or losses in species ranging from bony fish to mammals, whereas unstable genes are characterized by frequent gene duplications and losses (birth-death evolution) even among closely related species. All of the CYP450 genes that encode enzymes with known endogenous substrates are phylogenetically stable. In contrast, most of the unstable genes encode enzymes that function as xenobiotic detoxifiers. Nearly all unstable CYP450 genes in the mouse and human genomes reside in a few dense gene clusters, forming unstable gene islands that arose by recurrent local gene duplication. Evidence for positive selection in amino acid sequence is restricted to these unstable CYP450 genes, and sites of selection are associated with substrate-binding regions in the protein structure. These results can be explained by a general model in which phylogenetically stable genes have core functions in development and physiology, whereas unstable genes have accessory functions associated with unstable environmental interactions such as toxin and pathogen exposure. Unstable gene islands in vertebrates share some functional properties with bacterial genomic islands, though they arise by local gene duplication rather than horizontal gene transfer.
Collapse
Affiliation(s)
- James H Thomas
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America.
| |
Collapse
|
308
|
Otyepka M, Skopalík J, Anzenbacherová E, Anzenbacher P. What common structural features and variations of mammalian P450s are known to date? Biochim Biophys Acta Gen Subj 2007; 1770:376-89. [PMID: 17069978 DOI: 10.1016/j.bbagen.2006.09.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 09/04/2006] [Accepted: 09/21/2006] [Indexed: 11/17/2022]
Abstract
Sufficient structural information on mammalian cytochromes P450 has now been published (including seventeen X-ray structures of these enzymes by June 2006) to allow characteristic features of these enzymes to be identified, including: (i) the presence of a common fold, typical of all P450s, (ii) similarities in the positioning of the heme cofactor, (iii) the spatial arrangement of certain structural elements, and (iv) the access/egress paths for substrates and products, (v) probably common orientation in the membrane, (vi) characteristic properties of the active sites with networks of water molecules, (vii) mode of interaction with redox partners and (viii) a certain degree of flexibility of the structure and active site determining the ease with which the enzyme may bind the substrates. As well as facilitating the identification of common features, comparison of the available structures allows differences among the structures to be identified, including variations in: (i) preferred access/egress paths to/from the active site, (ii) the active site volume and (iii) flexible regions. The availability of crystal structures provides opportunities for molecular dynamic simulations, providing data that are apparently complementary to experimental findings but also allow the dynamic behavior of access/egress paths and other dynamic features of the enzymes to be explored.
Collapse
Affiliation(s)
- Michal Otyepka
- Department of Physical Chemistry, Faculty of Sciences, Palacky University, Svobody 26, 771 46 Olomouc, Czech Republic.
| | | | | | | |
Collapse
|
309
|
de Graaf C, Oostenbrink C, Keizers PHJ, van Vugt-Lussenburg BMA, Commandeur JNM, Vermeulen NPE. Free energies of binding of R- and S-propranolol to wild-type and F483A mutant cytochrome P450 2D6 from molecular dynamics simulations. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:589-99. [PMID: 17333164 PMCID: PMC1914272 DOI: 10.1007/s00249-006-0126-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 12/01/2006] [Accepted: 12/21/2006] [Indexed: 11/21/2022]
Abstract
Detailed molecular dynamics (MD) simulations have been performed to reproduce and rationalize the experimental finding that the F483A mutant of CYP2D6 has lower affinity for R-propranolol than for S-propranolol. Wild-type (WT) CYP2D6 does not show this stereospecificity. Four different approaches to calculate the free energy differences have been investigated and were compared to the experimental binding data. From the differences between calculations based on forward and backward processes and the closure of thermodynamic cycles, it was clear that not all simulations converged sufficiently. The approach that calculates the free energies of exchanging R-propranolol with S-propranolol in the F483A mutant relative to the exchange free energy in WT CYP2D6 accurately reproduced the experimental binding data. Careful inspection of the end-points of the MD simulations involved in this approach, allowed for a molecular interpretation of the observed differences.
Collapse
Affiliation(s)
- Chris de Graaf
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Leiden Amsterdam Center for Drug Research (LACDR), Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Chris Oostenbrink
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Leiden Amsterdam Center for Drug Research (LACDR), Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Peter H. J. Keizers
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Leiden Amsterdam Center for Drug Research (LACDR), Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Barbara M. A. van Vugt-Lussenburg
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Leiden Amsterdam Center for Drug Research (LACDR), Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Jan N. M. Commandeur
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Leiden Amsterdam Center for Drug Research (LACDR), Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Nico P. E. Vermeulen
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Leiden Amsterdam Center for Drug Research (LACDR), Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
310
|
Bonifacio A, Groenhof AR, Keizers PHJ, de Graaf C, Commandeur JNM, Vermeulen NPE, Ehlers AW, Lammertsma K, Gooijer C, van der Zwan G. Altered spin state equilibrium in the T309V mutant of cytochrome P450 2D6: a spectroscopic and computational study. J Biol Inorg Chem 2007; 12:645-54. [PMID: 17318599 PMCID: PMC1915625 DOI: 10.1007/s00775-007-0210-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 01/23/2007] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) is one of the most important cytochromes P450 in humans. Resonance Raman data from the T309V mutant of CYP2D6 show that the substitution of the conserved I-helix threonine situated in the enzyme's active site perturbs the heme spin equilibrium in favor of the six-coordinated low-spin species. A mechanistic hypothesis is introduced to explain the experimental observations, and its compatibility with the available structural and spectroscopic data is tested using quantum-mechanical density functional theory calculations on active-site models for both the CYP2D6 wild type and the T309V mutant.
Collapse
Affiliation(s)
- Alois Bonifacio
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - André R. Groenhof
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Peter H. J. Keizers
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Chris de Graaf
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Jan N. M. Commandeur
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Nico P. E. Vermeulen
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Andreas W. Ehlers
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Koop Lammertsma
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Cees Gooijer
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Gert van der Zwan
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
311
|
Pan XB, Wei L, Chen HS, Liu F, Gao Y. Liver-derived cell lines QSG-7701 and HepG2 support different HBV replication patterns. Arch Virol 2007; 152:1159-73. [PMID: 17308979 DOI: 10.1007/s00705-006-0927-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 12/12/2006] [Indexed: 01/10/2023]
Abstract
Hepatitis B virus (HBV) infection is currently still a worldwide heath concern. In our study, we compared HBV replication patterns in two liver-derived cell lines, QSG-7701 and HepG2. Viral markers of HBV replication in culture medium and cells were analyzed after transfection of these cells with plasmid pUC18-HBV1.2 into. We showed that QSG-7701 cells could support more stable and a higher level of HBV replication than HepG2 cells. Gene expression profiles of QSG-7701 and HepG2 cells by microarray analysis showed that many genes were differentially expressed between these two cell lines, including those that are related to the HBV life cycle. The global gene expression profile of these two cell types provides some clues to explain how different HBV replication is achieved. QSG-7701 cells offer a new opportunity for basic research on HBV virus-host interactions.
Collapse
Affiliation(s)
- X B Pan
- Peking University Hepatology Institute, Peking University People's Hospital, Beijing, P.R. China
| | | | | | | | | |
Collapse
|
312
|
Munro AW, Girvan HM, McLean KJ. Variations on a (t)heme—novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Nat Prod Rep 2007; 24:585-609. [PMID: 17534532 DOI: 10.1039/b604190f] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Andrew W Munro
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | | | | |
Collapse
|
313
|
Masuda S, Prosser DE, Guo YD, Kaufmann M, Jones G. Generation of a homology model for the human cytochrome P450, CYP24A1, and the testing of putative substrate binding residues by site-directed mutagenesis and enzyme activity studies. Arch Biochem Biophys 2006; 460:177-91. [PMID: 17224124 DOI: 10.1016/j.abb.2006.11.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 11/30/2006] [Indexed: 10/23/2022]
Abstract
A systematic analysis of conserved H-bonding patterns and tertiary structural motifs from 13 crystal structures was used to create a homology model for the human multicatalytic cytochrome P450, CYP24A1, involved in catabolism of 1alpha,25-dihydroxyvitamin D3. The substrate was docked in the active site and used to identify potential substrate contact residues in the B' helix, B'/C loop, F-helix and the beta-5 hairpin. Seven CYP24A1 mutants were created and studied by mammalian cell transfection and CYP24A1 activity assay. Mutants showed reduced metabolic rates and altered metabolite patterns compared to wild-type. We conclude that: Ile-131 positions substrate via A-ring and cis-triene contacts; Trp-134 and Gly-499 are determinants of substrate access; Leu-148 contacts the substrate side-chain; Met-246 is important in mediating regioselectivity. Our findings validate the new model of CYP24A1, which can now be used to predict structural modifications for rational vitamin D drug design.
Collapse
Affiliation(s)
- Sonoko Masuda
- Department of Biochemistry, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
314
|
Wahlstrom JL, Rock DA, Slatter JG, Wienkers LC. Advances in predicting CYP-mediated drug interactions in the drug discovery setting. Expert Opin Drug Discov 2006; 1:677-91. [DOI: 10.1517/17460441.1.7.677] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
315
|
Bazeley PS, Prithivi S, Struble CA, Povinelli RJ, Sem DS. Synergistic Use of Compound Properties and Docking Scores in Neural Network Modeling of CYP2D6 Binding: Predicting Affinity and Conformational Sampling. J Chem Inf Model 2006; 46:2698-708. [PMID: 17125210 DOI: 10.1021/ci600267k] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) is used to develop an approach for predicting affinity and relevant binding conformation(s) for highly flexible binding sites. The approach combines the use of docking scores and compound properties as attributes in building a neural network (NN) model. It begins by identifying segments of CYP2D6 that are important for binding specificity, based on structural variability among diverse CYP enzymes. A family of distinct, low-energy conformations of CYP2D6 are generated using simulated annealing (SA) and a collection of 82 compounds with known CYP2D6 affinities are docked. Interestingly, docking poses are observed on the backside of the heme as well as in the known active site. Docking scores for the active site binders, along with compound-specific attributes, are used to train a neural network model to properly bin compounds as strong binders, moderate binders, or nonbinders. Attribute selection is used to preselect the most important scores and compound-specific attributes for the model. A prediction accuracy of 85+/-6% is achieved. Dominant attributes include docking scores for three of the 20 conformations in the ensemble as well as the compound's formal charge, number of aromatic rings, and AlogP. Although compound properties were highly predictive attributes (12% improvement over baseline) in the NN-based prediction of CYP2D6 binders, their combined use with docking score attributes is synergistic (net increase of 23% above baseline). Beyond prediction of affinity, attribute selection provides a way to identify the most relevant protein conformation(s), in terms of binding competence. In the case of CYP2D6, three out of the ensemble of 20 SA-generated structures are found to be the most predictive for binding.
Collapse
Affiliation(s)
- Peter S Bazeley
- Department of Mathematics, Statistics, and Computer Science, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53233-1881, USA
| | | | | | | | | |
Collapse
|
316
|
Zurek J, Foloppe N, Harvey JN, Mulholland AJ. Mechanisms of reaction in cytochrome P450: Hydroxylation of camphor in P450cam. Org Biomol Chem 2006; 4:3931-7. [PMID: 17047872 DOI: 10.1039/b611653a] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fundamental nature of reactivity in cytochrome P450 enzymes is currently controversial. Modelling of bacterial P450cam has suggested an important role for the haem propionates in the catalysis, though this finding has been questioned. Understanding the mechanisms of this enzyme family is important both in terms of basic biochemistry and potentially in the prediction of drug metabolism. We have modelled the hydroxylation of camphor by P450cam, using combined quantum mechanics/molecular mechanics (QM/MM) methods. A set of reaction pathways in the enzyme was determined. We were able to pinpoint the source of the discrepancies in the previous results. We show that when a correct ionization state is assigned to Asp297, no spin density appears on the haem propionates and the protein structure in this region remains preserved. These results indicate that the haem propionates are not involved in catalysis.
Collapse
Affiliation(s)
- Jolanta Zurek
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK BS8 1TS
| | | | | | | |
Collapse
|
317
|
Locuson CW, Tracy TS. Identification of Binding Sites of Non-I-Helix Water Molecules in Mammalian Cytochromes P450. Drug Metab Dispos 2006; 34:1954-7. [PMID: 16956955 DOI: 10.1124/dmd.106.011890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cytochromes P450 (P450s) enzymes are integral in determining the disposition of many therapeutic compounds. At the molecular level, the details of P450 catalysis are still under investigation, but the importance of water-mediated proton shuttles seems evident in the catalytic cycle as it progresses through various heme iron-oxygen enzyme intermediates. The study of P450-bound waters has been largely restricted to bacterial enzymes that may or may not reflect the location or function of waters in human drug-metabolizing P450s. However, in recent years, 16 structures of mammalian P450s containing crystallographic waters have been deposited in the Protein Data Bank. Described herein is the identification of seven well defined water clusters in mammalian P450s identified by calculating the density of globally aligned waters as reported by Tanner and coworkers [Bottoms CA, White TA, and Tanner JJ (2006) Proteins 64:404-421 (DOI: 10.1002/prot.21014)]. All water binding sites were in or within the immediate vicinity of the active sites of the P450s, but most were not near the conserved I-helix threonine often implicated in P450 catalysis. Therefore, it is possible that some of the water binding sites identified here ultimately determine P450 catalytic efficiency either by working as an extension of the I-helix water network, or by acting in novel proton shuttles that modulate the nonproductive shunting of reactive oxygen species.
Collapse
Affiliation(s)
- Charles W Locuson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota, USA.
| | | |
Collapse
|
318
|
Cojocaru V, Winn PJ, Wade RC. The ins and outs of cytochrome P450s. Biochim Biophys Acta Gen Subj 2006; 1770:390-401. [PMID: 16920266 DOI: 10.1016/j.bbagen.2006.07.005] [Citation(s) in RCA: 288] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 07/14/2006] [Indexed: 11/17/2022]
Abstract
The active site of cytochromes P450 is situated deep inside the protein next to the heme cofactor. Consequently, enzyme specificity and kinetics can be influenced by how substrates pass through the protein to access the active site and how products egress from the active site. We previously analysed the channels between the active site and the protein surface in P450 crystal structures available in October 2003 [R.C. Wade, P.J. Winn, I. Schlichting, Sudarko, A survey of active site access channels in cytochromes P450, J. Inorg. Biochem. 98 (2004) 1175-1182]. Since then, 52 new P450 structures have been made available, including entries for ten isozymes for which structures were not previously available. We present an updated survey covering all P450 crystal structures available in March 2006. This survey shows channels not observed earlier in crystal structures, some of which were identified in previous molecular dynamics simulations. The crystal structures demonstrate how some of the channels can merge when the protein structure opens up resulting in a wide cleft to the active site, caused largely by movements of the F-G helix-loop-helix and the B-C loop. Significant differences were observed between the channels in the crystal structures of the mammalian and bacterial enzymes. The multiplicity of channels suggests possibilities for substrate channelling to and from the P450s.
Collapse
Affiliation(s)
- Vlad Cojocaru
- Molecular and Cellular Modeling Group, EML Research, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany
| | | | | |
Collapse
|
319
|
de Groot MJ. Designing better drugs: predicting cytochrome P450 metabolism. Drug Discov Today 2006; 11:601-6. [PMID: 16793528 DOI: 10.1016/j.drudis.2006.05.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 04/21/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
Many 3D ligand-based and structure-based computational approaches have been used to predict, and thus help explain, the metabolism catalyzed by the enzymes of the cytochrome P450 superfamily (P450s). P450s are responsible for >90% of the metabolism of all drugs, so the computational prediction of metabolism can help to design out drug-drug interactions in the early phases of the drug discovery process. Computational methodologies have focused on a few P450s that are directly involved in drug metabolism. The recently derived crystal structures for human P450s enable better 3D modelling of these important metabolizing enzymes. Models derived for P450s have evolved from simple comparisons of known substrates to more-elaborate experiments that require considerable computer power involving 3D overlaps and docking experiments. These models help to explain and, more importantly, predict the involvement of P450s in the metabolism of specific compounds and guide the drug-design process.
Collapse
Affiliation(s)
- Marcel J de Groot
- Sandwich Chemistry, Pfizer Global Research & Development, Sandwich Laboratories, Kent CT13 9NJ, UK.
| |
Collapse
|
320
|
Herz T, Wolf K, Kraus J, Kramer B. 4SCan/vADME: intelligent library screening as a shortcut from hits to lead compounds. Expert Opin Drug Metab Toxicol 2006; 2:471-84. [PMID: 16863447 DOI: 10.1517/17425255.2.3.471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Managing to solve the first step in drug discovery - the hit finding - can be a quite elaborate task, but it is only the initial step to the final goal; hit-to-lead optimisation still lies ahead and consumes even more time and resources. The solution is rather simple, that is, to take only the most promising compounds into account; but who is going to decide which ones are the most promising among a list of tens of millions of compounds in a virtual combinatorial library? 4SCan/vADME helps by bridging the gap between virtual (combinatorial) libraries designed by chemists and the in silico methods, docking and alignment, for screening databases. After choosing a random starting set, the implemented learning and prediction algorithm iteratively considers only combinations of fragments that have shown to result in more suitable interactions by the chosen method. ADME properties of the final list are then calculated via several in silico methods, resulting in a combined evaluation of the individual compound's target-specific, as well as ADME, properties. Based on the latter list of evaluated compounds, medicinal chemists can then decide which compounds might be the best ones to synthesise first and to serve as possible lead candidates. Following a brief introduction to virtual high-throughput screening techniques, the 4SCan/vADME method is outlined and discussed in this paper, using an example coming out of the 4SC pipeline.
Collapse
Affiliation(s)
- Thomas Herz
- 4SC AG, Chem & Bioinformatics, Am Klopferspitz 19a, D-82152 Martinsried, Germany.
| | | | | | | |
Collapse
|
321
|
Yu J, Paine MJI, Maréchal JD, Kemp CA, Ward CJ, Brown S, Sutcliffe MJ, Roberts GCK, Rankin EM, Wolf CR. IN SILICO PREDICTION OF DRUG BINDING TO CYP2D6: IDENTIFICATION OF A NEW METABOLITE OF METOCLOPRAMIDE. Drug Metab Dispos 2006; 34:1386-92. [PMID: 16698891 DOI: 10.1124/dmd.106.009852] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Patients with cancer often take many different classes of drugs to treat the effects of their malignancy and the side effects of treatment, as well as their comorbidities. The potential for drug-drug interactions that may affect the efficacy of anticancer treatment is high, and a major source of such interactions is competition for the drug-metabolizing enzymes, cytochromes P450 (P450s). We have examined a series of 20 drugs commonly prescribed to cancer patients to look for potential interactions via CYP2D6. We used a homology model of CYP2D6, together with molecular docking techniques, to perform an in silico screen for binding to CYP2D6. Experimental IC50 values were determined for these compounds and compared with the model predictions to reveal a correlation with a regression coefficient of r2= 0.61. Importantly, the docked conformation of the commonly prescribed antiemetic metoclopramide predicted a new site of metabolism that was further investigated through in vitro analysis with recombinant CYP2D6. An aromatic N-hydroxy metabolite of metoclopramide, consistent with predictions from our modeling studies, was identified by high-performance liquid chromatography/mass spectrometry. This metabolite was found to represent a major product of metabolism in human liver microsomes, and CYP2D6 was identified as the main P450 isoform responsible for catalyzing its formation. In view of the prevalence of interindividual variation in the CYP2D6 genotype and phenotype, we suggest that those experiencing adverse reactions with metoclopramide, e.g., extrapyramidal syndrome, are likely to have a particular CYP2D6 genotype/phenotype. This warrants further investigation.
Collapse
Affiliation(s)
- Jinglei Yu
- Division of Cancer Medicine, Biomedical Research Centre, University of Dundee, Ninewells Hospital & Medical School, Dundee, DD1 9SY, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Hamamoto H, Kusudo T, Urushino N, Masuno H, Yamamoto K, Yamada S, Kamakura M, Ohta M, Inouye K, Sakaki T. Structure-function analysis of vitamin D 24-hydroxylase (CYP24A1) by site-directed mutagenesis: amino acid residues responsible for species-based difference of CYP24A1 between humans and rats. Mol Pharmacol 2006; 70:120-8. [PMID: 16617161 DOI: 10.1124/mol.106.023275] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous studies revealed the species-based difference of CYP24A1-dependent vitamin D metabolism. Although human CYP24A1 catalyzes both C-23 and C-24 oxidation pathways, rat CYP24A1 shows almost no C-23 oxidation pathway. We tried to identify amino acid residues that cause the species-based difference by site-directed mutagenesis. In the putative substrate-binding regions, amino acid residue of rat CYP24A1 was converted to the corresponding residue of human CYP24A1. Among eight mutants examined, T416M and I500T showed C-23 oxidation pathway. In addition, the mutant I500F showed quite a different metabolism of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] from both human and rat CYP24A1. These results strongly suggest that the amino acid residues at positions 416 and 500 play a crucial role in substrate binding and greatly affect substrate orientation. A three-dimensional model of CYP24A1 indicated that the A-ring and triene part of 1alpha,25(OH)2D3 could be located close to amino acid residues at positions 416 and 500, respectively. Our findings provide useful information for the development of new vitamin D analogs for clinical use.
Collapse
Affiliation(s)
- Hiromi Hamamoto
- Biotechnology Research Center, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Hlavica P. Functional interaction of nitrogenous organic bases with cytochrome P450: A critical assessment and update of substrate features and predicted key active-site elements steering the access, binding, and orientation of amines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:645-70. [PMID: 16503427 DOI: 10.1016/j.bbapap.2006.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/12/2006] [Accepted: 01/12/2006] [Indexed: 02/02/2023]
Abstract
The widespread use of nitrogenous organic bases as environmental chemicals, food additives, and clinically important drugs necessitates precise knowledge about the molecular principles governing biotransformation of this category of substrates. In this regard, analysis of the topological background of complex formation between amines and P450s, acting as major catalysts in C- and N-oxidative attack, is of paramount importance. Thus, progress in collaborative investigations, combining physico-chemical techniques with chemical-modification as well as genetic engineering experiments, enables substantiation of hypothetical work resulting from the design of pharmacophores or homology modelling of P450s. Based on a general, CYP2D6-related construct, the majority of prospective amine-docking residues was found to cluster near the distal heme face in the six known SRSs, made up by the highly variant helices B', F and G as well as the N-terminal portion of helix C and certain beta-structures. Most of the contact sites examined show a frequency of conservation < 20%, hinting at the requirement of some degree of conformational versatility, while a limited number of amino acids exhibiting a higher level of conservation reside close to the heme core. Some key determinants may have a dual role in amine binding and/or maintenance of protein integrity. Importantly, a series of non-SRS elements are likely to be operative via long-range effects. While hydrophobic mechanisms appear to dominate orientation of the nitrogenous compounds toward the iron-oxene species, polar residues seem to foster binding events through H-bonding or salt-bridge formation. Careful uncovering of structure-function relationships in amine-enzyme association together with recently developed unsupervised machine learning approaches will be helpful in both tailoring of novel amine-type drugs and early elimination of potentially toxic or mutagenic candidates. Also, chimeragenesis might serve in the construction of more efficient P450s for activation of amine drugs and/or bioremediation.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Goethestrasse 33, D-80336 München, Germany.
| |
Collapse
|
324
|
Hanioka N, Okumura Y, Saito Y, Hichiya H, Soyama A, Saito K, Ueno K, Sawada JI, Narimatsu S. Catalytic roles of CYP2D6.10 and CYP2D6.36 enzymes in mexiletine metabolism: In vitro functional analysis of recombinant proteins expressed in Saccharomyces cerevisiae. Biochem Pharmacol 2006; 71:1386-95. [PMID: 16527257 DOI: 10.1016/j.bcp.2006.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 01/31/2006] [Accepted: 01/31/2006] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) metabolizes approximately one-third of the medicines in current clinical use and exhibits genetic polymorphism with interindividual differences in metabolic activity. To precisely investigate the effect of CYP2D6*10B and CYP2D6*36 frequently found in Oriental populations on mexiletine metabolism in vitro, CYP2D6 proteins of wild-type (CYP2D6.1) and variants (CYP2D6.10 and CYP2D6.36) were heterologously expressed in yeast cells and their mexiletine p- and 2-methyl hydroxylation activities were determined. Both variant CYP2D6 enzymes showed a drastic reduction of CYP2D6 holo- and apoproteins compared with those of CYP2D6.1. Mexiletine p- and 2-methyl hydroxylation activities on the basis of the microsomal protein level at the single substrate concentration (100 microM) of variant CYP2D6s were less than 6% for CYP2D6.10 and 1% for CYP2D6.36 of those of CYP2D6.1. Kinetic analysis for mexiletine hydroxylation revealed that the affinity toward mexiletine of CYP2D6.10 and CYP2D6.36 was reduced by amino acid substitutions. The Vmax and Vmax/Km values of CYP2D6.10 on the basis of the microsomal protein level were reduced to less than 10% of those of CYP2D6.1, whereas the values on the basis of functional CYP2D6 level were comparable to those of CYP2D6.1. Although it was impossible to estimate the kinetic parameters for the mexiletine hydroxylation of CYP2D6.36, the metabolic ability toward mexiletine was considered to be poorer not only than that of CYP2D6.1 but also than that of CYP2D6.10. The same tendency was also observed in kinetic analysis for bufuralol 1''-hydroxylation as a representative CYP2D6 probe. These findings suggest that CYP2D6*36 has a more drastic impact on mexiletine metabolism than CYP2D6*10.
Collapse
Affiliation(s)
- Nobumitsu Hanioka
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
325
|
Bonifacio A, Keizers PHJ, Commandeur JNM, Vermeulen NPE, Robert B, Gooijer C, van der Zwan G. Binding of bufuralol, dextromethorphan, and 3,4-methylenedioxymethylamphetamine to wild-type and F120A mutant cytochrome P450 2D6 studied by resonance Raman spectroscopy. Biochem Biophys Res Commun 2006; 343:772-9. [PMID: 16563352 DOI: 10.1016/j.bbrc.2006.03.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 03/07/2006] [Indexed: 11/21/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) is one of the most important drug-metabolizing enzymes in humans. Resonance Raman data, reported for the first time for CYP2D6, show that the CYP2D6 heme is found to be in a six-coordinated low-spin state in the absence of substrates, and it is perturbed to different extents by bufuralol, dextromethorphan, and 3,4-methylenedioxymethylamphetamine (MDMA). Dextromethorphan and MDMA induce in CYP2D6 a significant amount of five-coordinated high-spin heme species and reduce the polarity of its heme-pocket, whereas bufuralol does not. Spectra of the F120A mutant CYP2D6 suggest that Phe120 is involved in substrate-binding of dextromethorphan and MDMA, being responsible for the spectral differences observed between these two compounds and bufuralol. These differences could be explained postulating a different substrate mobility for each compound in the CYP2D6 active site, consistently with the role previously suggested for Phe120 in binding dextromethorphan and MDMA.
Collapse
Affiliation(s)
- Alois Bonifacio
- Laser Centre/Analytical Chemistry and Applied Spectroscopy, Vrije Universiteit Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
326
|
Crystals clarify metabolism. Nat Rev Drug Discov 2006. [DOI: 10.1038/nrd2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
327
|
Lafite P, Dijols S, Buisson D, Macherey AC, Zeldin DC, Dansette PM, Mansuy D. Design and synthesis of selective, high-affinity inhibitors of human cytochrome P450 2J2. Bioorg Med Chem Lett 2006; 16:2777-80. [PMID: 16495056 PMCID: PMC1876728 DOI: 10.1016/j.bmcl.2006.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 02/01/2006] [Accepted: 02/01/2006] [Indexed: 11/18/2022]
Abstract
The active site topology, substrate specificity, and biological roles of the human cytochrome P450 CYP2J2, which is mainly expressed in the cardiovascular system, are poorly known even though recent data suggest that it could be a novel biomarker and potential target for therapy of human cancer. This paper reports a first series of high-affinity, selective CYP2J2 inhibitors that are related to terfenadine, with K(i) values as low as 160nM, that should be useful tools to determine the biological roles of CYP2J2.
Collapse
Affiliation(s)
- Pierre Lafite
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Universite Paris 5 René Descartes, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Sylvie Dijols
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Universite Paris 5 René Descartes, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Didier Buisson
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Universite Paris 5 René Descartes, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Anne-Christine Macherey
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Universite Paris 5 René Descartes, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Darryl C. Zeldin
- NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Patrick M. Dansette
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Universite Paris 5 René Descartes, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Daniel Mansuy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Universite Paris 5 René Descartes, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
- * Corresponding author. Tel.: +33 (0)1 42 86 21 69; fax: +33 (0)1 42 86 83 87; e-mail:
| |
Collapse
|
328
|
Refsgaard HHF, Jensen BF, Christensen IT, Hagen N, Brockhoff PB. In silico prediction of cytochrome P450 inhibitors. Drug Dev Res 2006. [DOI: 10.1002/ddr.20108] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
329
|
Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 2001; 21:70-83. [PMID: 11409933 DOI: 10.1021/tx700079z] [Citation(s) in RCA: 1094] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cytochrome P450 (P450) enzymes catalyze a variety of reactions and convert chemicals to potentially reactive products as well as make compounds less toxic. Most of the P450 reactions are oxidations. The majority of these can be rationalized in the context of an FeO(3+) intermediate and odd electron abstraction/rebound mechanisms; however, other iron-oxygen complexes are possible and alternate chemistries can be considered. Another issue regarding P450-catalyzed reactions is the delineation of rate-limiting steps in the catalytic cycle and the contribution to reaction selectivity. In addition to the rather classical oxidations, P450s also catalyze less generally discussed reactions including reduction, desaturation, ester cleavage, ring expansion, ring formation, aldehyde scission, dehydration, ipso attack, one-electron oxidation, coupling reactions, rearrangement of fatty acid and prostaglandin hydroperoxides, and phospholipase activity. Most of these reactions are rationalized in the context of high-valent iron-oxygen intermediates and Fe(2+) reductions, but others are not and may involve acid-base catalysis. Some of these transformations are involved in the bioactivation and detoxication of xenobiotic chemicals.
Collapse
Affiliation(s)
- F P Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| |
Collapse
|