301
|
Abstract
Autophagy is a major intracellular degradative process that delivers cytoplasmic materials to the lysosome for degradation. Since the discovery of autophagy-related (Atg) genes in the 1990s, there has been a proliferation of studies on the physiological and pathological roles of autophagy in a variety of autophagy knockout models. However, direct evidence of the connections between ATG gene dysfunction and human diseases has emerged only recently. There are an increasing number of reports showing that mutations in the ATG genes were identified in various human diseases such as neurodegenerative diseases, infectious diseases, and cancers. Here, we review the major advances in identification of mutations or polymorphisms of the ATG genes in human diseases. Current autophagy-modulating compounds in clinical trials are also summarized.
Collapse
|
302
|
Shibata M, Oikawa K, Yoshimoto K, Kondo M, Mano S, Yamada K, Hayashi M, Sakamoto W, Ohsumi Y, Nishimura M. Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis. THE PLANT CELL 2013; 25:4967-83. [PMID: 24368788 PMCID: PMC3903999 DOI: 10.1105/tpc.113.116947] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/08/2013] [Accepted: 12/09/2013] [Indexed: 05/18/2023]
Abstract
The positioning of peroxisomes in a cell is a regulated process that is closely associated with their functions. Using this feature of the peroxisomal positioning as a criterion, we identified three Arabidopsis thaliana mutants (peroxisome unusual positioning1 [peup1], peup2, and peup4) that contain aggregated peroxisomes. We found that the PEUP1, PEUP2, and PEUP4 were identical to Autophagy-related2 (ATG2), ATG18a, and ATG7, respectively, which are involved in the autophagic system. The number of peroxisomes was increased and the peroxisomal proteins were highly accumulated in the peup1 mutant, suggesting that peroxisome degradation by autophagy (pexophagy) is deficient in the peup1 mutant. These aggregated peroxisomes contained high levels of inactive catalase and were more oxidative than those of the wild type, indicating that peroxisome aggregates comprise damaged peroxisomes. In addition, peroxisome aggregation was induced in wild-type plants by exogenous application of hydrogen peroxide. The cat2 mutant also contained peroxisome aggregates. These findings demonstrate that hydrogen peroxide as a result of catalase inactivation is the inducer of peroxisome aggregation. Furthermore, an autophagosome marker, ATG8, frequently colocalized with peroxisome aggregates, indicating that peroxisomes damaged by hydrogen peroxide are selectively degraded by autophagy in the wild type. Our data provide evidence that autophagy is crucial for quality control mechanisms for peroxisomes in Arabidopsis.
Collapse
Affiliation(s)
- Michitaro Shibata
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Kazusato Oikawa
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Kohki Yoshimoto
- Institut National de la Recherche Agronomique, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Maki Kondo
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Shoji Mano
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Kenji Yamada
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Makoto Hayashi
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan
| | - Yoshinori Ohsumi
- Frontier Research Center, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
- Address correspondence to
| |
Collapse
|
303
|
Lamb CA, Yoshimori T, Tooze SA. The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 2013; 14:759-74. [PMID: 24201109 DOI: 10.1038/nrm3696] [Citation(s) in RCA: 1038] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Healthy cells use autophagy as a general 'housekeeping' mechanism and to survive stress, including stress induced by nutrient deprivation. Autophagy is initiated at the isolation membrane (originally termed the phagophore), and the coordinated action of ATG (autophagy-related) proteins results in the expansion of this membrane to form the autophagosome. Although the biogenesis of the isolation membrane and the autophagosome is complex and incompletely understood, insight has been gained into the molecular processes involved in initiating the isolation membrane, the source from which this originates (for example, it was recently proposed that the isolation membrane forms from the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM)) and the role of ATG proteins and the vesicular trafficking machinery in autophagosome formation.
Collapse
|
304
|
Abstract
PURPOSE OF REVIEW From its initial description as a homeostatic process required for starvation response, autophagy has emerged as a ubiquitous cellular process involved in a broad range of cellular activities from metabolic adaptation to cellular defense against invading pathogens. This review provides an overview of autophagy and highlights the recent developments in deciphering its role in metabolic adaptation and its importance in antibacterial defense with attention to regulatory pathways. RECENT FINDINGS Within the last 2 years, there has been significant progress in deciphering the mechanisms by which autophagy is regulated, including subcellular localization, posttranslational modifications, and transcriptional control. In addition, the cell type-specific role of autophagy in maintaining cellular homeostasis has been defined, including its role in handling intracellular pathogens and its contribution to inflammatory bowel disease. SUMMARY Autophagy is a critical pathway that integrates numerous regulatory inputs to maintain cellular homeostasis and defend against intracellular pathogens.
Collapse
|
305
|
Abstract
PURPOSE OF REVIEW With the realization that lipid droplets are not merely inert fat storage organelles, but highly dynamic and actively involved in cellular lipid homeostasis, there has been an increased interest in lipid droplet biology. Recent studies have begun to unravel the roles that lipid dropletss play in cellular physiology and provide insights into the mechanisms by which lipid droplets contribute to cellular homeostasis. This review provides a summary of these recent publications on lipid droplet metabolism. RECENT FINDINGS Perilipins have different preferences for associating with triacylglycerol (TAG) or cholesteryl esters, different tissue distributions, and each contributes to lipid metabolism in its unique way. Cell death-inducing DFF45-like effector proteins are not only involved in lipid droplet expansion, but also in the cellular response to stress and lipid secretion. Lipid droplets undergo an active cycle of lipolysis and re-esterification to form microlipid droplets. TAG synthesis for lipid droplet formation and expansion occurs in the endoplasmic reticulum and on lipid droplets, and TAG transfers between lipid droplets during lipid droplet fusion. Lipid droplets interact with the endoplasmic reticulum and mitochondria to facilitate lipid transfer, lipid droplet expansion, and metabolism. SUMMARY Lipid droplets are dynamically active, responding to changes in cellular physiology, as well as interacting with cytosolic proteins and other organelles to control lipid homeostasis.
Collapse
Affiliation(s)
- Victor K Khor
- aVeterans Affairs Palo Alto Healthcare System, Palo Alto bDivision of Endocrinology, Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
306
|
Khaldoun SA, Emond-Boisjoly MA, Chateau D, Carrière V, Lacasa M, Rousset M, Demignot S, Morel E. Autophagosomes contribute to intracellular lipid distribution in enterocytes. Mol Biol Cell 2013; 25:118-32. [PMID: 24173715 PMCID: PMC3873883 DOI: 10.1091/mbc.e13-06-0324] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Delivery of alimentary lipids induces immediate autophagic response in enterocytes. Forming autophagosomes are recruited to the ER membrane, where they capture nascent lipid droplets and later fuse with lysosomes, illustrating for the first time the role of autophagy in neutral-lipid distribution in enterocytes. Enterocytes, the intestinal absorptive cells, have to deal with massive alimentary lipids upon food consumption. They orchestrate complex lipid-trafficking events that lead to the secretion of triglyceride-rich lipoproteins and/or the intracellular transient storage of lipids as lipid droplets (LDs). LDs originate from the endoplasmic reticulum (ER) membrane and are mainly composed of a triglyceride (TG) and cholesterol-ester core surrounded by a phospholipid and cholesterol monolayer and specific coat proteins. The pivotal role of LDs in cellular lipid homeostasis is clearly established, but processes regulating LD dynamics in enterocytes are poorly understood. Here we show that delivery of alimentary lipid micelles to polarized human enterocytes induces an immediate autophagic response, accompanied by phosphatidylinositol-3-phosphate appearance at the ER membrane. We observe a specific and rapid capture of newly synthesized LD at the ER membrane by nascent autophagosomal structures. By combining pharmacological and genetic approaches, we demonstrate that autophagy is a key player in TG targeting to lysosomes. Our results highlight the yet-unraveled role of autophagy in the regulation of TG distribution, trafficking, and turnover in human enterocytes.
Collapse
Affiliation(s)
- Salem Ait Khaldoun
- Centre de Recherche des Cordeliers, UMR S 872, Université Pierre et Marie Curie-Paris 6, Institut National de la Santé et de la Recherche Médicale, U 872 and UMR S 872, Université Paris Descartes-Paris 5, F-75006 Paris, France Laboratoire de Pharmacologie Cellulaire et Moléculaire, Ecole Pratique des Hautes Etudes, F-75006 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
307
|
Devereaux K, Dall’Armi C, Alcazar-Roman A, Ogasawara Y, Zhou X, Wang F, Yamamoto A, De Camilli P, Di Paolo G. Regulation of mammalian autophagy by class II and III PI 3-kinases through PI3P synthesis. PLoS One 2013; 8:e76405. [PMID: 24098492 PMCID: PMC3789715 DOI: 10.1371/journal.pone.0076405] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/30/2013] [Indexed: 11/19/2022] Open
Abstract
Synthesis of phosphatidylinositol-3-phosphate (PI3P) by Vps34, a class III phosphatidylinositol 3-kinase (PI3K), is critical for the initial steps of autophagosome (AP) biogenesis. Although Vps34 is the sole source of PI3P in budding yeast, mammalian cells can produce PI3P through alternate pathways, including direct synthesis by the class II PI3Ks; however, the physiological relevance of these alternate pathways in the context of autophagy is unknown. Here we generated Vps34 knockout mouse embryonic fibroblasts (MEFs) and using a higher affinity 4x-FYVE finger PI3P-binding probe found a Vps34-independent pool of PI3P accounting for (~)35% of the total amount of this lipid species by biochemical analysis. Importantly, WIPI-1, an autophagy-relevant PI3P probe, still formed some puncta upon starvation-induced autophagy in Vps34 knockout MEFs. Additional characterization of autophagy by electron microscopy as well as protein degradation assays showed that while Vps34 is important for starvation-induced autophagy there is a significant component of functional autophagy occurring in the absence of Vps34. Given these findings, class II PI3Ks (α and β isoforms) were examined as potential positive regulators of autophagy. Depletion of class II PI3Ks reduced recruitment of WIPI-1 and LC3 to AP nucleation sites and caused an accumulation of the autophagy substrate, p62, which was exacerbated upon the concomitant ablation of Vps34. Our studies indicate that while Vps34 is the main PI3P source during autophagy, class II PI3Ks also significantly contribute to PI3P generation and regulate AP biogenesis.
Collapse
Affiliation(s)
- Kelly Devereaux
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, New York, United States of America
| | - Claudia Dall’Armi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, New York, United States of America
| | - Abel Alcazar-Roman
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yuta Ogasawara
- Department of Animal Bio-Science, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Xiang Zhou
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Fan Wang
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Akitsugu Yamamoto
- Department of Animal Bio-Science, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
308
|
Randall-Demllo S, Chieppa M, Eri R. Intestinal epithelium and autophagy: partners in gut homeostasis. Front Immunol 2013; 4:301. [PMID: 24137160 PMCID: PMC3786390 DOI: 10.3389/fimmu.2013.00301] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/10/2013] [Indexed: 12/21/2022] Open
Abstract
One of the most significant challenges of cell biology is to understand how each type of cell copes with its specific workload without suffering damage. Among the most intriguing questions concerns intestinal epithelial cells in mammals; these cells act as a barrier between the internally protected region and the external environment that is exposed constantly to food and microbes. A major process involved in the processing of microbes is autophagy. In the intestine, through multiple, complex signaling pathways, autophagy including macroautophagy and xenophagy is pivotal in mounting appropriate intestinal immune responses and anti-microbial protection. Dysfunctional autophagy mechanism leads to chronic intestinal inflammation, such as inflammatory bowel disease (IBD). Studies involving a number of in vitro and in vivo mouse models in addition to human clinical studies have revealed a detailed role for autophagy in the generation of chronic intestinal inflammation. A number of genome-wide association studies identified roles for numerous autophagy genes in IBD, especially in Crohn’s disease. In this review, we will explore in detail the latest research linking autophagy to intestinal homeostasis and how alterations in autophagy pathways lead to intestinal inflammation.
Collapse
Affiliation(s)
- Sarron Randall-Demllo
- Mucosal Biology Laboratory, School of Human Life Sciences, University of Tasmania , Launceston, TAS , Australia
| | | | | |
Collapse
|
309
|
Takáts S, Nagy P, Varga Á, Pircs K, Kárpáti M, Varga K, Kovács AL, Hegedűs K, Juhász G. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. ACTA ACUST UNITED AC 2013; 201:531-9. [PMID: 23671310 PMCID: PMC3653357 DOI: 10.1083/jcb.201211160] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During autophagy, phagophores capture portions of cytoplasm and form double-membrane autophagosomes to deliver cargo for lysosomal degradation. How autophagosomes gain competence to fuse with late endosomes and lysosomes is not known. In this paper, we show that Syntaxin17 is recruited to the outer membrane of autophagosomes to mediate fusion through its interactions with ubisnap (SNAP-29) and VAMP7 in Drosophila melanogaster. Loss of these genes results in accumulation of autophagosomes and a block of autolysosomal degradation during basal, starvation-induced, and developmental autophagy. Viable Syntaxin17 mutant adults show large-scale accumulation of autophagosomes in neurons, severe locomotion defects, and premature death. These mutant phenotypes cannot be rescued by neuron-specific inhibition of caspases, suggesting that caspase activation and cell death do not play a major role in brain dysfunction. Our findings reveal the molecular mechanism underlying autophagosomal fusion events and show that lysosomal degradation and recycling of sequestered autophagosome content is crucial to maintain proper functioning of the nervous system.
Collapse
Affiliation(s)
- Szabolcs Takáts
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Bradfute SB, Castillo EF, Arko-Mensah J, Chauhan S, Jiang S, Mandell M, Deretic V. Autophagy as an immune effector against tuberculosis. Curr Opin Microbiol 2013; 16:355-65. [PMID: 23790398 DOI: 10.1016/j.mib.2013.05.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 05/08/2013] [Accepted: 05/08/2013] [Indexed: 11/15/2022]
Abstract
The now well-accepted innate immunity paradigm that autophagy acts as a cell-autonomous defense against intracellular bacteria has its key origins in studies with Mycobacterium tuberculosis, an important human pathogen and a model microorganism infecting macrophages. A number of different factors have been identified that play into the anti-mycobacterial functions of autophagy, and recent in vivo studies in the mouse model of tuberculosis have uncovered additional anti-inflammatory and tissue-sparing functions of autophagy. Complementing these observations, genome wide association studies indicate a considerable overlap between autophagy, human susceptibility to mycobacterial infections and predisposition loci for inflammatory bowel disease. Finally, recent studies show that autophagy is an important regulator and effector of IL-1 responses, and that autophagy intersects with type I interferon pathology-modulating responses.
Collapse
Affiliation(s)
- Steven B Bradfute
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | |
Collapse
|
311
|
Ouimet M. Autophagy in obesity and atherosclerosis: Interrelationships between cholesterol homeostasis, lipoprotein metabolism and autophagy in macrophages and other systems. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1124-33. [PMID: 23545567 DOI: 10.1016/j.bbalip.2013.03.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/14/2022]
Abstract
The incidence of diseases characterized by a dysregulation of lipid metabolism such as obesity, diabetes and atherosclerosis is rising at alarming rates, driving research to uncover new therapies to manage dyslipidemias and resolve the metabolic syndrome conundrum. Autophagy and lipid homeostasis - both ancient cellular pathways - have seemingly co-evolved to share common regulatory elements, and autophagy has emerged as a prominent mechanism involved in the regulation of lipid metabolism. This review highlights recent findings on the role of autophagy in the regulation of cellular cholesterol homeostasis and lipoprotein metabolism, with special emphasis on macrophages. From modulation of inflammation to regulation of cellular cholesterol levels, a protective role for autophagy in atherosclerosis is emerging. The manipulation of autophagic activity represents a new possible therapeutic approach for the treatment complex metabolic disorders such as obesity and the metabolic syndrome.
Collapse
Affiliation(s)
- Mireille Ouimet
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
312
|
Thiel K, Heier C, Haberl V, Thul PJ, Oberer M, Lass A, Jäckle H, Beller M. The evolutionarily conserved protein CG9186 is associated with lipid droplets, required for their positioning and for fat storage. J Cell Sci 2013; 126:2198-212. [PMID: 23525007 DOI: 10.1242/jcs.120493] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lipid droplets (LDs) are specialized cell organelles for the storage of energy-rich lipids. Although lipid storage is a conserved feature of all cells and organisms, little is known about fundamental aspects of the cell biology of LDs, including their biogenesis, structural assembly and subcellular positioning, and the regulation of organismic energy homeostasis. We identified a novel LD-associated protein family, represented by the Drosophila protein CG9186 and its murine homolog MGI:1916082. In the absence of LDs, both proteins localize at the endoplasmic reticulum (ER). Upon lipid storage induction, they translocate to LDs using an evolutionarily conserved targeting mechanism that acts through a 60-amino-acid targeting motif in the center of the CG9186 protein. Overexpression of CG9186, and MGI:1916082, causes clustering of LDs in both tissue culture and salivary gland cells, whereas RNAi knockdown of CG9186 results in a reduction of LDs. Organismal RNAi knockdown of CG9186 results in a reduction in lipid storage levels of the fly. The results indicate that we identified the first members of a novel and evolutionarily conserved family of lipid storage regulators, which are also required to properly position LDs within cells.
Collapse
Affiliation(s)
- Katharina Thiel
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
313
|
Zhao H, Zhao YG, Wang X, Xu L, Miao L, Feng D, Chen Q, Kovács AL, Fan D, Zhang H. Mice deficient in Epg5 exhibit selective neuronal vulnerability to degeneration. ACTA ACUST UNITED AC 2013; 200:731-41. [PMID: 23479740 PMCID: PMC3601354 DOI: 10.1083/jcb.201211014] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular mechanism underlying the selective vulnerability of certain neuronal populations associated with neurodegenerative diseases remains poorly understood. Basal autophagy is important for maintaining axonal homeostasis and preventing neurodegeneration. In this paper, we demonstrate that mice deficient in the metazoan-specific autophagy gene Epg5/epg-5 exhibit selective damage of cortical layer 5 pyramidal neurons and spinal cord motor neurons. Pathologically, Epg5 knockout mice suffered muscle denervation, myofiber atrophy, late-onset progressive hindquarter paralysis, and dramatically reduced survival, recapitulating key features of amyotrophic lateral sclerosis (ALS). Epg5 deficiency impaired autophagic flux by blocking the maturation of autophagosomes into degradative autolysosomes, leading to accumulation of p62 aggregates and ubiquitin-positive inclusions in neurons and glial cells. Epg5 knockdown also impaired endocytic trafficking. Our study establishes Epg5-deficient mice as a model for investigating the pathogenesis of ALS and indicates that dysfunction of the autophagic-endolysosomal system causes selective damage of neurons associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Hongyu Zhao
- College of Life Sciences, China Agricultural University, Beijing 100083, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Saitsu H, Nishimura T, Muramatsu K, Kodera H, Kumada S, Sugai K, Kasai-Yoshida E, Sawaura N, Nishida H, Hoshino A, Ryujin F, Yoshioka S, Nishiyama K, Kondo Y, Tsurusaki Y, Nakashima M, Miyake N, Arakawa H, Kato M, Mizushima N, Matsumoto N. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet 2013; 45:445-9, 449e1. [PMID: 23435086 DOI: 10.1038/ng.2562] [Citation(s) in RCA: 369] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/29/2013] [Indexed: 12/17/2022]
Abstract
Static encephalopathy of childhood with neurodegeneration in adulthood (SENDA) is a recently established subtype of neurodegeneration with brain iron accumulation (NBIA). By exome sequencing, we found de novo heterozygous mutations in WDR45 at Xp11.23 in two individuals with SENDA, and three additional WDR45 mutations were identified in three other subjects by Sanger sequencing. Using lymphoblastoid cell lines (LCLs) derived from the subjects, aberrant splicing was confirmed in two, and protein expression was observed to be severely impaired in all five. WDR45 encodes WD-repeat domain 45 (WDR45). WDR45 (also known as WIPI4) is one of the four mammalian homologs of yeast Atg18, which has an important role in autophagy. Lower autophagic activity and accumulation of aberrant early autophagic structures were demonstrated in the LCLs of the affected subjects. These findings provide direct evidence that an autophagy defect is indeed associated with a neurodegenerative disorder in humans.
Collapse
Affiliation(s)
- Hirotomo Saitsu
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Nishimura T, Kaizuka T, Cadwell K, Sahani MH, Saitoh T, Akira S, Virgin HW, Mizushima N. FIP200 regulates targeting of Atg16L1 to the isolation membrane. EMBO Rep 2013; 14:284-91. [PMID: 23392225 DOI: 10.1038/embor.2013.6] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 12/29/2012] [Accepted: 01/16/2013] [Indexed: 01/12/2023] Open
Abstract
Autophagosome formation is a dynamic process that is strictly controlled by autophagy-related (Atg) proteins. However, how these Atg proteins are recruited to the autophagosome formation site or autophagic membranes remains poorly understood. Here, we found that FIP200, which is involved in proximal events, directly interacts with Atg16L1, one of the downstream Atg factors, in an Atg14- and phosphatidylinositol 3-kinase-independent manner. Atg16L1 deletion mutants, which lack the FIP200-interacting domain, are defective in proper membrane targeting. Thus, FIP200 regulates not only early events but also late events of autophagosome formation through direct interaction with Atg16L1.
Collapse
Affiliation(s)
- Taki Nishimura
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | |
Collapse
|
316
|
Subramani S, Malhotra V. Non-autophagic roles of autophagy-related proteins. EMBO Rep 2013; 14:143-51. [PMID: 23337627 PMCID: PMC3566844 DOI: 10.1038/embor.2012.220] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/10/2012] [Indexed: 01/10/2023] Open
Abstract
Autophagy and autophagy-related processes are fundamentally important in human health and disease. These processes are viewed primarily as cellular degradative pathways that recycle macromolecules and dysfunctional or redundant organelles into amino acids, sugars and lipids, especially during starvation. However, the ubiquitin-like autophagy proteins and other components of the autophagic machinery additionally participate in cellular reprogramming. We highlight these non-autophagic roles of autophagy proteins with the aim of drawing attention to this growing, but unexplored, research topic. We focus on the non-autophagic functions of autophagy proteins in cell survival and apoptosis, modulation of cellular traffic, protein secretion, cell signalling, transcription, translation and membrane reorganization.
Collapse
Affiliation(s)
- Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, California 92093-0322, USA.
| | | |
Collapse
|
317
|
Abstract
Autophagy was discovered in the late 1950s when scientists using the first electron microscopes saw membrane-bound structures in cells that contained cytoplasmic organelles, including mitochondria. Pursuant to further morphological characterization it was recognized that these vesicles, now called autophagosomes, are found in all eukaryotic cells and undergo changes in morphology from a double-membraned vesicle with recognizable content, i.e. sequestered organelles, to a uniformly dense core autolysosome. Genetic screens in the yeast Saccharomyces cerevisiae in the 1990s provided a molecule framework for the next era of discovery during which the interest in, and research into, autophagy has rapidly expanded into many areas of human biology and disease. A relatively small cohort of approximately 36 proteins, called Atgs (autophagy-related proteins), orchestrate the formation of the autophagosome, and these are now being studied and functionally characterized. Although the function of these proteins is being elucidated, the underlying molecular mechanisms of how autophagosomes form are still not completely understood. Recent advances have, however, provided a significant advance in both our understanding of the molecular control of the Atg proteins and the source of the membranes. A consensus view is emerging from these advances that the endoplasmic reticulum is the nucleation site for the autophagosome, and that contributions from other compartments (Golgi, endosomes and plasma membrane) are required. In the present chapter, I review the data from the pre-molecular decades, and discuss the most recent publications to give an overview of the current view of where, and how, autophagosomes form in mammalian cells.
Collapse
Affiliation(s)
- Sharon A Tooze
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, U.K
| |
Collapse
|
318
|
Reggiori F. Autophagy: New Questions from Recent Answers. ISRN MOLECULAR BIOLOGY 2012; 2012:738718. [PMID: 27335669 PMCID: PMC4890908 DOI: 10.5402/2012/738718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 11/27/2012] [Indexed: 12/11/2022]
Abstract
Macroautophagy (hereafter autophagy) is currently one of the areas of medical life sciences attracting a great interest because of its pathological implications and therapy potentials. The discovery of the autophagy-related genes (ATGs) has been the key event in this research field because their study has led to the acquisition of new knowledge about the mechanism of this transport pathway. In addition, the investigation of these genes in numerous model systems has revealed the central role that autophagy plays in maintaining the cell homeostasis. This process carries out numerous physiological functions, some of which were unpredicted and thus surprising. Here, we will review some of the questions about the mechanism and function of autophagy that still remain unanswered, and new ones that have emerged from the recent discoveries.
Collapse
Affiliation(s)
- Fulvio Reggiori
- Department of Cell Biology and Institute of Biomembranes, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
| |
Collapse
|
319
|
Rieter E, Vinke F, Bakula D, Cebollero E, Ungermann C, Proikas-Cezanne T, Reggiori F. Atg18 function in autophagy is regulated by specific sites within its β-propeller. J Cell Sci 2012; 126:593-604. [PMID: 23230146 DOI: 10.1242/jcs.115725] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a conserved degradative transport pathway. It is characterized by the formation of double-membrane autophagosomes at the phagophore assembly site (PAS). Atg18 is essential for autophagy but also for vacuole homeostasis and probably endosomal functions. This protein is basically a β-propeller, formed by seven WD40 repeats, that contains a conserved FRRG motif that binds to phosphoinositides and promotes Atg18 recruitment to the PAS, endosomes and vacuoles. However, it is unknown how Atg18 association with these organelles is regulated, as the phosphoinositides bound by this protein are present on the surface of all of them. We have investigated Atg18 recruitment to the PAS and found that Atg18 binds to Atg2 through a specific stretch of amino acids in the β-propeller on the opposite surface to the FRRG motif. As in the absence of the FRRG sequence, the inability of Atg18 to interact with Atg2 impairs its association with the PAS, causing an autophagy block. Our data provide a model whereby the Atg18 β-propeller provides organelle specificity by binding to two determinants on the target membrane.
Collapse
Affiliation(s)
- Ester Rieter
- Department of Cell Biology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
320
|
Xiong X, Tao R, DePinho RA, Dong XC. The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism. J Biol Chem 2012; 287:39107-14. [PMID: 22992773 DOI: 10.1074/jbc.m112.412569] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Autophagy plays a critical role in cell survival from prolonged starvation and recycling of aggregated proteins and damaged organelles. One of the essential genes involved in the autophagic initiation is autophagy-related 14 (Atg14), also called Barkor for Beclin 1-associated autophagy-related key regulator. Although its crucial role in the autophagic process has been reported, the gene regulation of Atg14 and its metabolic functions remain unclear. In this work we have identified that the Atg14 gene is regulated by forkhead box O (FoxO) transcription factors and circadian rhythms in the mouse liver. Luciferase reporter analyses and chromatin immunoprecipitation assays have revealed well conserved cis-elements for FoxOs and Clock/Bmal1 in the proximal promoter of the Atg14 gene. To examine the functions of hepatic Atg14, we have performed the gene knockdown and overexpression in the mouse livers. Remarkably, knockdown of Atg14 leads to elevated levels of triglycerides in the liver and serum as well. Conversely, overexpression of Atg14 improves hypertriglyceridemia in both high fat diet-treated wild-type mice and FoxO1/3/4 liver-specific knock-out mice. In summary, our data suggest that Atg14 is a new target gene of FoxOs and the core clock machinery, and this gene plays an important role in hepatic lipid metabolism.
Collapse
Affiliation(s)
- Xiwen Xiong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
321
|
Abstract
Macroautophagy (hereafter referred to as autophagy) is a tightly regulated intracellular catabolic pathway involving the lysosomal degradation of cytoplasmic organelles and proteins. Central to this process is the formation of the autophagosome, a double membrane-bound vesicle, which is responsible for the delivery of cytoplasmic cargo to the lysosomes. Autophagy levels are constantly changing, allowing adaptation to both immediate and long-term needs of the cell, underlining why tight control of this process is essential in order to prevent the development of pathological disorders. Substantial progress has recently contributed to our understanding of the molecular mechanisms of the autophagy machinery, yet several gaps remain in our knowledge of this process. The discovery of microRNAs (miRNAs) established a new paradigm of post-transcriptional gene regulation and during the past decade these small non-coding RNAs have been closely linked to virtually all known fundamental biological pathways. Deregulation of miRNAs can contribute to the development of human diseases, including cancer, where they can function as bona fide oncogenes or tumor suppressors. In this review, we highlight recent advances linking miRNAs to regulation of the autophagy pathway. This regulation occurs both through specific core pathway components as well as through less well-defined mechanisms. Although this field is still in its infancy, we are beginning to understand the potential implications of these initial findings, both from a pathological perspective, but also from a therapeutic view, where miRNAs can be harnessed experimentally to alter autophagy levels in human tumors, affecting parameters such as tumor survival and treatment sensitivity.
Collapse
Affiliation(s)
- Lisa B Frankel
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
322
|
Reggiori F, Tooze SA. Autophagy regulation through Atg9 traffic. J Cell Biol 2012; 198:151-3. [PMID: 22826119 PMCID: PMC3410426 DOI: 10.1083/jcb.201206119] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/02/2012] [Indexed: 12/19/2022] Open
Abstract
Rapid membrane expansion is the key to autophagosome formation during nutrient starvation. In this issue, Yamamoto et al. (2012. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201202061) now provide a mechanism for vesicle-mediated initiation of autophagosome biogenesis. They show that Atg9 vesicles, produced de novo during starvation, are ∼30-60 nm in size and contain ∼30 molecules of Atg9. These vesicles assemble to form an autophagosome, and subsequently, the Atg9 embedded in the outer membrane is recycled to avoid degradation.
Collapse
Affiliation(s)
- Fulvio Reggiori
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, 3584CX Utrecht, Netherlands
| | - Sharon A. Tooze
- Secretory Pathways Laboratory, London Research Institute, Cancer Research UK, WC2A 3LY London, England, UK
| |
Collapse
|
323
|
Killian M. Dual role of autophagy in HIV-1 replication and pathogenesis. AIDS Res Ther 2012; 9:16. [PMID: 22606989 PMCID: PMC3514335 DOI: 10.1186/1742-6405-9-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/21/2012] [Indexed: 12/19/2022] Open
Abstract
Autophagy, the major mechanism for degrading long-lived intracellular proteins and organelles, is essential for eukaryotic cell homeostasis. Autophagy also defends the cell against invasion by microorganisms and has important roles in innate and adaptive immunity. Increasingly evident is that HIV-1 replication is dependent on select components of autophagy. Fittingly, HIV-1 proteins are able to modulate autophagy to maximize virus production. At the same time, HIV-1 proteins appear to disrupt autophagy in uninfected cells, thereby contributing to CD4+ cell death and HIV-1 pathogenesis. These observations allow for new approaches for the treatment and possibly the prevention of HIV-1 infection. This review focuses on the relationship between autophagy and HIV-1 infection. Discussed is how autophagy plays dual roles in HIV-1 replication and HIV-1 disease progression.
Collapse
|