301
|
Barutcu AR, Lajoie BR, Fritz AJ, McCord RP, Nickerson JA, van Wijnen AJ, Lian JB, Stein JL, Dekker J, Stein GS, Imbalzano AN. SMARCA4 regulates gene expression and higher-order chromatin structure in proliferating mammary epithelial cells. Genome Res 2016; 26:1188-201. [PMID: 27435934 PMCID: PMC5052043 DOI: 10.1101/gr.201624.115] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 07/08/2016] [Indexed: 01/20/2023]
Abstract
The packaging of DNA into chromatin plays an important role in transcriptional regulation and nuclear processes. Brahma-related gene-1 SMARCA4 (also known as BRG1), the essential ATPase subunit of the mammalian SWI/SNF chromatin remodeling complex, uses the energy from ATP hydrolysis to disrupt nucleosomes at target regions. Although the transcriptional role of SMARCA4 at gene promoters is well-studied, less is known about its role in higher-order genome organization. SMARCA4 knockdown in human mammary epithelial MCF-10A cells resulted in 176 up-regulated genes, including many related to lipid and calcium metabolism, and 1292 down-regulated genes, some of which encode extracellular matrix (ECM) components that can exert mechanical forces and affect nuclear structure. ChIP-seq analysis of SMARCA4 localization and SMARCA4-bound super-enhancers demonstrated extensive binding at intergenic regions. Furthermore, Hi-C analysis showed extensive SMARCA4-mediated alterations in higher-order genome organization at multiple resolutions. First, SMARCA4 knockdown resulted in clustering of intra- and inter-subtelomeric regions, demonstrating a novel role for SMARCA4 in telomere organization. SMARCA4 binding was enriched at topologically associating domain (TAD) boundaries, and SMARCA4 knockdown resulted in weakening of TAD boundary strength. Taken together, these findings provide a dynamic view of SMARCA4-dependent changes in higher-order chromatin organization and gene expression, identifying SMARCA4 as a novel component of chromatin organization.
Collapse
Affiliation(s)
- A Rasim Barutcu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Bryan R Lajoie
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Andrew J Fritz
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | - Rachel P McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Jeffrey A Nickerson
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Andre J van Wijnen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Jane B Lian
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | - Janet L Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | - Job Dekker
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| |
Collapse
|
302
|
Leukaemia cell of origin identified by chromatin landscape of bulk tumour cells. Nat Commun 2016; 7:12166. [PMID: 27397025 PMCID: PMC4942573 DOI: 10.1038/ncomms12166] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 06/08/2016] [Indexed: 01/08/2023] Open
Abstract
The precise identity of a tumour's cell of origin can influence disease prognosis and outcome. Methods to reliably define tumour cell of origin from primary, bulk tumour cell samples has been a challenge. Here we use a well-defined model of MLL-rearranged acute myeloid leukaemia (AML) to demonstrate that transforming haematopoietic stem cells (HSCs) and multipotent progenitors results in more aggressive AML than transforming committed progenitor cells. Transcriptome profiling reveals a gene expression signature broadly distinguishing stem cell-derived versus progenitor cell-derived AML, including genes involved in immune escape, extravasation and small GTPase signal transduction. However, whole-genome profiling of open chromatin reveals precise and robust biomarkers reflecting each cell of origin tested, from bulk AML tumour cell sampling. We find that bulk AML tumour cells exhibit distinct open chromatin loci that reflect the transformed cell of origin and suggest that open chromatin patterns may be leveraged as prognostic signatures in human AML. A tumour's cell of origin may influence tumour progression and response to therapy. Here, the authors demonstrate that the cell of origin determines the aggressiveness of AML in a mouse model and identify unique biomarkers of the specific leukaemia cell of origin by profiling open chromatin regions of AML samples.
Collapse
|
303
|
Hohmann AF, Martin LJ, Minder JL, Roe JS, Shi J, Steurer S, Bader G, McConnell D, Pearson M, Gerstberger T, Gottschamel T, Thompson D, Suzuki Y, Koegl M, Vakoc CR. Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition. Nat Chem Biol 2016; 12:672-9. [PMID: 27376689 PMCID: PMC4990482 DOI: 10.1038/nchembio.2115] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
Here we show that acute myeloid leukemia (AML) cells require the BRD9 subunit of the SWI-SNF chromatin-remodeling complex to sustain MYC transcription, rapid cell proliferation and a block in differentiation. Based on these observations, we derived small-molecule inhibitors of the BRD9 bromodomain that selectively suppress the proliferation of mouse and human AML cell lines. To establish these effects as on-target, we engineered a bromodomain-swap allele of BRD9 that retains functionality despite a radically altered bromodomain pocket. Expression of this allele in AML cells confers resistance to the antiproliferative effects of our compound series, thus establishing BRD9 as the relevant cellular target. Furthermore, we used an analogous domain-swap strategy to generate an inhibitor-resistant allele of EZH2. To our knowledge, our study provides the first evidence for a role of BRD9 in cancer and reveals a simple genetic strategy for constructing resistance alleles to demonstrate on-target activity of chemical probes in cells.
Collapse
Affiliation(s)
- Anja F Hohmann
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Laetitia J Martin
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Jessica L Minder
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Jae-Seok Roe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Junwei Shi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Steffen Steurer
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Gerd Bader
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Darryl McConnell
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Mark Pearson
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Thomas Gerstberger
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Teresa Gottschamel
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Diane Thompson
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, University of Tokyo, Kashiwa, Japan
| | - Manfred Koegl
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Christopher R Vakoc
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| |
Collapse
|
304
|
Spitz F. Gene regulation at a distance: From remote enhancers to 3D regulatory ensembles. Semin Cell Dev Biol 2016; 57:57-67. [PMID: 27364700 DOI: 10.1016/j.semcdb.2016.06.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Large-scale identification of elements associated with gene expression revealed that many of them are located extremely far from gene transcriptional start sites. We review here the growing evidence that show that distal cis-acting elements provide key instructions to genes, as genetic variation affecting them is growingly identified as an importance source of phenotypic diversity and disease. We discuss the different mechanisms that allow these elements to exert their regulatory functions, in a robust and specific manner, despite the large genomic distances separating them from their target genes. We particularly focus on the role of the structural organization of the genome in guiding such regulatory interactions.
Collapse
Affiliation(s)
- François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Department of Developmental Biology and Stem Cells, Institut Pasteur, Paris, France.
| |
Collapse
|
305
|
IDH-mutant glioma specific association of rs55705857 located at 8q24.21 involves MYC deregulation. Sci Rep 2016; 6:27569. [PMID: 27282637 PMCID: PMC4901315 DOI: 10.1038/srep27569] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/16/2016] [Indexed: 12/20/2022] Open
Abstract
The single nucleotide polymorphism rs55705857, located in a non-coding but evolutionarily conserved region at 8q24.21, is strongly associated with IDH-mutant glioma development and was suggested to be a causal variant. However, the molecular mechanism underlying this association has remained unknown. With a case control study in 285 gliomas, 316 healthy controls, 380 systemic cancers, 31 other CNS-tumors, and 120 IDH-mutant cartilaginous tumors, we identified that the association was specific to IDH-mutant gliomas. Odds-ratios were 9.25 (5.17–16.52; 95% CI) for IDH-mutated gliomas and 12.85 (5.94–27.83; 95% CI) for IDH-mutated, 1p/19q co-deleted gliomas. Decreasing strength with increasing anaplasia implied a modulatory effect. No somatic mutations were noted at this locus in 114 blood-tumor pairs, nor was there a copy number difference between risk-allele and only-ancestral allele carriers. CCDC26 RNA-expression was rare and not different between the two groups. There were only minor subtype-specific differences in common glioma driver genes. RNA sequencing and LC-MS/MS comparisons pointed to significantly altered MYC-signaling. Baseline enhancer activity of the conserved region specifically on the MYC promoter and its further positive modulation by the SNP risk-allele was shown in vitro. Our findings implicate MYC deregulation as the underlying cause of the observed association.
Collapse
|
306
|
Stojanova A, Tu WB, Ponzielli R, Kotlyar M, Chan PK, Boutros PC, Khosravi F, Jurisica I, Raught B, Penn LZ. MYC interaction with the tumor suppressive SWI/SNF complex member INI1 regulates transcription and cellular transformation. Cell Cycle 2016; 15:1693-705. [PMID: 27267444 PMCID: PMC4957596 DOI: 10.1080/15384101.2016.1146836] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MYC is a key driver of cellular transformation and is deregulated in most human cancers. Studies of MYC and its interactors have provided mechanistic insight into its role as a regulator of gene transcription. MYC has been previously linked to chromatin regulation through its interaction with INI1 (SMARCB1/hSNF5/BAF47), a core member of the SWI/SNF chromatin remodeling complex. INI1 is a potent tumor suppressor that is inactivated in several types of cancers, most prominently as the hallmark alteration in pediatric malignant rhabdoid tumors. However, the molecular and functional interaction of MYC and INI1 remains unclear. Here, we characterize the MYC-INI1 interaction in mammalian cells, mapping their minimal binding domains to functionally significant regions of MYC (leucine zipper) and INI1 (repeat motifs), and demonstrating that the interaction does not interfere with MYC-MAX interaction. Protein-protein interaction network analysis expands the MYC-INI1 interaction to the SWI/SNF complex and a larger network of chromatin regulatory complexes. Genome-wide analysis reveals that the DNA-binding regions and target genes of INI1 significantly overlap with those of MYC. In an INI1-deficient rhabdoid tumor system, we observe that with re-expression of INI1, MYC and INI1 bind to common target genes and have opposing effects on gene expression. Functionally, INI1 re-expression suppresses cell proliferation and MYC-potentiated transformation. Our findings thus establish the antagonistic roles of the INI1 and MYC transcriptional regulators in mediating cellular and oncogenic functions.
Collapse
Affiliation(s)
- Angelina Stojanova
- a Department of Medical Biophysics , Faculty of Medicine, University of Toronto , Toronto , Ontario , Canada.,b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada
| | - William B Tu
- a Department of Medical Biophysics , Faculty of Medicine, University of Toronto , Toronto , Ontario , Canada.,b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada
| | - Romina Ponzielli
- b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada
| | - Max Kotlyar
- b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada
| | - Pak-Kei Chan
- b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada
| | - Paul C Boutros
- a Department of Medical Biophysics , Faculty of Medicine, University of Toronto , Toronto , Ontario , Canada.,b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada.,c Informatics and Biocomputing Program, Ontario Institute for Cancer Research , Toronto , Ontario , Canada
| | - Fereshteh Khosravi
- b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada
| | - Igor Jurisica
- a Department of Medical Biophysics , Faculty of Medicine, University of Toronto , Toronto , Ontario , Canada.,b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada.,d Department of Computer Science , University of Toronto , Toronto , Ontario , Canada
| | - Brian Raught
- a Department of Medical Biophysics , Faculty of Medicine, University of Toronto , Toronto , Ontario , Canada.,b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada
| | - Linda Z Penn
- a Department of Medical Biophysics , Faculty of Medicine, University of Toronto , Toronto , Ontario , Canada.,b Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada
| |
Collapse
|
307
|
Knoechel B, Bhatt A, Pan L, Pedamallu CS, Severson E, Gutierrez A, Dorfman DM, Kuo FC, Kluk M, Kung AL, Zweidler-McKay P, Meyerson M, Blacklow SC, DeAngelo DJ, Aster JC. Complete hematologic response of early T-cell progenitor acute lymphoblastic leukemia to the γ-secretase inhibitor BMS-906024: genetic and epigenetic findings in an outlier case. Cold Spring Harb Mol Case Stud 2016; 1:a000539. [PMID: 27148573 PMCID: PMC4850884 DOI: 10.1101/mcs.a000539] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Notch pathway antagonists such as γ-secretase inhibitors (GSIs) are being tested in diverse cancers, but exceptional responses have yet to be reported. We describe the case of a patient with relapsed/refractory early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL) who achieved a complete hematologic response following treatment with the GSI BMS-906024. Whole-exome sequencing of leukemic blasts revealed heterozygous gain-of-function driver mutations in NOTCH1, CSF3R, and PTPN11, and a homozygous/hemizygous loss-of-function mutation in DNMT3A. The three gain-of-function mutations were absent from remission marrow cells, but the DNMT3A mutation persisted in heterozygous form in remission marrow, consistent with an origin for the patient's ETP-ALL from clonal hematopoiesis. Ex vivo culture of ETP-ALL blasts confirmed high levels of activated NOTCH1 that were repressed by GSI treatment, and RNA-seq documented that GSIs downregulated multiple known Notch target genes. Surprisingly, one potential target gene that was unaffected by GSIs was MYC, a key Notch target in GSI-sensitive T-ALL of cortical T-cell type. H3K27ac super-enhancer landscapes near MYC showed a pattern previously reported in acute myeloid leukemia (AML) that is sensitive to BRD4 inhibitors, and in line with this ETP-ALL blasts downregulated MYC in response to the BRD4 inhibitor JQ1. To our knowledge, this is the first example of complete response of a Notch-mutated ETP-ALL to a Notch antagonist and is also the first description of chromatin landscapes associated with ETP-ALL. Our experience suggests that additional attempts to target Notch in Notch-mutated ETP-ALL are merited.
Collapse
Affiliation(s)
- Birgit Knoechel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Ami Bhatt
- Departments of Medicine and Genetics, Stanford University, Stanford, California 95305, USA
| | - Li Pan
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Chandra S Pedamallu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA;; Broad Institute of MIT and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Eric Severson
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - David M Dorfman
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Frank C Kuo
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Michael Kluk
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Andrew L Kung
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
| | - Patrick Zweidler-McKay
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA;; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;; Broad Institute of MIT and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Stephen C Blacklow
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
308
|
Bhagwat AS, Roe JS, Mok BYL, Hohmann AF, Shi J, Vakoc CR. BET Bromodomain Inhibition Releases the Mediator Complex from Select cis-Regulatory Elements. Cell Rep 2016; 15:519-530. [PMID: 27068464 PMCID: PMC4838499 DOI: 10.1016/j.celrep.2016.03.054] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/22/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022] Open
Abstract
The bromodomain and extraterminal (BET) protein BRD4 can physically interact with the Mediator complex, but the relevance of this association to the therapeutic effects of BET inhibitors in cancer is unclear. Here, we show that BET inhibition causes a rapid release of Mediator from a subset of cis-regulatory elements in the genome of acute myeloid leukemia (AML) cells. These sites of Mediator eviction were highly correlated with transcriptional suppression of neighboring genes, which are enriched for targets of the transcription factor MYB and for functions related to leukemogenesis. A shRNA screen of Mediator in AML cells identified the MED12, MED13, MED23, and MED24 subunits as performing a similar regulatory function to BRD4 in this context, including a shared role in sustaining a block in myeloid maturation. These findings suggest that the interaction between BRD4 and Mediator has functional importance for gene-specific transcriptional activation and for AML maintenance.
Collapse
Affiliation(s)
- Anand S Bhagwat
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jae-Seok Roe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Beverly Y L Mok
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Anja F Hohmann
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Junwei Shi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
309
|
Pinz S, Unser S, Rascle A. Signal transducer and activator of transcription STAT5 is recruited to c-Myc super-enhancer. BMC Mol Biol 2016; 17:10. [PMID: 27074708 PMCID: PMC4831086 DOI: 10.1186/s12867-016-0063-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/07/2016] [Indexed: 11/10/2022] Open
Abstract
Background c-Myc has been proposed as a putative target gene of signal transducer and activator of transcription 5 (STAT5). No functional STAT5 binding site has been identified so far within the c-Myc gene locus, therefore a direct transcriptional regulation by STAT5 remains uncertain. c-Myc super-enhancer, located 1.7 Mb downstream of the c-Myc gene locus, was recently reported as essential for the regulation of c-Myc gene expression by hematopoietic transcription factors and bromodomain and extra-terminal (BET) proteins and for leukemia maintenance. c-Myc super-enhancer is composed of five regulatory regions (E1–E5) which recruit transcription and chromatin-associated factors, mediating chromatin looping and interaction with the c-Myc promoter. Results We now show that STAT5 strongly binds to c-Myc super-enhancer regions E3 and E4, both in normal and transformed Ba/F3 cells. We also found that the BET protein bromodomain-containing protein 2 (BRD2), a co-factor of STAT5, co-localizes with STAT5 at E3/E4 in Ba/F3 cells transformed by the constitutively active STAT5-1*6 mutant, but not in non-transformed Ba/F3 cells. BRD2 binding at E3/E4 coincides with c-Myc transcriptional activation and is lost upon treatment with deacetylase and BET inhibitors, both of which inhibit STAT5 transcriptional activity and c-Myc gene expression. Conclusions Our data suggest that constitutive STAT5 binding to c-Myc super-enhancer might contribute to BRD2 maintenance and thus allow sustained expression of c-Myc in Ba/F3 cells transformed by STAT5-1*6. Electronic supplementary material The online version of this article (doi:10.1186/s12867-016-0063-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophia Pinz
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, 93053, Regensburg, Germany
| | - Samy Unser
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, 93053, Regensburg, Germany
| | - Anne Rascle
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
310
|
SMARCA4/Brg1 coordinates genetic and epigenetic networks underlying Shh-type medulloblastoma development. Oncogene 2016; 35:5746-5758. [PMID: 27065321 DOI: 10.1038/onc.2016.108] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/15/2015] [Accepted: 01/08/2016] [Indexed: 02/07/2023]
Abstract
Recent large-scale genomic studies have classified medulloblastoma into four subtypes: Wnt, Shh, Group 3 and Group 4. Each is characterized by specific mutations and distinct epigenetic states. Previously, we showed that a chromatin regulator SMARCA4/Brg1 is required for Gli-mediated transcription activation in Sonic hedgehog (Shh) signaling. We report here that Brg1 controls a transcriptional program that specifically regulates Shh-type medulloblastoma growth. Using a mouse model of Shh-type medulloblastoma, we deleted Brg1 in precancerous progenitors and primary or transplanted tumors. Brg1 deletion significantly inhibited tumor formation and progression. Genome-wide expression analyses and binding experiments indicate that Brg1 specifically coordinates with key transcription factors including Gli1, Atoh1 and REST to regulate the expression of both oncogenes and tumor suppressors that are required for medulloblastoma identity and proliferation. Shh-type medulloblastoma displays distinct H3K27me3 properties. We demonstrate that Brg1 modulates activities of H3K27me3 modifiers to regulate the expression of medulloblastoma genes. Brg1-regulated pathways are conserved in human Shh-type medulloblastoma, and Brg1 is important for the growth of a human medulloblastoma cell line. Thus, Brg1 coordinates a genetic and epigenetic network that regulates the transcriptional program underlying the Shh-type medulloblastoma development.
Collapse
|
311
|
Wollebo HS, Bellizzi A, Cossari DH, Salkind J, Safak M, White MK. The Brd4 acetyllysine-binding protein is involved in activation of polyomavirus JC. J Neurovirol 2016; 22:615-625. [PMID: 27007123 DOI: 10.1007/s13365-016-0435-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/26/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
Abstract
Brd4 is an epigenetic reader protein and a member of the BET (bromodomain and extra terminal domain) family of proteins with two bromodomains that recognize acetylated lysine residues. Brd4 specifically binds to acetylated transcription factor NF-κB p65 and coactivates transcription. Polyomavirus JC (JCV) is regulated by a noncoding control region (NCCR) containing promoter/enhancer elements for viral gene expression including a binding site for NF-κB, which responds to proinflammatory cytokines such as TNF-α, the DNA damage response, calcium signaling and acetylation of the NF-κB p65 subunit on lysine residues K218 and K221. Earlier studies indicated that NF-κB is involved in the reactivation of persistent/latent JCV in glial cells to cause progressive multifocal leukoencephalopathy (PML), a severe demyelinating disease of the brain caused by replication of JCV in glial cells. To investigate the mechanism of action of NF-κB acetylation on JCV transcription, we examined Brd4 and found that JCV early transcription was stimulated by Brd4 via the JCV NF-κB site and that p65 K218 and K221 were involved. Treatment with the Brd4 inhibitor JQ1(+) or mutation of either K218 or K221 to glutamine (K218R or K221) inhibited this stimulation and decreased the proportion of p65 in the nucleus. We conclude that Brd4 is involved in the regulation of the activation status of JCV in glial cells.
Collapse
Affiliation(s)
- Hassen S Wollebo
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Anna Bellizzi
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Dominique H Cossari
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Julian Salkind
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Mahmut Safak
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Martyn K White
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
312
|
Jubierre L, Soriano A, Planells-Ferrer L, París-Coderch L, Tenbaum SP, Romero OA, Moubarak RS, Almazán-Moga A, Molist C, Roma J, Navarro S, Noguera R, Sánchez-Céspedes M, Comella JX, Palmer HG, Sánchez de Toledo J, Gallego S, Segura MF. BRG1/SMARCA4 is essential for neuroblastoma cell viability through modulation of cell death and survival pathways. Oncogene 2016; 35:5179-90. [PMID: 26996667 DOI: 10.1038/onc.2016.50] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 10/29/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
Neuroblastoma (NB) is a neoplasm of the sympathetic nervous system, and is the most common solid tumor of infancy. NBs are very heterogeneous, with a clinical course ranging from spontaneous regression to resistance to all current forms of treatment. High-risk patients need intense chemotherapy, and only 30-40% will be cured. Relapsed or metastatic tumors acquire multi-drug resistance, raising the need for alternative treatments. Owing to the diverse mechanisms that are responsible of NB chemoresistance, we aimed to target epigenetic factors that control multiple pathways to bypass therapy resistance. We found that the SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 4 (SMARCA4/BRG1) was consistently upregulated in advanced stages of NB, with high BRG1 levels being indicative of poor outcome. Loss-of-function experiments in vitro and in vivo showed that BRG1 is essential for the proliferation of NB cells. Furthermore, whole-genome transcriptome analysis revealed that BRG1 controls the expression of key elements of oncogenic pathways such as PI3K/AKT and BCL2, which offers a promising new combination therapy for high-risk NB.
Collapse
Affiliation(s)
- L Jubierre
- Laboratory of Translational Research in Child and Adolescent Cancer. Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - A Soriano
- Laboratory of Translational Research in Child and Adolescent Cancer. Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | | | - L París-Coderch
- Laboratory of Translational Research in Child and Adolescent Cancer. Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - S P Tenbaum
- Vall d'Hebron Institut of Oncology (VHIO), Stem Cell and Cancer Laboratory, Barcelona, Spain
| | - O A Romero
- Epigenetic and Cancer Biology Program-PEBC/Bellvitge Biomedical Research Institute-IDIBELL Barcelona, Barcelona, Spain
| | - R S Moubarak
- Cell Signaling and Apoptosis Group, VHIR-UAB, Barcelona, Spain
| | - A Almazán-Moga
- Laboratory of Translational Research in Child and Adolescent Cancer. Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - C Molist
- Laboratory of Translational Research in Child and Adolescent Cancer. Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - J Roma
- Laboratory of Translational Research in Child and Adolescent Cancer. Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - S Navarro
- School of Medicine, University of Valencia, Valencia, Spain
| | - R Noguera
- School of Medicine, University of Valencia, Valencia, Spain
| | | | - J X Comella
- Cell Signaling and Apoptosis Group, VHIR-UAB, Barcelona, Spain
| | - H G Palmer
- Vall d'Hebron Institut of Oncology (VHIO), Stem Cell and Cancer Laboratory, Barcelona, Spain
| | - J Sánchez de Toledo
- Laboratory of Translational Research in Child and Adolescent Cancer. Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - S Gallego
- Laboratory of Translational Research in Child and Adolescent Cancer. Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - M F Segura
- Laboratory of Translational Research in Child and Adolescent Cancer. Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| |
Collapse
|
313
|
Bultman SJ, Holley DW, G de Ridder G, Pizzo SV, Sidorova TN, Murray KT, Jensen BC, Wang Z, Bevilacqua A, Chen X, Quintana MT, Tannu M, Rosson GB, Pandya K, Willis MS. BRG1 and BRM SWI/SNF ATPases redundantly maintain cardiomyocyte homeostasis by regulating cardiomyocyte mitophagy and mitochondrial dynamics in vivo. Cardiovasc Pathol 2016; 25:258-269. [PMID: 27039070 DOI: 10.1016/j.carpath.2016.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/24/2016] [Accepted: 02/27/2016] [Indexed: 12/13/2022] Open
Abstract
There has been an increasing recognition that mitochondrial perturbations play a central role in human heart failure. Mitochondrial networks, whose function is to maintain the regulation of mitochondrial biogenesis, autophagy ('mitophagy') and mitochondrial fusion/fission, are new potential therapeutic targets. Yet our understanding of the molecular underpinning of these processes is just emerging. We recently identified a role of the SWI/SNF ATP-dependent chromatin remodeling complexes in the metabolic homeostasis of the adult cardiomyocyte using cardiomyocyte-specific and inducible deletion of the SWI/SNF ATPases BRG1 and BRM in adult mice (Brg1/Brm double mutant mice). To build upon these observations in early altered metabolism, the present study looks at the subsequent alterations in mitochondrial quality control mechanisms in the impaired adult cardiomyocyte. We identified that Brg1/Brm double-mutant mice exhibited increased mitochondrial biogenesis, increases in 'mitophagy', and alterations in mitochondrial fission and fusion that led to small, fragmented mitochondria. Mechanistically, increases in the autophagy and mitophagy-regulated proteins Beclin1 and Bnip3 were identified, paralleling changes seen in human heart failure. Evidence for perturbed cardiac mitochondrial dynamics included decreased mitochondria size, reduced numbers of mitochondria, and an altered expression of genes regulating fusion (Mfn1, Opa1) and fission (Drp1). We also identified cardiac protein amyloid accumulation (aggregated fibrils) during disease progression along with an increase in pre-amyloid oligomers and an upregulated unfolded protein response including increased GRP78, CHOP, and IRE-1 signaling. Together, these findings described a role for BRG1 and BRM in mitochondrial quality control, by regulating mitochondrial number, mitophagy, and mitochondrial dynamics not previously recognized in the adult cardiomyocyte. As critical to the pathogenesis of heart failure, epigenetic mechanisms like SWI/SNF chromatin remodeling seem more intimately linked to cardiac function and mitochondrial quality control mechanisms than previously realized.
Collapse
Affiliation(s)
- Scott J Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Darcy Wood Holley
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | - Tatiana N Sidorova
- Departments of Medicine and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Katherine T Murray
- Departments of Medicine and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Brian C Jensen
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Zhongjing Wang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Ariana Bevilacqua
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xin Chen
- Department of Neurosurgery, Shandong Provincial Hospital affiliated to Shandong University, 250021, Jinan, PR China
| | - Megan T Quintana
- Department of Surgery, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Manasi Tannu
- School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gary B Rosson
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
314
|
Stonestrom AJ, Hsu SC, Werner MT, Blobel GA. Erythropoiesis provides a BRD's eye view of BET protein function. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 19:23-28. [PMID: 27769353 PMCID: PMC5116323 DOI: 10.1016/j.ddtec.2016.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 06/06/2023]
Abstract
Pharmacologic inhibitors of the bromodomain and extra-terminal motif (BET) protein family are in clinical trials for the treatment of hematologic malignancies, yet the functions of individual BET proteins remain largely uncharacterized. We review the molecular roles of BETs in the context of erythropoiesis. Studies in this lineage have provided valuable insights into their mechanisms of action, and helped define the individual and overlapping functions of BET protein family members BRD2, BRD3, and BRD4. These studies have important ramifications for our understanding of the molecular and physiologic roles of BET proteins, and provide a framework for elucidating some of the beneficial and adverse effects of pharmacologic inhibitors.
Collapse
Affiliation(s)
- Aaron J Stonestrom
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Sarah C Hsu
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Michael T Werner
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
315
|
Constitutive NF-κB activation in AML: Causes and treatment strategies. Crit Rev Oncol Hematol 2016; 98:35-44. [DOI: 10.1016/j.critrevonc.2015.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/12/2015] [Accepted: 10/01/2015] [Indexed: 01/01/2023] Open
|
316
|
Zinzalla G. A New Way Forward in Cancer Drug Discovery: Inhibiting the SWI/SNF Chromatin Remodelling Complex. Chembiochem 2016; 17:677-82. [PMID: 26684344 DOI: 10.1002/cbic.201500565] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 12/24/2022]
Abstract
Mutations in subunits of the SWI/SNF chromatin remodelling complex are found in 20 % of human cancers. At face value, this would appear to indicate that this multiprotein complex is a potent tumour suppressor. However, it has recently emerged that some mutations in the SWI/SNF complex can have a gain-of-function effect and that in other tumours, such as pancreatic cancer, leukaemia, and breast cancer, the wild-type complex is used to drive cancer. Thus, paradoxically, this "tumour suppressor" has become an attractive target for developing anticancer agents. The SWI/SNF complex makes several protein-protein interactions both within the complex and with a wide range of transcription factors, and targeting these protein-protein interactions is emerging as the best approach to modulating the activity of the complex selectively.
Collapse
Affiliation(s)
- Giovanna Zinzalla
- Microbiology, Tumour and Cell Biology (MTC), and Science for Life Laboratory (SciLifeLab), Karolinska Institutet, Tomtebodavägen 23A, Stockholm, 171 65, Sweden.
| |
Collapse
|
317
|
Frühwald MC, Biegel JA, Bourdeaut F, Roberts CWM, Chi SN. Atypical teratoid/rhabdoid tumors-current concepts, advances in biology, and potential future therapies. Neuro Oncol 2016; 18:764-78. [PMID: 26755072 DOI: 10.1093/neuonc/nov264] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/27/2015] [Indexed: 01/05/2023] Open
Abstract
Atypical teratoid/rhabdoid tumor (AT/RT) is the most common malignant CNS tumor of children below 6 months of age. The majority of AT/RTs demonstrate genomic alterations in SMARCB1 (INI1, SNF5, BAF47) or, to a lesser extent, SMARCA4 (BRG1) of the SWItch/sucrose nonfermentable chromatin remodeling complex. Recent transcription and methylation profiling studies suggest the existence of molecular subgroups. Thus, at the root of these seemingly enigmatic tumors lies a network of factors related to epigenetic regulation, which is not yet completely understood. While conventional-type chemotherapy may have significant survival benefit for certain patients, it remains to be determined which patients will eventually prove resistant to chemotherapy and thus need novel therapeutic strategies. Elucidation of the molecular consequences of a disturbed epigenome has led to the identification of a series of transduction cascades, which may be targeted for therapy. Among these are the pathways of cyclin D1/cyclin-dependent kinases 4 and 6, Hedgehog/GLI1, Wnt/ß-catenin, enhancer of zeste homolog 2, and aurora kinase A, among others. Compounds specifically targeting these pathways or agents that alter the epigenetic state of the cell are currently being evaluated in preclinical settings and in experimental clinical trials for AT/RT.
Collapse
Affiliation(s)
- Michael C Frühwald
- Children's Hospital and Swabian Children's Cancer Center, Augsburg, Germany (M.C.F.); Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California (J.A.B.); INSERM U830, Laboratory of Genetics and Biology of Cancers, and Department of Pediatric Oncology, Curie Institute, Paris, France (F.B.); Comprehensive Cancer Center and Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee (C.W.M.R.); Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (S.N.C.); Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts (S.N.C.); Department of Pediatrics, Harvard Medical School, Boston, Massachusetts (S.N.C.)
| | - Jaclyn A Biegel
- Children's Hospital and Swabian Children's Cancer Center, Augsburg, Germany (M.C.F.); Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California (J.A.B.); INSERM U830, Laboratory of Genetics and Biology of Cancers, and Department of Pediatric Oncology, Curie Institute, Paris, France (F.B.); Comprehensive Cancer Center and Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee (C.W.M.R.); Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (S.N.C.); Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts (S.N.C.); Department of Pediatrics, Harvard Medical School, Boston, Massachusetts (S.N.C.)
| | - Franck Bourdeaut
- Children's Hospital and Swabian Children's Cancer Center, Augsburg, Germany (M.C.F.); Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California (J.A.B.); INSERM U830, Laboratory of Genetics and Biology of Cancers, and Department of Pediatric Oncology, Curie Institute, Paris, France (F.B.); Comprehensive Cancer Center and Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee (C.W.M.R.); Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (S.N.C.); Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts (S.N.C.); Department of Pediatrics, Harvard Medical School, Boston, Massachusetts (S.N.C.)
| | - Charles W M Roberts
- Children's Hospital and Swabian Children's Cancer Center, Augsburg, Germany (M.C.F.); Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California (J.A.B.); INSERM U830, Laboratory of Genetics and Biology of Cancers, and Department of Pediatric Oncology, Curie Institute, Paris, France (F.B.); Comprehensive Cancer Center and Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee (C.W.M.R.); Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (S.N.C.); Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts (S.N.C.); Department of Pediatrics, Harvard Medical School, Boston, Massachusetts (S.N.C.)
| | - Susan N Chi
- Children's Hospital and Swabian Children's Cancer Center, Augsburg, Germany (M.C.F.); Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California (J.A.B.); INSERM U830, Laboratory of Genetics and Biology of Cancers, and Department of Pediatric Oncology, Curie Institute, Paris, France (F.B.); Comprehensive Cancer Center and Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee (C.W.M.R.); Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (S.N.C.); Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts (S.N.C.); Department of Pediatrics, Harvard Medical School, Boston, Massachusetts (S.N.C.)
| |
Collapse
|
318
|
Hewitt KJ, Johnson KD, Gao X, Keles S, Bresnick EH. The Hematopoietic Stem and Progenitor Cell Cistrome: GATA Factor-Dependent cis-Regulatory Mechanisms. Curr Top Dev Biol 2016; 118:45-76. [PMID: 27137654 PMCID: PMC8572122 DOI: 10.1016/bs.ctdb.2016.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Transcriptional regulators mediate the genesis and function of the hematopoietic system by binding complex ensembles of cis-regulatory elements to establish genetic networks. While thousands to millions of any given cis-element resides in a genome, how transcriptional regulators select these sites and how site attributes dictate functional output is not well understood. An instructive system to address this problem involves the GATA family of transcription factors that control vital developmental and physiological processes and are linked to multiple human pathologies. Although GATA factors bind DNA motifs harboring the sequence GATA, only a very small subset of these abundant motifs are occupied in genomes. Mechanistic studies revealed a unique configuration of a GATA factor-regulated cis-element consisting of an E-box and a downstream GATA motif separated by a short DNA spacer. GATA-1- or GATA-2-containing multiprotein complexes at these composite elements control transcription of genes critical for hematopoietic stem cell emergence in the mammalian embryo, hematopoietic progenitor cell regulation, and erythroid cell maturation. Other constituents of the complex include the basic helix-loop-loop transcription factor Scl/TAL1, its heterodimeric partner E2A, and the Lim domain proteins LMO2 and LDB1. This chapter reviews the structure/function of E-box-GATA composite cis-elements, which collectively constitute an important sector of the hematopoietic stem and progenitor cell cistrome.
Collapse
Affiliation(s)
- Kyle J. Hewitt
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program
| | - Kirby D. Johnson
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program
| | - Xin Gao
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health
| | - Emery H. Bresnick
- University of Wisconsin School of Medicine and Public Health, Department of Cell and Regenerative Biology, Carbone Cancer Center, Madison, WI 53705,UW-Madison Blood Research Program,Corresponding author:
| |
Collapse
|
319
|
Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nat Genet 2015; 48:176-82. [PMID: 26656844 PMCID: PMC4857881 DOI: 10.1038/ng.3470] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/20/2015] [Indexed: 12/14/2022]
Abstract
Whole genome analysis approaches are revealing recurrent cancer-associated somatic alterations in non-coding DNA regions. We combined somatic copy number analysis of 12 tumor types with tissue-specific epigenetic profiling to identify significant regions of focal amplification harboring super-enhancers. Copy-number gains of non-coding regions harboring super-enhancers near KLF5, USP12, PARD6B and MYC are associated with over-expression of these cancer-related genes. We show that two distinct focal amplifications of super-enhancers 3′ to MYC in lung adenocarcinoma (MYC-LASE) and endometrial carcinoma (MYC-ECSE), are physically associated with the MYC promoter and correlate with MYC over-expression. CRISPR/Cas9-mediated repression or deletion of a constituent enhancer within the MYC-LASE region led to significant reductions in the expression of MYC and its target genes, and to the impairment of anchorage-independent and clonogenic growth, consistent with an oncogenic function. Our results demonstrate that genomic amplification of super-enhancers represents a common mechanism to activate cancer driver genes in multiple cancer types.
Collapse
|
320
|
Shen C, Ipsaro JJ, Shi J, Milazzo JP, Wang E, Roe JS, Suzuki Y, Pappin DJ, Joshua-Tor L, Vakoc CR. NSD3-Short Is an Adaptor Protein that Couples BRD4 to the CHD8 Chromatin Remodeler. Mol Cell 2015; 60:847-59. [PMID: 26626481 DOI: 10.1016/j.molcel.2015.10.033] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/21/2015] [Accepted: 10/20/2015] [Indexed: 01/08/2023]
Abstract
The bromodomain and extraterminal (BET) protein BRD4 is a therapeutic target in acute myeloid leukemia (AML). Here, we demonstrate that the AML maintenance function of BRD4 requires its interaction with NSD3, which belongs to a subfamily of H3K36 methyltransferases. Unexpectedly, AML cells were found to only require a short isoform of NSD3 that lacks the methyltransferase domain. We show that NSD3-short is an adaptor protein that sustains leukemia by linking BRD4 to the CHD8 chromatin remodeler, by using a PWWP chromatin reader module, and by employing an acidic transactivation domain. Genetic targeting of NSD3 or CHD8 mimics the phenotypic and transcriptional effects of BRD4 inhibition. Furthermore, BRD4, NSD3, and CHD8 colocalize across the AML genome, and each is released from super-enhancer regions upon chemical inhibition of BET bromodomains. These findings suggest that BET inhibitors exert therapeutic effects in leukemia by evicting BRD4-NSD3-CHD8 complexes from chromatin to suppress transcription.
Collapse
Affiliation(s)
- Chen Shen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jonathan J Ipsaro
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA
| | - Junwei Shi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph P Milazzo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Eric Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jae-Seok Roe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Leemor Joshua-Tor
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
321
|
Cruickshank VA, Sroczynska P, Sankar A, Miyagi S, Rundsten CF, Johansen JV, Helin K. SWI/SNF Subunits SMARCA4, SMARCD2 and DPF2 Collaborate in MLL-Rearranged Leukaemia Maintenance. PLoS One 2015; 10:e0142806. [PMID: 26571505 PMCID: PMC4646637 DOI: 10.1371/journal.pone.0142806] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 10/27/2015] [Indexed: 12/23/2022] Open
Abstract
Alterations in chromatin structure caused by deregulated epigenetic mechanisms collaborate with underlying genetic lesions to promote cancer. SMARCA4/BRG1, a core component of the SWI/SNF ATP-dependent chromatin-remodelling complex, has been implicated by its mutational spectrum as exerting a tumour-suppressor function in many solid tumours; recently however, it has been reported to sustain leukaemogenic transformation in MLL-rearranged leukaemia in mice. Here we further explore the role of SMARCA4 and the two SWI/SNF subunits SMARCD2/BAF60B and DPF2/BAF45D in leukaemia. We observed the selective requirement for these proteins for leukaemic cell expansion and self-renewal in-vitro as well as in leukaemia. Gene expression profiling in human cells of each of these three factors suggests that they have overlapping functions in leukaemia. The gene expression changes induced by loss of the three proteins demonstrate that they are required for the expression of haematopoietic stem cell associated genes but in contrast to previous results obtained in mouse cells, the three proteins are not required for the expression of c-MYC regulated genes.
Collapse
Affiliation(s)
- V. Adam Cruickshank
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Patrycja Sroczynska
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Aditya Sankar
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Satoru Miyagi
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
- The Danish Stem Cell Centre (Danstem), University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Carsten Friis Rundsten
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Jens Vilstrup Johansen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
- The Danish Stem Cell Centre (Danstem), University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
322
|
Wu Q, Madany P, Akech J, Dobson JR, Douthwright S, Browne G, Colby JL, Winter GE, Bradner JE, Pratap J, Sluder G, Bhargava R, Chiosea SI, van Wijnen AJ, Stein JL, Stein GS, Lian JB, Nickerson JA, Imbalzano AN. The SWI/SNF ATPases Are Required for Triple Negative Breast Cancer Cell Proliferation. J Cell Physiol 2015; 230:2683-94. [PMID: 25808524 PMCID: PMC4516601 DOI: 10.1002/jcp.24991] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/18/2015] [Indexed: 12/30/2022]
Abstract
The Brahma (BRM) and Brahma-related Gene 1 (BRG1) ATPases are highly conserved homologs that catalyze the chromatin remodeling functions of the multi-subunit human SWI/SNF chromatin remodeling enzymes in a mutually exclusive manner. SWI/SNF enzyme subunits are mutated or missing in many cancer types, but are overexpressed without apparent mutation in other cancers. Here, we report that both BRG1 and BRM are overexpressed in most primary breast cancers independent of the tumor's receptor status. Knockdown of either ATPase in a triple negative breast cancer cell line reduced tumor formation in vivo and cell proliferation in vitro. Fewer cells in S phase and an extended cell cycle progression time were observed without any indication of apoptosis, senescence, or alterations in migration or attachment properties. Combined knockdown of BRM and BRG1 showed additive effects in the reduction of cell proliferation and time required for completion of cell cycle, suggesting that these enzymes promote cell cycle progression through independent mechanisms. Knockout of BRG1 or BRM using CRISPR/Cas9 technology resulted in the loss of viability, consistent with a requirement for both enzymes in triple negative breast cancer cells.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Pasil Madany
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jacqueline Akech
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jason R Dobson
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Molecular Biology, Cell Biology and Biochemistry, Center for Computational Molecular Biology, Brown University, Providence, Rhode Island
- Department of Computer Science, Brown University, Providence, Rhode Island
| | - Stephen Douthwright
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Gillian Browne
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Biochemistry and Vermont Cancer Center for Basic and Translational Research, University of Vermont College of Medicine, Burlington, Vermont
| | - Jennifer L Colby
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Georg E Winter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jitesh Pratap
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Anatomy and Cell Biology, Rush University, Chicago, Illinois
| | - Greenfield Sluder
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Rohit Bhargava
- Department of Pathology, Magee-Womens Hospital, Pittsburgh, Pennsylvania
| | - Simion I Chiosea
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Andre J van Wijnen
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Janet L Stein
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Biochemistry and Vermont Cancer Center for Basic and Translational Research, University of Vermont College of Medicine, Burlington, Vermont
| | - Gary S Stein
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Biochemistry and Vermont Cancer Center for Basic and Translational Research, University of Vermont College of Medicine, Burlington, Vermont
| | - Jane B Lian
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Biochemistry and Vermont Cancer Center for Basic and Translational Research, University of Vermont College of Medicine, Burlington, Vermont
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jeffrey A Nickerson
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
323
|
Fedorov O, Castex J, Tallant C, Owen DR, Martin S, Aldeghi M, Monteiro O, Filippakopoulos P, Picaud S, Trzupek JD, Gerstenberger BS, Bountra C, Willmann D, Wells C, Philpott M, Rogers C, Biggin PC, Brennan PE, Bunnage ME, Schüle R, Günther T, Knapp S, Müller S. Selective targeting of the BRG/PB1 bromodomains impairs embryonic and trophoblast stem cell maintenance. SCIENCE ADVANCES 2015; 1:e1500723. [PMID: 26702435 PMCID: PMC4681344 DOI: 10.1126/sciadv.1500723] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/31/2015] [Indexed: 05/13/2023]
Abstract
Mammalian SWI/SNF [also called Brg/Brahma-associated factors (BAFs)] are evolutionarily conserved chromatin-remodeling complexes regulating gene transcription programs during development and stem cell differentiation. BAF complexes contain an ATP (adenosine 5'-triphosphate)-driven remodeling enzyme (either BRG1 or BRM) and multiple protein interaction domains including bromodomains, an evolutionary conserved acetyl lysine-dependent protein interaction motif that recruits transcriptional regulators to acetylated chromatin. We report a potent and cell active protein interaction inhibitor, PFI-3, that selectively binds to essential BAF bromodomains. The high specificity of PFI-3 was achieved on the basis of a novel binding mode of a salicylic acid head group that led to the replacement of water molecules typically maintained in other bromodomain inhibitor complexes. We show that exposure of embryonic stem cells to PFI-3 led to deprivation of stemness and deregulated lineage specification. Furthermore, differentiation of trophoblast stem cells in the presence of PFI-3 was markedly enhanced. The data present a key function of BAF bromodomains in stem cell maintenance and differentiation, introducing a novel versatile chemical probe for studies on acetylation-dependent cellular processes controlled by BAF remodeling complexes.
Collapse
Affiliation(s)
- Oleg Fedorov
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Josefina Castex
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacher Strasse 66, 79106 Freiburg, Germany
| | - Cynthia Tallant
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Dafydd R. Owen
- Pfizer Worldwide Medicinal Chemistry, 610 Main Street, Cambridge, MA 02139, USA
| | - Sarah Martin
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Matteo Aldeghi
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Octovia Monteiro
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 7DQ, UK
| | - Sarah Picaud
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - John D. Trzupek
- Pfizer Worldwide Medicinal Chemistry, 610 Main Street, Cambridge, MA 02139, USA
| | | | - Chas Bountra
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Dominica Willmann
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacher Strasse 66, 79106 Freiburg, Germany
| | - Christopher Wells
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Martin Philpott
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Catherine Rogers
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Philip C. Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Paul E. Brennan
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Mark E. Bunnage
- Pfizer Worldwide Medicinal Chemistry, 610 Main Street, Cambridge, MA 02139, USA
| | - Roland Schüle
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacher Strasse 66, 79106 Freiburg, Germany
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, 79106 Freiburg, Germany
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Thomas Günther
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacher Strasse 66, 79106 Freiburg, Germany
| | - Stefan Knapp
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Susanne Müller
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
324
|
Jégu T, Domenichini S, Blein T, Ariel F, Christ A, Kim SK, Crespi M, Boutet-Mercey S, Mouille G, Bourge M, Hirt H, Bergounioux C, Raynaud C, Benhamed M. A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture. PLoS One 2015; 10:e0138276. [PMID: 26457678 PMCID: PMC4601769 DOI: 10.1371/journal.pone.0138276] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.
Collapse
Affiliation(s)
- Teddy Jégu
- Institut de Biologie des Plantes, UMR8618 CNRS-Université Paris-Sud XI, Saclay Plant Sciences, Orsay, France
| | - Séverine Domenichini
- Institut de Biologie des Plantes, UMR8618 CNRS-Université Paris-Sud XI, Saclay Plant Sciences, Orsay, France
| | - Thomas Blein
- Institut des Sciences du Végétal, UPR2355 CNRS, Saclay Plant Sciences, Gif-sur-Yvette, France
| | - Federico Ariel
- Institut des Sciences du Végétal, UPR2355 CNRS, Saclay Plant Sciences, Gif-sur-Yvette, France
| | - Aurélie Christ
- Institut des Sciences du Végétal, UPR2355 CNRS, Saclay Plant Sciences, Gif-sur-Yvette, France
| | - Soon-Kap Kim
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology KAUST, Thuwal, Saudi Arabia
| | - Martin Crespi
- Institut des Sciences du Végétal, UPR2355 CNRS, Saclay Plant Sciences, Gif-sur-Yvette, France
| | | | - Grégory Mouille
- Institut Jean-Pierre Bourgin, UMR1318 INRA/AgroParisTech, Versailles, France
| | - Mickaël Bourge
- Pôle de Biologie Cellulaire, Imagif, Centre de Recherche de Gif, CNRS, IFR87, Gif-sur-Yvette, France
| | - Heribert Hirt
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology KAUST, Thuwal, Saudi Arabia
| | - Catherine Bergounioux
- Institut de Biologie des Plantes, UMR8618 CNRS-Université Paris-Sud XI, Saclay Plant Sciences, Orsay, France
| | - Cécile Raynaud
- Institut de Biologie des Plantes, UMR8618 CNRS-Université Paris-Sud XI, Saclay Plant Sciences, Orsay, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, UMR8618 CNRS-Université Paris-Sud XI, Saclay Plant Sciences, Orsay, France
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology KAUST, Thuwal, Saudi Arabia
- * E-mail:
| |
Collapse
|
325
|
Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. MYC, Metabolism, and Cancer. Cancer Discov 2015; 5:1024-39. [PMID: 26382145 DOI: 10.1158/2159-8290.cd-15-0507] [Citation(s) in RCA: 888] [Impact Index Per Article: 98.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/10/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED The MYC oncogene encodes a transcription factor, MYC, whose broad effects make its precise oncogenic role enigmatically elusive. The evidence to date suggests that MYC triggers selective gene expression amplification to promote cell growth and proliferation. Through its targets, MYC coordinates nutrient acquisition to produce ATP and key cellular building blocks that increase cell mass and trigger DNA replication and cell division. In cancer, genetic and epigenetic derangements silence checkpoints and unleash MYC's cell growth- and proliferation-promoting metabolic activities. Unbridled growth in response to deregulated MYC expression creates dependence on MYC-driven metabolic pathways, such that reliance on specific metabolic enzymes provides novel targets for cancer therapy. SIGNIFICANCE MYC's expression and activity are tightly regulated in normal cells by multiple mechanisms, including a dependence upon growth factor stimulation and replete nutrient status. In cancer, genetic deregulation of MYC expression and loss of checkpoint components, such as TP53, permit MYC to drive malignant transformation. However, because of the reliance of MYC-driven cancers on specific metabolic pathways, synthetic lethal interactions between MYC overexpression and specific enzyme inhibitors provide novel cancer therapeutic opportunities.
Collapse
Affiliation(s)
- Zachary E Stine
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zandra E Walton
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian J Altman
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Annie L Hsieh
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chi V Dang
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
326
|
Rathert P, Roth M, Neumann T, Muerdter F, Roe JS, Muhar M, Deswal S, Cerny-Reiterer S, Peter B, Jude J, Hoffmann T, Boryń ŁM, Axelsson E, Schweifer N, Tontsch-Grunt U, Dow LE, Gianni D, Pearson M, Valent P, Stark A, Kraut N, Vakoc CR, Zuber J. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature 2015; 525:543-547. [PMID: 26367798 DOI: 10.1038/nature14898] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/07/2015] [Indexed: 12/18/2022]
Abstract
Following the discovery of BRD4 as a non-oncogene addiction target in acute myeloid leukaemia (AML), bromodomain and extra terminal protein (BET) inhibitors are being explored as a promising therapeutic avenue in numerous cancers. While clinical trials have reported single-agent activity in advanced haematological malignancies, mechanisms determining the response to BET inhibition remain poorly understood. To identify factors involved in primary and acquired BET resistance in leukaemia, here we perform a chromatin-focused RNAi screen in a sensitive MLL-AF9;Nras(G12D)-driven AML mouse model, and investigate dynamic transcriptional profiles in sensitive and resistant mouse and human leukaemias. Our screen shows that suppression of the PRC2 complex, contrary to effects in other contexts, promotes BET inhibitor resistance in AML. PRC2 suppression does not directly affect the regulation of Brd4-dependent transcripts, but facilitates the remodelling of regulatory pathways that restore the transcription of key targets such as Myc. Similarly, while BET inhibition triggers acute MYC repression in human leukaemias regardless of their sensitivity, resistant leukaemias are uniformly characterized by their ability to rapidly restore MYC transcription. This process involves the activation and recruitment of WNT signalling components, which compensate for the loss of BRD4 and drive resistance in various cancer models. Dynamic chromatin immunoprecipitation sequencing and self-transcribing active regulatory region sequencing of enhancer profiles reveal that BET-resistant states are characterized by remodelled regulatory landscapes, involving the activation of a focal MYC enhancer that recruits WNT machinery in response to BET inhibition. Together, our results identify and validate WNT signalling as a driver and candidate biomarker of primary and acquired BET resistance in leukaemia, and implicate the rewiring of transcriptional programs as an important mechanism promoting resistance to BET inhibitors and, potentially, other chromatin-targeted therapies.
Collapse
Affiliation(s)
- Philipp Rathert
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Mareike Roth
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Tobias Neumann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Felix Muerdter
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Jae-Seok Roe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Matthias Muhar
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Sumit Deswal
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Sabine Cerny-Reiterer
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Barbara Peter
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Julian Jude
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Thomas Hoffmann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Łukasz M Boryń
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Elin Axelsson
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Norbert Schweifer
- Boehringer Ingelheim - Regional Center Vienna GmbH, 1121 Vienna, Austria
| | | | - Lukas E Dow
- Department of Medicine, Hematology & Medical Oncology, Weill Cornell Medical College, New York 10065, USA
| | - Davide Gianni
- Boehringer Ingelheim - Regional Center Vienna GmbH, 1121 Vienna, Austria
| | - Mark Pearson
- Boehringer Ingelheim - Regional Center Vienna GmbH, 1121 Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Norbert Kraut
- Boehringer Ingelheim - Regional Center Vienna GmbH, 1121 Vienna, Austria
| | | | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
327
|
Ucar D, Lin DI. Amplification of the bromodomain-containing protein 4 gene in ovarian high-grade serous carcinoma is associated with worse prognosis and survival. Mol Clin Oncol 2015; 3:1291-1294. [PMID: 26807235 DOI: 10.3892/mco.2015.622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/22/2015] [Indexed: 12/30/2022] Open
Abstract
High-grade serous carcinoma (HGSC) of the ovary is an aggressive and devastating neoplasm and the identification of novel therapeutic targets may result in a significant decrease in patient morbidity and mortality. Over the last few years, chromatin regulators have become attractive targets for cancer therapy. More specifically, bromodomain-containing protein 4 (BRD4), a protein that is associated with acetylated chromatin and transcriptional activation, has been shown to selectively regulate the transcription of key oncogenic drivers, such as CMYC, in several tumor types. The Cancer Genome Atlas (TCGA) Project has molecularly characterized the genome of ovarian serous carcinomas, which enabled us to study the association of genomic alterations of BRD4 with patient survival and clinicopathological characteristics. Our analysis using clinical and genomic data from the TCGA ovarian carcinoma samples revealed that somatic amplification of BRD4 (observed in 12% of the cases) was correlated with increased BRD4 mRNA levels and is significantly associated with worse overall and progression-free survival compared to wild-type cases. These findings support the hypothesis that future studies and trials investigating newly developed BRD4 inhibitors are required in a subset of patients with ovarian HGSC.
Collapse
Affiliation(s)
- Duygu Ucar
- The Jackson Laboratory For Genomic Medicine, Farmington, CT 06030, USA
| | - Douglas I Lin
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
328
|
Nakamura H, Arai Y, Totoki Y, Shirota T, Elzawahry A, Kato M, Hama N, Hosoda F, Urushidate T, Ohashi S, Hiraoka N, Ojima H, Shimada K, Okusaka T, Kosuge T, Miyagawa S, Shibata T. Genomic spectra of biliary tract cancer. Nat Genet 2015; 47:1003-10. [PMID: 26258846 DOI: 10.1038/ng.3375] [Citation(s) in RCA: 853] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/09/2015] [Indexed: 02/07/2023]
Abstract
The incidence of biliary tract cancer (BTC), including intrahepatic (ICC) and extrahepatic (ECC) cholangiocarcinoma and gallbladder cancer, has increased globally; however, no effective targeted molecular therapies have been approved at the present time. Here we molecularly characterized 260 BTCs and uncovered spectra of genomic alterations that included new potential therapeutic targets. Gradient spectra of mutational signatures with a higher burden of the APOBEC-associated mutation signature were observed in gallbladder cancer and ECC. Thirty-two significantly altered genes, including ELF3, were identified, and nearly 40% of cases harbored targetable genetic alterations. Gene fusions involving FGFR2 and PRKACA or PRKACB preferentially occurred in ICC and ECC, respectively, and the subtype-associated prevalence of actionable growth factor-mediated signals was noteworthy. The subgroup with the poorest prognosis had significant enrichment of hypermutated tumors and a characteristic elevation in the expression of immune checkpoint molecules. Accordingly, immune-modulating therapies might also be potentially promising options for these patients.
Collapse
Affiliation(s)
- Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tomoki Shirota
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan.,First Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Asmaa Elzawahry
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Mamoru Kato
- Department of Bioinformatics, National Cancer Center Research Institute, Tokyo, Japan
| | - Natsuko Hama
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Fumie Hosoda
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tomoko Urushidate
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shoko Ohashi
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Nobuyoshi Hiraoka
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Hidenori Ojima
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan.,Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuaki Shimada
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoo Kosuge
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Shinichi Miyagawa
- First Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan.,Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
329
|
Xiang JF, Yang L, Chen LL. The long noncoding RNA regulation at the MYC locus. Curr Opin Genet Dev 2015; 33:41-8. [PMID: 26254776 DOI: 10.1016/j.gde.2015.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 07/15/2015] [Accepted: 07/20/2015] [Indexed: 01/17/2023]
Abstract
Aberrant expression of long noncoding RNAs (lncRNAs) has been linked to cancers. The MYC oncoprotein is a key contributor to the development of many human tumors. Recent studies have revealed that a number of lncRNAs originating from the human 8q24 locus previously known to corresponding to a 'gene desert' are transcribed and play important roles in MYC regulation. In this review, we highlight recent progress in how these lncRNAs participate in control of MYC levels in normal and tumor cells.
Collapse
Affiliation(s)
- Jian-Feng Xiang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China.
| |
Collapse
|
330
|
Ryan RJH, Drier Y, Whitton H, Cotton MJ, Kaur J, Issner R, Gillespie S, Epstein CB, Nardi V, Sohani AR, Hochberg EP, Bernstein BE. Detection of Enhancer-Associated Rearrangements Reveals Mechanisms of Oncogene Dysregulation in B-cell Lymphoma. Cancer Discov 2015; 5:1058-71. [PMID: 26229090 DOI: 10.1158/2159-8290.cd-15-0370] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/27/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED B-cell lymphomas frequently contain genomic rearrangements that lead to oncogene activation by heterologous distal regulatory elements. We used a novel approach called "pinpointing enhancer-associated rearrangements by chromatin immunoprecipitation," or PEAR-ChIP, to simultaneously map enhancer activity and proximal rearrangements in lymphoma cell lines and patient biopsies. This method detects rearrangements involving known cancer genes, including CCND1, BCL2, MYC, PDCD1LG2, NOTCH1, CIITA, and SGK1, as well as novel enhancer duplication events of likely oncogenic significance. We identify lymphoma subtype-specific enhancers in the MYC locus that are silenced in lymphomas with MYC-activating rearrangements and are associated with germline polymorphisms that alter lymphoma risk. We show that BCL6-locus enhancers are acetylated by the BCL6-activating transcription factor MEF2B, and can undergo genomic duplication, or target the MYC promoter for activation in the context of a "pseudo-double-hit" t(3;8)(q27;q24) rearrangement linking the BCL6 and MYC loci. Our work provides novel insights regarding enhancer-driven oncogene activation in lymphoma. SIGNIFICANCE We demonstrate a novel approach for simultaneous detection of genomic rearrangements and enhancer activity in tumor biopsies. We identify novel mechanisms of enhancer-driven regulation of the oncogenes MYC and BCL6, and show that the BCL6 locus can serve as an enhancer donor in an "enhancer hijacking" translocation.
Collapse
Affiliation(s)
- Russell J H Ryan
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard University and MIT, Cambridge, Massachusetts
| | - Yotam Drier
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard University and MIT, Cambridge, Massachusetts
| | - Holly Whitton
- Broad Institute of Harvard University and MIT, Cambridge, Massachusetts
| | - M Joel Cotton
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard University and MIT, Cambridge, Massachusetts
| | - Jasleen Kaur
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard University and MIT, Cambridge, Massachusetts
| | - Robbyn Issner
- Broad Institute of Harvard University and MIT, Cambridge, Massachusetts
| | - Shawn Gillespie
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard University and MIT, Cambridge, Massachusetts
| | - Charles B Epstein
- Broad Institute of Harvard University and MIT, Cambridge, Massachusetts
| | - Valentina Nardi
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Aliyah R Sohani
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ephraim P Hochberg
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bradley E Bernstein
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard University and MIT, Cambridge, Massachusetts.
| |
Collapse
|
331
|
Vangamudi B, Paul TA, Shah PK, Kost-Alimova M, Nottebaum L, Shi X, Zhan Y, Leo E, Mahadeshwar HS, Protopopov A, Futreal A, Tieu TN, Peoples M, Heffernan TP, Marszalek JR, Toniatti C, Petrocchi A, Verhelle D, Owen DR, Draetta G, Jones P, Palmer WS, Sharma S, Andersen JN. The SMARCA2/4 ATPase Domain Surpasses the Bromodomain as a Drug Target in SWI/SNF-Mutant Cancers: Insights from cDNA Rescue and PFI-3 Inhibitor Studies. Cancer Res 2015; 75:3865-3878. [PMID: 26139243 DOI: 10.1158/0008-5472.can-14-3798] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/15/2015] [Indexed: 12/21/2022]
Abstract
The SWI/SNF multisubunit complex modulates chromatin structure through the activity of two mutually exclusive catalytic subunits, SMARCA2 and SMARCA4, which both contain a bromodomain and an ATPase domain. Using RNAi, cancer-specific vulnerabilities have been identified in SWI/SNF-mutant tumors, including SMARCA4-deficient lung cancer; however, the contribution of conserved, druggable protein domains to this anticancer phenotype is unknown. Here, we functionally deconstruct the SMARCA2/4 paralog dependence of cancer cells using bioinformatics, genetic, and pharmacologic tools. We evaluate a selective SMARCA2/4 bromodomain inhibitor (PFI-3) and characterize its activity in chromatin-binding and cell-functional assays focusing on cells with altered SWI/SNF complex (e.g., lung, synovial sarcoma, leukemia, and rhabdoid tumors). We demonstrate that PFI-3 is a potent, cell-permeable probe capable of displacing ectopically expressed, GFP-tagged SMARCA2-bromodomain from chromatin, yet contrary to target knockdown, the inhibitor fails to display an antiproliferative phenotype. Mechanistically, the lack of pharmacologic efficacy is reconciled by the failure of bromodomain inhibition to displace endogenous, full-length SMARCA2 from chromatin as determined by in situ cell extraction, chromatin immunoprecipitation, and target gene expression studies. Furthermore, using inducible RNAi and cDNA complementation (bromodomain- and ATPase-dead constructs), we unequivocally identify the ATPase domain, and not the bromodomain of SMARCA2, as the relevant therapeutic target with the catalytic activity suppressing defined transcriptional programs. Taken together, our complementary genetic and pharmacologic studies exemplify a general strategy for multidomain protein drug-target validation and in case of SMARCA2/4 highlight the potential for drugging the more challenging helicase/ATPase domain to deliver on the promise of synthetic-lethality therapy.
Collapse
Affiliation(s)
- Bhavatarini Vangamudi
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | | | - Parantu K Shah
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Maria Kost-Alimova
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | | | - Xi Shi
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Yanai Zhan
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Elisabetta Leo
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Harshad S Mahadeshwar
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Alexei Protopopov
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, TX
| | - Trang N Tieu
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Mike Peoples
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Timothy P Heffernan
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Joseph R Marszalek
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Carlo Toniatti
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Alessia Petrocchi
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | | | | | - Giulio Draetta
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Philip Jones
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Wylie S Palmer
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | | | - Jannik N Andersen
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| |
Collapse
|
332
|
Skulte KA, Phan L, Clark SJ, Taberlay PC. Chromatin remodeler mutations in human cancers: epigenetic implications. Epigenomics 2015; 6:397-414. [PMID: 25333849 DOI: 10.2217/epi.14.37] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chromatin remodeler complexes exhibit the ability to alter nucleosome composition and positions, with seemingly divergent roles in the regulation of chromatin architecture and gene expression. The outcome is directed by subunit variation and interactions with accessory factors. Recent studies have revealed that subunits of chromatin remodelers display an unexpectedly high mutation rate and/or are inactivated in a number of cancers. Consequently, a repertoire of epigenetic processes are likely to be affected, including interactions with histone modifying factors, as well as the ability to precisely modulate nucleosome positions, DNA methylation patterns and potentially, higher-order genome structure. However, the true significance of chromatin remodeler genetic aberrations in promoting a cascade of epigenetic changes, particularly during initiation and progression of cancer, remains largely unknown.
Collapse
Affiliation(s)
- Katherine A Skulte
- Chromatin Dynamics Group, Cancer Division, Garvan Institute of Medical Research, 394 Victoria Rd, Darlinghurst 2010, New South Wales, Australia
| | | | | | | |
Collapse
|
333
|
Roe JS, Mercan F, Rivera K, Pappin DJ, Vakoc CR. BET Bromodomain Inhibition Suppresses the Function of Hematopoietic Transcription Factors in Acute Myeloid Leukemia. Mol Cell 2015; 58:1028-39. [PMID: 25982114 PMCID: PMC4475489 DOI: 10.1016/j.molcel.2015.04.011] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/06/2015] [Accepted: 04/03/2015] [Indexed: 12/12/2022]
Abstract
The bromodomain and extraterminal (BET) protein BRD4 is a validated drug target in leukemia, yet its regulatory function in this disease is not well understood. Here, we show that BRD4 chromatin occupancy in acute myeloid leukemia closely correlates with the hematopoietic transcription factors (TFs) PU.1, FLI1, ERG, C/EBPα, C/EBPβ, and MYB at nucleosome-depleted enhancer and promoter regions. We provide evidence that these TFs, in conjunction with the lysine acetyltransferase activity of p300/CBP, facilitate BRD4 recruitment to their occupied sites to promote transcriptional activation. Chemical inhibition of BET bromodomains was found to suppress the functional output of each hematopoietic TF, thereby interfering with essential lineage-specific transcriptional circuits in this disease. These findings reveal a chromatin-based signaling cascade comprised of hematopoietic TFs, p300/CBP, and BRD4 that supports leukemia maintenance and is suppressed by BET bromodomain inhibition.
Collapse
Affiliation(s)
- Jae-Seok Roe
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Fatih Mercan
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Keith Rivera
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Christopher R Vakoc
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
334
|
Pindyurin AV, de Jong J, Akhtar W. TRIP through the chromatin: a high throughput exploration of enhancer regulatory landscapes. Genomics 2015; 106:171-177. [PMID: 26080039 DOI: 10.1016/j.ygeno.2015.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/01/2015] [Accepted: 06/09/2015] [Indexed: 11/25/2022]
Abstract
Enhancers are regulatory elements that promote gene expression in a spatio-temporal way and are involved in a wide range of developmental and disease processes. Both the identification and subsequent functional dissection of enhancers are key steps in understanding these processes. Several high-throughput approaches were recently developed for these purposes; however, in almost all cases enhancers are being tested outside their native chromatin context. Until recently, the analysis of enhancer activities at their native genomic locations was low throughput, laborious and time-consuming. Here, we discuss the potential of a powerful approach, TRIP, to study the functioning of enhancers in their native chromatin environments by introducing sensor constructs directly in the genome. TRIP allows for simultaneously analyzing the quantitative readout of numerous sensor constructs integrated at random locations in the genome. The high-throughput and flexible nature of TRIP opens up potential to study different aspects of enhancer biology at an unprecedented level.
Collapse
Affiliation(s)
- Alexey V Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Johann de Jong
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Waseem Akhtar
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
335
|
Chromatin Remodelers: From Function to Dysfunction. Genes (Basel) 2015; 6:299-324. [PMID: 26075616 PMCID: PMC4488666 DOI: 10.3390/genes6020299] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 12/20/2022] Open
Abstract
Chromatin remodelers are key players in the regulation of chromatin accessibility and nucleosome positioning on the eukaryotic DNA, thereby essential for all DNA dependent biological processes. Thus, it is not surprising that upon of deregulation of those molecular machines healthy cells can turn into cancerous cells. Even though the remodeling enzymes are very abundant and a multitude of different enzymes and chromatin remodeling complexes exist in the cell, the particular remodeling complex with its specific nucleosome positioning features must be at the right place at the right time in order to ensure the proper regulation of the DNA dependent processes. To achieve this, chromatin remodeling complexes harbor protein domains that specifically read chromatin targeting signals, such as histone modifications, DNA sequence/structure, non-coding RNAs, histone variants or DNA bound interacting proteins. Recent studies reveal the interaction between non-coding RNAs and chromatin remodeling complexes showing importance of RNA in remodeling enzyme targeting, scaffolding and regulation. In this review, we summarize current understanding of chromatin remodeling enzyme targeting to chromatin and their role in cancer development.
Collapse
|
336
|
Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol 2015; 33:661-7. [PMID: 25961408 PMCID: PMC4529991 DOI: 10.1038/nbt.3235] [Citation(s) in RCA: 533] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/20/2015] [Indexed: 01/08/2023]
Abstract
CRISPR-Cas9 genome editing technology holds great promise for discovering therapeutic targets in cancer and other diseases. Current screening strategies target CRISPR-Cas9-induced mutations to the 5' exons of candidate genes, but this approach often produces in-frame variants that retain functionality, which can obscure even strong genetic dependencies. Here we overcome this limitation by targeting CRISPR-Cas9 mutagenesis to exons encoding functional protein domains. This generates a higher proportion of null mutations and substantially increases the potency of negative selection. We also show that the magnitude of negative selection can be used to infer the functional importance of individual protein domains of interest. A screen of 192 chromatin regulatory domains in murine acute myeloid leukemia cells identifies six known drug targets and 19 additional dependencies. A broader application of this approach may allow comprehensive identification of protein domains that sustain cancer cells and are suitable for drug targeting.
Collapse
Affiliation(s)
- Junwei Shi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Eric Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Joseph P. Milazzo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Zhihua Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Justin B. Kinney
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
337
|
Alotaibi H, Basilicata MF, Shehwana H, Kosowan T, Schreck I, Braeutigam C, Konu O, Brabletz T, Stemmler MP. Enhancer cooperativity as a novel mechanism underlying the transcriptional regulation of E-cadherin during mesenchymal to epithelial transition. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:731-42. [DOI: 10.1016/j.bbagrm.2015.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/06/2015] [Accepted: 01/24/2015] [Indexed: 01/28/2023]
|
338
|
Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S, Ferreira L, Wingett SW, Andrews S, Grey W, Ewels PA, Herman B, Happe S, Higgs A, LeProust E, Follows GA, Fraser P, Luscombe NM, Osborne CS. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet 2015; 47:598-606. [PMID: 25938943 DOI: 10.1038/ng.3286] [Citation(s) in RCA: 675] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/02/2015] [Indexed: 12/14/2022]
Abstract
Transcriptional control in large genomes often requires looping interactions between distal DNA elements, such as enhancers and target promoters. Current chromosome conformation capture techniques do not offer sufficiently high resolution to interrogate these regulatory interactions on a genomic scale. Here we use Capture Hi-C (CHi-C), an adapted genome conformation assay, to examine the long-range interactions of almost 22,000 promoters in 2 human blood cell types. We identify over 1.6 million shared and cell type-restricted interactions spanning hundreds of kilobases between promoters and distal loci. Transcriptionally active genes contact enhancer-like elements, whereas transcriptionally inactive genes interact with previously uncharacterized elements marked by repressive features that may act as long-range silencers. Finally, we show that interacting loci are enriched for disease-associated SNPs, suggesting how distal mutations may disrupt the regulation of relevant genes. This study provides new insights and accessible tools to dissect the regulatory interactions that underlie normal and aberrant gene regulation.
Collapse
Affiliation(s)
- Borbala Mifsud
- 1] The Francis Crick Institute, London, UK. [2] UCL Genetics Institute, University College London, London, UK
| | | | - Alice N Young
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
| | | | | | - Lauren Ferreira
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
| | | | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge, UK
| | - William Grey
- Department of Medical and Molecular Genetics, King's College London School of Medicine, London, UK
| | - Philip A Ewels
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
| | - Bram Herman
- Diagnostics and Genomics Division, Agilent Technologies, Santa Clara, California, USA
| | - Scott Happe
- Diagnostics and Genomics Division, Agilent Technologies, Santa Clara, California, USA
| | - Andy Higgs
- Diagnostics and Genomics Division, Agilent Technologies, Santa Clara, California, USA
| | - Emily LeProust
- Diagnostics and Genomics Division, Agilent Technologies, Santa Clara, California, USA
| | - George A Follows
- Department of Haematology, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, UK
| | - Peter Fraser
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
| | - Nicholas M Luscombe
- 1] The Francis Crick Institute, London, UK. [2] UCL Genetics Institute, University College London, London, UK. [3] Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Cameron S Osborne
- 1] Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK. [2] Department of Medical and Molecular Genetics, King's College London School of Medicine, London, UK
| |
Collapse
|
339
|
Affiliation(s)
- Daniel Herranz
- a Institute for Cancer genetics Columbia University , New York
| | | |
Collapse
|
340
|
The chromatin remodeler Brg1 activates enhancer repertoires to establish B cell identity and modulate cell growth. Nat Immunol 2015; 16:775-84. [PMID: 25985234 PMCID: PMC4474778 DOI: 10.1038/ni.3170] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/31/2015] [Indexed: 12/14/2022]
Abstract
Early B cell development is orchestrated by the combined activities of the transcriptional regulators E2A, EBF1, Foxo1 and Ikaros. However, how the genome-wide binding patterns of these regulators are modulated during B lineage development remains to be determined. Here we found that in lymphoid progenitor cells, the chromatin remodeler Brg1 specified the B cell fate. In committed pro-B cells, Brg1 regulated contraction of the locus encoding the immunoglobulin heavy chain (Igh) and controlled expression of the gene encoding the transcription factor c-Myc (Myc) to modulate the expression of genes encoding products that regulate ribosome biogenesis. In committed pro-B cells, Brg1 suppressed a pre-B lineage-specific pattern of gene expression. Finally, we found that Brg1 acted mechanistically to establish B cell fate and modulate cell growth by facilitating access of lineage-specific transcription factors to enhancer repertoires.
Collapse
|
341
|
Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol 2015. [PMID: 25961408 DOI: 10.1038/nbt.3235.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CRISPR-Cas9 genome editing technology holds great promise for discovering therapeutic targets in cancer and other diseases. Current screening strategies target CRISPR-Cas9-induced mutations to the 5' exons of candidate genes, but this approach often produces in-frame variants that retain functionality, which can obscure even strong genetic dependencies. Here we overcome this limitation by targeting CRISPR-Cas9 mutagenesis to exons encoding functional protein domains. This generates a higher proportion of null mutations and substantially increases the potency of negative selection. We also show that the magnitude of negative selection can be used to infer the functional importance of individual protein domains of interest. A screen of 192 chromatin regulatory domains in murine acute myeloid leukemia cells identifies six known drug targets and 19 additional dependencies. A broader application of this approach may allow comprehensive identification of protein domains that sustain cancer cells and are suitable for drug targeting.
Collapse
Affiliation(s)
- Junwei Shi
- 1] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA. [2] Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Eric Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Joseph P Milazzo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Zihua Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Justin B Kinney
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | |
Collapse
|
342
|
Wang E, Kawaoka S, Roe JS, Shi J, Hohmann AF, Xu Y, Bhagwat AS, Suzuki Y, Kinney JB, Vakoc CR. The transcriptional cofactor TRIM33 prevents apoptosis in B lymphoblastic leukemia by deactivating a single enhancer. eLife 2015; 4:e06377. [PMID: 25919951 PMCID: PMC4409649 DOI: 10.7554/elife.06377] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/30/2015] [Indexed: 11/13/2022] Open
Abstract
Most mammalian transcription factors (TFs) and cofactors occupy thousands of genomic sites and modulate the expression of large gene networks to implement their biological functions. In this study, we describe an exception to this paradigm. TRIM33 is identified here as a lineage dependency in B cell neoplasms and is shown to perform this essential function by associating with a single cis element. ChIP-seq analysis of TRIM33 in murine B cell leukemia revealed a preferential association with two lineage-specific enhancers that harbor an exceptional density of motifs recognized by the PU.1 TF. TRIM33 is recruited to these elements by PU.1, yet acts to antagonize PU.1 function. One of the PU.1/TRIM33 co-occupied enhancers is upstream of the pro-apoptotic gene Bim, and deleting this enhancer renders TRIM33 dispensable for leukemia cell survival. These findings reveal an essential role for TRIM33 in preventing apoptosis in B lymphoblastic leukemia by interfering with enhancer-mediated Bim activation. DOI:http://dx.doi.org/10.7554/eLife.06377.001 The DNA inside every cell in a human body is the same, and yet the activities that occur within different types of cells can vary greatly. White blood cells, for example, are different from skin cells or liver cells because different genes are active in each type of cell. Molecules called transcription factors and transcriptional cofactors associate with specific DNA sequences to control the activity of nearby genes. It is common for a single transcription factor or cofactor to bind to thousands of sites across the DNA of any cell. In humans, our immune systems protect us against infectious diseases and from malfunctioning cells that could become cancerous. White blood cells called B cells provide part of this immune defense. These cells help to identify invading bacteria and viruses, and can also develop into memory cells that help the immune system to rapidly recognize, respond to and eliminate a disease if it is re-encountered. Immature B cells—also known as B lymphoblasts—mature within bone marrow. If any problem occurs in a cell as it matures, that cell is usually programmed to self-destruct in a process called apoptosis. If these cells are not destroyed, they can accumulate in the bone marrow and prevent the production of other immune cells. This leads to a type of cancer called acute lymphoblastic leukemia. Wang et al. now reveal that TRIM33—a protein that B-lymphoid leukemia cells need to survive—is a transcriptional cofactor that prevents apoptosis. Furthermore, unlike other known transcription factors and cofactors in mammals, TRIM33 binds to an exceedingly small number of sites across the DNA of B cells. In fact, the cancer cell's dependency on the protein is due to TRIM33 associating with just a single binding site. The role of TRIM33 in B cell leukemia also has potential therapeutic implications. Although it is found in cells throughout the body, Wang et al. found that inhibiting TRIM33 in mice resulted in lower numbers of B cells being produced, but did not affect other tissues. Developing drugs that prevent TRIM33 from working could therefore provide new options for treating leukemia. DOI:http://dx.doi.org/10.7554/eLife.06377.002
Collapse
Affiliation(s)
- Eric Wang
- Cold Spring Harbor Laboratory, New York, United States
| | | | - Jae-Seok Roe
- Cold Spring Harbor Laboratory, New York, United States
| | - Junwei Shi
- Cold Spring Harbor Laboratory, New York, United States
| | | | - Yali Xu
- Cold Spring Harbor Laboratory, New York, United States
| | | | - Yutaka Suzuki
- Department of Medical Genome Sciences, University of Tokyo, Kashiwa, Japan
| | | | | |
Collapse
|
343
|
Thompson KW, Marquez SB, Lu L, Reisman D. Induction of functional Brm protein from Brm knockout mice. Oncoscience 2015; 2:349-61. [PMID: 26097869 PMCID: PMC4468321 DOI: 10.18632/oncoscience.153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 04/08/2015] [Indexed: 12/18/2022] Open
Abstract
Once the knockout of the Brm gene was found to be nontumorigenic in mice, the study of BRM's involvement in cancer seemed less important compared with that of its homolog, Brg1. This has likely contributed to the disparity that has been observed in the publication ratio between BRG1 and BRM. We show that a previously published Brm knockout mouse is an incomplete knockout whereby a truncated isoform of Brm is detected in normal tissue and in tumors. We show that this truncated Brm isoform has functionality comparable to wild type Brm. By immunohistochemistry (IHC), this truncated Brm is undetectable in normal lung tissue and is minimal to very low in Brmnull tumors. However, it is significant in a subset (~40%) of Brg1/Brm double knockout (DKO) tumors that robustly express this truncated BRM, which in part stems from an increase in Brm mRNA levels. Thus, it is likely that this mutant mouse model does not accurately reflect the role that Brm plays in cancer development. We suggest that the construction of a completely new mouse Brm knockout, where Brm is functionally absent, is needed to determine whether or not Brm is actually tumorigenic and if Brm might be a tumor suppressor.
Collapse
Affiliation(s)
- Kenneth W. Thompson
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Stefanie B. Marquez
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Li Lu
- Department of Pathology, University of Florida, Gainesville, Florida, USA
| | - David Reisman
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
344
|
Huang JC, Basu SK, Zhao X, Chien S, Fang M, Oehler VG, Appelbaum FR, Becker PS. Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration. Blood Cancer J 2015; 5:e302. [PMID: 25860293 PMCID: PMC4450324 DOI: 10.1038/bcj.2015.17] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 02/08/2023] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) play a fundamental role in the BM microenvironment (BME) and abnormalities of these cells may contribute to acute myeloid leukemia (AML) pathogenesis. The aim of the study was to characterize the cytokine and gene expression profile, immunophenotype and cytogenetics of BM-MSCs from AML patients compared to normal BM-MSCs from healthy donors. AML BM-MSCs showed decreased monocyte chemoattractant protein-1 levels compared to normal BM-MSCs. AML BM-MSCs expressed similar β1 integrin, CD44, CD73, CD90 and E-cadherin compared to normal BM-MSCs. Cytogenetic analysis revealed chromosomal aberrations in AML BM-MSCs, some overlapping with and others distinct from their corresponding AML blasts. No significant difference in gene expression was detected between AML BM-MSCs compared to normal BM-MSCs; however, comparing the differences between AML and MSCs from AML patients with the differences between normal hematopoietic cells and normal MSCs by Ingenuity pathway analysis showed key distinctions of the AML setting: (1) upstream gene regulation by transforming growth factor beta 1, tumor necrosis factor, tissue transglutaminase 2, CCAAT/enhancer binding protein alpha and SWItch/Sucrose NonFermentable related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4; (2) integrin and interleukin 8 signaling as overrepresented canonical pathways; and (3) upregulation of transcription factors FBJ murine osteosarcoma viral oncogene homolog and v-myb avian myeloblastosis viral oncogene homolog. Thus, phenotypic abnormalities of AML BM-MSCs highlight a dysfunctional BME that may impact AML survival and proliferation.
Collapse
Affiliation(s)
- J C Huang
- 1] Division of Hematology, Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA [2] Division of Gerontology & Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - S K Basu
- Section of Hematology & Oncology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - X Zhao
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - S Chien
- Division of Hematology, Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
| | - M Fang
- 1] Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [2] Department of Pathology and Laboratory Medicine, University of Washington, Seattle Cancer Care Alliance, Seattle, WA, USA
| | - V G Oehler
- 1] Division of Hematology, Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA [2] Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - F R Appelbaum
- 1] Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [2] Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - P S Becker
- 1] Division of Hematology, Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA [2] Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
345
|
Verduci L, Azzalin G, Gioiosa S, Carissimi C, Laudadio I, Fulci V, Macino G. microRNA-181a enhances cell proliferation in acute lymphoblastic leukemia by targeting EGR1. Leuk Res 2015; 39:479-85. [DOI: 10.1016/j.leukres.2015.01.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/19/2014] [Accepted: 01/20/2015] [Indexed: 01/10/2023]
|
346
|
Sakamaki A, Katsuragi Y, Otsuka K, Tomita M, Obata M, Iwasaki T, Abe M, Sato T, Ochiai M, Sakuraba Y, Aoyagi Y, Gondo Y, Sakimura K, Nakagama H, Mishima Y, Kominami R. Bcl11b SWI/SNF-complex subunit modulates intestinal adenoma and regeneration after γ-irradiation through Wnt/β-catenin pathway. Carcinogenesis 2015; 36:622-31. [PMID: 25827435 DOI: 10.1093/carcin/bgv044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/28/2015] [Indexed: 01/23/2023] Open
Abstract
SWI/SNF chromatin remodeling complexes constitute a highly related family of multi-subunit complexes to modulate transcription, and SWI/SNF subunit genes are collectively mutated in 20% of all human cancers. Bcl11b is a SWI/SNF subunit and acts as a haploinsufficient tumor suppressor in leukemia/lymphomas. Here, we show expression of Bcl11b in intestinal crypt cells and promotion of intestinal tumorigenesis by Bcl11b attenuation in Apc (min/+) mice. Of importance, mutations or allelic loss of BCL11B was detected in one-third of human colon cancers. We also show that attenuated Bcl11b activity in the crypt base columnar (CBC) cells expressing the Lgr5 stem cell marker enhanced regeneration of intestinal epithelial cells after the radiation-induced injury. Interestingly, BCL11B introduction in human cell lines downregulated transcription of β-catenin target genes, whereas Bcl11b attenuation in Lgr5(+) CBCs increased expression of β-catenin targets including c-Myc and cyclin D1. Together, our results argue that Bcl11b impairment promotes tumor development in mouse and human intestine at least in part through deregulation of β-catenin pathway.
Collapse
Affiliation(s)
- Akira Sakamaki
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshinori Katsuragi
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kensuke Otsuka
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan
| | - Masanori Tomita
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan
| | - Miki Obata
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohiro Iwasaki
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Manabu Abe
- Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan
| | - Toshihiro Sato
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masako Ochiai
- Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and
| | - Yoshiyuki Sakuraba
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yutaka Aoyagi
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoichi Gondo
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kenji Sakimura
- Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan
| | - Hitoshi Nakagama
- Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and
| | - Yukio Mishima
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Ryo Kominami
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1 Iwado-kita, Komae-shi, Tokyo, 201-8511, Japan, Brain Research Institute, Niigata University, Asahimachi 1-757, Chuo-ku, Niigata 951-8510, Japan, Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan and RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
347
|
Abstract
INTRODUCTION Regulation of gene expression involves a variety of mechanisms driven by a complex regulatory network of factors. Control of transcription is an important step in gene expression regulation, which integrates the function of cis-acting and trans-acting elements. Among cis-regulatory elements, enhancer RNA (eRNA)-producing domains recently emerged as widespread and potent regulators of transcription and cell fate decision. Thus, manipulation of eRNA levels becomes a novel and appealing avenue for the design of new therapeutic treatments. AREAS COVERED In this review, we focus on eRNA-producing domains. We describe mechanisms involved in their cell-type specific selection and activation as well as their epigenetic features. In addition, we present their function and the growing evidences of their deregulation in human diseases. Finally, we discuss eRNAs as potential therapeutic targets. EXPERT OPINION As key factors in the control of transcription, eRNAs appear to possess a great potential for the establishment of new therapy options. However, thorough testing as well as providing the genetic toolbox to target eRNAs will be needed to fully assess the practical and clinical possibilities.
Collapse
Affiliation(s)
- Nicolas Léveillé
- The Netherlands Cancer Institute, Division of Biological Stress Response , Plesmanlaan 121, 1066 CX, Amsterdam , The Netherlands
| | | | | |
Collapse
|
348
|
Alexander JM, Hota SK, He D, Thomas S, Ho L, Pennacchio LA, Bruneau BG. Brg1 modulates enhancer activation in mesoderm lineage commitment. Development 2015; 142:1418-30. [PMID: 25813539 PMCID: PMC4392595 DOI: 10.1242/dev.109496] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 02/27/2015] [Indexed: 12/28/2022]
Abstract
The interplay between different levels of gene regulation in modulating developmental transcriptional programs, such as histone modifications and chromatin remodeling, is not well understood. Here, we show that the chromatin remodeling factor Brg1 is required for enhancer activation in mesoderm induction. In an embryonic stem cell-based directed differentiation assay, the absence of Brg1 results in a failure of cardiomyocyte differentiation and broad deregulation of lineage-specific gene expression during mesoderm induction. We find that Brg1 co-localizes with H3K27ac at distal enhancers and is required for robust H3K27 acetylation at distal enhancers that are activated during mesoderm induction. Brg1 is also required to maintain Polycomb-mediated repression of non-mesodermal developmental regulators, suggesting cooperativity between Brg1 and Polycomb complexes. Thus, Brg1 is essential for modulating active and repressive chromatin states during mesoderm lineage commitment, in particular the activation of developmentally important enhancers. These findings demonstrate interplay between chromatin remodeling complexes and histone modifications that, together, ensure robust and broad gene regulation during crucial lineage commitment decisions. SUMMARY: The chromatin remodeling factor Brg1 is essential for mesoderm induction and, by modulating active and repressive chromatin states, is involved in promoting the activation of dynamic enhancers.
Collapse
Affiliation(s)
- Jeffrey M Alexander
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Swetansu K Hota
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Daniel He
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Sean Thomas
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Lena Ho
- Institute of Medical Biology, A*STAR, Singapore 138648
| | - Len A Pennacchio
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA United States Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA Department of Pediatrics, University of California, San Francisco, CA 94143, USA Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
349
|
Pott S, Lieb JD. What are super-enhancers? Nat Genet 2015; 47:8-12. [PMID: 25547603 DOI: 10.1038/ng.3167] [Citation(s) in RCA: 482] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 11/19/2014] [Indexed: 12/15/2022]
Abstract
The term 'super-enhancer' has been used to describe groups of putative enhancers in close genomic proximity with unusually high levels of Mediator binding, as measured by chromatin immunoprecipitation and sequencing (ChIP-seq). Here we review the identification and composition of super-enhancers, describe links between super-enhancers, gene regulation and disease, and discuss the functional significance of enhancer clustering. We also provide our perspective regarding the proposition that super-enhancers are a regulatory entity conceptually distinct from what was known before the introduction of the term. Our opinion is that there is not yet strong evidence that super-enhancers are a novel paradigm in gene regulation and that use of the term in this context is not currently justified. However, the term likely identifies strong enhancers that exhibit behaviors consistent with previous models and concepts of transcriptional regulation. In this respect, the super-enhancer definition is useful in identifying regulatory elements likely to control genes important for cell type specification.
Collapse
Affiliation(s)
- Sebastian Pott
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Jason D Lieb
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
350
|
Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, Barabási AL. Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science 2015; 347:1257601. [PMID: 25700523 PMCID: PMC4435741 DOI: 10.1126/science.1257601] [Citation(s) in RCA: 897] [Impact Index Per Article: 99.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
According to the disease module hypothesis, the cellular components associated with a disease segregate in the same neighborhood of the human interactome, the map of biologically relevant molecular interactions. Yet, given the incompleteness of the interactome and the limited knowledge of disease-associated genes, it is not obvious if the available data have sufficient coverage to map out modules associated with each disease. Here we derive mathematical conditions for the identifiability of disease modules and show that the network-based location of each disease module determines its pathobiological relationship to other diseases. For example, diseases with overlapping network modules show significant coexpression patterns, symptom similarity, and comorbidity, whereas diseases residing in separated network neighborhoods are phenotypically distinct. These tools represent an interactome-based platform to predict molecular commonalities between phenotypically related diseases, even if they do not share primary disease genes.
Collapse
Affiliation(s)
- Jörg Menche
- Center for Complex Networks Research and Department of Physics, Northeastern University, 110 Forsyth Street, 111 Dana Research Center, Boston, MA 02115, USA. Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA. Center for Network Science, Central European University, Nador u. 9, 1051 Budapest, Hungary
| | - Amitabh Sharma
- Center for Complex Networks Research and Department of Physics, Northeastern University, 110 Forsyth Street, 111 Dana Research Center, Boston, MA 02115, USA. Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Maksim Kitsak
- Center for Complex Networks Research and Department of Physics, Northeastern University, 110 Forsyth Street, 111 Dana Research Center, Boston, MA 02115, USA. Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Susan Dina Ghiassian
- Center for Complex Networks Research and Department of Physics, Northeastern University, 110 Forsyth Street, 111 Dana Research Center, Boston, MA 02115, USA. Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA. Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Albert-László Barabási
- Center for Complex Networks Research and Department of Physics, Northeastern University, 110 Forsyth Street, 111 Dana Research Center, Boston, MA 02115, USA. Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA. Center for Network Science, Central European University, Nador u. 9, 1051 Budapest, Hungary. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|