301
|
Fujita N, Sato S, Tsuruo T. Phosphorylation of p27Kip1 at threonine 198 by p90 ribosomal protein S6 kinases promotes its binding to 14-3-3 and cytoplasmic localization. J Biol Chem 2003; 278:49254-60. [PMID: 14504289 DOI: 10.1074/jbc.m306614200] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclin-dependent kinase inhibitor p27Kip1 plays an important role in cell cycle regulation. The cyclin-dependent kinase-inhibitory activity of p27Kip1 is regulated by changes in its concentration and its subcellular localization. Several reports suggest that phosphorylation of p27Kip1 at serine 10, threonine 157, and threonine 187 regulate its localization. We have previously identified that carboxyl-terminal threonine 198 (Thr198) in p27Kip1 is a novel phosphorylation site and that Akt is associated with the phosphorylation at the site (Fujita, N., Sato, S., Katayama, K., and Tsuruo, T. (2002) J. Biol. Chem. 277, 28706-28713). We show herein that activation of the Ras/Raf/mitogen-activated protein kinase kinase (MAPK kinase/MEK) pathway also regulates phosphorylation of p27Kip1 at Thr198. MAPKs were not directly associated with p27Kip1 phosphorylation at Thr198, but the p90 ribosomal protein S6 kinases (RSKs) could bind to and directly phosphorylate p27Kip1 at Thr198 in a Ras/Raf/MEK-dependent manner. RSK-dependent phosphorylation promoted the p27Kip1 binding to 14-3-3 and its cytoplasmic localization. To prove the direct relationship between 14-3-3 binding and cytoplasmic localization, we constructed a p27Kip1-R18 fusion protein in which the R18 peptide was fused to the carboxyl-terminal region of p27Kip1. The R18 peptide is known to interact with 14-3-3 independent of phosphorylation. The p27Kip1-R18 distributed mainly in the cytosol, whereas mutant p27Kip1-R18 (p27Kip1-R18-K2) that had no 14-3-3 binding capability existed mainly in the nucleus. These results indicate that RSKs play a crucial role in cell cycle progression through translocation of p27Kip1, in addition to Akt, to the cytoplasm in a phosphorylation and 14-3-3 binding-dependent manner.
Collapse
Affiliation(s)
- Naoya Fujita
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
302
|
Parisi T, Beck AR, Rougier N, McNeil T, Lucian L, Werb Z, Amati B. Cyclins E1 and E2 are required for endoreplication in placental trophoblast giant cells. EMBO J 2003; 22:4794-803. [PMID: 12970191 PMCID: PMC212738 DOI: 10.1093/emboj/cdg482] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Accepted: 08/01/2003] [Indexed: 01/06/2023] Open
Abstract
In mammalian cells, cyclin E-CDK2 complexes are activated in the late G1 phase of the cell cycle and are believed to have an essential role in promoting S-phase entry. We have targeted the murine genes CCNE1 and CCNE2, encoding cyclins E1 and E2. Whereas single knockout mice were viable, double knockout embryos died around midgestation. Strikingly, however, these embryos showed no overt defects in cell proliferation. Instead, we observed developmental phenotypes consistent with placental dysfunction. Mutant placentas had an overall normal structure, but the nuclei of trophoblast giant cells, which normally undergo endoreplication and reach elevated ploidies, showed a marked reduction in DNA content. We derived trophoblast stem cells from double knockout E3.5 blastocysts. These cells retained the ability to differentiate into giant cells in vitro, but were unable to undergo multiple rounds of DNA synthesis, demonstrating that the lack of endoreplication was a cell-autonomous defect. Thus, during embryonic development, the needs for E-type cyclins can be overcome in mitotic cycles but not in endoreplicating cells.
Collapse
Affiliation(s)
- Tiziana Parisi
- DNAX Research Institute, 901 California Avenue, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | |
Collapse
|
303
|
Porter LA, Kong-Beltran M, Donoghue DJ. Spy1 interacts with p27Kip1 to allow G1/S progression. Mol Biol Cell 2003; 14:3664-74. [PMID: 12972555 PMCID: PMC196558 DOI: 10.1091/mbc.e02-12-0820] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2002] [Revised: 04/30/2003] [Accepted: 04/30/2003] [Indexed: 01/24/2023] Open
Abstract
Progression through the G1/S transition commits cells to synthesize DNA. Cyclin dependent kinase 2 (CDK2) is the major kinase that allows progression through G1/S phase and subsequent replication events. p27 is a CDK inhibitor (CKI) that binds to CDK2 to prevent premature activation of this kinase. Speedy (Spy1), a novel cell cycle regulatory protein, has been found to prematurely activate CDK2 when microinjected into Xenopus oocytes and when expressed in mammalian cells. To determine the mechanism underlying Spy1-induced proliferation in mammalian cell cycle regulation, we used human Spy1 as bait in a yeast two-hybrid screen to identify interacting proteins. One of the proteins isolated was p27; this novel interaction was confirmed both in vitro, using bacterially expressed and in vitro translated proteins, and in vivo, through the examination of endogenous and transfected proteins in mammalian cells. We demonstrate that Spy1 expression can overcome a p27-induced cell cycle arrest to allow for DNA synthesis and CDK2 histone H1 kinase activity. In addition, we utilized p27-null cells to demonstrate that the proliferative effect of Spy1 depends on the presence of endogenous p27. Our data suggest that Spy1 associates with p27 to promote cell cycle progression through the G1/S transition.
Collapse
Affiliation(s)
- Lisa A Porter
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0367, USA
| | | | | |
Collapse
|
304
|
Ortega S, Prieto I, Odajima J, Martín A, Dubus P, Sotillo R, Barbero JL, Malumbres M, Barbacid M. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 2003; 35:25-31. [PMID: 12923533 DOI: 10.1038/ng1232] [Citation(s) in RCA: 616] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Accepted: 08/04/2003] [Indexed: 01/19/2023]
Abstract
We targeted the locus encoding the cyclin-dependent kinase 2 (CDK2) by homologous recombination in mouse embryonic stem (ES) cells. Embryonic fibroblasts lacking CDK2 proliferate normally and become immortal after continuous passage in culture. Elimination of a conditional Cdk2 allele in immortal cells does not have a significant effect on proliferation. Cdk2-/- mice are viable and survive for up to two years, indicating that CDK2 is also dispensable for proliferation and survival of most cell types. But CDK2 is essential for completion of prophase I during meiotic cell division in male and female germ cells, an unforeseen role for this cell cycle kinase.
Collapse
Affiliation(s)
- Sagrario Ortega
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro 3, Madrid E-28029, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
305
|
Wang W, Ungermannova D, Chen L, Liu X. A negatively charged amino acid in Skp2 is required for Skp2-Cks1 interaction and ubiquitination of p27Kip1. J Biol Chem 2003; 278:32390-6. [PMID: 12813041 DOI: 10.1074/jbc.m305241200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteolysis of cyclin-dependent kinase inhibitor p27 occurs predominantly in the late G1 phase of the cell cycle through a ubiquitin-mediated protein degradation pathway. Ubiquitination of p27 requires the SCFSkp2 ubiquitin ligase and Skp2 F-box binding protein Cks1. The mechanisms by which Skp2 recognizes Cks1 to ubiquitylate p27 remain obscure. Here we show that Asp-331 in the carboxyl terminus of Skp2 is required for its association with Cks1 and ubiquitination of p27. Mutation of Asp-331 to Ala disrupts the interaction between Skp2 and Cks1. Although Asp-331 mutation negates the ability of the Skp1-Cullin-F-box protein (SCF) complex to ubiquitylate p27, such a mutation has no effect on Skp2 self-ubiquitination. A conservative change from Asp to Glu at position 331 of Skp2 does not affect Skp2-Cks1 interaction. Our results revealed a unique requirement for a negatively charged residue in the carboxyl-terminal region of Skp2 in recognition of Cks1 and ubiquitination of p27.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
306
|
Li X, Zhao Q, Liao R, Sun P, Wu X. The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J Biol Chem 2003; 278:30854-8. [PMID: 12840033 DOI: 10.1074/jbc.c300251200] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication initiation is tightly controlled so that each origin only fires once per cell cycle. Cell cycle-dependent Cdt1 degradation plays an essential role in DNA replication control, as overexpression of Cdt1 leads to re-replication. In this study, we investigated the mechanisms of Cdt1 degradation in mammalian cells. We showed that the F-box protein Skp2 specifically interacted with human Cdt1 in a phosphorylation-dependent manner. The SCF(Skp2) complex ubiquitinated Cdt1 both in vivo and in vitro. Down-regulation of Skp2 or disruption of the interaction between Cdt1 and Skp2 resulted in a stabilization and accumulation of Cdt1. These results suggest that the SCF(Skp2)-mediated ubiquitination pathway may play an important role in the cell cycle-dependent Cdt1 degradation in mammalian cells.
Collapse
Affiliation(s)
- Xianghong Li
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
307
|
Potente M, Fisslthaler B, Busse R, Fleming I. 11,12-Epoxyeicosatrienoic acid-induced inhibition of FOXO factors promotes endothelial proliferation by down-regulating p27Kip1. J Biol Chem 2003; 278:29619-25. [PMID: 12773534 DOI: 10.1074/jbc.m305385200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450-derived epoxyeicosatrienoic acids (EETs) stimulate endothelial cell proliferation and angiogenesis. In this study, we investigated the involvement of the forkhead box, class O (FOXO) family of transcription factors and their downstream target p27Kip1 in EET-induced endothelial cell proliferation. Incubation of human umbilical vein endothelial cells with 11,12-EET induced a time- and dose-dependent decrease in p27Kip1 protein expression, whereas p21Cip1 was not significantly affected. This effect on p27Kip1 protein was associated with decreased mRNA levels as well as p27Kip1 promoter activity. 11,12-EET also stimulated the time-dependent phosphorylation of Akt and of the forkhead factors FOXO1 and FOXO3a, effects prevented by the phosphatidylinositol 3-kinase inhibitor LY 294002. Transfection of endothelial cells with either a dominant-negative or an "Akt-resistant"/constitutively active FOXO3a mutant reversed the 11,12-EET-induced down-regulation of p27Kip1, whereas transfection of a constitutive active Akt decreased p27Kip1 expression independently of the presence or absence of 11,12-EET. To determine whether these effects are involved in EET-induced proliferation, endothelial cells were transfected with the 11,12-EET-generating epoxygenase CYP2C9. Transfection of CYP2C9 elicited endothelial cell proliferation and this effect was inhibited in cells co-transfected with CYP2C9 and either a dominant-negative Akt or constitutively active FOXO3a. Reducing FOXO expression using RNA interference, on the other hand, attenuated p27Kip1 expression and stimulated endothelial cell proliferation. These results indicate that EET-induced endothelial cell proliferation is associated with the phosphatidylinositol 3-kinase/Akt-dependent phosphorylation and inactivation of FOXO factors and the subsequent decrease in expression of the cyclin-dependent kinase inhibitor p27Kip1.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Aryl Hydrocarbon Hydroxylases/metabolism
- Aryl Hydrocarbon Hydroxylases/physiology
- Blotting, Northern
- Blotting, Western
- Cell Cycle Proteins/metabolism
- Cell Division
- Cells, Cultured
- Cyclin-Dependent Kinase Inhibitor p27
- Cytochrome P-450 CYP2C9
- DNA-Binding Proteins/antagonists & inhibitors
- Dose-Response Relationship, Drug
- Down-Regulation
- Endothelium, Vascular/cytology
- Enzyme Inhibitors/pharmacology
- Forkhead Box Protein O1
- Forkhead Transcription Factors
- Genes, Dominant
- Humans
- Immunoblotting
- Luciferases/metabolism
- Neovascularization, Physiologic
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation
- Plasmids/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Time Factors
- Transcription Factors/antagonists & inhibitors
- Transfection
- Tumor Suppressor Proteins/metabolism
- Umbilical Veins/cytology
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Michael Potente
- Institut für Kardiovaskuläre Physiologie, Klinikum der J. W. G.-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
308
|
Wolf G, Reinking R, Zahner G, Stahl RAK, Shankland SJ. Erk 1,2 phosphorylates p27(Kip1): Functional evidence for a role in high glucose-induced hypertrophy of mesangial cells. Diabetologia 2003; 46:1090-9. [PMID: 12856081 DOI: 10.1007/s00125-003-1163-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2002] [Revised: 04/25/2003] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS Mesangial cell hypertrophy is one of the earliest morphological abnormalities of diabetic nephropathy. We have previously shown that high glucose induces p27(Kip1) by a post-transcriptional mechanism and that mesangial cell hypertrophy depends on G(1)-phase arrest mediated by this CDK-inhibitor. However, it remains poorly understood how high glucose stimulates p27(Kip1) expression in mesangial cells. METHODS Mesangial cells were isolated from p27(Kip1) +/+ and -/- mice and characterized by light microscopy and immunohistochemistry. It was tested by Western blotting and autoradiography whether high glucose medium activates Erk 1,2 and whether this activation phosphorylates p27(Kip1). The three consensus phosphorylation sites of p27(Kip1) were mutated and these constructs were expressed in p27(Kip1) -/- mesangial cells. Hypertrophy was assessed by different methods. RESULTS High glucose stimulates phosphorylation of MAP kinases Erk 1,2 in p27(Kip1 )+/+ and -/- mesangial cells. Activation of Erk 1,2 leads to phosphorylation of p27(Kip1 )in vitro and in vivo. Mutations of serine(10) or threonine(187) still supported high glucose-induced hypertrophy. In contrast, a mutation of serine(178) converted the hypertrophic response into a proliferative phenotype. Mutation of serine(178) leads to the attenuated expression of p27(Kip1) protein in the presence of high glucose. CONCLUSIONS/INTERPRETATION Our study shows that high glucose stimulates Erk 1,2 that phosphorylate p27(Kip1) at serine(178) increasing its expression. This is an important molecular mechanism of high glucose-induced hypertrophy of mesangial cells.
Collapse
Affiliation(s)
- G Wolf
- Department of Medicine, University of Hamburg, University Hospital Eppendorf, 20246 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
309
|
Günther K, Dimmler A, Rödel F, Reulbach U, Merkel S, Bittorf BR, Matzel KE, Papadopoulos T, Hohenberger W, Sauer R, Rödel C. P27 does not predict histopathological response to radiochemotherapy in rectal cancer. J Surg Res 2003; 113:179-88. [PMID: 12957127 DOI: 10.1016/s0022-4804(03)00049-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Tumor response to radiochemotherapy (RCT) varies considerably, even among patients treated in accordance with the same protocol. The aim of the present study was to test the predictive value of the cell-cycle inhibitor p27kip1 with regard to neoadjuvant RCT response in rectal cancer. MATERIALS AND METHODS P27kip1 was evaluated by immunohistochemistry in pretreatment biopsy material obtained from 42 patients with rectal cancer treated uniformly in accordance with an identical prospective neoadjuvant RCT protocol (CAO/AIO/ARO-94). Four expression patterns (staining intensity [-,+,++,+++] and the percentage of positive cells, evaluated separately for nuclei and cytoplasm) of p27kip1 were investigated for correlation with tumor response, which was assessed in the resected surgical specimen using a histopathological five-point grading system. Additionally, p27(kip1) expression was investigated for correlation with several pathological features, overall survival, and disease-free survival. RESULTS p27kip1 expression was as follows: nuclear intensity: -: 8, +: 19, ++: 11, +++: 4 cases, median percentage of positive cells: 18.75%; cytoplasmic intensity: -: 0, +: 25, ++: 12, +++: 3 cases, median percentage of positive cells: 70%. Histopathological tumor regression was acceptable in 30 patients (3 complete; 27 good) and inadequate in 12 patients (7 moderate; 5 minimal). No tumor failed to show some regression. No significant correlation was found between any of the p27kip1 expression patterns and RCT response, tumor differentiation (low grade versus high grade), cT- and ypT-category, UICC stage, overall survival, and disease-free survival. CONCLUSIONS p27kip1 cannot aid the individualization of multimodal treatment strategies in rectal cancer, nor can it serve as a predictor of survival.
Collapse
Affiliation(s)
- Klaus Günther
- Institute of Pathology, University of Erlangen, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Bornstein G, Bloom J, Sitry-Shevah D, Nakayama K, Pagano M, Hershko A. Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J Biol Chem 2003; 278:25752-7. [PMID: 12730199 DOI: 10.1074/jbc.m301774200] [Citation(s) in RCA: 376] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cyclin-dependent kinase inhibitor p21Cip1 has important roles in the control of cell proliferation, differentiation, senescence, and apoptosis. It has been observed that p21 is a highly unstable protein, but the mechanisms of its degradation remained unknown. We show here that p21 is a good substrate for an SCF (Skp1-Cullin1-F-box protein) ubiquitin ligase complex, which contains the F-box protein Skp2 (S phase kinase-associated protein 2) and the accessory protein Cks1 (cyclin kinase subunit 1). A similar ubiquitin ligase complex has been previously shown to be involved in the degradation of a related cyclin-dependent kinase inhibitor, p27Kip1. The levels of Skp2 oscillate in the cell cycle, reaching a maximum in S phase. The ubiquitylation of p21 in vitro required the supplementation of all components of the SCF complex as well as of Cks1 and Cdk2-cyclin E. The protein kinase Cdk2-cyclin E acts both by the phosphorylation of p21 on Ser-130 and by the formation of a complex with p21, which is required for its presentation to the ubiquitin ligase. As opposed to the case of p27, the phosphorylation of p21 stimulates its ubiquitylation but is not absolutely required for this process. Levels of p21 are higher in Skp2-/- mouse embryo fibroblasts than in wild-type fibroblasts in the S phase, and the rates of the degradation of p21 are slower in cells that lack Skp2. It is suggested that SCFSkp2 participates in the degradation of p21 in the S phase.
Collapse
Affiliation(s)
- Gil Bornstein
- Unit of Biochemistry, the B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | | | | | |
Collapse
|
311
|
Kudo Y, Kitajjma S, Sato S, Miyauchi M, Ogawa I, Takata T. Establishment of an oral squamous cell carcinoma cell line with high invasive and p27 degradation activities from a lymph node metastasis. Oral Oncol 2003; 39:515-20. [PMID: 12747977 DOI: 10.1016/s1368-8375(03)00015-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The extent of lymph node metastasis is a major determinant in the prognosis of oral squamous cell carcinoma (OSCC). We present here a new OSCC cell line, MSCC-1, established from a lymph node metastasis of a patient with OSCC of gingiva. First, we examined the expression of p27, p53 and Ki-67 in non-neoplastic mucosa, primary and metastatic cancer lesions by immunohistochemistry. Metastatic cancer cells in the lymph node showed the reduced expression of p27 in comparison with cancer cells in the primary lesion. Cancer celLs both in the primary and metastatic lesions showed overexpression of p53 and Ki-67. Overexpression of p53 and reduced expression of p27 in MSCC-1 cells were also determined by western blot analysis. To characterize MSCC-1 cells, furthermore, we examined the invasive activity and cell proliferation of MSCC-1, comparing with those of other OSCC cell lines, HSC-2 and HSC-3 cells. The invasive capacity of MSCC-1 cells was significant higher than HSC-2 and HSC-3 cells, but cell growth of MSCC-1 cells was slower than HSC-2 and HSC-3 cells. Moreover, we examined the p27 degradation activity by in vitro degradation assay. Interestingly, MSCC-1 cells have the strongest p27 degradation activity among the OSCC cell lines examined. In the present study, we newly established MSCC-1 cells with strong invasiveness and p27 degradation activity from a metastatic lesion. These findings suggest that high activity of p27 degradation may concern with invasiveness of OSCC cells and that MSCC-1 cells can be a useful cell model for studying the detailed mechanism of p27 degradation, invasion and metastasis of OSCC.
Collapse
Affiliation(s)
- Yasusei Kudo
- Department of Oral Maxillofacial Pathobiology, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | | | |
Collapse
|
312
|
Dimberg A, Karlberg I, Nilsson K, Oberg F. Ser727/Tyr701-phosphorylated Stat1 is required for the regulation of c-Myc, cyclins, and p27Kip1 associated with ATRA-induced G0/G1 arrest of U-937 cells. Blood 2003; 102:254-61. [PMID: 12637327 DOI: 10.1182/blood-2002-10-3149] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
All-trans retinoic acid (ATRA)-induced growth arrest of myeloid cells is associated with a sequential regulation of cyclins and cyclin-dependent kinase inhibitors (CKIs), which modulates the cell cycle machinery and inhibits the G1-S phase progression. ATRA treatment of myeloid cells induces up-regulation and tyrosine phosphorylation of Stat1, a member of the STAT (signal transducer and activator of transcription) transcription factor family that has been implicated in growth arrest in response to interferons. We have previously shown that ATRA-induced cell cycle arrest is dependent on tyrosinephosphorylated Stat1. In this study, we show that there is a basal level of Stat1 Ser727 phosphorylation in U-937 cells, which is transiently increased in response to ATRA treatment. Using Stat1Ser727Ala-expressing sublines, we provide evidence that Ser727 phosphorylation of Stat1 is required for ATRA-induced growth arrest. To shed further light on the role of Stat1 in ATRA-induced cell cycle arrest, cyclin and CKI expression was analyzed during ATRA treatment in U-937 sublines expressing Stat1Ser727Ala and Stat1Tyr701Phe. Our results show that Ser727/Tyr701-phosphorylated Stat1 plays a key role as a prerequisite for the ATRA-induced down-regulation of c-Myc; cyclins A, B, D2, D3, and E; and the simultaneous up-regulation of p27Kip1, associated with arrest in the G0/G1 phase of the cell cycle.
Collapse
Affiliation(s)
- Anna Dimberg
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, S-751 85 Uppsala, Sweden
| | | | | | | |
Collapse
|
313
|
Reuveni H, Klein S, Levitzki A. The inhibition of Ras farnesylation leads to an increase in p27Kip1 and G1 cell cycle arrest. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2759-72. [PMID: 12823546 DOI: 10.1046/j.1432-1033.2003.03647.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HR12 is a novel farnesyltransferase inhibitor (FTI). We have shown previously that HR12 induces phenotypic reversion of H-rasV12-transformed Rat1 (Rat1/ras) fibroblasts. This reversion was characterized by formation of cell-cell contacts, focal adhesions and stress fibers. Here we show that HR12 inhibits anchorage independent and dependent growth of Rat1/ras cells. HR12 also suppresses motility and proliferation of Rat1/ras cells, in a wound healing assay. Rat1 fibroblasts transformed with myristoylated H-rasV12 (Rat1/myr-ras) were resistant to HR12. Thus, the effects of HR12 are due to the inhibition of farnesylation of Ras. Cell growth of Rat1/ras cells was arrested at the G1 phase of the cell cycle. Analysis of cell cycle components showed that HR12 treatment of Rat1/ras cells led to elevated cellular levels of the cyclin-dependent kinase inhibitor p27Kip1 and inhibition of the kinase activity of the cyclin E/Cdk2 complex. This is the first time an FTI has been shown to lead to a rise in p27Kip1 levels in ras-transformed cells. The data suggest a new mechanism for FTI action, whereby in ras-transformed cells, the FTI causes an increase in p27Kip1 levels, which in turn inhibit cyclin E/Cdk2 activity, leading to G1 arrest.
Collapse
Affiliation(s)
- Hadas Reuveni
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | |
Collapse
|
314
|
Le XF, Claret FX, Lammayot A, Tian L, Deshpande D, LaPushin R, Tari AM, Bast RC. The role of cyclin-dependent kinase inhibitor p27Kip1 in anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition. J Biol Chem 2003; 278:23441-50. [PMID: 12700233 DOI: 10.1074/jbc.m300848200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin-dependent kinase (CDK) inhibitor p27Kip1 binds to the cyclin E.CDK2 complex and plays a major role in controlling cell cycle and cell growth. Our group and others have reported that anti-HER2 monoclonal antibodies exert inhibitory effects on HER2-overexpressing breast cancers through G1 cell cycle arrest associated with induction of p27Kip1 and reduction of CDK2. The role of p27Kip1 in anti-HER2 antibody-induced cell cycle arrest and growth inhibition is, however, still uncertain. Here we have provided several lines of evidence supporting a critical role for p27Kip1 in the anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition. Induction of p27Kip1 and G1 growth arrest by anti-HER2 antibody, murine 4D5, or humanized trastuzumab (Herceptin) are concentration-dependent, time-dependent, irreversible, and long-lasting. The magnitude of G1 cell cycle arrest induced by trastuzumab or 4D5 is well correlated with the level of p27Kip1 protein induced. Up-regulation of p27Kip1 and G1 growth arrest could no longer be removed with as little as 14 h of treatment with trastuzumab. Anti-HER2 antibody-induced p27Kip1 protein, G1 arrest, and growth inhibition persist at least 5 days after a single treatment. The magnitude of growth inhibition of breast cancer cells induced by anti-HER2 antibody closely parallels the level of p27Kip1 induced. Induced expression of exogenous p27Kip1 results in a p27Kip1 level-dependent G1 cell cycle arrest and growth inhibition similar to that obtained with anti-HER2 antibodies. Reducing p27Kip1 expression using p27Kip1 small interfering RNA blocks anti-HER2 antibody-induced p27Kip1 up-regulation and G1 arrest. Treatment with anti-HER2 antibody significantly increases the half-life of p27Kip1 protein. Inhibition of ubiquitin-proteasome pathway, but not inhibition of calpain and caspase activities, up-regulates p27Kip1 protein to a degree comparable with that obtained with anti-HER2 antibodies. We have further demonstrated that anti-HER2 antibody significantly decreases threonine phosphorylation of p27Kip1 protein at position 187 (Thr-187) and increases serine phosphorylation of p27Kip1 protein at position 10 (Ser-10). Expression of S10A and T187A mutant p27Kip1 protein increases the fraction of cells in G1 and reduces a further antibody-induced G1 arrest. Consequently, p27Kip1 plays an important role in the anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition through post-translational regulation. Regulation of the phosphorylation of p27Kip1 protein is one of the post-translational mechanisms by which anti-HER2 antibody upregulates the protein.
Collapse
Affiliation(s)
- Xiao-Feng Le
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
315
|
Moeller SJ, Head ED, Sheaff RJ. p27Kip1 inhibition of GRB2-SOS formation can regulate Ras activation. Mol Cell Biol 2003; 23:3735-52. [PMID: 12748278 PMCID: PMC155227 DOI: 10.1128/mcb.23.11.3735-3752.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2002] [Revised: 01/30/2003] [Accepted: 03/12/2003] [Indexed: 01/01/2023] Open
Abstract
p27(Kip1) (p27) is often inappropriately downregulated in aggressive human cancers. Although p27 can inhibit cyclin-dependent kinases (CDKs), low p27 does not always correlate with increased CDK activity. Furthermore, cells derived from p27(-/-) mice respond to antimitogens, maintain restriction point control, and do not deregulate CDKs. Thus, disruption of a p27 function other than CDK inhibition may contribute to the disease state. A yeast two-hybrid screen identified growth factor receptor-bound protein 2 (GRB2) as a p27 binding partner. We now demonstrate that p27 can inhibit GRB2 function by blocking its association with the guanine nucleotide exchange factor SOS. Endogenous p27 is rapidly exported from the nucleus to the cytoplasm in response to mitogen stimulation, where it binds GRB2 concomitant with a decrease in GRB2-associated SOS. As predicted, mitogen-stimulated p27(-/-) cells maintained their GRB2-SOS complexes for significantly longer. The Ras/mitogen-activated protein kinase pathway does not appear to be deregulated in cells lacking p27 despite excess GRB2-SOS, suggesting that additional control mechanisms are present. A transient-transfection approach was employed to show that p27 can inhibit Ras activation by targeting GRB2 and further revealed that the CDK and GRB2 inhibitory functions of p27 are separable and distinct. Thus, p27 downregulation may compromise control of Ras, one of the most common oncogenic events in human cancer.
Collapse
Affiliation(s)
- Stephanie J Moeller
- University of Minnesota Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
316
|
Leibovitch MP, Kannengiesser C, Leibovitch SA. Signal-induced ubiquitination of p57(Kip2) is independent of the C-terminal consensus Cdk phosphorylation site. FEBS Lett 2003; 543:125-8. [PMID: 12753918 DOI: 10.1016/s0014-5793(03)00425-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cyclin-dependent kinase inhibitor p57(Kip2) is required for normal mouse embryonic development. p57(Kip2) consists of four structurally distinct domains in which the conserved C-terminal nuclear targeting domain contains a putative Cdk phosphorylation site (Thr(342)) that shares a great similitude in the adjacent sequences with p27(Kip1) but not with p21(Cip1). Phosphorylation on Thr(187) has been shown to promote degradation of p27(Kip1). Although there is sequence homology between the C-terminal part of p27(Kip1) and p57(Kip2), we show that the ubiquitination and degradation of p57(Kip2) are independent of Thr(342). In contrast a destabilizing element located in the N-terminal is implicated in p57(Kip2) destabilization.
Collapse
|
317
|
Xu K, Belunis C, Chu W, Weber D, Podlaski F, Huang KS, Reed SI, Vassilev LT. Protein-protein interactions involved in the recognition of p27 by E3 ubiquitin ligase. Biochem J 2003; 371:957-64. [PMID: 12529174 PMCID: PMC1223319 DOI: 10.1042/bj20021722] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2002] [Revised: 01/03/2003] [Accepted: 01/15/2003] [Indexed: 11/17/2022]
Abstract
The p27(Kip1) protein is a potent cyclin-dependent kinase inhibitor, the level of which is decreased in many common human cancers as a result of enhanced ubiquitin-dependent degradation. The multiprotein complex SCF(Skp2) has been identified as the ubiquitin ligase that targets p27, but the functional interactions within this complex are not well understood. One component, the F-box protein Skp2, binds p27 when the latter is phosphorylated on Thr(187), thus providing substrate specificity for the ligase. Recently, we and others have shown that the small cell cycle regulatory protein Cks1 plays a critical role in p27 ubiquitination by increasing the binding affinity of Skp2 for p27. Here we report the development of a homogeneous time-resolved fluorescence assay that allows the quantification of the molecular interactions between human recombinant Skp2, Cks1 and a p27-derived peptide phosphorylated on Thr(187). Using this assay, we have determined the dissociation constant of the Skp2-Cks1 complex (K(d) 140 +/- 14 nM) and have shown that Skp2 binds phosphorylated p27 peptide with high affinity only in the presence of Cks1 (K(d) 37 +/- 2 nM). Cks1 does not bind directly to the p27 phosphopeptide or to Skp1, which confirms its suggested role as an allosteric effector of Skp2.
Collapse
Affiliation(s)
- Kui Xu
- Roche Research Center, Hoffmann-La Roche Inc., Nutley, NJ 07110, USA
| | | | | | | | | | | | | | | |
Collapse
|
318
|
Quintanilla-Martinez L, Davies-Hill T, Fend F, Calzada-Wack J, Sorbara L, Campo E, Jaffe ES, Raffeld M. Sequestration of p27Kip1 protein by cyclin D1 in typical and blastic variants of mantle cell lymphoma (MCL): implications for pathogenesis. Blood 2003; 101:3181-7. [PMID: 12515730 DOI: 10.1182/blood-2002-01-0263] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
p27 is a cyclin-dependent kinase inhibitor that plays a critical role in regulating G(1)/S progression, and whose activity is, in part, regulated through interactions with D-type cyclins. Mantle cell lymphoma (MCL) is characterized by the t(11;14) translocation resulting in deregulated cyclin D1. We previously showed that p27 expression in MCL, as assessed by immunohistochemistry (IHC), does not show the usual inverse relationship to proliferate seen in most other lymphomas that do not overexpress cyclin D1. This suggested that the normal expression or control of p27 activity on cell growth might be altered through potential interactions with cyclin D1. Using Western blot and coimmunoprecipitation studies, we assessed the interrelationship between cyclin D1 and p27 in several cyclin D1(+) cell lines and primary MCL cases. Similar to our previous results by IHC, typical MCLs showed lower expression of p27 when compared to the more highly proliferative blastic cases or cell lines (mean arbitrary units: 58 versus 236 versus 120). Cyclin D1 was expressed at variable levels in both typical and blastic MCLs. p27 protein could be consistently coimmunoprecipitated with cyclin D1 from both cell lines and cases. Using techniques of exhaustive immunoprecipitation, we could demonstrate that most p27 protein was sequestered into complexes containing cyclin D1. We hypothesize that mantle cell lymphomagenesis results not only from direct consequences of inappropriate cyclin D1 expression, but also from the ability of overexpressed cyclin D1 to buffer physiologic changes in p27 levels, thereby rendering p27 ineffective as an inhibitor of cellular growth.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/immunology
- Cell Cycle Proteins/metabolism
- Cell Division
- Cell Transformation, Neoplastic/genetics
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 14/genetics
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Cyclin-Dependent Kinase Inhibitor p27
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, Mantle-Cell/etiology
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/pathology
- Macromolecular Substances
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Precipitin Tests
- Protein Binding
- Translocation, Genetic
- Tumor Suppressor Proteins/antagonists & inhibitors
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/immunology
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Leticia Quintanilla-Martinez
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
319
|
Delmas C, Aragou N, Poussard S, Cottin P, Darbon JM, Manenti S. MAP kinase-dependent degradation of p27Kip1 by calpains in choroidal melanoma cells. Requirement of p27Kip1 nuclear export. J Biol Chem 2003; 278:12443-51. [PMID: 12529328 DOI: 10.1074/jbc.m209523200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We investigated the status and the regulation of the cyclin-dependent kinases (CDK) inhibitor p27(Kip1) in a choroidal melanoma tumor-derived cell line (OCM-1). By contrast to normal choroidal melanocytes, the expression level of p27(Kip1) was low in these cells and the mitogen-activated protein (MAP) kinase pathway was constitutively activated. Genetic or chemical inhibition of this pathway induced p27(Kip1) accumulation, whereas MAP kinase reactivation triggered a down-regulation of p27(Kip1) that could be partially reversed by calpain inhibitors. In good accordance, ectopic expression of the cellular calpain inhibitor calpastatin led to an increase of endogenous p27(Kip1) expression. In vitro, p27(Kip1) was degraded by calpains, and OCM-1 cell extracts contained a calcium-dependent p27(Kip1) degradation activity. MAP kinase inhibition partially inhibited both calpain activity and calcium-dependent p27(Kip1) degradation by cellular extracts. Immunofluorescence labeling and subcellular fractionation revealed that p27(Kip1) was in part localized in the cytoplasmic compartment of OCM-1 cells but not of melanocytes, and accumulated into the nucleus upon MAP kinase inhibition. MAP kinase activation triggered a cytoplasmic translocation of the protein, as well as a change in its phosphorylation status. This CRM-1-dependent cytoplasmic translocation was necessary for MAP kinase- and calpain-dependent degradation. Taken together, these data suggest that in tumor-derived cells, p27(Kip1) could be degraded by calpains through a MAP kinase-dependent process, and that abnormal cytoplasmic localization of the protein, probably linked to modifications of its phosphorylation state, could be involved in this alternative mechanism of degradation.
Collapse
Affiliation(s)
- Christelle Delmas
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, CNRS UMR 5088, IFR 109, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | | | | | |
Collapse
|
320
|
Ogawa O, Lee HG, Zhu X, Raina A, Harris PLR, Castellani RJ, Perry G, Smith MA. Increased p27, an essential component of cell cycle control, in Alzheimer's disease. Aging Cell 2003; 2:105-10. [PMID: 12882323 DOI: 10.1046/j.1474-9728.2003.00042.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A number of recent findings have demonstrated re-expression of cell cycle-related proteins in vulnerable neurones in Alzheimer's disease. We hypothesize that this attempt by neurones to re-enter mitosis is a response to external growth stimuli that leads to an abortive re-entry into the cell cycle and, ultimately, neuronal degeneration. In this study, to further delineate the role of mitotic processes in the pathogenesis of Alzheimer's disease, we investigated p27, a cyclin-dependent kinase inhibitor that plays a negatively regulatory role in cell cycle progression that, once phosphorylated at Thr187, is degraded via an ubiquitin-proteasome pathway. Here we report that both p27 and phosphorylated p27 (Thr187) show increases in the cytoplasm of vulnerable neuronal populations in Alzheimer's disease vs. age-matched control subjects. Importantly, phosphorylated p27 (Thr187) shows considerable overlap with tau-positive neurofibrillary pathology, including neurofibrillary tangles, dystrophic neurites and neuropil threads. The findings presented here suggest that dysregulation of the cell cycle plays a crucial role in the pathogenesis of Alzheimer's disease that may provide a novel mechanistic basis for therapeutic intervention.
Collapse
Affiliation(s)
- Osamu Ogawa
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
321
|
Baudino TA, Maclean KH, Brennan J, Parganas E, Yang C, Aslanian A, Lees JA, Sherr CJ, Roussel MF, Cleveland JL. Myc-Mediated Proliferation and Lymphomagenesis, but Not Apoptosis, Are Compromised by E2f1 Loss. Mol Cell 2003; 11:905-14. [PMID: 12718877 DOI: 10.1016/s1097-2765(03)00102-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Myc and E2f1 promote cell cycle progression, but overexpression of either can trigger p53-dependent apoptosis. Mice expressing an Emu-Myc transgene in B lymphocytes develop lymphomas, the majority of which sustain mutations of either the Arf or p53 tumor suppressors. Emu-Myc transgenic mice lacking one or both E2f1 alleles exhibited a slower onset of lymphoma development associated with increased expression of the cyclin-dependent kinase inhibitor p27(Kip1) and a reduced S phase fraction in precancerous B cells. In contrast, Myc-induced apoptosis and the frequency of Arf and p53 mutations in lymphomas were unaffected by E2f1 loss. Therefore, Myc does not require E2f1 to induce Arf, p53, or apoptosis in B cells, but depends upon E2f1 to accelerate cell cycle progression and downregulate p27(Kip1).
Collapse
Affiliation(s)
- Troy A Baudino
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Hong A, Lee-Kong S, Iida T, Sugimura I, Lilly MA. The p27cip/kip ortholog dacapo maintains the Drosophila oocyte in prophase of meiosis I. Development 2003; 130:1235-42. [PMID: 12588841 DOI: 10.1242/dev.00352] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animal oocytes undergo a highly conserved developmental arrest in prophase of meiosis I. Often this marks a period of rapid growth for the oocyte and is necessary to coordinate meiotic progression with the developmental events of oogenesis. In Drosophila, the oocyte develops within a 16-cell germline cyst. Throughout much of oogenesis, the oocyte remains in prophase of meiosis I. By contrast, its 15 mitotic sisters enter the endocycle and become polyploid in preparation for their role as nurse cells. How germline cysts establish and maintain these two independent cell cycles is unknown. We demonstrate a role for the p21(CIP)/p27(Kip1)/p57(Kip2)-like cyclin-dependent kinase inhibitor (cki) dacapo in the maintenance of the meiotic cycle in Drosophila oocytes. Our data indicate that it is through the differential regulation of the cki Dacapo that two modes of cell-cycle regulation are independently maintained within the common cytoplasm of ovarian cysts.
Collapse
Affiliation(s)
- Amy Hong
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
323
|
Díez-Juan A, Andrés V. Coordinate control of proliferation and migration by the p27Kip1/cyclin-dependent kinase/retinoblastoma pathway in vascular smooth muscle cells and fibroblasts. Circ Res 2003; 92:402-10. [PMID: 12600894 DOI: 10.1161/01.res.0000059306.71961.ed] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have demonstrated a protective effect of the cyclin-dependent kinase (CDK) inhibitor p27Kip1 against atherosclerosis and restenosis, two disorders characterized by abundant proliferation and migration of vascular smooth muscle cells and adventitial fibroblasts. These therapeutic effects might result from p27Kip1-dependent suppression of both cell proliferation and migration. However, the interplay between cell growth and locomotion remains obscure. We show here that p27Kip1 inhibits cellular changes that normally occur during cell locomotion (eg, lamellipodia formation and reorganization of actin filaments and focal adhesions). Importantly, a p27Kip1 mutant lacking CDK inhibitory activity failed to inhibit vascular smooth muscle cell and fibroblast proliferation and migration. Moreover, a constitutively active mutant of the retinoblastoma protein (pRb) insensitive to CDK-dependent hyperphosphorylation inhibited both cell proliferation and migration. In contrast, inactivation of pRb by forced expression of the adenoviral oncogene E1A correlated with high proliferative and migratory activity. Collectively, these results suggest that cellular proliferation and migration are regulated in a coordinated manner by the p27Kip1/CDK/pRb pathway. These findings might have important implications for the development of novel therapeutic strategies targeting the fibroproliferative/migratory component of vascular occlusive disorders.
Collapse
Affiliation(s)
- Antonio Díez-Juan
- Laboratory of Vascular Biology, Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, Spanish Council for Scientific Research, Valencia, Spain
| | | |
Collapse
|
324
|
Abstract
We have investigated the contribution of CDK4 and CDK2 inhibition to G1 arrest in colon cancers following inhibition of the MEK/MAP kinase pathway. CDK4 inhibition is sufficient to cause arrest, but inhibition of CDK2 by p27 Kip1 redistribution or ectopic expression has no effect on proliferation. Likewise, inhibition of CDK2 through expression of dominant-negative (DN) CDK2 or antisense oligonucleotides did not prevent cell proliferation in these cells. We therefore tested whether CDK2 activity is dispensable in other cells. Surprisingly, osteosarcomas and Rb-negative cervical cancers continued to proliferate after depletion of CDK2 through antisense oligonucleotides or small interfering (si) RNA. Here we report of sustained cell proliferation in the absence of CDK2, and we suggest that CDK2 is not a suitable target for cancer therapy.
Collapse
Affiliation(s)
- Osamu Tetsu
- Cancer Research Institute and Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
325
|
Oliveira AM, Okuno SH, Nascimento AG, Lloyd RV. Skp2 protein expression in soft tissue sarcomas. J Clin Oncol 2003; 21:722-7. [PMID: 12586812 DOI: 10.1200/jco.2003.05.112] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND p45 S phase kinase-associated protein-2 (p45(skp2)), a member of the F-box family of proteins, is an important component of the Skp1-Cullin-F-box protein (SCF) ubiquitin-ligase complex (SCF(skp2)). The latter has been implicated in the ubiquitination and degradation of p27(kip1) (p27) and G(1)-S cell cycle progression. The expression and prognostic role of Skp2 in a large series of soft tissue sarcomas has not been previously investigated. METHODS Clinicopathologic features and immunohistochemical expression of Skp2, p27, and Ki-67 proteins were studied in 182 cases of soft tissue sarcomas (American Joint Committee on Cancer stages II and III). Survival analyses were performed using the Kaplan-Meier method and the Cox regression model. RESULTS The male to female ratio was 1.2:1, and the median age at the diagnosis was 53 years. The tumors were predominantly located in the lower extremities (n = 163; 90%) and had a median size of 9 cm. High Skp2 expression (> or = 10% of the cells) was identified in 68 tumors (37%), and was correlated with high grade histology (P =.002) and Ki-67 proliferative index (r = 0.44; P <.0001), but not with p27 expression (r = -0.02; P =.80). By univariate analysis, high Skp2 expression was associated with decreased metastasis-free, disease-free, and overall survival. In a multivariate model, high Skp2 expression was an independent predictor for decreased local recurrence-free, disease-free, and overall survival. CONCLUSION These results indicate that Skp2 expression is associated with cell proliferation and a worse prognosis in soft tissue sarcomas. The lack of an inverse correlation between Skp2 and p27 suggests that additional molecular events associated with either Skp2 expression or p27 proteolysis may be operating in these tumors.
Collapse
Affiliation(s)
- Andre M Oliveira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
326
|
Castro C, Díez-Juan A, Cortés MJ, Andrés V. Distinct regulation of mitogen-activated protein kinases and p27Kip1 in smooth muscle cells from different vascular beds. A potential role in establishing regional phenotypic variance. J Biol Chem 2003; 278:4482-90. [PMID: 12477734 DOI: 10.1074/jbc.m204716200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excessive proliferation and migration of vascular smooth muscle cells (SMCs) participate in atherosclerotic plaque growth. In this study, we investigated whether SMCs from vessels with different atherogenicity exhibit distinct growth and migratory potential and investigated the underlying mechanisms. In fat-fed rabbits, we found increased cell proliferation and atheroma formation in the aortic arch versus the femoral artery. When examined in culture, SMCs isolated from the aortic arch (ASMCs) displayed a greater capacity for inducible proliferation and migration than paired cultures of femoral artery SMCs. Two lines of evidence suggested that distinct regulation of the growth suppressor p27(Kip1) (p27) contributes to establishing these phenotypic dissimilarities. First, p27 expression was comparably lower in ASMCs, which exhibited a higher fraction of p27 phosphorylated on Thr-187 and ubiquitinated. Second, forced p27 overexpression in ASMCs impaired their proliferative and migratory potential. We found that platelet-derived growth factor-BB-dependent induction of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway was comparably higher in ASMCs. Importantly, pharmacological inhibition of MAPKs increased p27 expression and attenuated ASMC proliferation and migration. In contrast, forced MAPK activation diminished p27 expression and markedly augmented femoral artery SMC proliferation and migration. We propose that intrinsic differences in the regulation of MAPKs and p27 play an important role in creating variance in the proliferative and migratory capacity of vascular SMCs, which might in turn contribute to establishing regional variability in atherogenicity.
Collapse
Affiliation(s)
- Claudia Castro
- Laboratory of Vascular Biology, Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, Spanish Council for Scientific Research (CSIC), 46010-Valencia, Spain
| | | | | | | |
Collapse
|
327
|
Nakamura M, Matsuo T, Stauffer J, Neckers L, Thiele CJ. Retinoic acid decreases targeting of p27 for degradation via an N-myc-dependent decrease in p27 phosphorylation and an N-myc-independent decrease in Skp2. Cell Death Differ 2003; 10:230-9. [PMID: 12700651 DOI: 10.1038/sj.cdd.4401125] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Poor prognosis neuroblastoma (NB) tumors are marked by amplification and overexpression of N-myc. Retinoic acid (RA) decreases N-myc levels and induces cell cycle arrest in vitro and increases event-free survival in advanced stage NB patients. In this study, we investigated the mechanism(s) by which RA regulates cell cycle and how N-myc affects NB cell cycle progression. Constitutive N-myc overexpression stimulates increases in cyclin E-dependent kinase activity and decreases in p27 resulting in increased DNA synthesis. N-myc regulates p27 levels through an increase in targeting of p27 to the proteasome via cyclin E kinase-dependent phosphorylation of p27 and its ubiquitination. N-myc also stimulates an increase in proteasome activity. In RA-treated cells in which N-myc levels decline as p27 levels increase, degradation of p27 is also decreased. However, RA does not affect the activity of proteasome. The decrease in the degradation of p27 in RA-treated cells is due in part to a decrease in the N-myc stimulated phosphorylation of p27. However, RA also decreases Skp2 levels thus impairing the ability of p27 to be ubiquitinated. Thus, RA induces both N-myc-dependent and -independent mechanisms to minimize the degradation of p27 and arrest NB cell growth.
Collapse
Affiliation(s)
- M Nakamura
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
328
|
Abstract
p27 acts as a critical negative regulator of the cell cycle by inhibiting the activity of cyclin/cdk complexes during G0 and G1. Degradation of p27 is a critical event for the G1/S transition and occurs through ubiquitination by SCF(Skp2) and subsequent degradation by the 26S-proteasome. A tumor suppressing function of p27 has been demonstrated in mouse models and studies of human tumors. More recent evidence suggests that Skp2, the specific recognition factor for p27 ubiquitination, has oncogenic properties. This review will focus on the regulation of p27 proteolysis and its consequences for tumorigenesis.
Collapse
Affiliation(s)
- Joanna Bloom
- Department of Pathology and NYU Cancer Instutute, MSB599, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
329
|
Qu Z, Weiss JN, MacLellan WR. Regulation of the mammalian cell cycle: a model of the G1-to-S transition. Am J Physiol Cell Physiol 2003; 284:C349-64. [PMID: 12388094 DOI: 10.1152/ajpcell.00066.2002] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have formulated a mathematical model for regulation of the G(1)-to-S transition of the mammalian cell cycle. This mathematical model incorporates the key molecules and interactions that have been identified experimentally. By subdividing these critical molecules into modules, we have been able to systematically analyze the contribution of each to dynamics of the G(1)-to-S transition. The primary module, which includes the interactions between cyclin E (CycE), cyclin-dependent kinase 2 (CDK2), and protein phosphatase CDC25A, exhibits dynamics such as limit cycle, bistability, and excitable transient. The positive feedback between CycE and transcription factor E2F causes bistability, provided that the total E2F is constant and the retinoblastoma protein (Rb) can be hyperphosphorylated. The positive feedback between active CDK2 and cyclin-dependent kinase inhibitor (CKI) generates a limit cycle. When combined with the primary module, the E2F/Rb and CKI modules potentiate or attenuate the dynamics generated by the primary module. In addition, we found that multisite phosphorylation of CDC25A, Rb, and CKI was critical for the generation of dynamics required for cell cycle progression.
Collapse
Affiliation(s)
- Zhilin Qu
- Cardiovascular Research Laboratory, Department of Medicine, University of California, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
330
|
Zhang L, Wang C. PAX3-FKHR transformation increases 26 S proteasome-dependent degradation of p27Kip1, a potential role for elevated Skp2 expression. J Biol Chem 2003; 278:27-36. [PMID: 12401804 DOI: 10.1074/jbc.m205424200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PAX3-FKHR is an oncogenic form of the developmental regulator Pax3 transcription factor. PAX3-FKHR results from a t(2,13) chromosomal translocation, a unique genetic marker of alveolar rhabdomyosarcoma. In this study, we showed that ectopic expression of PAX3-FKHR, but not Pax3, in fibroblasts altered cell cycle control and accelerated G(0)/G(1) to S cell cycle transition. PAX3-FKHR-expressing cells had reduced expression of p27(Kip1) protein, a key cell cycle regulator. The reduction in p27(Kip1) levels by PAX3-FKHR resulted from destabilization of p27(Kip1) as shown by cycloheximide treatment and in vivo pulse-chase labeling experiments. The reduced p27(Kip1) protein level in PAX3-FKHR-expressing cells was restored to the level of control cells by treatment with chemical inhibitors that specifically blocked 26 S proteasome activity. Along with the reduction in p27(Kip1) protein, PAX3-FKHR-expressing cells exhibited elevated expression of F-box Skp2 protein, a substrate-specific component of SCF (Skp1-Cullin-F box protein) ligase involved in the cell cycle-dependent control of p27(Kip1) ubiquitination and 26 S proteasome dependent degradation. Finally, we showed that ectopic expression of p27(Kip1) in PAX3-FKHR-expressing cells significantly reduced the proliferation and colony-forming potential of these cells, implicating that down-regulation of p27(Kip1) protein played an active role in the PAX3-FKHR-directed cell transformation.
Collapse
Affiliation(s)
- Lei Zhang
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | |
Collapse
|
331
|
Erickson LA, Papotti M, Volante M, Jin L, Lewis JE, Lloyd RV. Merkel cell carcinomas: expression of S-phase kinase-associated protein 2 (Skp2), p27, and proliferation markers. Endocr Pathol 2003; 14:221-29. [PMID: 14586067 DOI: 10.1007/s12022-003-0014-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Merkel cell carcinomas are rare and aggressive tumors about which the expression of cell cycle regulatory proteins are not well known. We evaluated the clinicopathologic features of Merkel cell carcinomas and examined the expression of the cell cycle regulatory markers p27 and S-phase kinase-associated protein 2 (Skp2) and the proliferation markers Ki-67 and DNA topoisomerase II alpha (topo II alpha) in a group of these tumors. Thirty-nine cases of Merkel cell carcinoma were studied, 19 from the Mayo Clinic, Rochester, MN, and 20 from the University of Torino, Torino, Italy. Although the University of Torino patients tended to be slightly older at time of surgery compared to the Mayo Clinic patients, no clinical, pathologic, or immunohistochemical feature was statistically significantly different between the two groups. Of the 39 patients, 20 were male and 19 were female. The age at surgery averaged 72 yr. Formalin-fixed paraffin-embedded archival tissues from the 39 Merkel cell carcinomas were analyzed by immunohistochemistry for p27, Skp2, Ki-67, and topo II alpha with the avidin-biotin peroxidase system. The distribution of immunoreactivity was analyzed by quantifying the percentage of positive nuclei, which was expressed as the labeling index. There was a statistically significant inverse relationship between p27 and Skp2 (p = 0.005). Most tumors with increased levels of Skp2 were associated with reduced p27, and tumors with high levels of p27 expression were associated with reduced levels of Skp2. These results suggest that Skp2 regulates p27 expression in Merkel cell carcinomas. Tumors showing increased Skp2 expression were not always correlated with increased proliferation as evaluated by Ki-67 and topo II alpha, suggesting that Skp2 may be involved in Merkel cell tumorigenesis, but that other factors may also influence cell proliferation in these tumors.
Collapse
Affiliation(s)
- Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
332
|
Ewton DZ, Lee K, Deng X, Lim S, Friedman E. Rapid turnover of cell-cycle regulators found in Mirk/dyrk1B transfectants. Int J Cancer 2003; 103:21-8. [PMID: 12455049 DOI: 10.1002/ijc.10743] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mirk/dyrk1B is an arginine-directed protein kinase, which functions as a transcriptional activator and mediates serum-free growth of colon carcinoma cells by an unknown mechanism. We now report that turnover of the cdk inhibitor p27(kip1) and the G(1)-phase cyclin cyclin D1 is enhanced in each of 4 Mirk stable transfectants compared to vector control transfectants and Mirk kinase-inactive mutant transfectants. This enhanced turnover is proteasome-dependent and leads to lower protein levels of both p27(kip1) and cyclin D1. Lower protein levels of the cdk inhibitor p21(cip1) were also observed in the 4 Mirk stable transfectants. Mirk did not alter the activity of a p27(kip1) promoter construct or p27(kip1) mRNA levels by stable expression, indicating that the decrease in p27(kip1) protein levels was due to a posttranscriptional mechanism. These data are consistent with mirk enhancing the expression of some component common to the proteolysis of both p27(kip1) and cyclin D1.
Collapse
Affiliation(s)
- Daina Z Ewton
- Pathology Department, Upstate Medical University, State University of New York, Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
333
|
Bashir T, Pagano M. Aberrant ubiquitin-mediated proteolysis of cell cycle regulatory proteins and oncogenesis. Adv Cancer Res 2003; 88:101-44. [PMID: 12665054 DOI: 10.1016/s0065-230x(03)88305-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ubiquitin pathway plays a central role in the regulation of cell growth and cell proliferation by controlling the abundance of key cell cycle proteins. Increasing evidence indicates that unscheduled proteolysis of many cell cycle regulators contributes significantly to tumorigenesis and is indeed found in many types of human cancers. Aberrant proteolysis with oncogenic potential is elicited by two major mechanisms: defective degradation of positive cell cycle regulators (i.e., proto-oncoproteins) and enhanced degradation of negative cell cycle regulators (i.e., tumor suppressor proteins). In many cases, increased protein stability is a result of mutations in the substrate that prevent the recognition of the protein by the ubiquitin-mediated degradation machinery. Alternatively, the specific recognition proteins mediating ubiquitination (ubiquitin ligases) are not expressed or harbor mutations rendering them inactive. In contrast, the overexpression of a ubiquitin ligase may result in the enhanced degradation of a negative cell cycle regulator. This chapter aims to review the involvement of the ubiquitin pathway in the scheduled destruction of some important cell cycle regulators and to discuss the implications of their aberrant degradation for the development of cancer.
Collapse
Affiliation(s)
- Tarig Bashir
- Department of Pathology and NYU Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
334
|
Santucci MA, Mercatali L, Brusa G, Pattacini L, Barbieri E, Perocco P. Cell-cycle deregulation in BALB/c 3T3 cells transformed by 1,2-dibromoethane and folpet pesticides. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2003; 41:315-321. [PMID: 12802801 DOI: 10.1002/em.10162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The cell-transforming potential of 1,2-dibromoethane and folpet, two widely used agricultural pesticides that are potential sources of environmental pollution, has been previously ascribed to their promoting activity. In this study, we investigated whether BALB/c 3T3 transformation by these chemicals was associated with the deregulation of signals involved in cell-cycle progression and in cell-cycle checkpoint induction. We found that two BALB/c 3T3 cell clones transformed by in vitro medium-term (8-week) exposure to the carcinogens had a constitutive acceleration of cell transition from G(1) to S phase and an abrogation of the radiation-induced G(1)/S checkpoint. These events involved multiple signals; in particular, the inhibitors of cyclin/cyclin-dependent kinase complexes p21 and p27 were significantly down-modulated and the positive regulators of cell-cycle progression cyclin D(3) and E were up-modulated. As anticipated for cells where the G(1)/S checkpoint was abrogated, the transformed cells exhibited a significant reinforcement of the radiation-induced G(2)/M checkpoint, the only checkpoint remaining to protect genomic integrity. However, cyclin A(1) and B(1) coexpression and cyclin A(1) overexpression were found despite the G2 arrest in irradiated cells and these signals likely attenuate the G(2)/M checkpoint. These alterations to normal cell cycling may promote the emergence of both numerical and structural chromosomal abnormalities and their tolerance. Such a condition could play a key role in neoplastic transformation and be crucial in tumor progression. Furthermore, cyclin A(1) overexpression may play an autonomous role in the neoplastic transformation of BALB/c 3T3 cells, as it does in other cell types of mesenchymal origin.
Collapse
|
335
|
Connor MK, Kotchetkov R, Cariou S, Resch A, Lupetti R, Beniston RG, Melchior F, Hengst L, Slingerland JM. CRM1/Ran-mediated nuclear export of p27(Kip1) involves a nuclear export signal and links p27 export and proteolysis. Mol Biol Cell 2003; 14:201-13. [PMID: 12529437 PMCID: PMC140238 DOI: 10.1091/mbc.e02-06-0319] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2002] [Revised: 09/27/2002] [Accepted: 10/03/2002] [Indexed: 12/18/2022] Open
Abstract
We show that p27 localization is cell cycle regulated and we suggest that active CRM1/RanGTP-mediated nuclear export of p27 may be linked to cytoplasmic p27 proteolysis in early G1. p27 is nuclear in G0 and early G1 and appears transiently in the cytoplasm at the G1/S transition. Association of p27 with the exportin CRM1 was minimal in G0 and increased markedly during G1-to-S phase progression. Proteasome inhibition in mid-G1 did not impair nuclear import of p27, but led to accumulation of p27 in the cytoplasm, suggesting that export precedes degradation for at least part of the cellular p27 pool. p27-CRM1 binding and nuclear export were inhibited by S10A mutation but not by T187A mutation. A putative nuclear export sequence in p27 is identified whose mutation reduced p27-CRM1 interaction, nuclear export, and p27 degradation. Leptomycin B (LMB) did not inhibit p27-CRM1 binding, nor did it prevent p27 export in vitro or in heterokaryon assays. Prebinding of CRM1 to the HIV-1 Rev nuclear export sequence did not inhibit p27-CRM1 interaction, suggesting that p27 binds CRM1 at a non-LMB-sensitive motif. LMB increased total cellular p27 and may do so indirectly, through effects on other p27 regulatory proteins. These data suggest a model in which p27 undergoes active, CRM1-dependent nuclear export and cytoplasmic degradation in early G1. This would permit the incremental activation of cyclin E-Cdk2 leading to cyclin E-Cdk2-mediated T187 phosphorylation and p27 proteolysis in late G1 and S phase.
Collapse
Affiliation(s)
- Michael K Connor
- Molecular and Cell Biology, Sunnybrook & Women's College Health Science Centre, 2075 Bayview Ave, Toronto, Ontario, Canada, M4N 3M5
| | | | | | | | | | | | | | | | | |
Collapse
|
336
|
Kudo Y, Kitajima S, Sato S, Ogawa I, Miyauchi M, Takata T. Transfection of p27(Kip1) threonine residue 187 mutant type gene, which is not influenced by ubiquitin-mediated degradation, induces cell cycle arrest in oral squamous cell carcinoma cells. Oncology 2002; 63:398-404. [PMID: 12417796 DOI: 10.1159/000066222] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE It is well known that reduction of the cyclin-dependent kinase inhibitor p27(Kip1) protein correlates with the malignant behavior of various cancers including oral squamous cell carcinoma (OSCC). The loss of p27(Kip1) protein is suggested to be due to the enhancement of its posttranslational degradation. In the present study, to evaluate the effects of p27(Kip1) transfection on the cell cycle, we transfected OSCC cell lines with a high activity of p27(Kip1) degradation with p27(Kip1) threonine 187-to-alanine (T187A) mutant gene, which is not influenced by ubiquitin-mediated degradation, as well as with wild type gene. METHODS We transfected p27(Kip1) T187A mutant and wild type gene into OSCC cell lines (HSC2 and HSC3) by using an ecdysone-inducible gene expression system. RESULTS After treatment with ponasterone A, we could find an induction of both p27(Kip1) wild type and T187A mutant protein. Both wild type and T187A mutant protein induced by 5 microM ponasterone A inhibited cell growth and increased cell number at the G1 phase. After treatment with 1 microM ponasterone A, ectopic p27(Kip1) protein was degraded in wild type clones, but not in T187A mutant clones. Moreover, transfection of the T187A mutant gene was more effective in inhibiting cell growth even by induction of a small amount of protein. CONCLUSION We suggest that the transfection of the p27(Kip1) T187A mutant gene can be a modality of cancer gene therapy for OSCC.
Collapse
Affiliation(s)
- Yasusei Kudo
- Department of Oral Pathology, Hiroshima University, Faculty of Dentistry, Japan
| | | | | | | | | | | |
Collapse
|
337
|
Osipov V, Keating JT, Faul PN, Loda M, Datta MW. Expression of p27 and VHL in renal tumors. Appl Immunohistochem Mol Morphol 2002; 10:344-50. [PMID: 12607603 DOI: 10.1097/00129039-200212000-00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Renal tumors, in particular clear cell renal cell carcinomas, have an unclear prognosis and metastatic potential. Cell cycle regulators play a key role in cellular proliferation and have been implicated in neoplasia. The cell cycle inhibitor p27 has been associated with prognosis in various tumor types. Recently a reported association between p27 and Von Hippel-Lindau (VHL) gene function has also been noted. We have examined p27 and VHL expression by immunohistochemistry in a panel of kidney tumors and have noted specific and unique patterns of p27 expression in various tumor types. In addition, we have analyzed p27 expression in clear cell type renal cell carcinomas and have noted a significant association between decreasing p27 expression and increasing tumor size, suggesting a relation between renal cell proliferation and loss of p27 function. These findings suggest a role for p27 in the development of various types of renal tumors.
Collapse
Affiliation(s)
- Vladimir Osipov
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
338
|
Tedesco D, Lukas J, Reed SI. The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes Dev 2002; 16:2946-57. [PMID: 12435635 PMCID: PMC187481 DOI: 10.1101/gad.1011202] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
p130 is a tumor suppressor of the pocket protein family whose expression is posttranscriptionally regulated and largely G0 restricted. The mechanism of down-regulation of p130 expression in proliferating cells was investigated. Our results indicate that the decline of p130 expression as G0 cells reenter the cell cycle is due to a decrease in protein stability. The enhancement of p130 turnover in late G1 and S phase compared with G0 and early G1 phase was dependent on Cdk4/6-specific phosphorylation of p130 on Serine 672, and independent of Cdk2 activity. The activity of the ubiquitin ligase complex Skp1-Cul1/Cdc53-F-box protein Skp2 (SCF(Skp2)) and the proteasome were necessary for p130 degradation. In vitro, recombinant Skp2 was able to bind hyperphosphorylated but not dephosphorylated p130. Furthermore, in vitro polyubiquitination of p130 by SCF(Skp2) was specifically dependent on phosphorylation of p130 on Serine 672. Thus, like the Cdk inhibitor p27(Kip1), p130 turnover is regulated by Cdk-dependent G1 phosphorylation leading to ubiquitin-dependent proteolysis.
Collapse
Affiliation(s)
- Donato Tedesco
- Department of Molecular Biology, MB-7, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
339
|
Lim MS, Adamson A, Lin Z, Perez-Ordonez B, Jordan RCK, Tripp S, Perkins SL, Elenitoba-Johnson KSJ. Expression of Skp2, a p27(Kip1) ubiquitin ligase, in malignant lymphoma: correlation with p27(Kip1) and proliferation index. Blood 2002; 100:2950-6. [PMID: 12351407 DOI: 10.1182/blood.v100.8.2950] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Reduced levels of p27(Kip1) are frequent in human cancers and have been associated with poor prognosis. Skp2, a component of the Skp1-Cul1-F-box protein (SCF) ubiquitin ligase complex, has been implicated in p27(Kip1) degradation. Increased Skp2 levels are seen in some solid tumors and are associated with reduced p27(Kip1). We examined the expression of these proteins using single and double immunolabeling in a large series of lymphomas to determine if alterations in their relative levels are associated with changes in cell proliferation and lymphoma subgroups. We studied the expression of Skp2 in low-grade and aggressive B-cell lymphomas (n = 86) and compared them with p27(Kip1) and the proliferation index (PI). Fifteen hematopoietic cell lines and peripheral blood lymphocytes were studied by Western blot analysis. In reactive tonsils, Skp2 expression was limited to proliferating germinal center and interfollicular cells. Skp2 expression in small lymphocytic lymphomas (SLLs) and follicular lymphomas (FCLs) was low (mean percentage of positive tumor cells, less than 20%) and was inversely correlated (r = -0.67; P <.0001) with p27(Kip1) and positively correlated with the PI (r = 0.82; P <.005). By contrast, whereas most mantle cell lymphomas (MCLs) demonstrated low expression of p27(Kip1) and Skp2, a subset (n = 6) expressed high Skp2 (exceeding 20%) with a high PI (exceeding 50%). Skp2 expression was highest in diffuse large B-cell lymphomas (DLBCLs) (mean, 22%) and correlated with Ki-67 (r = 0.55; P <.005) but not with p27(Kip1). Cytoplasmic Skp2 was seen in a subset of aggressive lymphomas. Our data provide evidence for p27(Kip1) degradative function of Skp2 in low-grade lymphomas. The absence of this relationship in aggressive lymphomas suggests that other factors contribute to deregulation of p27(Kip1) expression in these tumors.
Collapse
Affiliation(s)
- Megan S Lim
- Department of Pathology and ARUP Institute for Clinical and Experimental Pathology, University of Utah, Salt Lake City, UT 84132.
| | | | | | | | | | | | | | | |
Collapse
|
340
|
Nasheuer HP, Smith R, Bauerschmidt C, Grosse F, Weisshart K. Initiation of eukaryotic DNA replication: regulation and mechanisms. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:41-94. [PMID: 12206458 DOI: 10.1016/s0079-6603(02)72067-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The accurate and timely duplication of the genome is a major task for eukaryotic cells. This process requires the cooperation of multiple factors to ensure the stability of the genetic information of each cell. Mutations, rearrangements, or loss of chromosomes can be detrimental to a single cell as well as to the whole organism, causing failures, disease, or death. Because of the size of eukaryotic genomes, chromosomal duplication is accomplished in a multiparallel process. In human somatic cells between 10,000 and 100,000 parallel synthesis sites are present. This raises fundamental problems for eukaryotic cells to coordinate the start of DNA replication at each origin and to prevent replication of already duplicated DNA regions. Since these general phenomena were recognized in the middle of the 20th century the regulation and mechanisms of the initiation of eukaryotic DNA replication have been intensively investigated. These studies were carried out to find the essential factors involved in the process and to determine their functions during DNA replication. These studies gave rise to a model of the organization and the coordination of DNA replication within the eukaryotic cell. The elegant experiments carried out by Rao and Johnson (1970) (1), who fused cells in different phases of the cell cycle, showed that G1 cells are competent for replication of their chromosomes, but lack a specific diffusible factor required to activate their replicaton machinery and showed that G2 cells are incompetent for DNA replication. These findings suggested that eukaryotic cells exist in two states. In G1 phase, cells are competent to initiate DNA replication, which is subsequently triggered in S phase. After completion of S phase, cells in G2 are no longer able to initiate DNA replication and they require a transition through mitosis to reenable initiation of DNA replication to take place in the next S phase. The Xenopus cell-free replication system has proved a good model system in which to study DNA replication in vitro as well as the mechanism preventing rereplication within a single cell cycle (2). Studies using this system resulted in the development of a model postulating the existence of a replication licensing factor, which binds to chromatin before the G1-S transition and which is displaced during replication (2, 3). These results were supported by genetic and biochemical experiments in Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces pombe (fission yeast) (4, 5). The investigation of cell division cycle mutants and the budding yeast origin of replication resulted in the concept of a prereplicative and a postreplicative complex of initiation proteins (6-9). These three individual concepts have recently started to merge and it has become obvious that initiation in eukaryotes is generally governed by the same ubiquitous mechanisms.
Collapse
|
341
|
Timms JF, White SL, O'Hare MJ, Waterfield MD. Effects of ErbB-2 overexpression on mitogenic signalling and cell cycle progression in human breast luminal epithelial cells. Oncogene 2002; 21:6573-86. [PMID: 12242655 DOI: 10.1038/sj.onc.1205847] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2002] [Revised: 06/12/2002] [Accepted: 07/05/2002] [Indexed: 01/23/2023]
Abstract
Most breast cancers arise from luminal epithelial cells and 25-30% of these tumours overexpress the ErbB-2 receptor. Herein, a non-transformed, immortalized cell system was used to investigate the effects of ErbB-2 overexpression in luminal epithelial cells. The phenotypic consequence of ErbB-2 overexpression is a shortening of the G1 phase of the cell cycle and early S phase entry, which leads to hyperproliferation. We show that this effect was mediated through the up-regulation of cdk6 and cyclins D1 and E, and enhanced degradation and relocalization of p27(Kip1). These changes were effected predominantly through enhanced MAPK signalling, resulting in cdk2 hyperactivation. PI3K signalling also participated in cell cycle progression, since PI3K and MAPK coordinately regulated changes in cyclin D1 and cdk6 expression. Cdk4 activity was not required for cell cycle progression in these cells, and was constitutively inhibited through its association with p16(INK4A). MAPK-dependent induction of p21(Cip1) was also necessary for G1 phase progression, although its degradation by the proteasome was required for S phase entry. These data provide new insights into the complex molecular mechanisms underlying mitogenic cell cycle control in luminal epithelial cells, the cell type relevant to primary breast cancer, and show how ErbB-2 overexpression subverts this normal control.
Collapse
Affiliation(s)
- John F Timms
- Ludwig Institute for Cancer Research, 91 Riding House Street, London W1W 7BS, UK.
| | | | | | | |
Collapse
|
342
|
Chopra S, Fernandez De Mattos S, Lam EWF, Mann DJ. Jab1 co-activation of c-Jun is abrogated by the serine 10-phosphorylated form of p27Kip1. J Biol Chem 2002; 277:32413-6. [PMID: 12119282 DOI: 10.1074/jbc.c200311200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The cyclin-dependent kinase (cdk) inhibitor p27(Kip1) is a central mediator in the imposition and maintenance of quiescence through the sequestration of G(1)-specific cyclin-cdk complexes. Previous studies have implicated the c-Jun co-activator protein Jab1 as a regulator of intracellular p27(Kip1) levels. Jab1 has been reported to interact with p27(Kip1) and cause its translocation to the cytoplasm as a prelude to the degradation of the cdk inhibitor. Here we describe experiments that showing phosphorylation of p27(Kip1) at serine 10 leads to the suppression of Jab1 levels with the concomitant inhibition of c-Jun-dependent transcription. This repression is minimized upon quiescence exit through the rapid and preferential loss of the serine 10-phosphorylated form of p27(Kip1) following serum stimulation. Our results, therefore, demonstrate an additional role for p27(Kip1) in the modulation of c-Jun-dependent transcription via Jab1.
Collapse
Affiliation(s)
- Shalu Chopra
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Exhibition Road, South Kensington, London, United Kingdom
| | | | | | | |
Collapse
|
343
|
Landberg G. Multiparameter analyses of cell cycle regulatory proteins in human breast cancer: a key to definition of separate pathways in tumorigenesis. Adv Cancer Res 2002; 84:35-56. [PMID: 11883531 DOI: 10.1016/s0065-230x(02)84002-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Breast cancer is one of the most common cancer forms affecting many women. The disease nevertheless has widely varying behavior and therefore patient outcome, and an important undertaking is to define and understand the molecular mechanisms behind these actions. Defects in the G1/S transition in the cell cycle affect both tumor proliferation and the fidelity of check points responsible for chromosomal integrity and DNA damage response and has lately been shown to represent one of a rather limited set of key aberrations in the transformation process. Many cell cycle regulatory proteins are either oncogenes or suppressor genes or are closely associated to the transformation process. The types of aberrations in the G1/S transition seem to be different in various cancers but are nevertheless often linked to clinical behaviors. In this review the role of multiparameter analyses of cell cycle regulatory proteins in breast cancer will be outlined with special attention to pattern analyses as well as the definition of two contrasting pathways in tumorigenesis defined by either cyclin D1 or cyclin F overexpression.
Collapse
Affiliation(s)
- Göran Landberg
- Department of Laboratory Medicine, Lund University, Malmö University Hospital, Sweden
| |
Collapse
|
344
|
Lu L, Schulz H, Wolf DA. The F-box protein SKP2 mediates androgen control of p27 stability in LNCaP human prostate cancer cells. BMC Cell Biol 2002; 3:22. [PMID: 12188931 PMCID: PMC122093 DOI: 10.1186/1471-2121-3-22] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2002] [Accepted: 08/20/2002] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The cyclin-dependent kinase inhibitor p27 is a putative tumor suppressor that is downregulated in the majority of human prostate cancers. The mechanism of p27 down-regulation in prostate cancers in unknown, but presumably involves increased proteolysis mediated by the SCFSKP2 ubiquitin ligase complex. Here we used the human prostate cancer cell line LNCaP, which undergoes G1 cell cycle arrest in response to androgen, to examine the role of the SKP2 F-box protein in p27 regulation in prostate cancer. RESULTS We show that androgen-induced G1 cell cycle arrest of LNCaP cells coincides with inhibition of cyclin-dependent kinase 2 activity and p27 accumulation caused by reduced p27 ubiquitylation activity. At the same time, androgen decreased expression of SKP2, but did not affect other components of SCFSKP2. Adenovirus-mediated overexpression of SKP2 led to ectopic down-regulation of p27 in asynchronous cells. Furthermore, SKP2 overexpression was sufficient to overcome p27 accumulation in androgen arrested cells by stimulating cellular p27 ubiquitylation activity. This resulted in transient activation of CDK2 activity, but was insufficient to override the androgen-induced G1 block. CONCLUSIONS Our studies suggest that SKP2 is a major determinant of p27 levels in human prostate cancer cells. Based on our in vitro studies, we suggest that overexpression of SKP2 may be one of the mechanisms that allow prostate cancer cells to escape growth control mediated by p27. Consequently, the SKP2 pathway may be a suitable target for novel prostate cancer therapies.
Collapse
Affiliation(s)
- Lifang Lu
- Department of Cancer Cell Biology, Harvard School of Public Health, Boston, USA.
| | | | | |
Collapse
|
345
|
Fujita N, Sato S, Katayama K, Tsuruo T. Akt-dependent phosphorylation of p27Kip1 promotes binding to 14-3-3 and cytoplasmic localization. J Biol Chem 2002; 277:28706-13. [PMID: 12042314 DOI: 10.1074/jbc.m203668200] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In many human cancers, the cyclin-dependent kinase inhibitor p27(Kip1) is expressed at low or undetectable levels. The decreased p27(Kip1) expression allows cyclin-dependent kinase activity to cause cells to enter into S phase and correlates with poor patient survival. Inhibition of serine/threonine kinase Akt signaling by some pharmacological agents or by PTEN induces G(1) arrest, in part by up-regulating p27(Kip1). However, the role of Akt-dependent phosphorylation in p27(Kip1) regulation is not clear. Here, we show that Akt bound directly to and phosphorylated p27(Kip1). Screening p27(Kip1) phosphorylation sites identified the COOH-terminal Thr(198) residue as a novel site. Further analysis revealed that 14-3-3 proteins bound to p27(Kip1) through Thr(198) only when it was phosphorylated by Akt. Although Akt also phosphorylated p27(Kip1) at Ser(10) and Thr(187), these two sites were not involved in the binding to 14-3-3 proteins. p27(Kip1) phosphorylated at Thr(198) exists only in the cytoplasm. Therefore, Akt promotes cell-cycle progression through the mechanisms of phosphorylation-dependent 14-3-3 binding to p27(Kip1) and cytoplasmic localization.
Collapse
Affiliation(s)
- Naoya Fujita
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
346
|
Abstract
The life history of cancer cells encompasses a series of genetic missteps in which normal cells are progressively transformed into tumor cells that invade surrounding tissues and become malignant. Most prominent among the regulators disrupted in cancer cells are two tumor suppressors, the retinoblastoma protein (RB) and the p53 transcription factor. Here, we discuss interconnecting signaling pathways controlled by RB and p53, attempting to explain their potentially universal involvement in the etiology of cancer. Pinpointing the various ways by which the functions of RB and p53 are subverted in individual tumors should provide a rational basis for developing more refined tumor-specific therapies.
Collapse
Affiliation(s)
- Charles J Sherr
- Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | |
Collapse
|
347
|
Lin HK, Wang L, Hu YC, Altuwaijri S, Chang C. Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J 2002; 21:4037-48. [PMID: 12145204 PMCID: PMC126152 DOI: 10.1093/emboj/cdf406] [Citation(s) in RCA: 360] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The androgen receptor (AR) controls several biological functions including prostate cell growth and apoptosis. However, the mechanism by which AR maintains its stability to function properly remains largely unknown. Here we show that Akt and Mdm2 form a complex with AR and promote phosphorylation-dependent AR ubiquitylation, resulting in AR degradation by the proteasome. The effect of Akt on AR ubiquitylation and degradation is markedly impaired in a Mdm2-null cell line compared with the wild-type cell line, suggesting that Mdm2 is involved in Akt-mediated AR ubiquitylation and degradation. Furthermore, we demonstrate that the E3 ligase activity of Mdm2 and phosphorylation of Mdm2 by Akt are essential for Mdm2 to affect AR ubiquitylation and degradation. These results suggest that phosphorylation-dependent AR ubiquitylation and degradation by Akt require the involvement of Mdm2 E3 ligase activity, a novel mechanism that provides insight into how AR is targeted for degradation.
Collapse
Affiliation(s)
| | | | | | | | - Chawnshang Chang
- George H.Whipple Laboratory for Cancer Research, Departments of Pathology and Urology and The Cancer Center, University of Rochester, Rochester, NY 14642, USA
Corresponding author e-mail:
| |
Collapse
|
348
|
Abstract
Effective tissue remodelling is essential to the survival of adult organs. Many of the signalling pathways that control these cellular decisions are regulated by nuclear interactions of cell-cycle proteins. Molecules that target cyclin-dependent kinases (CDKs) or CDK inhibitors (CKIs) represent a new class of therapeutic agents that influence tissue remodelling in several organ systems. An understanding of their cell-specific functions is leading to the development of exciting and bold approaches to the treatment cancer, cardiovascular disease and other diseases.
Collapse
Affiliation(s)
- Elizabeth G Nabel
- Cardiovascular Branch, National Heart, Lung and Blood Institute/National Institutes of Health, Building 10/8C103, 10 Center Drive, Bethesda, Maryland 20892, USA.
| |
Collapse
|
349
|
Dhillon NK, Mudryj M. Ectopic expression of cyclin E in estrogen responsive cells abrogates antiestrogen mediated growth arrest. Oncogene 2002; 21:4626-34. [PMID: 12096339 DOI: 10.1038/sj.onc.1205576] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2002] [Revised: 04/02/2002] [Accepted: 04/15/2002] [Indexed: 11/09/2022]
Abstract
Estrogens stimulate proliferation of estrogen receptor positive MCF7 breast cancer cells while antiestrogens signal a G0/G1 growth arrest. In MCF7 cells, arrest is mediated through the CDK inhibitors p21 and p27 and through a decrease in cyclin E/CDK2 kinase activity. We found that in MCF7 cells, overexpression of cyclin E partially abrogates a tamoxifen mediated growth arrest. Overexpression of cyclin E is accompanied by a decrease in the levels of RB and CDK inhibitor p21 but an increase in CDK inhibitor p27. Cyclin E overexpression also alters the composition of E2F transcription factor complexes. The E2F4/p107/cyclin E/CDK2 complex, a minor component in proliferating control cells that is absent in growth-arrested cells, is more abundant in both proliferating and tamoxifen treated cyclin E overexpressing cells. Conversely, levels of the quiescence associated E2F/p130 complex is not detected in these cells. Expression from the E2F dependant promoter is elevated in proliferating and tamoxifen treated cyclin E overexpressing cells. This study suggests that a modest overexpression of cyclin E abrogates the tamoxifen mediated growth arrest through modification of the RB/E2F pathway. Moreover, these results provide one explanation of why some cells that express the estrogen receptor may be unresponsive to antiestrogens.
Collapse
Affiliation(s)
- Navdeep K Dhillon
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, CA 95616, USA
| | | |
Collapse
|
350
|
Hurteau JA, Brutkiewicz SA, Wang Q, Allison BM, Goebl MG, Harrington MA. Overexpression of a stabilized mutant form of the cyclin-dependent kinase inhibitor p27(Kip1) inhibits cell growth. Gynecol Oncol 2002; 86:19-23. [PMID: 12079294 DOI: 10.1006/gyno.2002.6657] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The purpose of this study was to test the hypothesis that the expression of the mutant p27(Kip1) protein enhances cell growth inhibition and is more stable than that of the wild-type p27(Kip1). METHODS Site-directed mutagenesis was used to mutate threonine 187 to an alanine residue, generating the mutant p27(Kip1). To study the effects of the p27(Kip1) mutant on cell growth, luciferase assays were performed. Cells were transiently transfected with the Renilla luciferase reporter construct and empty vector, wild-type p27(Kip1), or mutant p27(Kip1) using Fugene 6. The transfected cells were lysed and assayed for luciferase activity 24 h later with a dual-luciferase reporter assay system. To further assess the effects of the p27(Kip1) mutant on cell growth, colony count assays were performed. The experiments were repeated in duplicate and a standard two-tailed Student t test was use to analyze the data. RESULTS Wild-type p27(Kip1) protein has a half-life of approximately 2 h while the p27(Kip1) mutant has a half-life of greater than 12 h. Furthermore, the p27(Kip1) mutant retained the ability to inhibit CDK2-associated H1 kinase activity. Cells expressing the p27(Kip1) mutant had an 88% reduction in luciferase activity compared to cells expressing the wild-type p27(Kip1) (P = 0.001). Colony assays revealed that cells expressing the p27(Kip1) mutant had fewer colonies compared to cells expressing the wild-type p27(Kip1) (P = 0.04). CONCLUSIONS These data are consistent with the hypothesis that the mutated form of p27(Kip1) is more effective in cell growth inhibition than the wild-type p27(Kip1) protein.
Collapse
Affiliation(s)
- Jean A Hurteau
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, Illinois 60612-7313, USA
| | | | | | | | | | | |
Collapse
|